
### Report No.: AGC00589170701FE10 Page 201 of 261

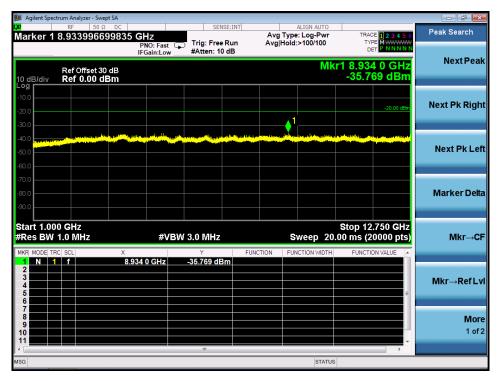
#### Conducted Spurious Emission (worst) @161.61MHz With 12.5 KHz Channel Separation-5W



30MHz-1GHz

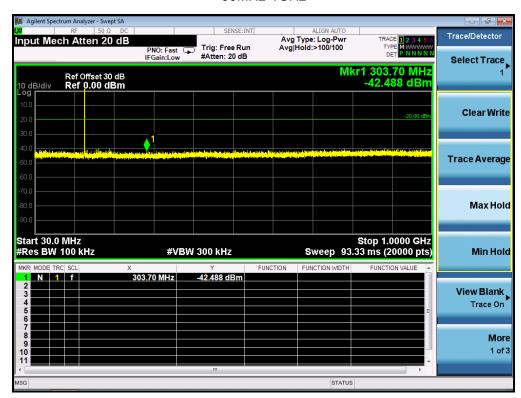
Conduct Spurious Emission (worst) @ 161.61MHz With 12.5 KHz Channel Separation-5W 1GHz-12.75GHz




### Report No.: AGC00589170701FE10 Page 202 of 261

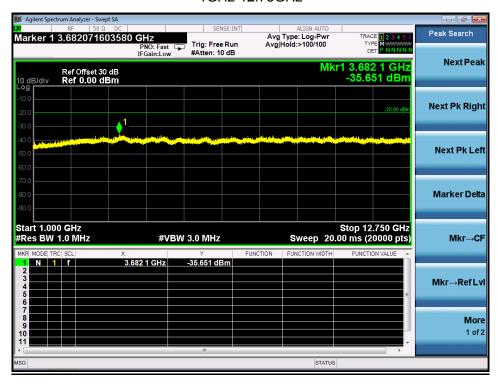
### Conducted Spurious Emission (worst) @136.025MHz With 12.5 KHz Channel Separation-2.5W




30MHz-1GHz

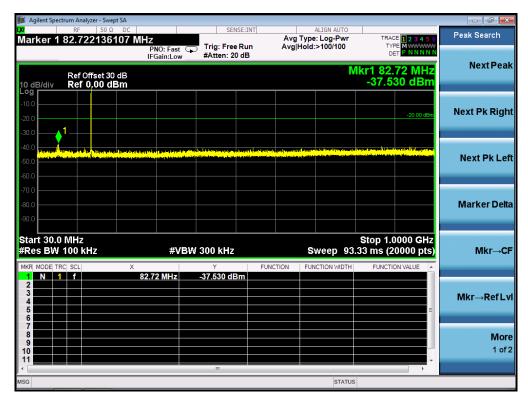
Conduct Spurious Emission (worst) @ 136.025MHz With 12.5 KHz Channel Separation-2.5W 1GHz-12.75GHz




### Report No.: AGC00589170701FE10 Page 203 of 261

### Conducted Spurious Emission (worst) @151.850 MHz With 12.5 KHz Channel Separation-2.5W




30MHz-1GHz

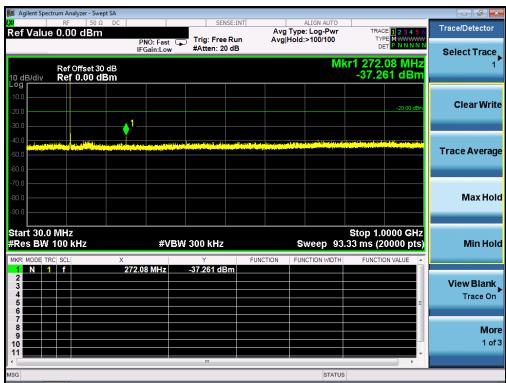
Conduct Spurious Emission (worst) @ 151.850MHz With 12.5 KHz Channel Separation-2.5W 1GHz-12.75GHz



### Report No.: AGC00589170701FE10 Page 204 of 261

Conducted Spurious Emission (worst) @161.61MHz With 12.5 KHz Channel Separation-2.5W



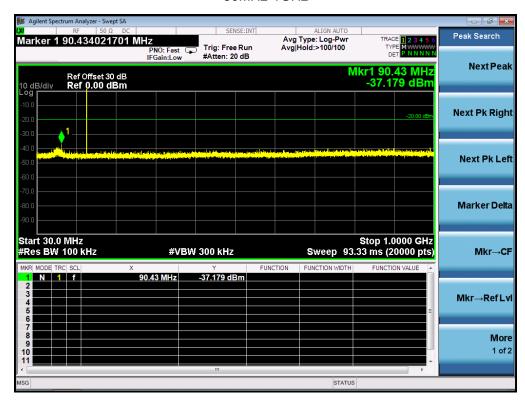

30MHz-1GHz

Conduct Spurious Emission (worst) @ 161.61MHz With 12.5 KHz Channel Separation-2.5W 1GHz-12.75GHz



### Report No.: AGC00589170701FE10 Page 205 of 261

#### Conducted Spurious Emission (worst) @136.025MHz With 12.5 KHz Channel Separation-1W 30MHz-1GHz



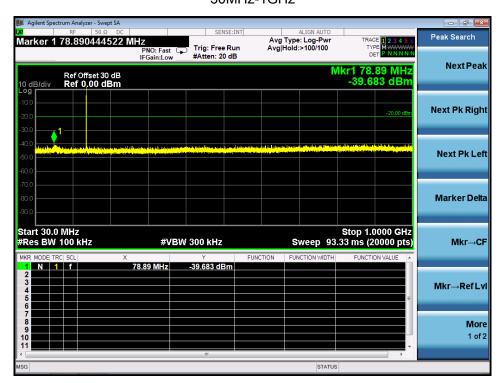

Conduct Spurious Emission (worst) @ 136.025MHz With 12.5 KHz Channel Separation-1W 1GHz-12.75GHz



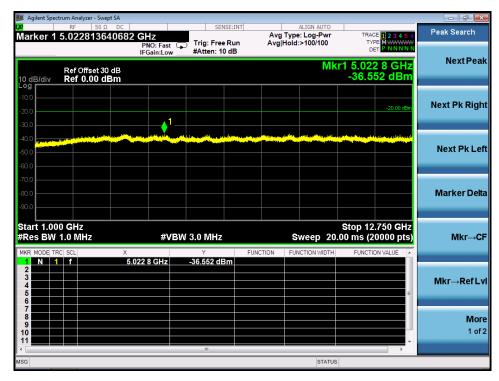
### Report No.: AGC00589170701FE10 Page 206 of 261

### Conducted Spurious Emission (worst) @151.85MHz With 12.5 KHz Channel Separation-1W




30MHz-1GHz

Conduct Spurious Emission (worst) @ 51.85MHz With 12.5 KHz Channel Separation-1W 1GHz-12.75GHz


| 鱦 Agilent Spec           | trum Analyzer - Swept S |                         |                          |                  |                             |                                    | # <b></b> _      |
|--------------------------|-------------------------|-------------------------|--------------------------|------------------|-----------------------------|------------------------------------|------------------|
| X<br>Marker 1            | RF 50 Ω<br>4.815415770  | 789 GHz                 |                          |                  | ALIGN AUTO<br>Type: Log-Pwr | TRACE 1 2 3 4                      | 5 6 Peak Search  |
|                          | Ref Offset 30 dl        | PNO: Fast<br>IFGain:Low | Trig: Free<br>#Atten: 10 |                  | Hold:>100/100               | TYPE MWWW<br>DET PNNN              | Next Peak        |
| 10 dB/div<br>Log r       | Ref 0.00 dBr            |                         |                          |                  |                             | -35.921 dB                         | m                |
| -10.0<br>-20.0           |                         |                         |                          |                  |                             | -20.00 c                           | Bm Next Pk Right |
| -30.0                    |                         |                         |                          | inter providenda |                             |                                    | Next Pk Left     |
| -50.0<br>-60.0<br>-70.0  |                         |                         |                          |                  |                             |                                    |                  |
| -70.0                    |                         |                         |                          |                  |                             |                                    | Marker Delta     |
| Start 1.00<br>#Res BW    |                         | #\//                    | BW 3.0 MHz               |                  | Swoon 20                    | Stop 12.750 Gł<br>.00 ms (20000 pt | lz<br>ts) Mkr→CF |
| MKR MODE TR              |                         | #VI                     | 3W 3.0 WH2               | FUNCTION         | FUNCTION WIDTH              | FUNCTION VALUE                     |                  |
| 1 N 1<br>2 3<br>4 5<br>6 |                         | 4.815 4 GHz             | -35.921 dBr              |                  |                             | - Storiet Vicez                    | Mkr→RefLvi       |
| 7<br>8<br>9<br>10        |                         |                         |                          |                  |                             |                                    | More<br>1 of 2   |
| 11 <u> </u>              |                         |                         | III                      |                  |                             | •                                  | •                |
| MSG                      |                         |                         |                          |                  | STATUS                      | 8                                  |                  |

### Report No.: AGC00589170701FE10 Page 207 of 261

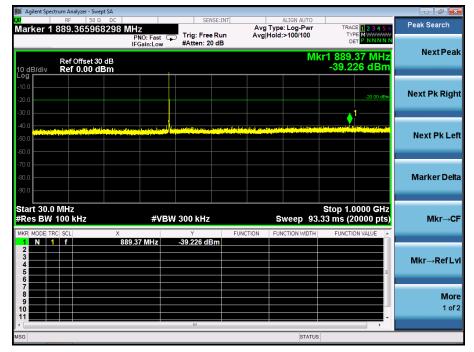
Conducted Spurious Emission (worst) @161.610 MHz With 12.5 KHz Channel Separation-1W 30MHz-1GHz



Conduct Spurious Emission (worst) @ 161.610MHz With 12.5 KHz Channel Separation-1W 1GHz-12.75GHz



Note: only result the worst case in this part.

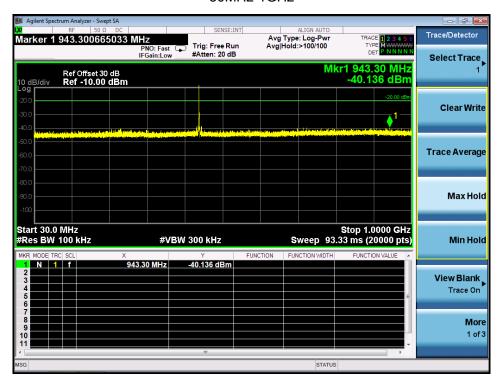

UHF:

Analog:

12.5 KHz:

Conducted Spurious Emission (worst) @ 400.025MHz With 12.5 KHz Channel Separation-6W





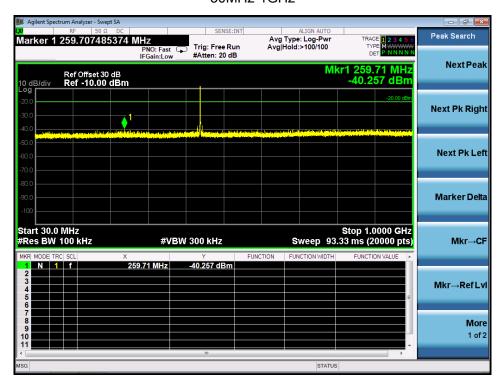

Conduct Spurious Emission (worst) @ 400.025MHz With 12.5 KHz Channel Separation-6W 1GHz-12.75GHz

| RF                                                                                             | 50 Ω DC                  |             | -                         |              |                                          |                                  |
|------------------------------------------------------------------------------------------------|--------------------------|-------------|---------------------------|--------------|------------------------------------------|----------------------------------|
| larker 1 3.7408                                                                                |                          |             | Avg Type:<br>n Avg Hold:> |              | TRACE 123456<br>TYPE MWWWW<br>DET PNNNNN | Peak Search                      |
| 0 dB/div Ref 0.0                                                                               | set 30 dB<br>00 dBm      |             |                           |              | 740 8 GHz<br>6.204 dBm                   | NextPea                          |
|                                                                                                |                          |             |                           |              | -20.00 dBm                               | Next Pk Righ                     |
| 10.0<br>50.0<br>50.0                                                                           |                          |             |                           |              |                                          | Next Pk Le                       |
| 70.0                                                                                           |                          |             |                           |              |                                          | Marker Del                       |
|                                                                                                |                          |             |                           |              |                                          |                                  |
| Res BW 1.0 MHz                                                                                 |                          | VBW 3.0 MHz |                           | /eep 20.00 m |                                          | Mkr→C                            |
| Res  BW  1.0  MHz    INR  MODE  TRC  SCL  1    1  N  1  f  1    2  3  4  4  4    5  6  4  4  4 | 2. #<br>X<br>3.740 8 GHz | Y           |                           | /eep 20.00 m | 2) 12.750 GHz<br>s (20000 pts)           |                                  |
| 2<br>3<br>4<br>5                                                                               | х                        | Y           |                           | /eep 20.00 m | s (20000 pts)                            | Mkr→C<br>Mkr→RefL<br>Moi<br>1 of |

