

TEST REPORT

Product Name	Two-Way Radio
Model	289G
FCC ID	T4K-QZQX289G
Client	Qixiang Electron Science & Technology Co.,Ltd.

GENERAL SUMMARY

Product Name	Two-Way Radio	Model	289G
FCC ID	T4K-QZQX289G	Report No.	RZA2010-0812
Client	Qixiang Electron Science & Technology Co.,Ltd.		
Manufacturer	Qixiang Electron Science & Technology Co.,Ltd.		
Reference Standard(s)	 IEEE Std C95.1, 1999: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 KHz to 300 GHz. SUPPLEMENT C Edition 01-01 to OET BULLETIN 65 Edition 97-01 June 2001 including DA 02-1438 June 19, 2002: Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields Additional Information for Evaluation Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions. IEEE Std 1528[™]-2003: IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques. 		
Conclusion	This portable wireless equipment has been measured in all cases requested by the relevant standards. Test results in Chapter 7 of this test report are below limits specified in the relevant standards. General Judgment: Pass (Stamp) Date of issue: Nov 26 th , 2010		
Comment	The test result only responds to the measured sample.		
proved by 杨伟中 Revised by 凌敏宝 Performed by 王路			

Yang Weizhong

Approved by Martin Revised by K V Performed by ±

Ling Minbao

Wang Lu

TA Technology (Shanghai) Co., Ltd.
Test Report

TABLE OF CONTENT

1. General Information	4
1.1. Notes of the test report	4
1.2. Testing laboratory	4
1.3. Applicant Information	5
1.4. Manufacturer Information	5
1.5. Information of EUT	6
1.6. Test Date	6
2. Operational Conditions during Test	7
3. SAR Measurements System Configuration	8
3.1. SAR Measurement Set-up	
3.2. DASY5 E-field Probe System	9
3.2.1. ET3DV6 Probe Specification	
3.2.2. E-field Probe Calibration	
3.3. Other Test Equipment	.10
3.3.1. Device Holder for Transmitters	
3.3.2. Phantom	
3.4. Scanning procedure	
3.5. Data Storage and Evaluation	
3.5.1. Data Storage	
3.5.2. Data Evaluation by SEMCAD	
3.6. System check	
3.7. Equivalent Tissues	
4. Laboratory Environment	
 Charcteristics of the Test 	
5.1. Applicable Limit Regulations	
5.2. Applicable Measurement Standards	
 Conducted Output Power Measurement	
6.1. Conducted Power Results	
7. Test Results	
7.1. Dielectric Performance	
7.2. System Check Results	
7.3. Summary of Measurement Results	
7.4. Conclusion	
8. Measurement Uncertainty	
 Main Test Instruments 	
ANNEX A: Test Layout	
ANNEX A: lest Layout	
ANNEX D. System Check Results	
ANNEX C. Graph Results	
ANNEX D. Frobe Calibration Certificate	
ANNEX E. D450VS Dipole Calibration Certificate	
ANNEX G: The EUT Appearances and Test Configuration	JQ

1. General Information

1.1. Notes of the test report

TA Technology (Shanghai) Co., Ltd. guarantees the reliability of the data presented in this test report, which is the results of measurements and tests performed for the items under test on the date and under the conditions stated in this test report and is based on the knowledge and technical facilities available at TA Technology (Shanghai) Co., Ltd. at the time of execution of the test.

TA Technology (Shanghai) Co., Ltd. is liable to the client for the maintenance by its personnel of the confidentiality of all information related to the items under test and the results of the test. This report only refers to the item that has undergone the test.

This report standalone dose not constitute or imply by its own an approval of the product by the certification Bodies or competent Authorities. This report cannot be used partially or in full for publicity and/or promotional purposes without previous written approval of **TA Technology (Shanghai) Co., Ltd.** and the Accreditation Bodies, if it applies.

