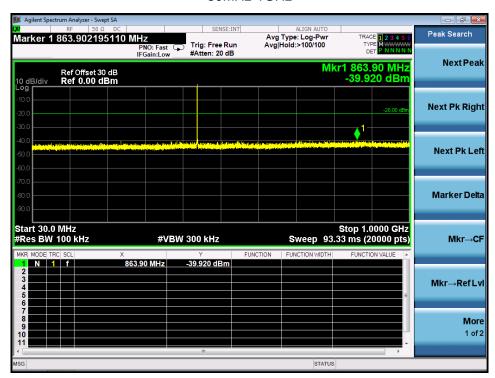

Report No.: AGC00589170706FE10 Page 80 of 106

Conducted Spurious Emission (worst) @ 453.225MHz With 12.5 KHz Channel Separation-2.5W

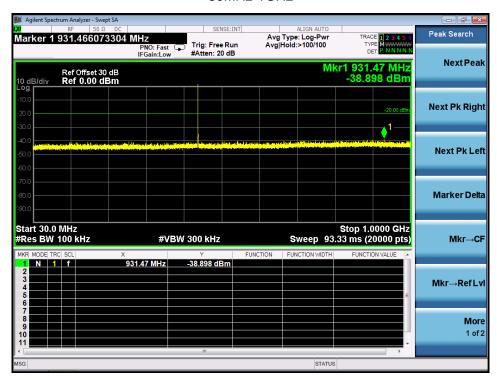


Conduct Spurious Emission (worst) @ 453.225MHz With 12.5 KHz Channel Separation-2.5W 1GHz-12.75GHz

📕 Agilent Spectru	ım Analyzer - Swe									
w Marker 1 5							ALIGN AUTO	TRAC	E 1 2 3 4 5 6 E M WWWW	Peak Search
			PNO: Fast C IFGain:Low	 Trig: Free #Atten: 10 		Avginoia	:>100/100		PNNNNN	No. 4 Days
10 dB/div	Ref Offset 30 Ref 0.00 d						Mk	r1 5.040 -35.6) 4 GHz 29 dBm	Next Pea
-og 10.0										New Die Die
20.0			.1						-20.00 dBm	Next Pk Rig
30.0						and a state of a	. ati Man	distances and	htsen of a state to	
40.0 50.0						Carrier and Carrier		and the second s		Next Pk Le
-60.0										
70.0										
-80.0										Marker Del
-90.0										
Start 1.000 #Res BW 1			#VB	W 3.0 MHz		s	weep 20	Stop 12. 00 ms (2	.750 GHz 0000 pts)	Mkr→C
MKR MODE TRC		Х		Y	FUNCTIO	N FUI	NCTION WIDTH	FUNCTIO	ON VALUE	
1 N 1 2	f	5.04	0 4 GHz	-35.629 dB	m					
3 4 5									_	Mkr→RefL
6										
8										Мо
10										1 0
•									Þ	
SG							STATUS			

Report No.: AGC00589170706FE10 Page 81 of 106

Conducted Spurious Emission (worst) @ 454.025MHz With 12.5 KHz Channel Separation-2.5W

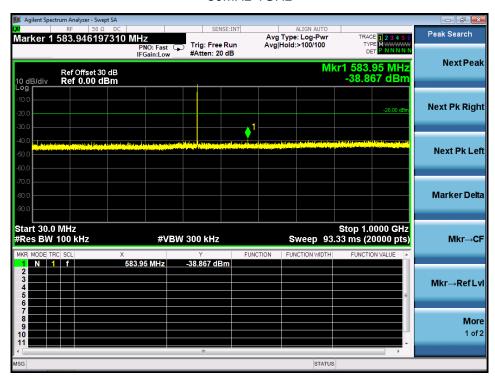

30MHz-1GHz

Conduct Spurious Emission (worst) @ 454.025MHz With 12.5 KHz Channel Separation-2.5W 1GHz-12.75GHz

									trum Analyzer -	ilent Spec	📕 Agi
Peak Search	3 4 5 6	TRACE 1 2 3 4	ALIGN AUTO		ISE:INT		GHz	50 Ω DC 0065503		ker 1	^u Marl
	N N N N		:>100/100	Avg Hold		Trig: Free #Atten: 10	PNO: Fast G				
Next Pea	GHz Bm	9.701 3 GI -35.240 dB	Mk					et 30 dB 0 dBm	Ref Offse Ref 0.00	B/div	
Next Pk Rigl	00 dBm	-20.00	<u> </u>								-10.0 -20.0
Next Pk Le											-30.0 -40.0 -50.0
Marker Del											-60.0 -70.0 -80.0
	GHz	top 12.750 G							0 GHz		
Mkr→C	<u> </u>	ms (20000 p	weep 20.			/ 3.0 MHz Y -35.240 dE	#VBV	× 9.7		MODE TR	MKR N
Mkr→RefL											2 3 4 5 6
Mo 1 of											7 8 9 10 11
	Þ)									•
			STATUS								SG