### Report No.: AGC00589170701FE10 Page 209 of 261

### Conducted Spurious Emission (worst) @ 453.225MHz With 12.5 KHz Channel Separation-6W



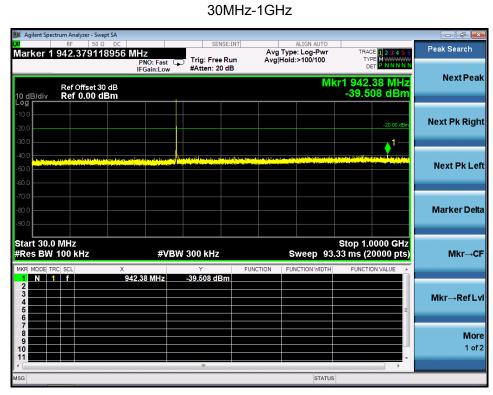

30MHz-1GHz

Conduct Spurious Emission (worst) @ 453.225MHz With 12.5 KHz Channel Separation-6W 1GHz-12.75GHz

| 🎉 Agilent Spectrur            | m Analyzer - Swept SA |              |                     |                          |        |          |            |           |                                                                                                                | - 6 -          |
|-------------------------------|-----------------------|--------------|---------------------|--------------------------|--------|----------|------------|-----------|----------------------------------------------------------------------------------------------------------------|----------------|
| Marker 1 3.                   | RF 50 Ω D             |              |                     |                          | SE:INT | Avg Type | ALIGN AUTO |           | E <b>1 2 3 4 5</b> 6                                                                                           | Peak Search    |
|                               | Ref Offset 30 dB      | PNO<br>IFGai | l: Fast ⊊<br>in:Low | Trig: Free<br>#Atten: 10 |        | Avg Hold |            | r1 3.86   | 7 1 GHz                                                                                                        | Next Peak      |
| 10 dB/div                     | Ref 0.00 dBm          | 1            |                     |                          |        |          |            |           | -20.00 dBm                                                                                                     | Next Pk Right  |
| -40.0<br>-50.0<br>-60.0       |                       |              |                     |                          |        |          |            |           | (dild) ( a contract to the second | Next Pk Left   |
| -70.0<br>-80.0<br>-90.0       |                       |              |                     |                          |        |          |            |           |                                                                                                                | Marker Delta   |
| Start 1.000<br>#Res BW 1.     | 0 MHz                 | Х            |                     | 3.0 MHz<br>Y             | FUNC   |          | weep 20    | .00 ms (2 | 750 GHz<br>0000 pts)                                                                                           | Mkr→CF         |
| 1 N 1<br>2 3<br>3 4<br>5 6    | f                     | 3.8671(      | GHz                 | -36.060 dBi              | m      |          |            |           | =                                                                                                              | Mkr→RefLvi     |
| 7<br>8<br>9<br>10<br>11<br>11 |                       |              |                     |                          |        |          |            |           |                                                                                                                | More<br>1 of 2 |
| MSG                           |                       |              |                     |                          |        |          | STATUS     |           |                                                                                                                |                |

### Report No.: AGC00589170701FE10 Page 210 of 261

# Conducted Spurious Emission (worst) @ 454.025MHz With 12.5 KHz Channel Separation-6W

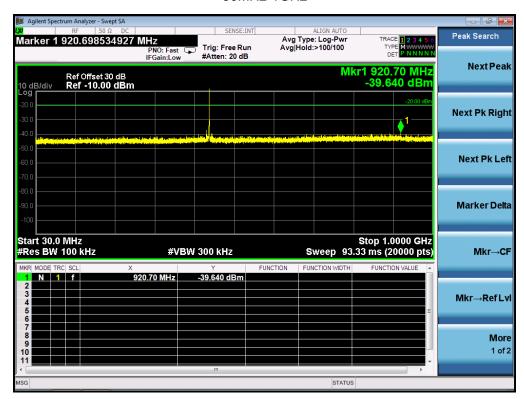



30MHz-1GHz

Conduct Spurious Emission (worst) @ 454.025MHz With 12.5 KHz Channel Separation-6W 1GHz-12.75GHz

| 📕 Agilent Spec        | trum Analyzer - Swe         | •                  |                                                                                                                  |                              |                                                                                                                 |                                                                                                                 |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |               |
|-----------------------|-----------------------------|--------------------|------------------------------------------------------------------------------------------------------------------|------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------|
| larker 1              | RF 50 Ω<br>3.7214360        | 2 DC  <br>71804 GH | z                                                                                                                | SENSI                        | A                                                                                                               | vg Type                                                                                                         | ALIGN AUTO                                                                                                       | TRAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | E 1 2 3 4 5 6                 | Peak Search   |
|                       |                             | PN                 | IO: Fast G                                                                                                       | Trig: Free F<br>#Atten: 10 d |                                                                                                                 | /g Hold                                                                                                         | :>100/100                                                                                                        | TYI<br>Di                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               |               |
|                       | D. C.O.S. 1.0               |                    |                                                                                                                  |                              |                                                                                                                 |                                                                                                                 | Mk                                                                                                               | r1 3.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 4 GHz                       | Next Pea      |
| 10 dB/div             | Ref Offset 30<br>Ref 0.00 d |                    |                                                                                                                  |                              |                                                                                                                 |                                                                                                                 |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25 dBm                        |               |
| -10.0                 |                             |                    |                                                                                                                  |                              |                                                                                                                 |                                                                                                                 |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |               |
| -20.0                 |                             |                    |                                                                                                                  |                              |                                                                                                                 |                                                                                                                 |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -20.00 dBm                    | Next Pk Righ  |
| -30.0                 |                             | 11                 |                                                                                                                  |                              |                                                                                                                 |                                                                                                                 |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |               |
| -40.0                 |                             |                    | and the second | harming of the system        | Participan and in the second second                                                                             | n den deke                                                                                                      | a antista de la facta de la constitución de la constitución de la constitución de la constitución de la constitu | and a straight of the second state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (Internet and Alberton        |               |
| -50.0                 |                             |                    |                                                                                                                  |                              | Carlinson and | and the particular of |                                                                                                                  | and the second s | Mandalana a Jan Million and A | Next Pk Le    |
| -60.0                 |                             |                    |                                                                                                                  |                              |                                                                                                                 |                                                                                                                 |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |               |
| -70.0                 |                             |                    |                                                                                                                  |                              |                                                                                                                 |                                                                                                                 |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |               |
| -80.0                 |                             |                    |                                                                                                                  |                              |                                                                                                                 |                                                                                                                 |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | Marker Del    |
| -90.0                 |                             |                    |                                                                                                                  |                              |                                                                                                                 |                                                                                                                 |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |               |
|                       |                             |                    |                                                                                                                  |                              |                                                                                                                 |                                                                                                                 |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |               |
| Start 1.00<br>#Res BW |                             |                    | #VRV                                                                                                             | V 3.0 MHz                    |                                                                                                                 | 9                                                                                                               | weep 20                                                                                                          | Stop 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .750 GHz                      | Mkr→C         |
| MKR MODE TR           |                             | X                  | <i></i>                                                                                                          | ¥ 5.0 IVII 12                | FUNCTION                                                                                                        |                                                                                                                 |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DN VALUE                      |               |
| 1 N 1                 |                             | 3.721 4            | GHz                                                                                                              | -36.025 dBn                  |                                                                                                                 | FUI                                                                                                             |                                                                                                                  | FUNCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               |               |
| 2                     |                             |                    |                                                                                                                  |                              |                                                                                                                 |                                                                                                                 |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                             | Mkr→RefL      |
| 4 5                   |                             |                    |                                                                                                                  |                              |                                                                                                                 |                                                                                                                 |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                             | iniki → Kei L |
| 6                     |                             |                    |                                                                                                                  |                              |                                                                                                                 |                                                                                                                 |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |               |
| 7 8                   |                             |                    |                                                                                                                  |                              |                                                                                                                 |                                                                                                                 |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | Mo            |
| 9                     |                             |                    |                                                                                                                  |                              |                                                                                                                 |                                                                                                                 |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | 1 of          |
| 11                    |                             |                    |                                                                                                                  |                              |                                                                                                                 |                                                                                                                 |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |               |
| sg                    |                             |                    |                                                                                                                  |                              |                                                                                                                 |                                                                                                                 | STATUS                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |               |
| _                     |                             |                    |                                                                                                                  |                              |                                                                                                                 |                                                                                                                 |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |               |

# Conducted Spurious Emission (worst) @ 400.025MHz With 12.5 KHz Channel Separation-5W



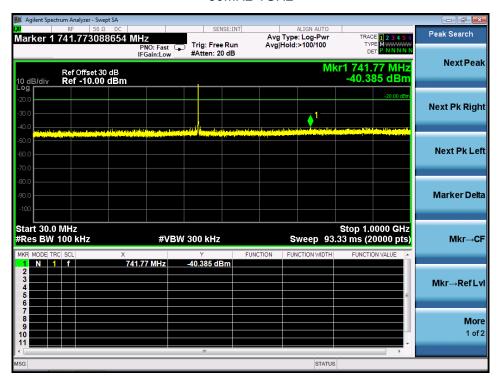

Conduct Spurious Emission (worst) @ 400.025MHz With 12.5 KHz Channel Separation-5W 1GHz-12.75GHz

| J Agilent Spectrum Analyzer - Swept SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | or work the                                          |                                                                                                                                                                                                                                                                                                                                |                                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| Marker 1 3.795464773239                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                      |                                                                                                                                                                                                                                                                                                                                | TRACE 1 2 3 4 5 6                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PNO: Fast Trig: Free Run<br>IFGain:Low #Atten: 10 dB | Avg Hold.>100/100                                                                                                                                                                                                                                                                                                              |                                      |
| Ref Offset 30 dB<br>10 dB/div Ref 0.00 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                      | Mkr1 3.<br>-3                                                                                                                                                                                                                                                                                                                  | 795 5 GHz Next Peak<br>5.971 dBm     |
| -10.0<br>-20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                      |                                                                                                                                                                                                                                                                                                                                | -20 00 dBm Next Pk Righ              |
| -30.0<br>-40.0<br>-50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                      | n 17 E Sanga da Parka da Barana, an Africa da a serang da kang parking ang Barbary si da<br>Kang da Parka da Park<br>Kang da Parka da Park | Next Pk Lef                          |
| -60.0<br>-70.0<br>-80.0<br>-90.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                      |                                                                                                                                                                                                                                                                                                                                | Marker Delta                         |
| Start 1.000 GHz<br>#Res BW 1.0 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | #VBW 3.0 MHz                                         | Stop<br>Sweep 20.00 m                                                                                                                                                                                                                                                                                                          | 9 12.750 GHz<br>s (20000 pts) Mkr→CF |
| MKR  MODE  TRC  SCL  X    1  N  1  f  3.7    2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Y<br>795 5 GHz -35.971 dBm                           | FUNCTION FUNCTION WIDTH FU                                                                                                                                                                                                                                                                                                     | Mkr→RefLv                            |
| 4 5 6 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 7 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 |                                                      |                                                                                                                                                                                                                                                                                                                                |                                      |
| 8<br>9<br>10<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                      |                                                                                                                                                                                                                                                                                                                                | More<br>1 of 2                       |
| MSG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | m                                                    | STATUS                                                                                                                                                                                                                                                                                                                         | ,                                    |

### Report No.: AGC00589170701FE10 Page 212 of 261

### Conducted Spurious Emission (worst) @ 453.225MHz With 12.5 KHz Channel Separation-5W




30MHz-1GHz

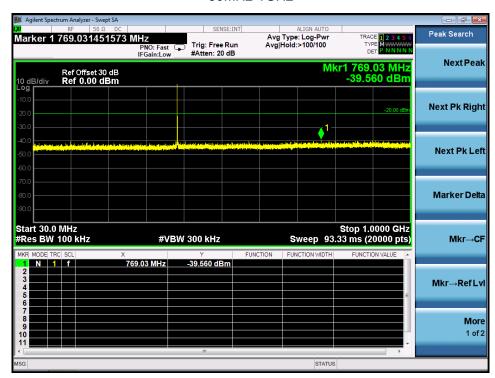
Conduct Spurious Emission (worst) @ 453.225MHz With 12.5 KHz Channel Separation-5W 1GHz-12.75GHz