Company:	TA Technology (Shanghai) Co., Ltd.
Address:	No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China
City:	Shanghai
Post code:	201201
Country:	P. R. China
Contact:	Yang Weizhong
Contact: Telephone:	Yang Weizhong +86-021-50791141/2/3
Telephone:	+86-021-50791141/2/3

1.2. Testing laboratory

1.3. Applicant Information

Company:	Qixiang Electron Science & Technology Co.,Ltd.		
Address:	Qixiang Building, Tangxi Industrial Zone,Luojiang District,		
City:	QuanZhou		
Postal Code:	362011		
Country:	China		
Telephone:	013505942500		
Fax:	059522656927		

1.4. Manufacturer Information

Company:	Qixiang Electron Science & Technology Co.,Ltd.		
Address:	Qixiang Building, Tangxi Industrial Zone,Luojiang District,		
City:	QuanZhou		
Postal Code:	362011		
Country:	China		
Telephone:	013505942500		
Fax:	059522656927		

1.5. Information of EUT

General information

Device type :	portable device	
Exposure category:	Controlled environment / Occupational	
SN:	1	
Device operating configurations :		
Operating mode(s):	400.025 – 479.975 MHz	
Test Modulation:	FM	
Operating frequency range(s)	transmitter frequency range	
UHF	400.025MHz ~ 479.975MHz	
Test channel	400.025MHz – 439.975MHz –479.975MHz	
Hardware version:	1	
Software version:	1	
Antenna type:	External antenna	

Equipment Under Test (EUT) is a Two-Way Radio with external antenna. SAR is tested for 400.025 - 479.975 MHz only.

The sample undergoing test was selected by the Client.

Components list please refer to documents of the manufacturer.

1.6. Test Date

The test is performed on Nov 24, 2010.

2. Operational Conditions during Test

The spatial peak SAR values were assessed for the lowest, middle and highest channels defined by UHF (400.025MHz, 439.975MHz, and 479.975 MHz) systems UHF, Battery and accessories shall be those specified by the manufacturer. The battery shall be fully charged before each measurement and there shall be no external connections.

3. SAR Measurements System Configuration

3.1. SAR Measurement Set-up

The DASY5 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stäubli RX family) with controller and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e. an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronic (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- A unit to operate the optical surface detector which is connected to the EOC.
- The Electro-Optical Coupler (EOC) performs the conversion from the optical into a digital electric signal of the DAE. The EOC is connected to the DASY5 measurement server.
- The DASY5 measurement server, which performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation. A computer operating Windows 2003
- DASY5 software and SEMCAD data evaluation software.
- Remote control with teach panel and additional circuitry for robot safety such as warning lamps, etc.
- The generic twin phantom enabling the testing of left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- System validation dipoles allowing to validate the proper functioning of the system.

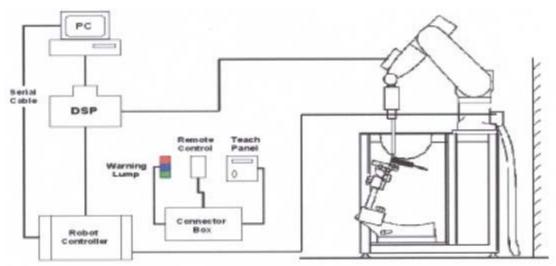


Figure 1. SAR Lab Test Measurement Set-up

3.2. DASY5 E-field Probe System

The SAR measurements were conducted with the dosimetric probe ET3DV6 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation.