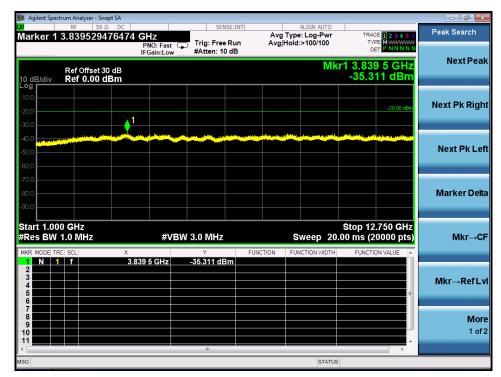
Report No.: AGC00589170706FE10 Page 82 of 106

Conducted Spurious Emission (worst) @ 453.225MHz With 12.5 KHz Channel Separation-1W



Conduct Spurious Emission (worst) @ 453.225MHz With 12.5 KHz Channel Separation-1W 1GHz-12.75GHz

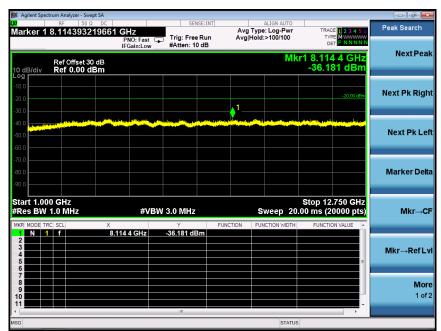
- 7		-							Analyzer - Swe	ent Spectrun	📕 Agil
Peak Search	1 2 3 4 5 6 M		ALIGN AUTO	Avg Type	SE:INT				⊧ 50 Ω . 917495	er 1 10	/ /lark
Next Peal	PNNNNN	DET		Avg Hold		Trig: Free #Atten: 10	PNO: Fast G				
NextFear	5 GHz 6 dBm	1 10.917 -36.95	Mkr						ef Offset 3 ef 0.00 d		10 dB
Next Pk Righ											-10.0
Next PK Righ	-20.00 dBm	. 1									-20.0
			alden skilder sociale	Martine and Area	A alabilar a catilar a	e telesee tit die eeste			and the second	on he are the state	-30.0 -40.0
Next Pk Lef		and the second	Cardina and a second second	in a state of the		and the second diversion of the second diversion of the second diversion of the second diversion of the second			A CONTRACTOR OF THE OWNER		-50.0
											-60.0
Marker Delta											-70.0 -80.0
Marker Dela											-90.0
	50 GHz	Stop 12.							H7	1.000 (Start
Mkr→CF	00 pts)	00 ms (20	weep 20	S		3.0 MHz	#VBV			BW 1.	
	VALUE 🔺	FUNCTIO	ICTION WIDTH	FION FUI	FUN	Y -36.956 dB	17 5 GHz	× 10.9	L	ODE TRC S	
Mkr→RefLv											2 3
	=										4 5
											6 7 8
More 1 of 2											9
											11
			STATUS								ISG


Report No.: AGC00589170706FE10 Page 83 of 106

Conducted Spurious Emission (worst) @ 454.025MHz With 12.5 KHz Channel Separation-1W

30MHz-1GHz

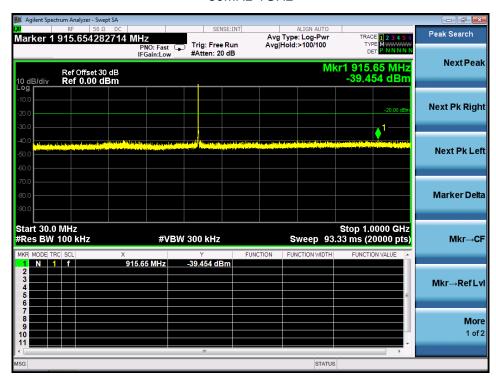
Conduct Spurious Emission (worst) @ 454.025MHz With 12.5 KHz Channel Separation-1W 1GHz-12.75GHz


Note: All the test frequencies was tested, but only the worst data be recorded in this part.