### Report No.: AGC00589170701FE10 Page 213 of 261

# Conducted Spurious Emission (worst) @ 454.025MHz With 12.5 KHz Channel Separation-5W




30MHz-1GHz

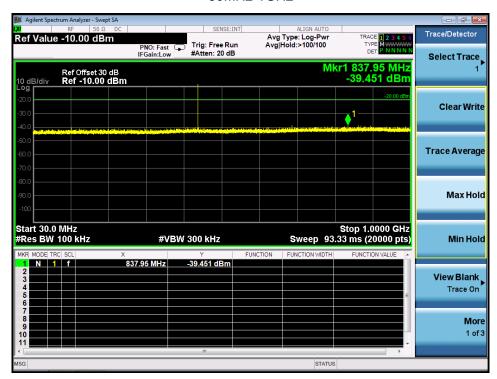
Conduct Spurious Emission (worst) @ 454.025MHz With 12.5 KHz Channel Separation-5W 1GHz-12.75GHz

| 🚺 Agilent Spec          | trum Analyzer - Swe          |         |                       |                               |       |          |            |                   |                       | - F X               |
|-------------------------|------------------------------|---------|-----------------------|-------------------------------|-------|----------|------------|-------------------|-----------------------|---------------------|
| Marker 1                | RF 50 Ω                      |         | z                     |                               | E:INT | Avg Type | ALIGN AUTO | TRAC              | E 1 2 3 4 5 6         | Peak Search         |
|                         |                              | PN      | IO: Fast 🔾<br>ain:Low | Trig: Free I<br>#Atten: 10    |       | Avg Hold | :>100/100  | TYF               |                       |                     |
| 10 dB/div               | Ref Offset 30<br>Ref 0.00 di |         |                       |                               |       |          | Mk         | r1 3.779<br>-35.9 | 9 6 GHz<br>28 dBm     | Next Peak           |
| -10.0                   |                              | .1      |                       |                               |       |          |            |                   | -20.00 dBm            | Next Pk Righ        |
| -30.0<br>-40.0<br>-50.0 |                              |         |                       |                               |       |          |            |                   |                       | Next Pk Lef         |
| -60.0<br>-70.0          |                              |         |                       |                               |       |          |            |                   |                       | Marker Delta        |
| -90.0                   |                              |         |                       |                               |       |          |            | Stop 12           | .750 GHz              |                     |
| #Res BW                 | 1.0 MHz                      | X       |                       | V 3.0 MHz<br>Y<br>-35.928 dBr | FUNCT |          | weep 20    | .00 ms (2         | 0000 pts)<br>DN VALUE | Mkr→CF              |
| 2<br>3<br>4<br>5<br>6   |                              | 3.779 6 | GHZ                   | -35.928 dBf                   |       |          |            |                   | =                     | Mkr→RefLv           |
| 7<br>8<br>9<br>10       |                              |         |                       |                               |       |          |            |                   |                       | <b>Mor</b><br>1 of: |
| 11 <u> </u>             |                              |         |                       |                               |       |          |            |                   |                       |                     |
| ISG                     |                              |         |                       |                               |       |          | STATUS     |                   |                       |                     |

### Report No.: AGC00589170701FE10 Page 214 of 261

#### Conducted Spurious Emission (worst) @ 400.025MHz With 12.5 KHz Channel Separation-2.5W




30MHz-1GHz

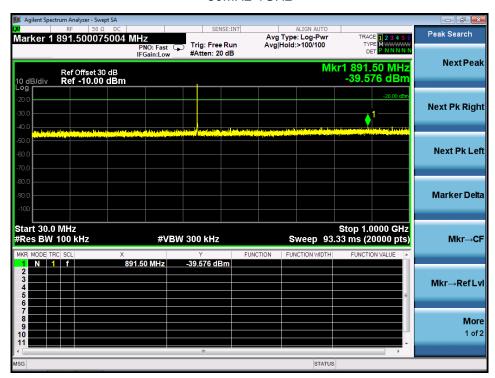
Conduct Spurious Emission (worst) @ 400.025MHz With 12.5 KHz Channel Separation-2.5W 1GHz-12.75GHz

|             |            |                       |                      |                         |         |           |         |                        |                     |                  | alyzer - Swep        |                       | lent Spec      | 📕 Agil         |
|-------------|------------|-----------------------|----------------------|-------------------------|---------|-----------|---------|------------------------|---------------------|------------------|----------------------|-----------------------|----------------|----------------|
| Peak Search | 56         | RACE 1 2 3 4          | TRA                  | ALIGN AUTO<br>: Log-Pwr | vg Type |           | ENSE:IN |                        | z                   | 0436 GI          | 50 Ω<br>1440872      | <sup>RF</sup><br>4.67 | ker 1          | /<br>//ark     |
|             | NNN<br>NNN |                       | די<br>ב              | :>100/100               | vg Hold | י         |         | Trig: Fre<br>#Atten: 1 | 0:Fast 🗔<br>ain:Low |                  |                      |                       |                |                |
| NextPea     | Hz<br>Sm   | 74 4 GI<br>291 dB     | r1 4.67<br>-35.2     | Mk                      |         |           |         |                        |                     | dB<br>S <b>m</b> | Offset 30<br>0.00 dE | Ref<br>Ref            | 3/div          | 10 dE          |
| Next Pk Rig | dBm        | -20.00 (              |                      |                         |         |           |         |                        |                     |                  |                      |                       |                | -10.0<br>-20.0 |
|             |            |                       |                      |                         |         |           |         |                        | <mark>♦</mark> 1    |                  |                      |                       |                | -30.0          |
| Next Pk Le  |            |                       |                      |                         |         | din medit |         |                        |                     |                  |                      |                       |                | -50.0          |
|             |            |                       |                      |                         |         |           |         |                        |                     |                  |                      |                       |                | -60.0<br>-70.0 |
| Marker Del  |            |                       |                      |                         |         |           |         |                        |                     |                  |                      |                       |                | -80.0          |
|             |            |                       |                      |                         |         |           |         |                        |                     |                  |                      |                       |                | -90.0          |
| Mkr→C       | Hz<br>ots) | 12.750 GI<br>(20000 p | Stop 12<br>.00 ms (2 | weep 20.                | s       |           | z       | 3.0 MHz                | #VBW                |                  |                      | 1.0 N                 | t 1.00<br>s BW | #Res           |
|             | Â          | CTION VALUE           | FUNCT                | ICTION WIDTH            | I FUN   | FUNCT     | Bm      | Y<br>-35.291 d         | GHz                 | ×<br>4.674       |                      | RC SCL                | N 1            | 1              |
| Mkr→RefL    |            |                       |                      |                         |         |           |         |                        |                     |                  |                      |                       |                | 2 3            |
|             | =          |                       |                      |                         |         |           |         |                        |                     |                  |                      |                       |                | 4<br>5<br>6    |
| Мо          |            |                       |                      |                         |         |           |         |                        |                     |                  |                      |                       |                | 7 8            |
| 1 of        |            |                       |                      |                         |         |           |         |                        |                     |                  |                      |                       |                | 9<br>10        |
|             |            | •                     |                      |                         |         |           |         |                        |                     |                  |                      |                       |                | 11             |
|             |            |                       | 6                    | STATUS                  |         |           |         |                        |                     |                  |                      |                       |                | ISG            |

### Report No.: AGC00589170701FE10 Page 215 of 261

# Conducted Spurious Emission (worst) @ 453.225MHz With 12.5 KHz Channel Separation-2.5W




30MHz-1GHz

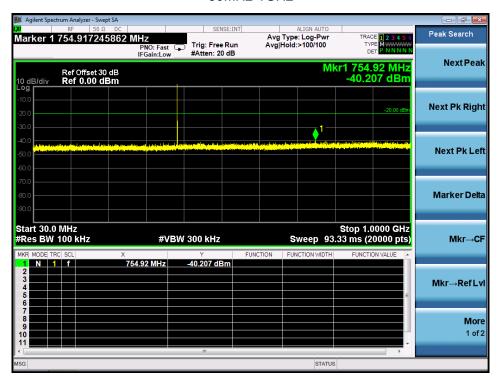
Conduct Spurious Emission (worst) @ 453.225MHz With 12.5 KHz Channel Separation-2.5W 1GHz-12.75GHz

| 🔟 Agilent Spec<br>💴   | ctrum Analyzer - Swept<br>RF 50 Ω |                      |                    | ENSE:INT          | ALIGN AUTO              |              |                                      |              |
|-----------------------|-----------------------------------|----------------------|--------------------|-------------------|-------------------------|--------------|--------------------------------------|--------------|
| Marker 1              | 10.6495824                        | 79124 GHz<br>PNO: Fa |                    |                   | e: Log-Pwr<br>:>100/100 | TY           | DE 123456<br>PE MWWWWW<br>ET P NNNNN | Peak Search  |
| 10 dB/div             | Ref Offset 30 o<br>Ref 0.00 dB    | dB                   | <u>.ow</u> #Atten. | loub              | Mkr                     |              | 9 6 GHz<br>96 dBm                    | Next Peal    |
| -10.0 -20.0           |                                   |                      |                    |                   |                         |              | -20.00 dBm                           | Next Pk Righ |
| -30.0                 |                                   |                      |                    | particititi antig |                         | _ <b>↓</b> 1 |                                      | Next Pk Le   |
| -50.0                 |                                   |                      |                    |                   |                         |              |                                      |              |
| -80.0                 |                                   |                      |                    |                   |                         |              |                                      | Marker Delt  |
| Start 1.00<br>#Res BW | 1.0 MHz                           | #                    | ≠VBW 3.0 MH        |                   | weep 20                 | .00 ms (2    | 2.750 GHz<br>20000 pts)              | Mkr→C        |
| 1 N 1<br>2<br>3       | f                                 | ^<br>10.649 6 GH     |                    |                   | NCTION WIDTH            | PONCTI       | UN VALUE                             | Mkr→RefL     |
| 4<br>5<br>6<br>7      |                                   |                      |                    |                   |                         |              |                                      |              |
| 8<br>9<br>10<br>11    |                                   |                      |                    |                   |                         |              | -                                    | Mor<br>1 of  |
| ۲<br>ISG              |                                   |                      |                    |                   | <br>STATUS              | 6            | •                                    |              |

### Report No.: AGC00589170701FE10 Page 216 of 261

# Conducted Spurious Emission (worst) @ 454.025MHz With 12.5 KHz Channel Separation-2.5W




30MHz-1GHz

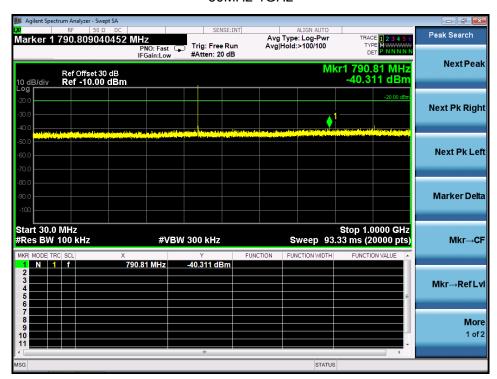
Conduct Spurious Emission (worst) @ 454.025MHz With 12.5 KHz Channel Separation-2.5W 1GHz-12.75GHz

|              |                  |                              |              |                                |        |                         |                       |               | nalyzer - Swe           |            | Agilent S         |
|--------------|------------------|------------------------------|--------------|--------------------------------|--------|-------------------------|-----------------------|---------------|-------------------------|------------|-------------------|
| Peak Search  | <b>2 3 4 5</b> 6 | TRACE 12                     | ALIGN AUTO   | Avg Typ                        | SE:INT |                         |                       | DC<br>22156 G |                         | ®<br>1 3.8 | arker             |
|              | NNNNN            | DET P N                      | :>100/100    | Avg Hold                       |        | Trig: Free<br>#Atten: 1 | NO:Fast ⊂<br>Gain:Low |               |                         | _          |                   |
| NextPea      | GHz<br>dBm       | r1 3.862 4 (<br>-36.286 d    | Mk           |                                |        |                         |                       |               | f Offset 30<br>f 0.00 d |            | dB/div            |
| Next Pk Righ | 20.00 dBm        |                              |              |                                |        |                         |                       |               |                         |            |                   |
|              |                  |                              |              |                                |        |                         |                       | <b>∮</b> 1_   |                         |            | ).0               |
| Next Pk Le   |                  |                              |              | i testin syn <sup>inte</sup> s |        |                         |                       |               |                         |            |                   |
|              |                  |                              |              |                                |        |                         |                       |               |                         |            | ).0               |
| Marker Delt  |                  |                              |              |                                |        |                         |                       |               |                         |            | ).0<br>).0        |
|              |                  |                              |              |                                |        |                         |                       |               |                         |            | ).0               |
| Mkr→C        | 0 GHz<br>)0 pts) | Stop 12.750<br>.00 ms (20000 | weep 20      | s                              |        | 3.0 MHz                 | #VB                   |               |                         |            | art 1.0<br>Res Bl |
|              |                  | FUNCTION VALU                | ICTION WIDTH |                                |        | Y                       |                       | Х             |                         |            | R MODE            |
| Min Defi     |                  |                              |              |                                | im     | -36.286 dl              | 4 GHz                 | 3.862         |                         | 1 f        | 1 N<br>2<br>3     |
| Mkr→RefL     | =                |                              |              |                                |        |                         |                       |               |                         |            |                   |
| Moi          |                  |                              |              |                                |        |                         |                       |               |                         |            | 7 <b></b>         |
| 1 of         |                  |                              |              |                                |        |                         |                       |               |                         |            |                   |
|              | Þ                |                              |              |                                |        | m                       |                       |               |                         |            |                   |
|              |                  |                              | STATUS       |                                |        |                         |                       |               |                         |            | â                 |

### Report No.: AGC00589170701FE10 Page 217 of 261

# Conducted Spurious Emission (worst) @ 400.025MHz With 12.5 KHz Channel Separation-1W




30MHz-1GHz

Conduct Spurious Emission (worst) @ 400.025MHz With 12.5 KHz Channel Separation-1W 1GHz-12.75GHz

|                                           | pt SA                   |                                 |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     |                                    |                                   |
|-------------------------------------------|-------------------------|---------------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------|-----------------------------------|
| RF 50 Ω<br>1arker 1 4.70731036            |                         | SENSE:IN                        | Avg Type  | : Log-Pwr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 01:21:09 上午 ·<br>TRACE                                                              | 123456                             | Peak Search                       |
| Ref Offset 30<br>0 dB/div Ref 0.00 dB     | PNO: Fast<br>IFGain:Low | Trig: Free Run<br>#Atten: 10 dB | Avg Hold: |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | r1 4.707                                                                            | MWWWWW<br>PNNNNN<br>3 GHz<br>2 dBm | Next Pea                          |
| - <b>og</b><br>10.0<br>20.0               |                         |                                 |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     | -20.00 dBm                         | Next Pk Rig                       |
| 30.0<br>40.0<br>50.0                      |                         |                                 |           | l haire tha first sport of the first sport of the first sport of the s | a a tilleti u liking som så delige<br>andre som | n forman an Million (a sea         | Next Pk Lo                        |
| 70.0<br>30.0<br>90.0                      |                         |                                 |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     |                                    | Marker De                         |
|                                           |                         |                                 |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Stop 12.7                                                                           | 750 GHz                            |                                   |
| Res BW 1.0 MHz                            |                         | 3W 3.0 MHz                      |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00 ms (20                                                                           | 000 pts)                           | Mkr→                              |
| Res BW 1.0 MHz                            | #VE<br>X<br>4.707 3 GHz | 30 MHz<br>-35.422 dBm           |           | weep 20.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 00 ms (20<br>FUNCTION                                                               | 000 pts)                           |                                   |
| 2 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | х                       | Y                               |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00 ms (20                                                                           | 000 pts)                           | Mkr→RefL<br>Mkr→RefL<br>Mo<br>1 o |