TA Technology (Shanghai) Co., Ltd. Test Report

3.2.1. ET3DV6 Probe Specification

Construction	Symmetrical design with triangular core Built-in optical fiber for surface detection System (ET3DV6 only) Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.q., glycol)	
Calibration	In air from 10 MHz to 3 GHz In brain and muscle simulating tissue at frequencies of 450MHz, 900MHz, 1750 MHz, 1950MHz and 2450 MHz. (accuracy±8%) Calibration for other liquids and	
Frequency	frequencies upon request 10 MHz to 2.5 GHz; Linearity: ±0.2 dB (30 MHz to 2.5 GHz)	F
Directivity	±0.2 dB in brain tissue (rotation around probe axis) ±0.4 dB in brain tissue (rotation around probe axis)	
Dynamic Range Surface Detection	5u W/g to > 100mW/g; Linearity: ±0.2dB ±0.2 mm repeatability in air and clear liquids over diffuse reflecting surface (ET3DV6 only)	
Dimensions	Overall length: 330mm Tip length: 16mm Body diameter: 12mm Tip diarneter: 6.8mm Distance from probe tip to dipole centers: 2.7mm	
Application	General dosimetry up to 2.5GHz Compliance tests of mobile phones Fast automatic scanning in arbitrary phantoms	F

Figure 2 ET3DV6 E-field Probe

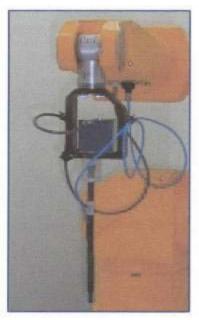


Figure 3 ET3DV6 E-field probe

TA Technology (Shanghai) Co., Ltd. Test Report

Report No. RZA2010-0812

3.2.2. E-field Probe Calibration

Each probe is calibrated according to a dosimetric assessment procedure with accuracy better than \pm 10%. The spherical isotropy was evaluated and found to be better than \pm 0.25dB. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested.

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies bellow 1 GHz, and in a wave guide above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees.

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$\mathbf{SAR} = \mathbf{C} \frac{\Delta T}{\Delta t}$$

Where: Δt = Exposure time (30 seconds), C = Heat capacity of tissue (brain or muscle), ΔT = Temperature increase due to RF exposure. Or

$$\mathbf{SAR} = \frac{|\mathbf{E}|^2 \sigma}{\rho}$$

Where:

 σ = Simulated tissue conductivity,

 ρ = Tissue density (kg/m3).

3.3. Other Test Equipment

3.3.1. Device Holder for Transmitters

The DASY device holder is designed to cope with the die rent positions given in the standard.

It has two scales for device rotation (with respect to the body axis) and device inclination (with

respect to the line between the ear reference points). The rotation centers for both scales is the

ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

The DASY device holder is constructed of low-loss POM material. The amount of dielectric material

Figure 4.Device Holder

has been reduced in the closest vicinity of the device, since measurements have suggested that the inference of the clamp on the test results could thus be lowered.

TA Technology (Shanghai) Co., Ltd. Test Report

Report No. RZA2010-0812

3.3.2. Phantom

The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (Oval Flat) phantom defined in IEEE 1528-2003, CENELEC 50361 and IEC 62209. It enables the dosimetric evaluation of wireless portable device usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points with the robot.

Shell Thickness 2 ±0.2 mm Filling Volume Approx. 30 liters Dimensions 190×600×400 mm (H×L×W)

Figure 5.Generic Twin Phantom

3.4. Scanning procedure

The DASY5 installation includes predefined files with recommended procedures for measurements and validation. They are read-only document files and destined as fully defined but unmeasured masks. All test positions (head or body-worn) are tested with the same configuration of test steps differing only in the grid definition for the different test positions.

- The "reference" and "drift" measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the DUT's output power and should vary max. ± 5 %.
- The "surface check" measurement tests the optical surface detection system of the DASY5 system by repeatedly detecting the surface with the optical and mechanical surface detector and comparing the results. The output gives the detecting heights of both systems, the difference between the two systems and the standard deviation of the detection repeatability. Air bubbles or refraction in the liquid due to separation of the sugar-water mixture gives poor repeatability (above ± 0.1mm). To prevent wrong results tests are only executed when the liquid is free of air bubbles. The difference between the optical surface detection and the actual surface depends on the probe and is specified with each probe. (It does not depend on the surface reflectivity or the probe angle

to the surface within $\pm 30^{\circ}$.)

Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values before running a detailed measurement around the hot spot.Before starting the area scan a grid spacing of 15 mm x 15 mm is set. During the scan the distance of the probe to the phantom remains unchanged.