Report No.: AGC00589170706FE10 Page 84 of 106

um Analyzer - Swept S Marker 1 873.263163158 MHz PN0: Fast IFGain:Low HAtten: 20 dB Peak Search Avg Type: Log-Pwr Avg|Hold:>100/100 TRACE 1 2 3 4 5 TYPE MWWW DET P N N N TYPE DET Next Peal Mkr1 873.26 MHz -39.114 dBm Ref Offset 30 dB Ref 0.00 dBm Next Pk Right **?** Next Pk Left Marker Delta Stop 1.0000 GHz Sweep 93.33 ms (20000 pts) Start 30.0 MHz #Res BW 100 kHz #VBW 300 kHz Mkr→CF 873.26 MHz -39.114 dB Mkr→RefLvl More 1 of 2

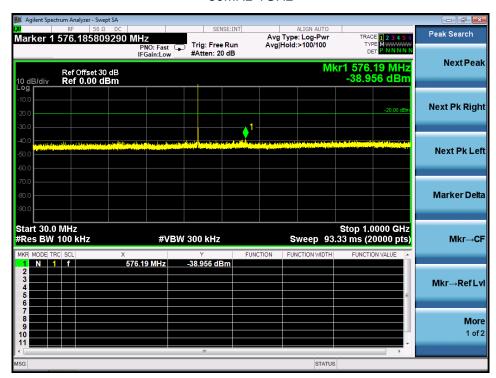
Conducted Spurious Emission (worst) @ 453.225MHz With 12.5 KHz Channel Separation-9W 30MHz-1GHz


Conduct Spurious Emission (worst) @ 453.225MHz With 12.5 KHz Channel Separation-9W 1GHz-12.75GHz

Digital:

Report No.: AGC00589170706FE10 Page 86 of 106

Conducted Spurious Emission (worst) @ 454.025MHz With 12.5 KHz Channel Separation-9W

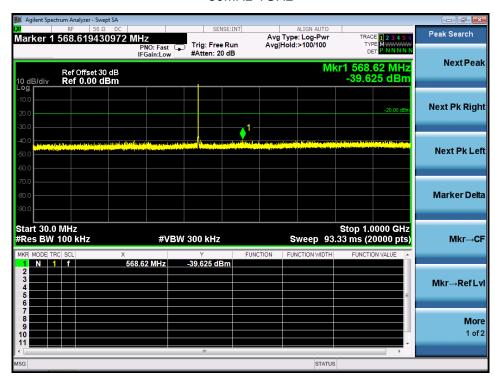

30MHz-1GHz

Conduct Spurious Emission (worst) @ 454.025MHz With 12.5 KHz Channel Separation-9W 1GHz-12.75GHz


📕 Agilent Spe		zer - Swept SA							_		
larker 1	^{RF} I 8.169	50Ω D 5209810	049 GHz			ISE:INT		ALIGN AUTO ype: Log-Pwr old:>100/100	TRA	DE 1 2 3 4 5 6 PE M WWWWW	Peak Search
				:Fast G n:Low	#Atten: 1		Avgin	old:>100/100	D		
10 dB/div		fset 30 dB .00 dBm						Mł		96 GHz 88 dBm	NextPe
-og 10.0											
-20.0										-20.00 dBm	Next Pk Rig
30.0							_ <mark> </mark> ♦ ¹				
40.0 	Ale state		أتشادر والأرزية المكانلة	in the second	internet and the second		an desility of	iti yala shi yaladi	, si i ta ta a a a a a		
50.0											Next Pk L
60.0											
70.0											Marker De
.90.0											Warker De
Start 1.00 Res BW		z		#VB۱	N 3.0 MHz			Sweep 20	Stop 12 00 ms (2.	.750 GHz 0000 pts)	Mkr→
MKR MODE T			Х		Y		JNCTION	FUNCTION WIDTH		ON VALUE	
1 N 1	1 f		8.169 6 (GHz	-36.188 dE	Bm					
3 4											Mkr→Ref
5										=	
7											M
9											1 0
11											

Report No.: AGC00589170706FE10 Page 87 of 106

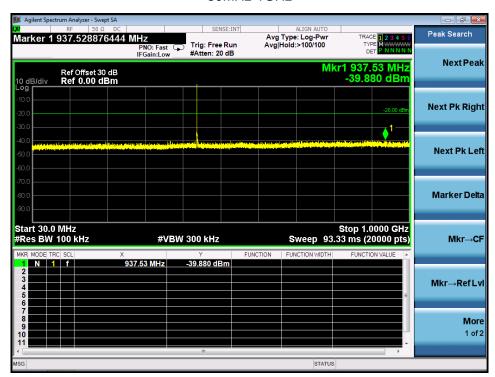
Conducted Spurious Emission (worst) @ 453.225MHz With 12.5 KHz Channel Separation-4.5W