### Report No.: AGC00589170701FE10 Page 218 of 261

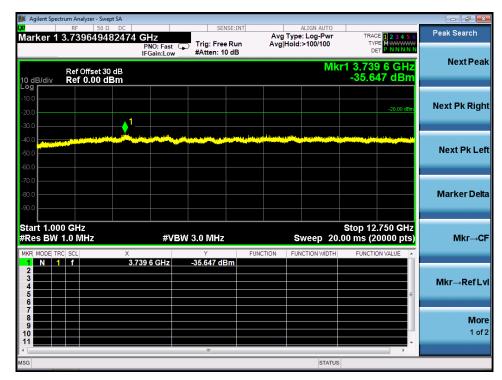
# Conducted Spurious Emission (worst) @ 453.225MHz With 12.5 KHz Channel Separation-1W



30MHz-1GHz

Conduct Spurious Emission (worst) @ 453.225MHz With 12.5 KHz Channel Separation-1W 1GHz-12.75GHz

| 🎉 Agilent Spec        | trum Analyzer - Swe         |              |            |                             |               |                      |                          |                      |                       | - F <del>X</del> |
|-----------------------|-----------------------------|--------------|------------|-----------------------------|---------------|----------------------|--------------------------|----------------------|-----------------------|------------------|
| Marker 1              | RF 50 Ω<br>3.8741937        |              | z          |                             | SE:INT        |                      | ALIGN AUTO<br>e: Log-Pwr | TRAC                 | CE 1 2 3 4 5 6        | Peak Search      |
|                       |                             | PN           | IO: Fast 🔾 | Trig: Free<br>#Atten: 10    |               | Avg Hold             | :>100/100                | TYI<br>Di            |                       |                  |
| 10 dB/div             | Ref Offset 30<br>Ref 0.00 d |              |            |                             |               |                      | M                        | r1 3.874<br>-34.8    | 4 2 GHz<br>95 dBm     | Next Peak        |
| -10.0                 |                             | <u></u>      |            |                             |               |                      |                          |                      | -20.00 dBm            | Next Pk Right    |
| -30.0                 |                             |              |            | a false da templora y and t | وروالين والشو | l state on a state o | a alla astrata della a   |                      |                       |                  |
| -50.0                 |                             |              |            |                             |               |                      |                          |                      |                       | Next Pk Left     |
| -70.0                 |                             |              |            |                             |               |                      |                          |                      |                       |                  |
| -80.0                 |                             |              |            |                             |               |                      |                          |                      |                       | Marker Delta     |
|                       |                             |              |            |                             |               |                      |                          |                      |                       |                  |
| Start 1.00<br>#Res BW |                             |              | #VBV       | V 3.0 MHz                   |               | s                    | weep 20                  | Stop 12<br>.00 ms (2 | .750 GHz<br>0000 pts) | Mkr→CF           |
| MKR MODE TF           |                             | ×<br>3.874 2 | 2 GHz      | Ƴ<br>-34.895 dB             |               | CTION FUI            | NCTION WIDTH             | FUNCTI               | DN VALUE              |                  |
| 2 3                   |                             |              |            |                             |               |                      |                          |                      |                       | Mkr→RefLvl       |
| 4<br>5<br>6           |                             |              |            |                             |               |                      |                          |                      | =                     |                  |
| 7 8                   |                             |              |            |                             |               |                      |                          |                      |                       | More             |
| 9 10                  |                             |              |            |                             |               |                      |                          |                      |                       | 1 of 2           |
| 11 <b></b>            |                             |              |            | ш                           |               |                      |                          |                      | •                     |                  |
| MSG                   |                             |              |            |                             |               |                      | STATU                    | 5                    |                       |                  |


### Report No.: AGC00589170701FE10 Page 219 of 261

### Conducted Spurious Emission (worst) @ 454.025MHz With 12.5 KHz Channel Separation-1W



30MHz-1GHz

Conduct Spurious Emission (worst) @ 454.025MHz With 12.5 KHz Channel Separation-1W 1GHz-12.75GHz

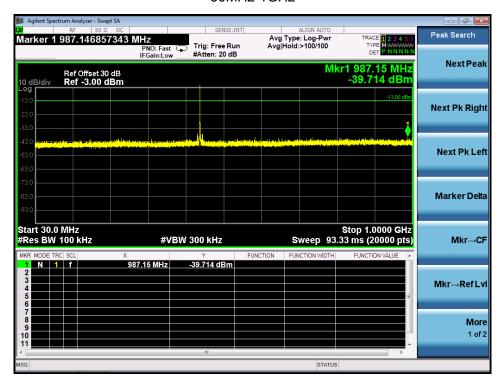


Note: All the test frequencies was tested, but only the worst data be recorded in this part.

#### trum Analyzer - Swept SA Marker 1 820.977548877 MHz PNO: Fast IFGain:Low Peak Search TRACE 12345 TYPE MWWW DET P NNNN Avg Type: Log-Pwr Avg|Hold:>100/100 Trig: Free Run #Atten: 20 dB Next Peak Mkr1 820.98 MHz -39.851 dBm Ref Offset 30 dB Ref -3.00 dBm 10 dB/ Log **F** Next Pk Right 1 Next Pk Left Marker Delta Stop 1.0000 GHz Sweep 93.33 ms (20000 pts) Start 30.0 MHz #Res BW 100 kHz #VBW 300 kHz Mkr→CF 820.98 MHz -39.851 dBm N 1 f Mkr→RefLvl More 1 of 2 STATUS

#### Conducted Spurious Emission (worst) @ 400.025MHz With 25 KHz Channel Separation-6W

Conduct Spurious Emission (worst) @ 400.025MHz With 25 KHz Channel Separation-6W 1GHz-12.75GHz

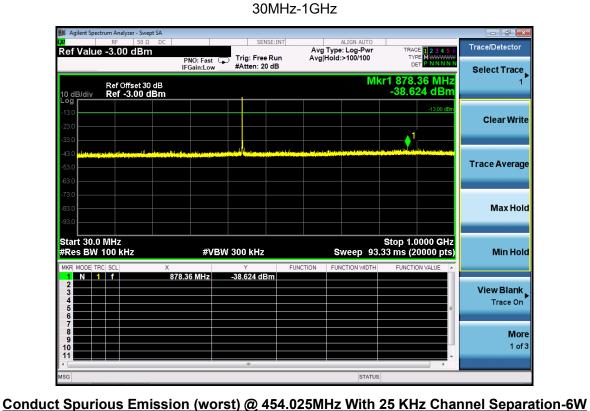

| 🎉 Agilent Spect            | rum Analyzer - Sw          |      |            |                                        |      |                                        |                          |                                                                                                                 |              |
|----------------------------|----------------------------|------|------------|----------------------------------------|------|----------------------------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------|--------------|
| <mark>w</mark><br>Marker 1 | RF 50 Ω<br>3.1015925       |      | PNO: Fast  |                                        |      | ALIGN AUTO<br>:> Log-Pwr<br>:> 100/100 | TY                       | E 1 2 3 4 5 6<br>E M WWWWW<br>T P N N N N N                                                                     | Peak Search  |
| 10 dB/div                  | Ref Offset 3<br>Ref 7.00 d | 0 dB | IFGain:Low | #Atten: 10                             | dB   | Mk                                     |                          | 1 6 GHz<br>85 dBm                                                                                               | Next Peak    |
| -3.00                      |                            |      |            |                                        |      |                                        |                          | -13.00 dBm                                                                                                      | Next Pk Righ |
| -23.0<br>-33.0<br>-43.0    |                            | 1    |            | مىرىيە <sup>يارىلى</sup> بىرىلەر ياللى |      | e stra i film da tri de                | a fittin biyan yang dari | ingen af the Law Contract of the Second S | Next Pk Lef  |
| -63.0<br>-73.0<br>-83.0    |                            |      |            |                                        |      |                                        |                          |                                                                                                                 | Marker Delt  |
| Start 1.000<br>#Res BW     | 1.0 MHz                    | X    | #VE        | 3W 3.0 MHz                             | FUNC | weep 20                                | .00 ms (2                | .750 GHz<br>0000 pts)                                                                                           | Mkr→Cl       |
| 1 N 1<br>2 3<br>4 5<br>6   |                            |      | 01 6 GHz   | -36.185 dB                             |      |                                        | Toneth                   |                                                                                                                 | Mkr→RefLv    |
| 7<br>8<br>9<br>10<br>11    |                            |      |            |                                        |      |                                        |                          |                                                                                                                 | Mon<br>1 of: |
| MSG                        |                            |      |            |                                        |      | <br>STATUS                             |                          | ,                                                                                                               |              |

30MHz-1GHz

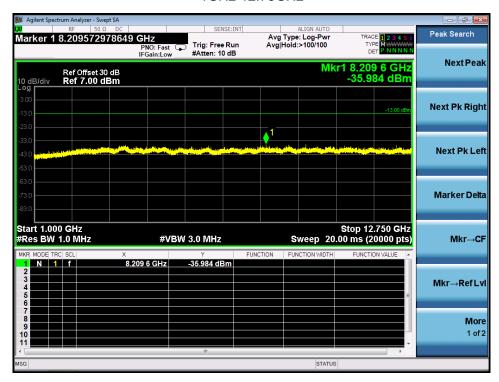
25 KHz:

### Report No.: AGC00589170701FE10 Page 221 of 261

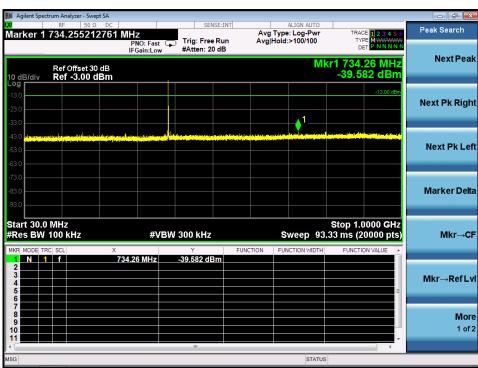
# Conducted Spurious Emission (worst) @ 453.225MHz With 25 KHz Channel Separation-6W




30MHz-1GHz


Conduct Spurious Emission (worst) @ 453.225MHz With 25 KHz Channel Separation-6W 1GHz-12.75GHz

| 📕 Agilent Spec | trum Analyzer - Swe                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                              |          |               |            |                             | - F          |
|----------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------------------|----------|---------------|------------|-----------------------------|--------------|
| larker 1       | RF 50 Ω<br>3.7696134                             | 80674 GI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -17                   | SENSE                        |          | ALIGN AUTO    |            | 七月 11,2017<br>E 1 2 3 4 5 6 | Peak Search  |
| narrior 1      | 0.1000104                                        | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NO:Fast ⊂<br>Gain:Low | Trig: Free R<br>#Atten: 10 c |          | Hold:>100/100 | TY         |                             |              |
|                |                                                  | IF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Gain:Low              | #Atten. 10 t                 |          | R.A           | kr1 3.76   |                             | NextPea      |
| 10 dB/div      | Ref Offset 30<br>Ref 7.00 d                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                              |          | IV            |            | 64 dBm                      |              |
|                | Kei 7.00 u                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                              |          |               |            |                             |              |
| -3.00          |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                              |          |               |            |                             | Next Pk Righ |
| -13.0          |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                              |          |               |            | -13.00 dBm                  | Next PK Rigi |
| -23.0          |                                                  | +_1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |                              |          |               |            |                             |              |
| -33.0          |                                                  | <b>↓ ♦'</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |                              |          |               |            |                             |              |
| -43.0 <b></b>  | <u>hi na kana kana kana kana kana kana kana </u> | a state and a state of the stat | ار به الار الار ال    |                              |          |               |            |                             | Next Pk Le   |
| -53.0          |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                              |          |               |            |                             |              |
| -63.0          |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                              |          |               |            |                             |              |
| -73.0          |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                              |          |               |            |                             | Marker Delt  |
| -83.0          |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                              |          |               |            |                             |              |
| -00.0          |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                              |          |               |            |                             |              |
| Start 1.00     |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                              |          | _             | Stop 12    | .750 GHz                    |              |
| #Res BW        | 1.0 MHz                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | #VB                   | N 3.0 MHz                    |          | Sweep 2       | 0.00 ms (2 | 0000 pts)                   | Mkr→C        |
| MKR MODE TR    |                                                  | X 2 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6 GHz                 | ۲<br>-35.464 dBn             | FUNCTION | FUNCTION WIDT | H FUNCTI   | DN VALUE                    |              |
| 1 N 1<br>2     |                                                  | 3.769                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6 GHZ                 | -35.464 aBn                  |          |               |            |                             |              |
| 3              |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                              |          |               |            | _                           | Mkr→RefL     |
| 5              |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                              |          |               |            | =                           |              |
| 6 7            |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                              |          |               |            |                             |              |
| 8              |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                              |          |               |            |                             | Mo           |
| 10             |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                              |          |               |            |                             | 1 of         |
| 11             |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | III                          |          |               |            |                             |              |
| SG             |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                              |          | STAT          | us         |                             |              |
|                |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                              |          |               |            |                             |              |