After finishing area scan, the field maxima within a range of 2 dB will be ascertained.

Zoom Scan

Zoom Scans are used to estimate the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The default Zoom Scan is done by 7x7x7 points within a cube whose base is centered around the maxima found in the preceding area scan.

• Spatial Peak Detection

The procedure for spatial peak SAR evaluation has been implemented and can determine values of masses of 1g and 10g, as well as for user-specific masses. The DASY5 system allows evaluations that combine measured data and robot positions, such as:

- maximum search
- extrapolation
- boundary correction
- peak search for averaged SAR

During a maximum search, global and local maxima searches are automatically performed in 2-D after each Area Scan measurement with at least 6 measurement points. It is based on the evaluation of the local SAR gradient calculated by the Quadratic Shepard['] s method. The algorithm will find the global maximum and all local maxima within -2 dB of the global maxima for all SAR distributions.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. Several measurements at different distances are necessary for the extrapolation. Extrapolation routines require at least 10 measurement points in 3-D space. They are used in the Zoom Scan to obtain SAR values between the lowest measurement points and the inner phantom surface. The routine uses the modified Quadratic Shepard 's method for extrapolation. For a grid using 7x7x7 measurement points with 5mm resolution amounting to 343 measurement points, the uncertainty of the extrapolation routines is less than 1% for 1g and 10g cubes.

• A Z-axis scan measures the total SAR value at the x-and y-position of the maximum SAR value found during the cube 7x7x7 scan. The probe is moved away in z-direction from the bottom of the SAM phantom in 5mm steps.

3.5. Data Storage and Evaluation

3.5.1. Data Storage

The DASY5 software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension ".DA5". The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

3.5.2. Data Evaluation by SEMCAD

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters:	- Sensitivity - Conversion factor - Diode compression point	Normi, a _{i0} , a _{i1} , a _{i2} ConvF _i Dcp _i
Device parameters:	- Frequency - Crest factor	f cf
Media parameters:	- Conductivity - Density	σ ρ

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY5 components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics.

If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot c f / d c p_i$$

With	V_i = compensated signal of channel i	(i = x, y, z)	
	U _i = input signal of channel i	(i = x, y, z)	
	<i>cf</i> = crest factor of exciting field	(DASY parameter)	
	dcp _i = diode compression point	(DASY parameter)	

From the compensated input signals the primary field data for each channel can be evaluated:

E-field p	probes:	$E_i = (V_i / Norm_i \cdot ConvF)^{1/2}$	
H-field probes:		$H_{i} = (V_{i})^{1/2} \cdot (a_{i0} + a_{i1}f + a_{i2}f^{2}) / f$	
With	Vi	= compensated signal of channel i	(i = x, y, z)
	Norm _i	= sensor sensitivity of channel i [mV/(V/m) ²] for E-field Probes	(i = x, y, z)
	ConvF	= sensitivity enhancement in solution	

a_{ij} = sensor sensitivity factors for H-field probes

f = carrier frequency [GHz]

Ei

- = electric field strength of channel i in V/m
- H_i = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = (E_x^2 + E_y^2 + E_z^2)^{1/2}$$

The primary field data are used to calculate the derived field units.

$$SAR = (E_{tot}^{2} \cdot \sigma) / (\rho \cdot 1000)$$

	Test Report							
Report No. RZA2		Page 15of 59						
with SAR	= local specific absorption rate in mW/g							
E_{tot}	= total field strength in V/m							
σ	= conductivity in [mho/m] or [Siemens/m]							
ρ	= equivalent tissue density in g/cm ³							

TA Technology (Shanghai) Co., Ltd.

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid. The power flow density is calculated assuming the excitation field to be a free space field.