Conduct Spurious Emission (worst) @ 453.225MHz With 12.5 KHz Channel Separation-4.5W 1GHz-12.75GHz

Report No.: AGC00589170706FE10 Page 88 of 106

Conducted Spurious Emission (worst) @ 454.025MHz With 12.5 KHz Channel Separation-4.5W

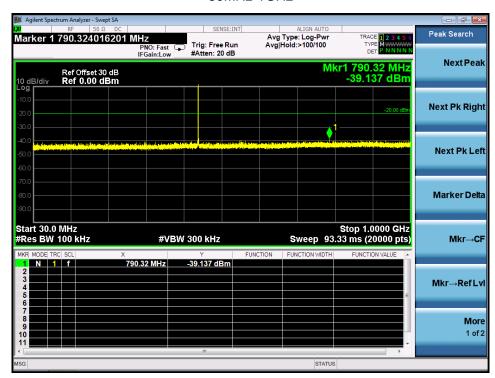


Conduct Spurious Emission (worst) @ 454.025MHz With 12.5 KHz Channel Separation-4.5W 1GHz-12.75GHz

v									
larker 1		^{50 Ω DC} 05085254	GHz PNO: Fast	SENSE:	Avg	ALIGN AUTO Type: Log-Pwr Hold:>100/100	TY	CE 1 2 3 4 5 6 PE MWWWW	Peak Search
	Ref Offse		IFGain:Low	#Atten: 10 dl			1 10.35	T P NNNN 1 7 GHz	NextPe
10 dB/div	Ref 0.0						-36.5	63 dBm	
10.0									
20.0								-20.00 dBm	Next Pk Rig
30.0						_	1		
40.0	and an and the local state of the	and in the state	and the second second	dile anno indiana channa		al de la statut de la statut		antin op titker	
50.0									Next Pk L
60.0									
70.0									
80.0									Marker De
90.0									
							0 1 10	7/0 011-	
Start 1.00 Res BW	UUGHZ		#VB	W 3.0 MHz		Sweep 20	510p 12	.750 GHz 0000 pts)	Mkr⊸
MKR MODE T		X		Y	FUNCTION	EUNCTION WIDTH		ON VALUE	
	1 f		51 7 GHz	-36.563 dBm					
2 3									Mkr⊸Pefl
								_	Mkr→Ref
3 4 5 6								E	Mkr→Ref
3 4 5 6 7 8									
3 4 5 6 7 8 9								E E	Me
3 4 5 6 7 8				II					Mkr⊸Refi Mo 1 o

Report No.: AGC00589170706FE10 Page 89 of 106

Conducted Spurious Emission (worst) @ 453.225MHz With 12.5 KHz Channel Separation-2.5W

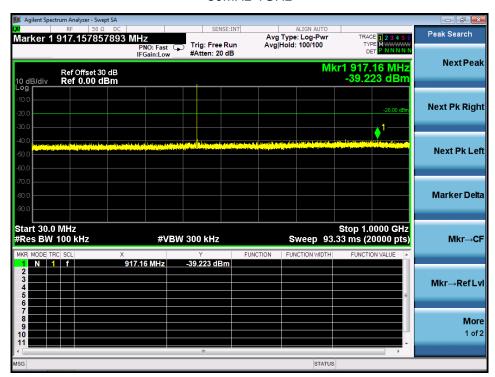


Conduct Spurious Emission (worst) @ 453.225MHz With 12.5 KHz Channel Separation-2.5W 1GHz-12.75GHz

			LIGN AUTO		SE:INT	SEN		nalyzer - Swept SA 50 Ω DC	Agilent Spectr
Peak Search	ACE 1 2 3 4 5 6 YPE M WWWW DET P N N N N N	TYP	Log-Pwr	Avg Typ Avg Hold	Run		GHz PNO: Fast	38949447472	larker 1 8
Next Pea	8 9 GHz 753 dBm	r1 8.23	Mk				II Gam.cow	Offset 30 dB f 0.00 dBm	0 dB/div
Next Pk Rig	-20.00 dBm								20.0
				↓1		antini attini yyd	-		10.0
Next Pk L									50.0 60.0
Marker De									70.0 80.0
Mkr→	2.750 GHz 20000 pts)		weep 20	s		3.0 MHz	#VB		tart 1.000 Res BW 1
	TION VALUE		CTION WIDTH			Y -37.753 dE	38 9 GHz		IKR MODE TRO
Mkr→RefL	E								3 4 5
Ma									6 7 8 9
1 o									10
			STATUS						G