#### Conducted Spurious Emission (worst) @ 454.025MHz With 25 KHz Channel Separation-6W

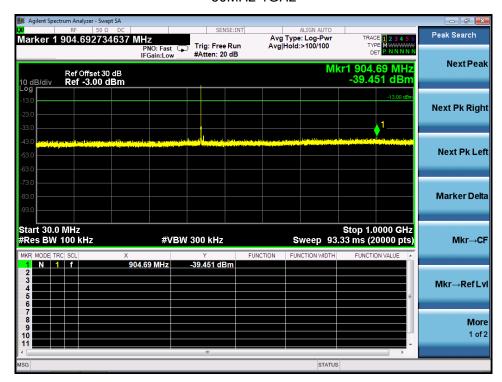


1GHz-12.75GHz



### Conducted Spurious Emission (worst) @ 400.025MHz With 25 KHz Channel Separation-5W 30MHz-1GHz




Conduct Spurious Emission (worst) @ 400.025MHz With 25 KHz Channel Separation-5W

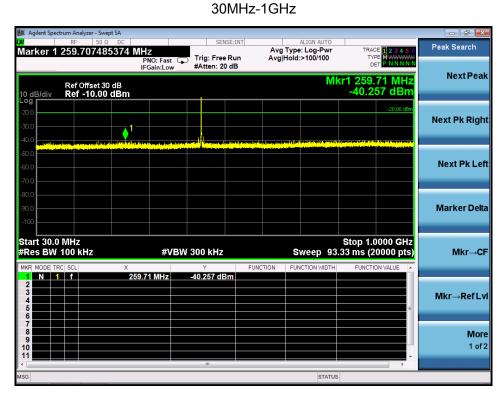
1GHz-12.75GHz

| 🔰 Agilent Spectrum Analyzer - Swept                        |             |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                                                               | - 7 -        |
|------------------------------------------------------------|-------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------------------------------------------------------------|--------------|
| ₩ RF 50 Ω<br>Marker 1 3.78371418                           | 5709 GHz    | SENSE:INT                       | Avg Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ALIGN AUTO<br>: Log-Pwr | TRACE 1 2 3 4 5                                               | Peak Search  |
| Ref Offset 30<br>10 dB/div Ref 7.00 dE                     |             | Trig: Free Run<br>#Atten: 10 dB | Avg Hold                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         | түре Милини<br>Det P N N N N<br>r1 3.783 7 GHz<br>-35.673 dBm | Next Peak    |
| -13.00                                                     |             |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         | -13.00 dBr                                                    | Next Pk Righ |
| -33.0<br>-43.0                                             |             |                                 | , shiring a state of the state | den stille setter       | ni di nan si ka juga da muni ka juga si kama ka               | Next Pk Let  |
| -63.0<br>-73.0<br>-83.0                                    |             |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                                                               | Marker Delt  |
| Start 1.000 GHz<br>#Res BW 1.0 MHz                         | #VE         | BW 3.0 MHz                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | weep 20.                | Stop 12.750 GHz<br>00 ms (20000 pts                           | Mkr→C        |
| 1 N 1 f<br>2 3 4 4 5 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | 3.783 7 GHz | -35.673 dBm                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         | E                                                             | Mkr→RefLv    |
| 7<br>8<br>9<br>10<br>11                                    |             |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                                                               | Mor<br>1 of  |
| MSG                                                        |             |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | STATUS                  |                                                               |              |

### Report No.: AGC00589170701FE10 Page 224 of 261

# Conducted Spurious Emission (worst) @ 453.225MHz With 25 KHz Channel Separation-5W



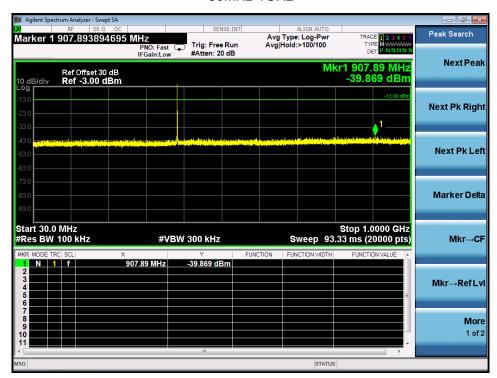

30MHz-1GHz

Conduct Spurious Emission (worst) @ 453.225MHz With 25 KHz Channel Separation-5W 1GHz-12.75GHz

| 📕 Agilent Spectrum Analyze                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                              |             |                                                      |                                       | - f <mark>×</mark> |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------------------------------------------|---------------------------------------|--------------------|--|--|--|--|--|--|
| <mark>₩</mark><br>Marker 1 10.949                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                              | SENSE:INT   | ALIGN AUTO<br>Avg Type: Log-Pwr<br>Avg Hold:>100/100 | TRACE 1 2 3 4 5 6<br>TYPE MWWWW       | Peak Search        |  |  |  |  |  |  |
| 10 dB/div Ref 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PNO: Fast<br>IFGain:Low  Trig: Free Run<br>#Atten: 10 dB  Avg Hold:>100/100  Iffee Mathematical<br>Det    Ref Offset 30 dB<br>Ref 7.00 dBm  Mkr1 10.949 2 GHz<br>-36.079 dBm |             |                                                      |                                       |                    |  |  |  |  |  |  |
| -3.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                              |             |                                                      | -13.00 dBm                            | Next Pk Righ       |  |  |  |  |  |  |
| -23.0<br>-33.0<br>-43.0 adv replaced and the second secon |                                                                                                                                                                              |             |                                                      |                                       | Next Pk Lei        |  |  |  |  |  |  |
| -53.0<br>-73.0<br>-83.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                              |             |                                                      |                                       | Marker Delt        |  |  |  |  |  |  |
| Start 1.000 GHz<br>#Res BW 1.0 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2 #VE                                                                                                                                                                        | 3W 3.0 MHz  | Sweep 20                                             | Stop 12.750 GHz<br>.00 ms (20000 pts) | Mkr→C              |  |  |  |  |  |  |
| 1 N 1 f<br>2 3<br>3 4 5<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10.949 2 GHz                                                                                                                                                                 | -36.079 dBm |                                                      | E                                     | Mkr→RefLv          |  |  |  |  |  |  |
| 7<br>8<br>9<br>10<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                              |             |                                                      |                                       | <b>Mor</b><br>1 of |  |  |  |  |  |  |
| MSG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                              | III         | STATU                                                | 5                                     |                    |  |  |  |  |  |  |

### Report No.: AGC00589170701FE10 Page 225 of 261

#### Conducted Spurious Emission (worst) @ 454.025MHz With 25 KHz Channel Separation-5W



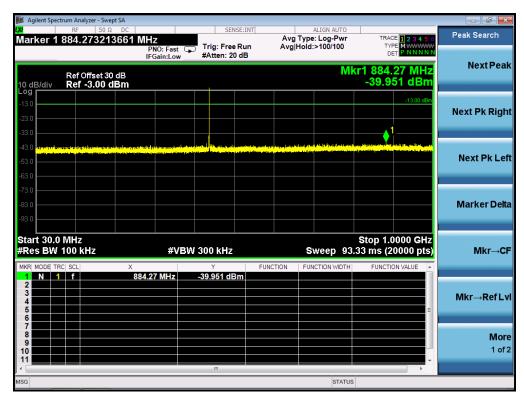

Conduct Spurious Emission (worst) @ 454.025MHz With 25 KHz Channel Separation-5W 1GHz-12.75GHz

rum Analyzer - Swept SA Avg Type: Log-Pwr Avg|Hold:>100/100 TYPE MWWWW DET P NNNN Peak Search 1 3.838941947097 GHz Marke Trig: Free Run #Atten: 10 dB PNO: Fast IFGain:Low Next Peak Mkr1 3.838 9 GHz -36.135 dBm Ref Offset 30 dB Ref 7.00 dBm 10 dB/c Log **r** Next Pk Right 1 Next Pk Left Marker Delta Start 1.000 GHz #Res BW 1.0 MHz Stop 12.750 GHz Sweep 20.00 ms (20000 pts) #VBW 3.0 MHz Mkr→CF FUNCTION 3.838 9 GHz -36.135 dBm Mkr→RefLvl More 1 of 2 STATUS

### Report No.: AGC00589170701FE10 Page 226 of 261

# Conducted Spurious Emission (worst) @ 400.025MHz With 25 KHz Channel Separation-2.5W




30MHz-1GHz

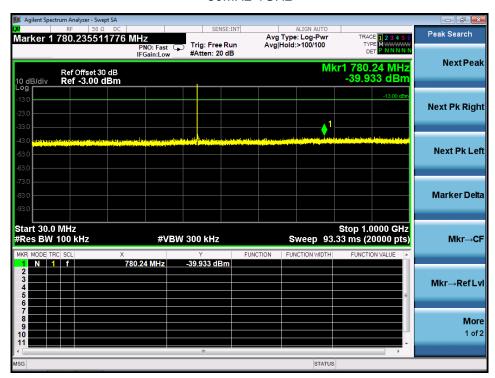
Conduct Spurious Emission (worst) @ 400.025MHz With 25 KHz Channel Separation-2.5W 1GHz-12.75GHz

|              |                                                                                                                                               |                   | ALIGN AUTO                                                                                                      |                     | ISE:INT | SEI              |                          | pt SA<br>DC | Analyzer - Swe        | nt Spectru | 🚺 Agilı<br>XI    |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------------------------------------------------------------------------------------------------|---------------------|---------|------------------|--------------------------|-------------|-----------------------|------------|------------------|
| Peak Search  | 23456                                                                                                                                         | TRACE<br>TYPE     | : Log-Pwr                                                                                                       | Avg Typ<br>Avg Hold | Run     | Trig: Free       | Hz<br>PNO: Fast C        | 24321 0     | 284864                | er 1 3     | Mark             |
| Next Dec     |                                                                                                                                               | DET               | Mk                                                                                                              |                     | 0 dB    | #Atten: 1        | FGain:Low                |             |                       |            |                  |
|              |                                                                                                                                               | -37.20            |                                                                                                                 |                     |         |                  | ef Offset 3<br>ef 7.00 d |             | 10 dB<br>Log <b>r</b> |            |                  |
| Next Pk Rigi |                                                                                                                                               |                   |                                                                                                                 |                     |         |                  |                          |             |                       |            | -3.00            |
| NEXT FK RIGI | -13.00 dBm                                                                                                                                    |                   |                                                                                                                 |                     |         |                  |                          |             |                       |            | -13.0            |
|              |                                                                                                                                               |                   |                                                                                                                 |                     |         |                  |                          | <b>_</b> 1  |                       |            | -23.0<br>-33.0 - |
| Next Pk Le   | and a spall with the part<br>and a spall with the part of | and all any ideal | and a state of the second s |                     |         | المن والمن والعن | a a state the second     |             |                       |            | -43.0            |
|              |                                                                                                                                               |                   |                                                                                                                 |                     |         |                  |                          |             |                       |            | -53.0            |
| Marker Del   |                                                                                                                                               |                   |                                                                                                                 |                     |         |                  |                          |             |                       |            | -63.0            |
| marker ber   |                                                                                                                                               |                   |                                                                                                                 |                     |         |                  |                          |             |                       |            | -83.0            |
|              | 50 GHz                                                                                                                                        | Stop 12.7         |                                                                                                                 |                     |         |                  |                          |             | Hz                    | 1.000      | L<br>Start       |
| Mkr→C        | 00 pts)                                                                                                                                       | .00 ms (20        | weep 20.                                                                                                        | s                   |         | 3.0 MHz          | #VB                      |             |                       | BW 1.      |                  |
|              | /ALUE 🔺                                                                                                                                       | FUNCTION          | ICTION WIDTH                                                                                                    | TION FUI            | 3m      | Y<br>-37.207 dl  | 3 5 GHz                  | ×<br>3.72   |                       | DDE TRC    | 1                |
| Mkr→RefL     | =                                                                                                                                             |                   |                                                                                                                 |                     |         |                  |                          |             |                       |            | 2                |
|              | Ξ                                                                                                                                             |                   |                                                                                                                 |                     |         |                  |                          |             |                       |            | 4<br>5<br>6      |
| Mor          |                                                                                                                                               |                   |                                                                                                                 |                     |         |                  |                          |             |                       |            | 7 8              |
| 1 of         |                                                                                                                                               |                   |                                                                                                                 |                     |         |                  |                          |             |                       |            | 9<br>10          |
|              | *                                                                                                                                             |                   |                                                                                                                 |                     |         | m                |                          |             |                       |            | 11               |
|              |                                                                                                                                               |                   | STATUS                                                                                                          |                     |         |                  |                          |             |                       |            | /ISG             |


### Report No.: AGC00589170701FE10 Page 227 of 261

# Conducted Spurious Emission (worst) @ 453.225MHz With 25 KHz Channel Separation-2.5W




30MHz-1GHz

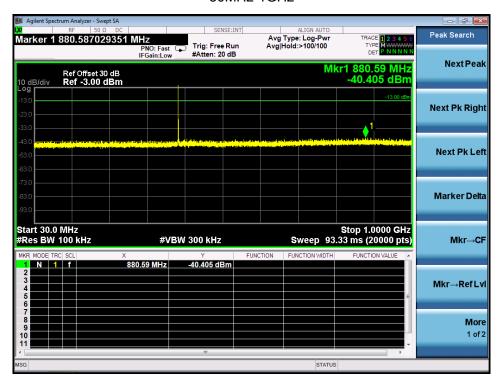
Conduct Spurious Emission (worst) @ 453.225MHz With 25 KHz Channel Separation-2.5W 1GHz-12.75GHz