 $P_{pwe} = E_{tot}^{2} / 3770$ or $P_{pwe} = H_{tot}^{2} \cdot 37.7$

with P_{pwe} = equivalent power density of a plane wave in mW/cm²

 E_{tot} = total electric field strength in V/m

 H_{tot} = total magnetic field strength in A/m

3.6. System check

The manufacturer calibrates the probes annually. Dielectric parameters of the tissue simulants were measured every day using the dielectric probe kit and the network analyser. A system check measurement was made following the determination of the dielectric parameters of the simulant, using the dipole validation kit. A power level of 398 mW was supplied to the dipole antenna, which was placed under the flat section of the twin SAM phantom. The system check results (dielectric parameters and SAR values) are given in the table 7 and table 8.

System check results have to be equal or near the values determined during dipole calibration with the relevant liquids and test system (±10 %).

System check is performed regularly on all frequency bands where tests are performed with the DASY5 system.

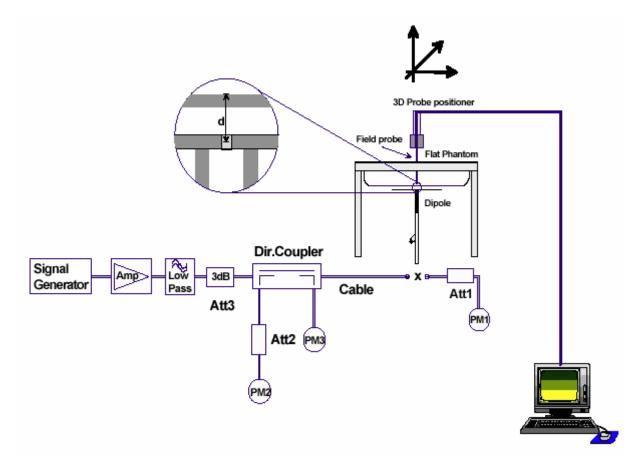


Figure 6. System Check Set-up

3.7. Equivalent Tissues

The liquid is consisted of water, sugar, salt, Preventol and Cellulose. The liquid has previously been proven to be suited for worst-case. The Table 1 and Table 2 show the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the OET 65.

Table 1: Composition of the Head Tissue Equivalent Matter

MIXTURE%	FREQUENCY(Brain) 450MHz		
Water	38.56		
Sugar	56.32		
Salt	3.95		
Preventol	0.10		
Cellulose	1.07		
Dielectric Parameters	f=450MHz ε=43.5 σ=0.87		
Target Value	f=450MHz ε=43.5 σ=0.87		

Table 2: Composition of the Body Tissue Equivalent Matter

MIXTURE%	FREQUENCY(Body)450MHz			
Water	51.16			
Sugar	46.78			
Salt	1.49			
Preventol	0.10			
Cellulose	0.47			
Dielectric Parameters	f=450MHz ε=56.7 σ=0.94			
Target Value	f=450MHz ε=56.7 σ=0.94			

4. Laboratory Environment

Table 3: The Ambient Conditions during Test

Temperature	Min. = 20°C, Max. = 25 °C				
Relative humidity	Min. = 30%, Max. = 70%				
Ground system resistance	< 0.5 Ω				
Ambient noise is checked and found very low	Ambient noise is checked and found very low and in compliance with requirement of standards.				
Reflection of surrounding objects is minimized and in compliance with requirement of standards.					

5. Charcteristics of the Test

5.1. Applicable Limit Regulations

IEEE Std C95.1, 1999: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 KHz to 300 GHz.

It specifies the maximum exposure limit of 8.0 W/kg as averaged over any 1 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment.

5.2. Applicable Measurement Standards

IEEE Std 1528™-2003: IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.

SUPPLEMENT C Edition 01-01 to OET BULLETIN 65 Edition 97-01 June 2001 including DA 02-1438 June 19, 2002: Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields Additional Information for Evaluation Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions.