Report No.: AGC00589170706FE10 Page 90 of 106

Conducted Spurious Emission (worst) @ 454.025MHz With 12.5 KHz Channel Separation-2.5W

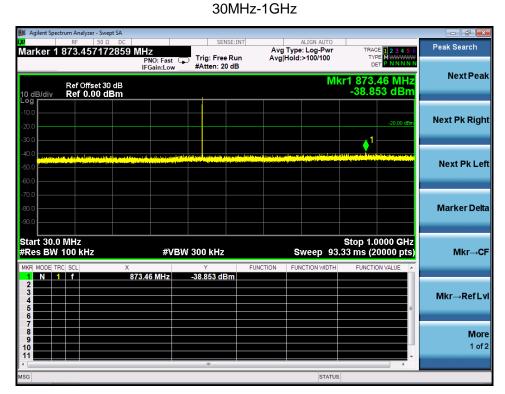


Conduct Spurious Emission (worst) @ 454.025MHz With 12.5 KHz Channel Separation-2.5W 1GHz-12.75GHz

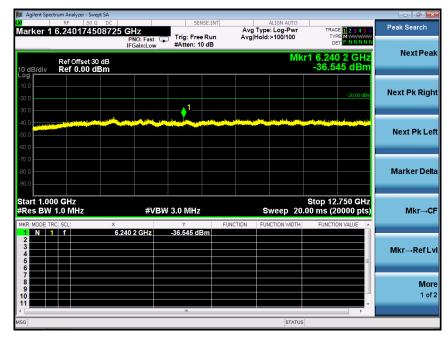
Peak Search	56	E 1 2 3 4	TRAC	ALIGN AUTO			SENSE		DC 04370 GI		RF	
NextPe	NN		DE	:>100/100	Avg Ho		Trig: Free R #Atten: 10 d	NO: Fast 🕞 Gain:Low	P			
Nextre	lz m	3 1 GF 20 dB	r1 6.998 -37.1	Mk						Offset 30 F 0.00 dl		dB/div g
Next Pk Ric												u 10
Next PK RIQ	1Bm	-20.00 d										.0
				de las a		1	•	day page - 1				.0
Next Pk L												
Marker De												
	ΗZ	.750 GH	Stop 12							IZ	00 G	art 1.0
Mkr→				weep 20.			3.0 MHz	#VBW				les BV
	÷	ON VALUE	FUNCTION	ICTION WIDTH	TION F	FUN	√ -37.120 dBm	1 GHz	X		TRC SCI	R MODE
							-37.120 aBm	1 GHZ	0.998			
Mkr→Ref												
	-											
M												
1 0												
		•					III					
				STATUS								i

Report No.: AGC00589170706FE10 Page 91 of 106

Conducted Spurious Emission (worst) @ 453.225MHz With 12.5 KHz Channel Separation-1W



30MHz-1GHz


Conduct Spurious Emission (worst) @ 453.225MHz With 12.5 KHz Channel Separation-1W 1GHz-12.75GHz

	ctrum Analyzer - Sw							
larker 1		Ω DC 111706 GHz PNO: Fas	SENSE:	Avg 1	ALIGN AUTO ype: Log-Pwr old:>100/100	TRACE	3 4 5 6	Peak Search
10 dB/div	Ref Offset 3 Ref 0.00	IFGain:Lo				r1 8.932 2 -35.909	GHz	Next Pea
- 0 g -10.0 -20.0					<u> </u>		20.00 dBm	Next Pk Rig
40.0 50.0								Next Pk L
70.0 30.0 90.0								Marker De
	1.0 MHz		VBW 3.0 MHz		Sweep 20	Stop 12.750 .00 ms (2000) GHz 0 pts)	Mkr→
KR MODE TE	RC SCL	X	Y	FUNCTION	FUNCTION WIDTH	FUNCTION VA	UE 🔺	
1 N 1 2 3 4 5		X 8.932 2 GHz	Y -35.909 dBm		FUNCTION WIDTH	FUNCTION VA		Mkr→Ref
2 3 4			¥ -35.909 dBm		FUNCTION WIDTH	FUNCTION VA	LUE A	Mkr→RefL Mc 1 o

Conducted Spurious Emission (worst) @ 454.025MHz With 12.5 KHz Channel Separation-1W

Conduct Spurious Emission (worst) @ 454.025MHz With 12.5 KHz Channel Separation-1W 1GHz-12.75GHz

Note: All the test frequencies was tested, but only the worst data be recorded in this part.