### Report No.: AGC00589170701FE10 Page 228 of 261

#### Conducted Spurious Emission (worst) @ 454.025MHz With 25 KHz Channel Separation-2.5W




30MHz-1GHz

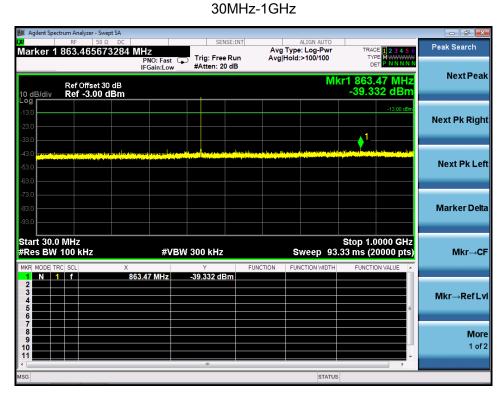
Conduct Spurious Emission (worst) @ 454.025MHz With 25 KHz Channel Separation-2.5W 1GHz-12.75GHz

| 📕 Agilent Spec                                 | ctrum Analyzer - Sw<br>RF 50 9 |            |            | SENSE                    | INT      | A    | LIGN AUTO                |           |                                      |                   |
|------------------------------------------------|--------------------------------|------------|------------|--------------------------|----------|------|--------------------------|-----------|--------------------------------------|-------------------|
| Aarker 1                                       | 3.7561003                      | Р          | NO: Fast C | Trig: Free R             | lun Av   |      | : Log-Pwr<br>>100/100    | TY        | E 1 2 3 4 5 (<br>E MWWWW<br>T P NNNN | Peak Search       |
| 10 dB/div                                      | Ref Offset 3<br>Ref 7.00 c     | 0 dB       | Gain:Low   | #Atten: 10 o             | 18       |      | Mk                       | r1 3.75   | 6 1 GHz<br>15 dBm                    | Next Pea          |
| - <b>og</b><br>3.00<br>13.0                    |                                |            |            |                          |          |      |                          |           | -13.00 dBm                           | Next Pk Rig       |
| 23.0<br>33.0<br>43.0 <mark>19.4314</mark>      |                                | 1          |            | Harris Harris Maria Inde |          |      | dhanan dal king palantan |           | ing for many set of the set of the   | Next Pk Le        |
| 53.0<br>63.0<br>73.0<br>83.0                   |                                |            |            |                          |          |      |                          |           |                                      | Marker De         |
| start 1.00<br>Res BW                           | 1.0 MHz                        |            | #VBI       | W 3.0 MHz                |          |      | -                        | .00 ms (2 | .750 GHz<br>0000 pts)                | Mkr⊸0             |
| IKR  MODE  TF    1  N  1    2  3  3    4  5  6 |                                | ×<br>3.756 | 1 GHz      | Ƴ<br>-36.015 dBn         | FUNCTION | FUNG | CTION WIDTH              | FUNCTI    | DN VALUE                             | Mkr→RefL          |
| 7<br>8<br>9<br>0                               |                                |            |            |                          |          |      |                          |           |                                      | <b>M</b> c<br>1 o |
| 11                                             |                                |            |            |                          |          |      |                          |           |                                      |                   |

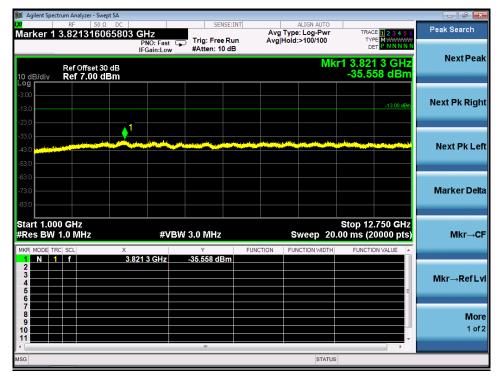
### Report No.: AGC00589170701FE10 Page 229 of 261

# Conducted Spurious Emission (worst) @ 400.025MHz With 25 KHz Channel Separation-1W



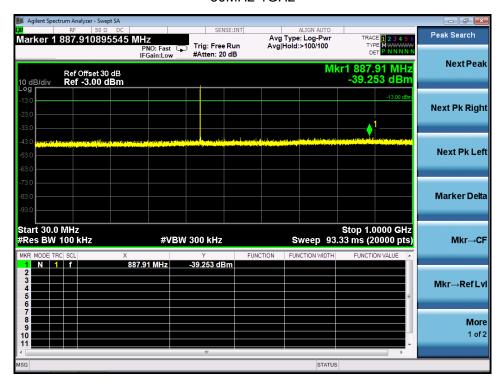

30MHz-1GHz

Conduct Spurious Emission (worst) @ 400.025MHz With 25 KHz Channel Separation-1W 1GHz-12.75GHz


| 📕 Agilent Spec                | trum Analyzer - Swept<br>RF 50 Ω | DC         |            | SEN                    | SE:INT |                                                                                                                  | ALIGN AUTO               |         |                                                |                  |
|-------------------------------|----------------------------------|------------|------------|------------------------|--------|------------------------------------------------------------------------------------------------------------------|--------------------------|---------|------------------------------------------------|------------------|
| Marker 1                      | 7.65024501                       | Р          | NO: Fast C | Trig: Free             | Run    |                                                                                                                  | e: Log-Pwr<br>i:>100/100 | TY      | CE 1 2 3 4 5 6<br>PE M WWWWW<br>FT P N N N N N | Peak Search      |
| 10 dB/div                     | Ref Offset 30<br>Ref 7.00 dB     | dB         | Gain:Low   | #Atten: 10             | dB     |                                                                                                                  | Mk                       | r1 7.65 | 0 2 GHz<br>98 dBm                              | NextPea          |
| -3.00                         |                                  |            |            |                        |        |                                                                                                                  |                          |         | -13.00 dBm                                     | Next Pk Rigi     |
| -23.0                         |                                  |            |            | the days at hitter and |        | ni i se da la contra da secola d |                          |         |                                                | Next Pk Le       |
| -53.0<br>-63.0<br>-73.0       |                                  |            |            |                        |        |                                                                                                                  |                          |         |                                                | Marker Del       |
| 83.0<br>Start 1.00<br>#Res BW |                                  |            | #\/B)      | W 3.0 MHz              |        |                                                                                                                  | weep 20                  | Stop 12 | .750 GHz                                       | Mkr→C            |
|                               | RC SCL                           | ×<br>7.650 | 2 GHz      | Y<br>-36.398 dB        |        |                                                                                                                  |                          |         |                                                | wiki →c          |
| 2<br>3<br>4<br>5<br>6         |                                  |            |            |                        |        |                                                                                                                  |                          |         | =                                              | Mkr→RefL         |
| 7 8<br>9 9<br>10 11           |                                  |            |            |                        |        |                                                                                                                  |                          |         |                                                | <b>Mo</b><br>1 o |
| SG                            |                                  |            |            |                        |        |                                                                                                                  | STATUS                   |         | •                                              |                  |

### Report No.: AGC00589170701FE10 Page 230 of 261

#### Conducted Spurious Emission (worst) @ 453.225MHz With 25 KHz Channel Separation-1W




Conduct Spurious Emission (worst) @ 453.225MHz With 25 KHz Channel Separation-1W 1GHz-12.75GHz



### Report No.: AGC00589170701FE10 Page 231 of 261

# Conducted Spurious Emission (worst) @ 454.025MHz With 25 KHz Channel Separation-1W



30MHz-1GHz

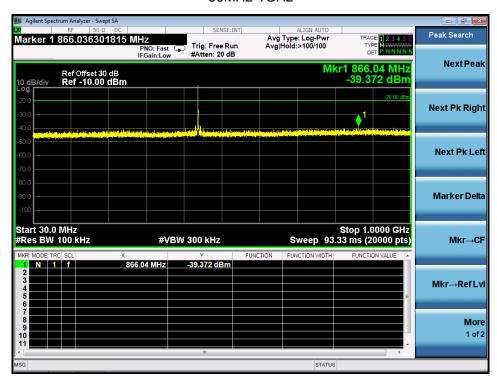
Conduct Spurious Emission (worst) @ 454.025MHz With 12.5 KHz Channel Separation-1W 1GHz-12.75GHz

| 📕 Agilent Spect      | trum Analyzer - Swept SA         |                  |                              |                                  |               |                              |                 |
|----------------------|----------------------------------|------------------|------------------------------|----------------------------------|---------------|------------------------------|-----------------|
| w<br>Marker 1        | RF 50 Ω DO<br>10.139019450       | 973 GHz          | SENSE                        | Avg                              | ALIGN AUTO    | TRACE 1 2 3 4 5              | 6 Peak Search   |
|                      |                                  | PNO: Fast C      | Trig: Free R<br>#Atten: 10 d |                                  | Hold:>100/100 |                              | I N             |
| 10 dB/div            | Ref Offset 30 dB<br>Ref 7.00 dBm |                  |                              |                                  | Mkr           | 1 10.139 0 GH<br>-35.921 dBr | z NextPeak<br>n |
| -13.00               |                                  |                  |                              |                                  |               | -13.00 dE                    | Next Pk Righ    |
| -23.0<br>-33.0       |                                  | مناقل من المناقل |                              | antice and the arrithment of and |               |                              |                 |
| -43.0<br>-53.0       |                                  |                  |                              |                                  |               |                              | Next Pk Lef     |
| -63.0                |                                  |                  |                              |                                  |               |                              | Marker Delta    |
| -83.0<br>Start 1.004 |                                  |                  |                              |                                  |               | Stop 12.750 GH               | z               |
| #Res BW              |                                  | #VB              | W 3.0 MHz                    | FUNCTION                         | Sweep 20      | .00 ms (20000 pt             | s) Mkr→Cł       |
| 1 N 1<br>2<br>3      | f                                | 10.139 0 GHz     | -35.921 dBm                  |                                  |               |                              |                 |
| 4 5 6                |                                  |                  |                              |                                  |               |                              | Mkr→RefLv       |
| 7<br>8<br>9<br>10    |                                  |                  |                              |                                  |               |                              | Mor<br>1 of:    |
| 11                   |                                  |                  | III                          |                                  |               | Þ                            | -               |
| ISG                  |                                  |                  |                              |                                  | STATUS        | 6                            |                 |

#### rum Analyzer - Swept SA Marker 1 932.290614531 MHz PNO: Fast IFGain:Low Peak Search Avg Type: Log-Pwr Avg|Hold:>100/100 TRACE 1 2 3 4 5 TYPE M Trig: Free Run #Atten: 20 dB Next Peak Mkr1 932.29 MHz -40.632 dBm Ref Offset 30 dB Ref 0.00 dBm 10 dB. Log **F** Next Pk Right 1 Next Pk Left Marker Delta Stop 1.0000 GHz Sweep 93.33 ms (20000 pts) Start 30.0 MHz #Res BW 100 kHz #VBW 300 kHz Mkr→CF 932.29 MHz -40.632 dBm N 1 f Mkr→RefLvl More 1 of 2 STATUS

#### Conducted Spurious Emission (worst) @400.025MHz With 12.5 KHz Channel Separation-6W

Conduct Spurious Emission (worst) @ 400.025MHz With 12.5 KHz Channel Separation-6W 1GHz-12.75GHz


| 🎉 Agilent Spec                     | trum Analyzer - S      |            |                         |                          |          |          |                             |                  |                       |              |
|------------------------------------|------------------------|------------|-------------------------|--------------------------|----------|----------|-----------------------------|------------------|-----------------------|--------------|
| <mark>x</mark><br>Marker 1         |                        | 010651 G   |                         |                          |          | /g Type: | LIGN AUTO                   | TRAC             | CE 1 2 3 4 5 6        | Peak Search  |
|                                    |                        |            | PNO: Fast C<br>Gain:Low | Trig: Free<br>#Atten: 10 |          | g Hold:> | 100/100                     | DI               |                       |              |
| 10 dB/div                          | Ref Offset<br>Ref 0.00 |            |                         |                          |          |          | 0 2 GHz<br>58 dBm           | NextPeak         |                       |              |
| -10.0                              |                        | 1          |                         |                          |          |          |                             |                  | -20.00 dBm            | Next Pk Righ |
| -30.0<br>-40.0<br>-50.0            |                        |            |                         |                          |          |          | er for the second states of | a phains in a hi |                       | Next Pk Lei  |
| -60.0                              |                        |            |                         |                          |          |          |                             |                  |                       | Marker Delta |
| -90.0<br>Start 1.00<br>#Res BW     | 1.0 MHz                |            | #VB                     | N 3.0 MHz                |          |          |                             | .00 ms (2        | .750 GHz<br>0000 pts) | Mkr→C        |
| MKR MODE TR<br>1 N 1<br>2 3<br>4 4 |                        | ×<br>3.760 | 2 GHz                   | Y<br>-35.458 dBi         | FUNCTION | FUNC     | TION WIDTH                  | FUNCTION         | DN VALUE              | Mkr→RefLv    |
| 5<br>6<br>7<br>8<br>9              |                        |            |                         |                          |          |          |                             |                  |                       | Mon<br>1 of  |
| 11                                 |                        |            |                         | m                        |          |          |                             |                  | •                     |              |
| ISG                                |                        |            |                         |                          |          |          | STATUS                      |                  |                       |              |