6. Conducted Output Power Measurement

6.1. Conducted Power Results

Table 4: Conducted Power Measurement Results

12.5 kHz	Conducted Power					
12.3 KHZ	400.025MHz	439.975MHz	479.975MHz			
Before test (dBm)	37.16	37.23	37.18			
After test (dBm)	37.22	37.16				
25 64-	Conducted Power					
25 kHz	400.025MHz	439.975MHz	479.975MHz			
Before test (dBm)	37.21	37.17	37.20			
After test (dBm)	37.18	37.16	37.21			

7. Test Results

7.1. Dielectric Performance

Table 5: Dielectric Performance of Head Tissue Simulating Liquid

Frequency	Description	Dielectric Par	Temp	
Frequency	Description	٤r	σ(s/m)	Ĉ
	Target value	43.50	0.87	,
450MHz	±5% window	41.33 — 45.68	0.83 — 0.91	/
(head)	Measurement value 2010-11-24	44.75	0.88	21.8

Table 6: Dielectric Performance of Body Tissue Simulating Liquid

Fraguanay	Description	Dielectric Par	Temp	
Frequency	Description	٤ _r	σ(s/m)	Ĉ
	Target value	56.70	0.94	,
450MHz	±5% window	53.87 — 59.54	0.89— 0.99	1
(body)	Measurement value 2010-11-24	57.02	0.94	21.9

7.2. System Check Results

Table 7: System Check for Head tissue stimulant

Frequency	Description	SAR(V	Dielectric Parameters		Temp	
		10g	1g	٤r	σ(s/m)	°C
	Recommended value	1.25	1.87	44.2	0.86	1
450MHz	±10% window	1.13—1.38	1.68 — 2.06	44.2	0.00	/
	Measurement value	1.32	2.02	44.75	0.88	21.9
	2010-11-24					

Note: 1. The graph results see ANNEX B.

2. Recommended Values used derive from the calibration certificate and 398 mW is used as feeding power to the calibrated dipole.

Table 8: System Check for Body tissue stimulant

Frequency	Description	SAR(V	Dielectric Parameters		Temp	
		10g	1g	٤ _r	σ(s/m)	°C
	Recommended value	1.18	1.77	54.1	0.90	1
450MHz	±10% window	1.06—1.30	1.59 — 1.95	54.1		/
43011112	Measurement value	1.18	1.76	57.02	0.94	21.9
	2010-11-24	1.10	1.70	57.02	0.94	21.3

Note: 1. The graph results see ANNEX B.

2. Recommended Values used derive from the calibration certificate and 398 mW is used as feeding power to the calibrated dipole.

7.3. Summary of Measurement Results

Table 9: SAR Values (UHF)

Frequency	Channel		1 g Average Limits 8.0 W/kg Duty cycle		Graph		
		Duty c					Results
	100% 50%		Drift(dB)				
The EUT display towards phantom for 25KHz(Face Held)							
479.975 MHz	High	10.000	5.000	-0.082	Figure 9		
439.975 MHz	Middle	10.300	5.150	0.000	Figure 10		
400.025 MHz	Low	11.200	5.600	-0.041	Figure 11		
The I	EUT display t	owards ground wit	h belt clip for 25	KHz(Body-Wo	rn)		
497.975 MHz	High	9.790	4.895	-0.057	Figure 12		
439.975 MHz	Middle	10.200	5.100	0.088	Figure 13		
400.025 MHz	Low	11.200 5.600		-0.007	Figure 14		
		Worst case of 25k	Hz for 12.5kHz				
400.025 MHz	Low	10.700	5.350	-0.002	Figure 15		