Report No.: AGC00589170706FE10 Page 93 of 106

10. RANSMITTER FREQUENCY BEHAVIOR

10.1PROVISIONS APPLICABLE

FCC §90.214

	Maximum fraguancy	All equipm	ent
Time intervals 1, 2	Maximum frequency difference ³	150 to 174 MHz	421 to 512 MHz
Transient Frequency Behavior for Equipment	ent Designed to Operate	on 25 kHz Channels	
t1 ⁴ t2 t3 ⁴	± 25.0 kHz ± 12.5 kHz ± 25.0 kHz	5.0 ms 20.0 ms 5.0 ms	10.0 ms 25.0 ms 10.0 ms
Transient Frequency Behavior for Equipme	nt Designed to Operate of	on 12.5 kHz Channels	
t1 4 t2 t3 4	± 12.5 kHz ± 6.25 kHz ± 12.5 kHz	5.0 ms 20.0 ms 5.0 ms	10.0 ms 25.0 ms 10.0 ms
Transient Frequency Behavior for Equipme	nt Designed to Operate (on 6.25 kHz Channels	

t1 4	± 6.25 kHz	5.0 ms	10.0 ms
t2	± 3.125 kHz	20.0 ms	25.0 ms
t ₃ 4	± 6.25 kHz	5.0 ms	10.0 ms

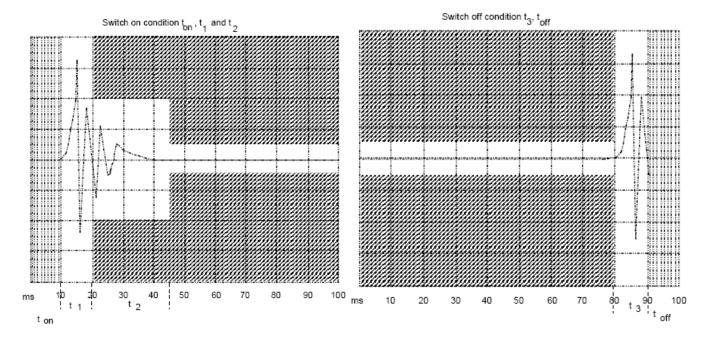
 $^1t_{on}$ is the instant when a 1 kHz test signal is completely suppressed, including any capture time due to phasing. t_1 is the time period immediately following t_{on} . t_2 is the time period immediately following t_1 . t_3 is the time period from the instant when the transmitter is turned off until t_{off} . t_{off} is the instant when the 1 kHz test signal starts to rise. 2 During the time from the end of t_2 to the beginning of t_3 , the frequency difference must not exceed the limits specified in 0.212. §90.213.

³ Difference between the actual transmitter frequency and the assigned transmitter frequency. ⁴ If the transmitter carrier output power rating is 6 watts or less, the frequency difference during this time period may exceed the maximum frequency difference for this time period.

10.2 TEST METHOD

TIA/EIA-603 2.2.19.3

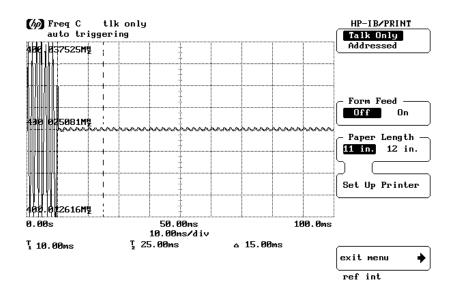
10.3 DESCRIBE LIMIT LINE OF RANSMITTER FREQUENCY BEHAVIOR

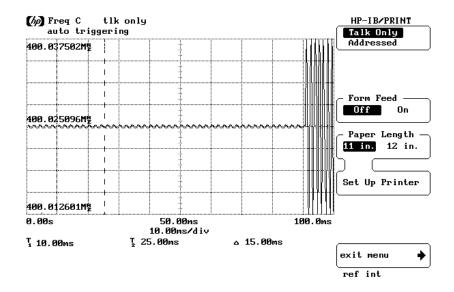

ton: The switch-on instant ton of a transmitter is defined by the condition when the output power, measured at the antenna terminal, exceeds 0,1 % of the full output power (-30 dBc).