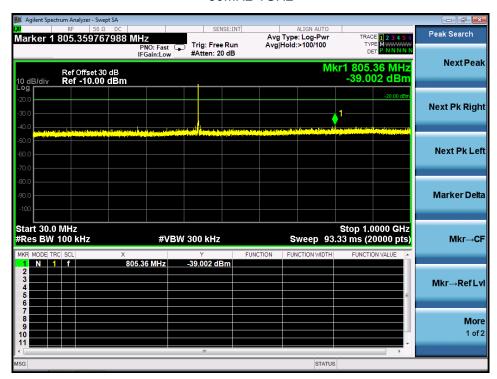
30MHz-1GHz

**Digital:** 

### Report No.: AGC00589170701FE10 Page 233 of 261

### Conducted Spurious Emission (worst) @ 453.225MHz With 12.5 KHz Channel Separation-6W




30MHz-1GHz

Conduct Spurious Emission (worst) @ 453.225MHz With 12.5 KHz Channel Separation-6W 1GHz-12.75GHz

| 📕 Agilent Spec | trum Analyzer - Sw         |            |                       |                          |                     |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |               |
|----------------|----------------------------|------------|-----------------------|--------------------------|---------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|---------------|
| Marker 1       | RF 50 9                    |            | lz                    |                          | SE:INT              |                         | ALIGN AUTO<br>e: Log-Pwr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TRAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | E 1 2 3 4 5 6                    | Peak Search   |
|                |                            | PI         | NO:Fast G<br>Gain:Low | Trig: Free<br>#Atten: 10 |                     | Avg Hold                | :>100/100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |               |
|                |                            |            | Jameow                |                          |                     |                         | Mk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | r1 3.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4 2 GHz                          | Next Peak     |
| 10 dB/div      | Ref Offset 3<br>Ref 0.00 ( |            |                       |                          |                     |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -35.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 28 dBm                           |               |
| Log<br>-10.0   |                            |            |                       |                          |                     |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |               |
| -20.0          |                            |            |                       |                          |                     |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -20.00 dBm                       | Next Pk Right |
| -20.0          |                            | ▲1         |                       |                          |                     |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |               |
| -40.0          |                            |            | ى يۇلۇمىكىد           | فرور يتطلقون سيميد       |                     | a back, in sty workling |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | and a standard billing be        |               |
| -40.0          |                            |            |                       |                          | an alberta an an an |                         | A Construction of the second s | Contraction of the local division of the loc | autorian and a star and the star | Next Pk Left  |
| -50.0          |                            |            |                       |                          |                     |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |               |
| -80.0          |                            |            |                       |                          |                     |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |               |
| -70.0          |                            |            |                       |                          |                     |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  | Marker Delta  |
| -90.0          |                            |            |                       |                          |                     |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  | Marker Della  |
| -90.0          |                            |            |                       |                          |                     |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |               |
| Start 1.00     |                            |            |                       |                          |                     |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Stop 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .750 GHz                         |               |
| #Res BW        | 1.0 MHz                    |            | #VBV                  | V 3.0 MHz                |                     | s                       | weep 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .00 ms (2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0000 pts)                        | Mkr→CF        |
| MKR MODE TF    |                            | ×<br>3.844 |                       | Y<br>-35.928 dB          |                     | CTION FUI               | NCTION WIDTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | FUNCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ON VALUE                         |               |
| 2              |                            | 3.844      | ZGHZ                  | -35.928 dB               | m                   |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |               |
| 3 4            |                            |            |                       |                          |                     |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                | Mkr→RefLvl    |
| 5              |                            |            |                       |                          |                     |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | =                                |               |
| 7              |                            |            |                       |                          |                     |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |               |
| 8              |                            |            |                       |                          |                     |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  | More          |
| 10             |                            |            |                       |                          |                     |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  | 1 of 2        |
|                |                            |            |                       | III                      |                     |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                |               |
| MSG            |                            |            |                       |                          |                     |                         | STATUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  |               |

### Report No.: AGC00589170701FE10 Page 234 of 261

# Conducted Spurious Emission (worst) @ 454.025MHz With 12.5 KHz Channel Separation-6W



30MHz-1GHz

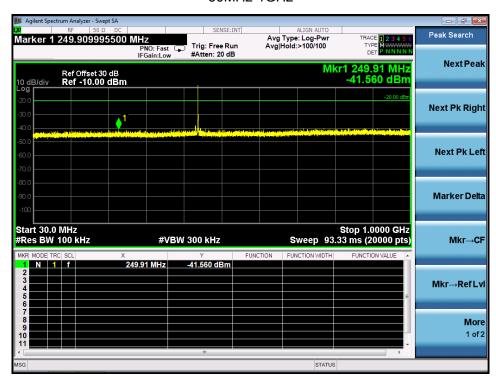
Conduct Spurious Emission (worst) @ 454.025MHz With 12.5 KHz Channel Separation-6W 1GHz-12.75GHz

| 🚺 Agilent Spec             | trum Analyzer - Sw         |            |                       |                          |             |          |                  |                                     |                       | - F X        |
|----------------------------|----------------------------|------------|-----------------------|--------------------------|-------------|----------|------------------|-------------------------------------|-----------------------|--------------|
| <mark>x</mark><br>Marker 1 | RF 50 9                    | 2 DC       | lz                    |                          | E:INT       | Avg Type | ALIGN AUTO       | TRAC                                | E 1 2 3 4 5 6         | Peak Search  |
|                            |                            | PI<br>IFC  | NO:Fast G<br>Gain:Low | Trig: Free<br>#Atten: 10 |             | Avg Hold | :>100/100        | TYF                                 |                       |              |
| 10 dB/div                  | Ref Offset 3<br>Ref 0.00 c |            |                       |                          |             |          | Mk               |                                     | 3 1 GHz<br>89 dBm     | NextPeak     |
| -10.0 -20.0                |                            |            |                       |                          |             |          |                  |                                     | -20.00 dBm            | Next Pk Righ |
| -30.0                      |                            |            |                       |                          | d haad taab |          | dia anti ing ada | a prostantin da <sub>a p</sub> alas | terestere lettere     | Next Pk Lef  |
| -50.0                      |                            |            |                       |                          |             |          |                  |                                     |                       |              |
| -80.0                      |                            |            |                       |                          |             |          |                  |                                     |                       | Marker Delt  |
| Start 1.00<br>#Res BW      | 1.0 MHz                    |            | #VB\                  | N 3.0 MHz                |             |          |                  | .00 ms (2                           | .750 GHz<br>0000 pts) | Mkr→Cl       |
| MKR MODE TR                |                            | ×<br>3.833 | 1 GHz                 | Y<br>-35.989 dBr         | FUNCT       | ION FUN  | ICTION WIDTH     | FUNCTIO                             | DN VALUE              |              |
| 3<br>4<br>5                |                            |            |                       |                          |             |          |                  |                                     |                       | Mkr→RefLv    |
| 6<br>7<br>8<br>9           |                            |            |                       |                          |             |          |                  |                                     |                       | Mor<br>1 of  |
| 10                         |                            |            |                       |                          |             |          |                  |                                     |                       | 101.         |
| ISG                        |                            |            |                       |                          |             |          | STATUS           | ;                                   |                       |              |

### Report No.: AGC00589170701FE10 Page 235 of 261

# Conducted Spurious Emission (worst) @400.025MHz With 12.5 KHz Channel Separation-5W




30MHz-1GHz

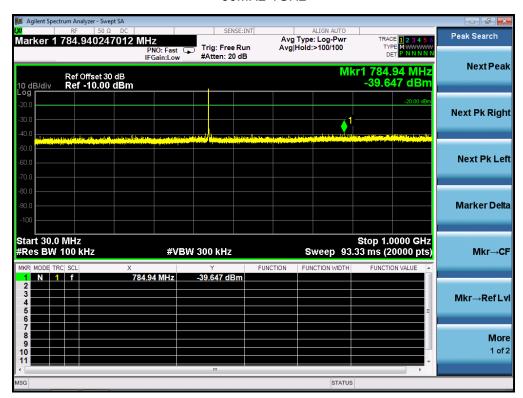
Conduct Spurious Emission (worst) @ 400.025MHz With 12.5 KHz Channel Separation-5W 1GHz-12.75GHz

| - 6 -        |                                          |                                                                                                                 |                         |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                       |            | Analyzer - Swep            |           | 🄰 Agi                  |
|--------------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------------|------------|----------------------------|-----------|------------------------|
| Peak Search  | 七月 11,2017<br>E <mark>1 2 3 4 5 6</mark> | TRAC                                                                                                            | LIGN AUTO               |                                                                                                                  | NSE:INT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         | -17                   |            | ⊮ <u>50 Ω</u><br>58207160  |           | <mark>x</mark><br>Marl |
|              |                                          | TYI                                                                                                             | >100/100                | Avg Hold                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Trig: Free<br>#Atten: 1 | NO:Fast 🕞             | P          |                            |           | - Call                 |
| NextPea      | 2 1 GHz                                  | r1 3.68                                                                                                         | Mk                      |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | Sameow                |            |                            |           |                        |
|              | 04 dBm                                   |                                                                                                                 |                         |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                       |            | ef Offset 30<br>ef 0.00 di |           | 10 dE                  |
|              |                                          |                                                                                                                 |                         |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                       |            |                            |           | Log<br>-10.0           |
| Next Pk Righ | -20.00 dBm                               |                                                                                                                 |                         |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                       |            |                            |           | -20.0                  |
|              |                                          |                                                                                                                 |                         |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                       | <u> </u>   |                            |           | -30.0                  |
|              | name and the last                        | المحجر وبالطوي والأسرو                                                                                          | ويتألفهم ومكافعا والعال | Mary Status and Inc.                                                                                             | and a state of a state | turker will the same    | a fill desta a side   |            |                            |           | -40.0                  |
| Next Pk Lei  | All the second second second             | Contraction of the second s | ntelessifile es Alte.   | and the second | all of the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | No. of Concession, Name | and the second second |            |                            |           | -50.0                  |
|              |                                          |                                                                                                                 |                         |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                       |            |                            |           | -60.0                  |
|              |                                          |                                                                                                                 |                         |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                       |            |                            |           | -70.0                  |
| Marker Delt  |                                          |                                                                                                                 |                         |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                       |            |                            |           | -80.0                  |
| Marker Dei   |                                          |                                                                                                                 |                         |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                       |            |                            |           | -90.0                  |
|              |                                          |                                                                                                                 |                         |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                       |            |                            |           |                        |
| Mire O       | .750 GHz                                 | Stop 12                                                                                                         |                         |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0 MUL-                | -43 (15)4             |            |                            | 1.000 (   |                        |
| Mkr→C        | 0000 pts)                                |                                                                                                                 |                         |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.0 MHz                 | #VDV                  |            |                            | BW 1.0    |                        |
|              | DN VALUE                                 | FUNCTI                                                                                                          | ICTION WIDTH            | TION FU                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Y<br>-34.504 dE         | 1 GHz                 | ×<br>3.682 |                            | ODE TRC S |                        |
|              |                                          |                                                                                                                 |                         |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                       |            |                            |           | 2                      |
| Mkr→RefL     |                                          |                                                                                                                 |                         |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                       |            |                            |           | 4                      |
|              | =                                        |                                                                                                                 |                         |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                       |            |                            |           | 5                      |
| Mor          |                                          |                                                                                                                 |                         |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                       |            |                            |           | 7                      |
| 1 of:        |                                          |                                                                                                                 |                         |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                       |            |                            |           | 9                      |
| 101          |                                          |                                                                                                                 |                         |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                       |            |                            |           | 10<br>11               |
|              | - F                                      |                                                                                                                 |                         |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                       |            |                            |           | •                      |
|              |                                          | 5                                                                                                               | STATUS                  |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                       |            |                            |           | ISG                    |

### Report No.: AGC00589170701FE10 Page 236 of 261

### Conducted Spurious Emission (worst) @ 453.225MHz With 12.5 KHz Channel Separation-5W




30MHz-1GHz

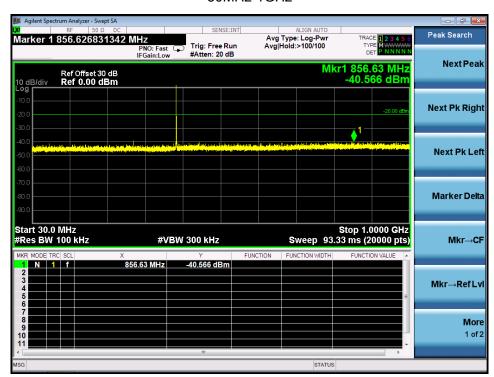
Conduct Spurious Emission (worst) @ 453.225MHz With 12.5 KHz Channel Separation-5W 1GHz-12.75GHz

| 🗾 Agilent Spectrum Analyzer - Swept SA     |                      |                                                          |                     |                | - đ <del>×</del> |
|--------------------------------------------|----------------------|----------------------------------------------------------|---------------------|----------------|------------------|
| Marker 1 11.042052102                      | 605 GHz              |                                                          | ALIGN AUTO          | CE 1 2 3 4 5 6 | Peak Search      |
|                                            | PNO: East Trig: F    | reeRun Avg∣Holo<br>:10 dB                                |                     |                |                  |
|                                            | II Gam.eow           |                                                          | Mkr1 11.04          | 2 1 GHz        | Next Peak        |
| Ref Offset 30 dB<br>10 dB/div Ref 0.00 dBm |                      |                                                          | -36.9               | 90 dBm         |                  |
| -10.0                                      |                      |                                                          |                     |                |                  |
| -20.0                                      |                      |                                                          |                     | -20.00 dBm     | Next Pk Right    |
| -30.0                                      |                      |                                                          | .1                  |                |                  |
|                                            | ini                  | والأطلان ومعتار وماسأتك ومسالعه وروا فالتعوير والمتعادين |                     |                |                  |
| -40.0                                      |                      |                                                          |                     |                | Next Pk Left     |
|                                            |                      |                                                          |                     |                |                  |
| -60.0                                      |                      |                                                          |                     |                |                  |
|                                            |                      |                                                          |                     |                | MarkerDette      |
| -80.0                                      |                      |                                                          |                     |                | Marker Delta     |
| -90.0                                      |                      |                                                          |                     |                |                  |
| Start 1.000 GHz                            |                      |                                                          | Stop 12             | 2.750 GHz      |                  |
| #Res BW 1.0 MHz                            | #VBW 3.0 MI          | iz s                                                     | weep 20.00 ms (2    | 20000 pts)     | Mkr→CF           |
|                                            | X Y                  |                                                          | INCTION WIDTH FUNCT | ION VALUE      |                  |
| 1 N 1 f                                    | 11.042 1 GHz -36.990 | dBm                                                      |                     |                |                  |
| 3                                          |                      |                                                          |                     |                | Mkr→RefLvl       |
| 5                                          |                      |                                                          |                     | =              |                  |
| 7                                          |                      |                                                          |                     |                |                  |
| 8                                          |                      |                                                          |                     |                | More             |
| 10                                         |                      |                                                          |                     |                | 1 of 2           |
| <pre></pre>                                | m                    |                                                          |                     | • •            |                  |
| MSG                                        |                      |                                                          | STATUS              |                |                  |