Table 10:SAR Values are scaled for the power drift

		1 g Average Limits 8.0 W/kg		Power Drift (dB)	+ Power	SAR 1g(W/kg) (include +power		
Frequency	Channel			± 0.21	Drift	drif	t)	
		Duty	cycle	Power	10^(dB/10)	Duty o	ycle	
		100%	50%	Drift(dB)		100%	50%	
The EUT display towards phantom for 25KHz(Face Held)								
479.975 MHz	High	10.000	5.000	-0.082	0.981	9.810	4.905	
439.975 MHz	Middle	10.300	5.150	0.000	1.000	10.300	5.150	
400.025 MHz	Low	11.200	5.600	-0.041	0.991	11.099	5.550	
Th	e EUT disp	olay towa	ds grour	nd with belt c	lip for 25kHz (E	Body-Worn)		
479.975 MHz	High	9.790	4.895	-0.057	0.987	9.663	4.831	
439.975 MHz	Middle	10.200	5.100	0.088	1.020	10.404	5.202	
400.025 MHz	Low	11.200	5.600	-0.007	0.998	11.178	5.589	
Worst case of 25KHz for 12.5KHz								
400.025 MHz	Low	10.700	5.350	-0.002	1.000	10.700	5.350	

Note: 1.The value with blue color is the maximum SAR Value of each test band.

2. The Exposure category about EUT: controlled environment / Occupational, so the SAR limit is 8.0 W/kg averaged over any 1 gram of tissue.

7.4. Conclusion

Localized Specific Absorption Rate (SAR) of this portable wireless device has been measured in all cases requested by the relevant standards cited in Clause 5.2 of this report. Maximum localized SAR is **5.589** W/kg that is below exposure limits specified in the relevant standards cited in Clause 5.1 of this test report.

Page 23of 59

8. Measurement Uncertainty

No.	source		Uncertainty Value (%)	Probability Distribution	k	Ci	Standard ncertainty $u_i^{'}(\%)$	Degree of freedom V _{eff} or v _i
1	System repetivity	А	0.5	N	1	1	0.5	9
		Mea	asurement syst	em				
2	probe calibration	В	5.9	Ν	1	1	5.9	×
3	axial isotropy of the probe	В	4.7	R	$\sqrt{3}$	$\sqrt{0.5}$	1.9	8
4	Hemispherical isotropy of the probe	В	9.4	R	$\sqrt{3}$	$\sqrt{0.5}$	3.9	×
6	boundary effect	В	1.9	R	$\sqrt{3}$	1	1.1	×
7	probe linearity	В	4.7	R	$\sqrt{3}$	1	2.7	×
8	System detection limits	В	1.0	R	$\sqrt{3}$	1	0.6	∞
9	readout Electronics	В	1.0	Ν	1	1	1.0	∞
10	response time	В	0	R	$\sqrt{3}$	1	0	ø
11	integration time	В	4.32	R	$\sqrt{3}$	1	2.5	∞
12	noise	В	0	R	$\sqrt{3}$	1	0	∞
13	RF Ambient Conditions	В	3	R	$\sqrt{3}$	1	1.73	8
14	Probe Positioner Mechanical Tolerance	В	0.4	R	$\sqrt{3}$	1	0.2	∞
15	Probe Positioning with respect to Phantom Shell	В	2.9	R	$\sqrt{3}$	1	1.7	∞
16	Extrapolation, interpolation and Integration Algorithms for Max. SAR Evaluation	В	3.9	R	$\sqrt{3}$	1	2.3	×
		Tes	st sample Rela	ted				
17	-Test Sample Positioning	А	2.9	Ν	1	1	2.9	5
18	-Device Holder Uncertainty	А	4.1	Ν	1	1	4.1	5
19	-Output Power Variation - SAR drift measurement	В	5.0	R	$\sqrt{3}$	1	2.9	×
		Ph	iysical paramet	er				

TA Technology (Shanghai) Co., Ltd. Test Report

Report No. RZA2010-0812

Page 24of 59

20	-phantom	В	4.0	R	$\sqrt{3}$	1	2.3	∞
21	-liquid conductivity (deviation from target)	В	5.0	R	$\sqrt{3}$	0.64	1.8	ø
22	-liquid conductivity (measurement uncertainty)	В	5.0	N	1	0.64	3.2	×
23	-liquid permittivity (deviation from target)	В	5.0	R	$\sqrt{3}$	0.6	1.7	∞
24	-liquid permittivity (measurement uncertainty)	В	5.0	N	1	0.6	3.0	×
Comb	ined standard uncertainty	<i>u</i> _c =	$\sqrt{\sum_{i=1}^{21} c_i^2 u_i^2}$				12.0	
Expar 95 %)	nded uncertainty (confidence interval of	и	$_{e} = 2u_{c}$	N	k=	2	24.0	