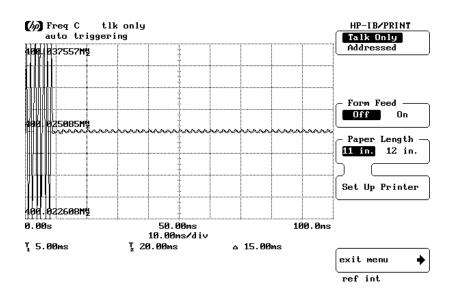
t1: period of time starting at ton and finishing according to above 11.1

t2: period of time starting at the end of t1 and finishing according to above 11.1

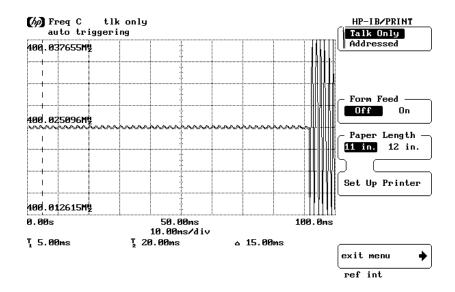
toff: switch-off instant defined by the condition when the output power falls below 0,1 % of the full output power (-30 dBc).


t3: period of time that finishing at toff and starting according to above 11.1


10.4 MEASURE RESULT


FM:

Transmitter Frequency Behavior @ 12.5 KHz Channel Separation--Off to On-9W


Transmitter Frequency Behavior @ 12.5 KHz Channel Separation--On to Off-9W

Transmitter Frequency Behavior @ 12.5 KHz Channel Separation--Off to On

Transmitter Frequency Behavior @ 12.5 KHz Channel Separation--On to Off

4FSK:

11. AUDIO LOW PASS FILTER RESPONSE

11.1 LIMITS

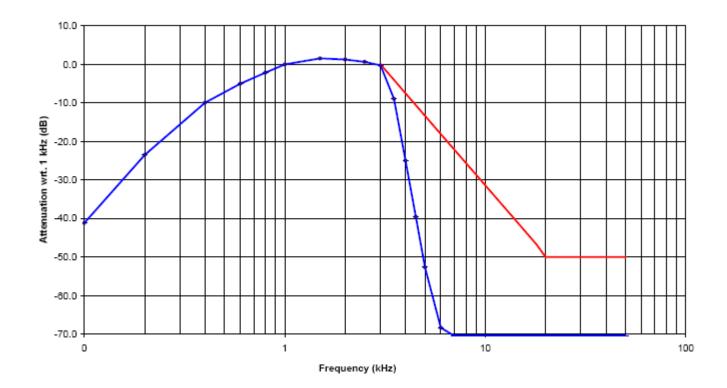
2.1047(a): Voice modulated communication equipment. A curve or equivalent data showing the frequency response of the audio modulating circuit over a range of 100 to 5000 Hz shall be submitted. For equipment required to have an audio low-pass filter, a curve showing the frequency response of the filter or of all circuitry installed between the modulation limiter and the modulated stage shall be submitted.
90.242(b)(8): Recommended audio filter attenuation characteristics are given below:

Audio band	Minimum Attenuation Rel. to 1 KHz Attenuation
3 –20 KHz	60 log ₁₀ (f/3) dB where f is in KHz
20 – 30 KHz	50dB

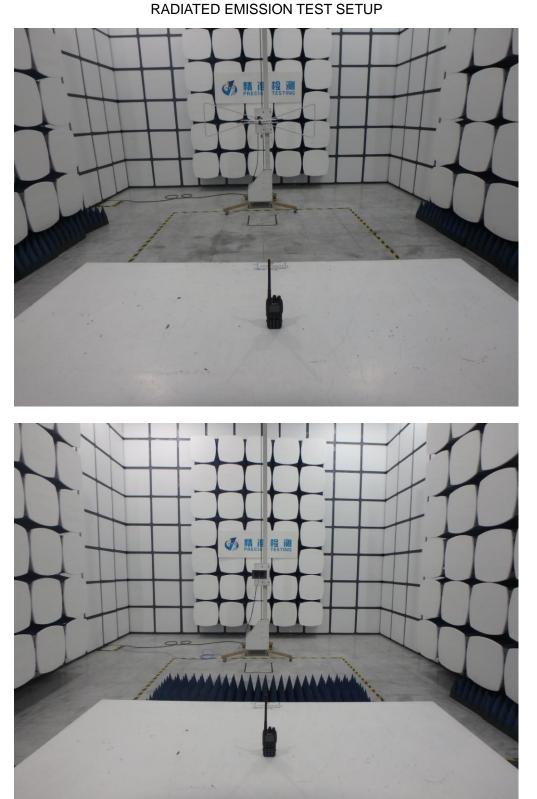
11.2. METHOD OF MEASUREMENTS

The rated audio input signal was applied to the input of the audio low-pass filter (or of all modulation stages) using an audio oscillator, this input signal level and its corresponding output signal were then measured and recorded using the FFT Digital Spectrum Analyzer. Tests were repeated at different audio signal frequencies from 0 to 50 KHz.