### Report No.: AGC00589170701FE10 Page 237 of 261

# Conducted Spurious Emission (worst) @ 454.025MHz With 12.5 KHz Channel Separation-5W




30MHz-1GHz

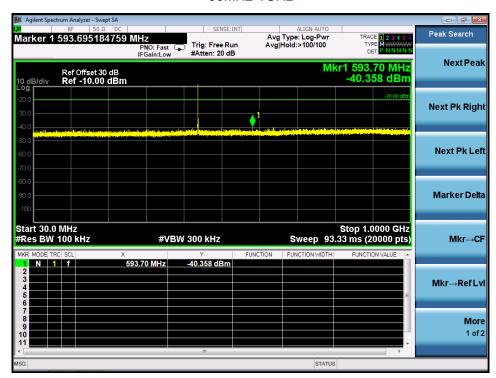
Conduct Spurious Emission (worst) @ 454.025MHz With 12.5 KHz Channel Separation-5W 1GHz-12.75GHz

| 📁 Agilent Spectrum Analyzer - Swept SA                                                                                                                                                                                                                                                                                           |                                                      |                                                                                                                                                                                                                                    |                                                                                 | - 6 <b>-</b>   |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------|--|--|--|
| Marker 1 4.735511775589                                                                                                                                                                                                                                                                                                          |                                                      | Avg Type: Log-Pwr                                                                                                                                                                                                                  | TRACE 1 2 3 4 5 6                                                               | Peak Search    |  |  |  |
| Ref Offset 30 dB                                                                                                                                                                                                                                                                                                                 | PNO: Fast Trig: Free Run<br>IFGain:Low #Atten: 10 dB |                                                                                                                                                                                                                                    | rg Hoid:>100/100 TYPE WINNINN<br>DeT WINNINN<br>Mkr1 4.735 5 GHz<br>-36.410 dBm |                |  |  |  |
| -10.0<br>-20.0<br>-30.0                                                                                                                                                                                                                                                                                                          |                                                      |                                                                                                                                                                                                                                    | -20.00 dBm                                                                      | Next Pk Right  |  |  |  |
| -40.0<br>-50.0<br>-60.0                                                                                                                                                                                                                                                                                                          |                                                      | na (a como la problema na casa da padrilla da) especta da facencia de la como de la como de la como de la como<br>Como de la como de la co |                                                                                 | Next Pk Left   |  |  |  |
| -70.0<br>-80.0<br>-90.0                                                                                                                                                                                                                                                                                                          |                                                      |                                                                                                                                                                                                                                    |                                                                                 | Marker Delta   |  |  |  |
| Start 1.000 GHz<br>#Res BW 1.0 MHz                                                                                                                                                                                                                                                                                               | #VBW 3.0 MHz                                         | Sweep 20.                                                                                                                                                                                                                          | Stop 12.750 GHz<br>00 ms (20000 pts)                                            | Mkr→CF         |  |  |  |
| 1  N  1  f  4.3    2  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  - | 735 5 GHz -36.410 dBm                                |                                                                                                                                                                                                                                    | =                                                                               | Mkr→RefLvl     |  |  |  |
| 7<br>8<br>9<br>10<br>11                                                                                                                                                                                                                                                                                                          |                                                      |                                                                                                                                                                                                                                    | *                                                                               | More<br>1 of 2 |  |  |  |
| MSG                                                                                                                                                                                                                                                                                                                              |                                                      | STATUS                                                                                                                                                                                                                             |                                                                                 |                |  |  |  |

### Report No.: AGC00589170701FE10 Page 238 of 261

# Conducted Spurious Emission (worst) @ 400.025MHz MHz With 12.5 KHz Channel Separation-2.5W




30MHz-1GHz

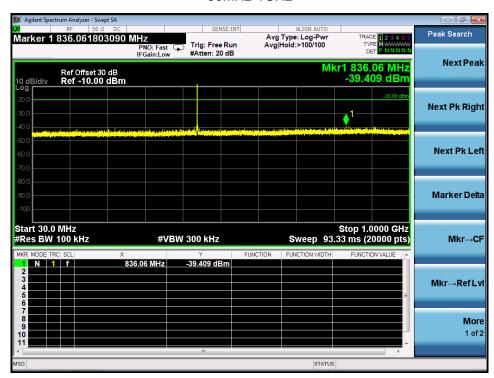
Conduct Spurious Emission (worst) @ 400.025MHz MHz With 12.5 KHz Channel Separation-2.5W 1GHz-12.75GHz

| - F <mark>-</mark> |                                                                                          |                            |                                    |                                          |      |        |                       |                     |              | /zer - Swept S         |                     | lent Spec    | 🕻 Agil                        |
|--------------------|------------------------------------------------------------------------------------------|----------------------------|------------------------------------|------------------------------------------|------|--------|-----------------------|---------------------|--------------|------------------------|---------------------|--------------|-------------------------------|
| Peak Search        | 456                                                                                      | TRACE 1 2 3 4              |                                    | Avg Type                                 |      | SENSE: |                       | z                   | 259 GH       | 50 Ω<br>785189         | RF<br>4.703         | (er 1        | Jark                          |
|                    | NNN                                                                                      |                            | >100/100                           | Avg Hold:                                |      |        | Trig: Fr<br>#Atten:   | ): Fast 🕞<br>in:Low |              |                        |                     |              |                               |
| Next Pea           | iHz<br>Bm                                                                                | 4.703 8 GI<br>36.311 dB    | Mkr                                |                                          |      |        |                       |                     | 3<br>1       | ffset 30 d<br>).00 dBr | Ref (<br><b>Ref</b> | 3/div        | 0 dB                          |
| Next Pk Righ       | 0 dBm                                                                                    |                            |                                    |                                          |      |        |                       |                     |              |                        |                     |              | - <b>og</b><br>-10.0<br>-20.0 |
|                    | dalaya.                                                                                  | والمتحدين والمحمور والمتحل | a picture at different and being a | a an |      |        | kulun hirida          | 1                   |              |                        |                     |              | 30.0<br>40.0                  |
| Next Pk Le         |                                                                                          |                            | and an a stand of the second of    |                                          |      |        | and the second second |                     |              |                        |                     | an den avili | -50.0                         |
|                    |                                                                                          |                            |                                    |                                          |      |        |                       |                     |              |                        |                     |              | -60.0<br>-70.0                |
| Marker Delt        |                                                                                          |                            |                                    |                                          |      |        |                       |                     |              |                        |                     |              | -80.0                         |
|                    |                                                                                          |                            |                                    |                                          |      |        |                       |                     |              |                        |                     |              | -90.0                         |
| Mkr→C              | tart 1.000 GHz Stop 12.750 GHz<br>Res BW 1.0 MHz #VBW 3.0 MHz Sweep 20.00 ms (20000 pts) |                            |                                    |                                          |      |        |                       |                     |              |                        |                     |              |                               |
|                    |                                                                                          | FUNCTION VALUE             | CTION WIDTH                        | ON FUN                                   | FUNC | dBm    | Y<br>-36.311          | GHz                 | ×<br>4.703 8 |                        | C SCL               |              | 1                             |
| Mkr→RefL           |                                                                                          |                            |                                    |                                          |      |        |                       |                     |              |                        |                     |              | 2 3 4                         |
|                    | =                                                                                        |                            |                                    |                                          |      |        |                       |                     |              |                        |                     |              | 5                             |
| Mor                |                                                                                          |                            |                                    |                                          |      |        |                       |                     |              |                        |                     |              | 7<br>8<br>9                   |
| 1 of               | •                                                                                        |                            |                                    |                                          |      |        | III                   |                     |              |                        |                     |              | 10<br>11                      |
|                    | ,                                                                                        | ,                          | STATUS                             |                                          |      |        |                       |                     |              |                        |                     |              | sg                            |

### Report No.: AGC00589170701FE10 Page 239 of 261

### Conducted Spurious Emission (worst) @ 453.225MHz With 12.5 KHz Channel Separation-2.5W




30MHz-1GHz

Conduct Spurious Emission (worst) @ 453.225MHz With 12.5 KHz Channel Separation-2.5W 1GHz-12.75GHz

| 🎉 Agilent Spec | trum Analyzer - Swept SA                                             |             |                                     |                                           |                             |                                                                |               |  |  |  |  |
|----------------|----------------------------------------------------------------------|-------------|-------------------------------------|-------------------------------------------|-----------------------------|----------------------------------------------------------------|---------------|--|--|--|--|
| Marker 1       | RF 50 Ω DC<br>4.68850942547                                          | 1 GHz       | SENSE:                              | Avg 1                                     | ALIGN AUTO                  | TRACE 1 2 3 4 5 6                                              | Peak Search   |  |  |  |  |
|                |                                                                      | PNO: Fast G | Trig: Free Ru<br>#Atten: 10 dB      |                                           | loid:>100/100               |                                                                | Next Peak     |  |  |  |  |
| 10 dB/div      | Ref Offset 30 dB Mkr1 4.688 5 GHz<br>dB/div Ref 0.00 dBm -35.911 dBm |             |                                     |                                           |                             |                                                                |               |  |  |  |  |
| Log<br>-10.0   |                                                                      |             |                                     |                                           |                             |                                                                | New Ol Direk  |  |  |  |  |
| -20.0          |                                                                      | <u> </u>    |                                     |                                           |                             | -20.00 dBm                                                     | Next Pk Right |  |  |  |  |
| -30.0          |                                                                      |             | a construction of the second second | the second strength and the second second | titles, and a phone sheld o | an and hits distance in the best stores and a stability of the |               |  |  |  |  |
| -40.0<br>-50.0 |                                                                      |             |                                     |                                           |                             |                                                                | Next Pk Left  |  |  |  |  |
| -60.0          |                                                                      |             |                                     |                                           |                             |                                                                |               |  |  |  |  |
| -70.0          |                                                                      |             |                                     |                                           |                             |                                                                | Marker Delta  |  |  |  |  |
| -90.0          |                                                                      |             |                                     |                                           |                             |                                                                | Marker Dela   |  |  |  |  |
| Start 1.00     | 0 GHz                                                                |             |                                     |                                           |                             | Stop 12.750 GHz                                                |               |  |  |  |  |
| #Res BW        |                                                                      | #VBV        | V 3.0 MHz                           |                                           | Sweep 20                    | .00 ms (20000 pts)                                             | Mkr→CF        |  |  |  |  |
| MKR MODE TR    |                                                                      | .688 5 GHz  | ۲<br>-35.911 dBm                    | FUNCTION                                  | FUNCTION WIDTH              | FUNCTION VALUE                                                 |               |  |  |  |  |
| 2              |                                                                      |             |                                     |                                           |                             |                                                                | Mkr→RefLv     |  |  |  |  |
| 5              |                                                                      |             |                                     |                                           |                             | E                                                              |               |  |  |  |  |
| 7              |                                                                      |             |                                     |                                           |                             |                                                                | More          |  |  |  |  |
| 9<br>10        |                                                                      |             |                                     |                                           |                             |                                                                | 1 of 2        |  |  |  |  |
|                |                                                                      |             |                                     |                                           |                             |                                                                |               |  |  |  |  |
| MSG            |                                                                      |             |                                     |                                           | STATUS                      |                                                                |               |  |  |  |  |

### Report No.: AGC00589170701FE10 Page 240 of 261

#### Conducted Spurious Emission (worst) @ 454.025MHz With 12.5 KHz Channel Separation-2.5W



30MHz-1GHz

Conduct Spurious Emission (worst) @ 454.025MHz With 12.5 KHz Channel Separation-2.5W 1GHz-12.75GHz

> rum Analyzer - Swept SA Avg Type: Log-Pw Avg|Hold:>100/100 TYPE MWWWW DET P NNNN Peak Search 1 9.436334316716 GHz Marke Trig: Free Run #Atten: 10 dB PNO: Fast IFGain:Low Next Peak Mkr1 9.436 3 GHz -36.527 dBm Ref Offset 30 dB Ref 0.00 dBm 10 dB/di Log **r** Next Pk Right <sup>1</sup> Next Pk Left Marker Delta Stop 12.750 GHz Sweep 20.00 ms (20000 pts) Start 1.000 GHz #Res BW 1.0 MHz #VBW 3.0 MHz Mkr→CF FUNCTION 9.436 3 GHz -36.527 dBm Mkr→RefLvl More 1 of 2 STATUS