11.3 TEST DATA


Analog:

12.5 KHZ CHANNEL SPACING, F3E, FREQUENCY OF ALL MODULATION STATES (TEST RESULT FOR UHF)-9W


Frequency	Audio In	Audio out	Attenuation	Attenuation	Recommended Attenuation
(KHz)	(dBV)	(dBV)	(Out_In)	Rel.to 3 KHz	(dB)
			dB	(dB)	
0.1	-76.13	-31.42	45.95	-36.28	
0.2	-76.13	-17.52	58.75	-25.43	
0.4	-76.13	-6.52	71.18	-12.26	
0.6	-76.13	0.84	74.63	-6.62	
0.8	-76.13	4.46	78.51	-2.57	
1.0	-76.13	7.23	83.15	-0.28	
1.5	-76.13	8.68	84.92	2.45	
2.0	-76.13	8.25	85.18	1.26	
2.5	-76.13	7.46	83.63	0.34	
3.0	-76.13	6.27	82.24	-1.22	0
3.5	-76.13	2.35	78.91	-4.82	-3
4.0	-76.13	-2.52	74.28	-9.12	-8
4.5	-76.13	-9.23	68.15	-16.43	-12
5.0	-76.13	-15.58	60.34	-21.69	-14
6.0	-76.13	-21.15	54.75	-28.55	-15
7.0	-76.13	-31.16	46.48	-36.87	-22
8.0	-76.13	-39.98	37.68	-47.75	-22
9.0	-76.13	-61.81	15.13	-66.15	-26
10.0	-76.13	-61.81	15.13	-66.15	-30
12.0	-76.13	-61.81	15.13	-66.15	-34
14.0	-76.13	-61.81	15.13	-66.15	-45
16.0	-76.13	-61.81	15.13	-66.15	-41
18.0	-76.13	-61.81	15.13	-66.15	-43
20.0	-76.13	-61.81	15.13	-66.15	-45
25.0	-76.13	-61.81	15.13	-66.15	-45
30.0	-76.13	-61.81	15.13	-66.15	-45
35.0	-76.13	-61.81	15.13	-66.15	-45
40.0	-76.13	-61.81	15.13	-66.15	-45
45.0	-76.13	-61.81	15.13	-66.15	-45
50.0	-76.13	-61.81	15.13	-66.15	-45

Report No.: AGC00589170706FE10 Page 99 of 106

Note: Due to the difficulty of measuring the Frequency Response of the internal low-pass filter, the Frequency Response of All Modulation States is performed to show the roll-off at 3 KHz in comparison with the recommended audio filter attenuation.

Report No.: AGC00589170706FE10 Page 100 of 106

APPENDIX I: PHOTOGRAPHS OF SETUP

Report No.: AGC00589170706FE10 Page 101 of 106

APPENDIX II: EXTERNAL VIEW OF EUT TOTAL VIEW OF EUT

TOP VIEW OF EUT

Report No.: AGC00589170706FE10 Page 102 of 106

BOTTOM VIEW OF EUT

FRONT VIEW OF EUT

Report No.: AGC00589170706FE10 Page 103 of 106

BACK VIEW OF EUT

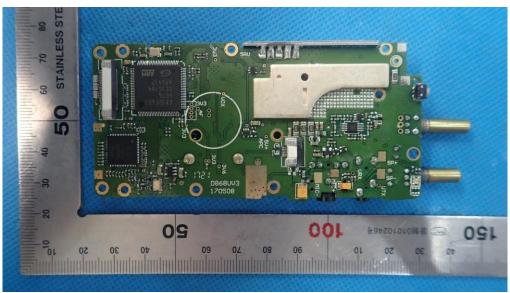
LEFT VIEW OF EUT

Report No.: AGC00589170706FE10 Page 104 of 106

RIGHT VIEW OF EUT

THE LABLE OF POWER ADAPTER MARKETED

Report No.: AGC00589170706FE10 Page 105 of 106



OPEN VIEW-1 OF EUT

INTERNAL VIEW-1 OF EUT

Report No.: AGC00589170706FE10 Page 106 of 106

INTERNAL VIEW-2 OF EUT

----END OF REPORT----