9. Main Test Instruments

Table 11: List of Main Instruments

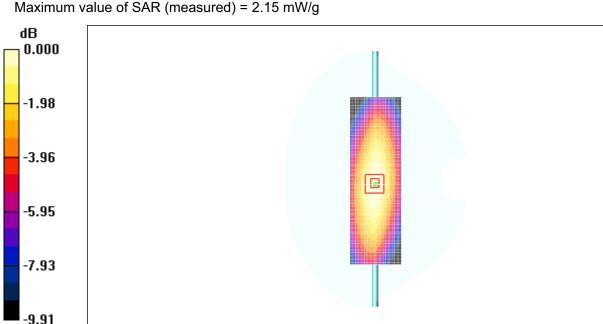

No.	Name	Туре	Serial Number	Calibration Date	Valid Period
01	Network analyzer	Agilent 8753E	US37390326	September 13, 2010	One year
02	Dielectric Probe Kit	Agilent 85070E	US44020115	No Calibration Req	uested
03	Power meter	Agilent E4417A	GB41291714	March 13, 2010	One year
04	Power sensor	Agilent 8481H	MY41091316	March 26, 2010	One year
05	Signal Generator	HP 8341B	2730A00804	September 13, 2010	One year
06	Amplifier	IXA-020	0401	No Calibration Req	uested
07	E-field Probe	ET3DV6	1737	November 20, 2010	One year
08	DAE	DAE4	871	November 11, 2010	One year
09	Validation Kit 450MHz	D450V3	1065	November 9, 2010	One year

*****END OF REPORT BODY*****

ANNEX A: Test Layout

Picture 1: Specific Absorption Rate Test Layout

Picture 2: Liquid depth in the Flat Phantom (450 MHz) (15.2cm deep)


ANNEX B: System Check Results

System Performance Check at 450 MHz Head

DUT: Dipole450 MHz; Type: D450V3; Serial: 1065 Date/Time: 11/24/2010 6:40:21 AM Communication System: CW; Frequency: 450 MHz;Duty Cycle: 1:1 Medium parameters used: f = 450 MHz; σ = 0.88 mho/m; ϵ_r = 44.75; ρ = 1000 kg/m³ Probe: ET3DV6 - SN1737; ConvF(7.2, 7.2, 7.2) Calibrated: 11/20/2010; Electronics: DAE4 Sn871; Calibrated: 11/11/2010 **d=15mm, Pin=398mW/Area Scan (41x131x1):** Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 2.15 mW/g

d=15mm, Pin=398mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

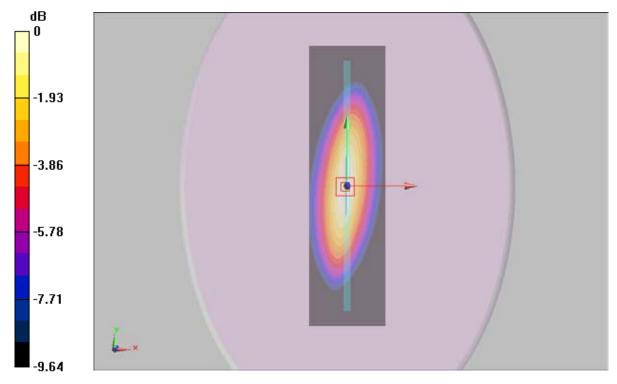
Reference Value = 52.2 V/m; Power Drift = -0.034 dB Peak SAR (extrapolated) = 3.29 W/kg SAR(1 g) = 2.02 mW/g; SAR(10 g) = 1.32 mW/g

Page 27of 59

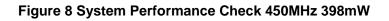
System Performance Check at 450 MHz Body

DUT: Dipole450 MHz; Type: D450V3; Serial: 1065 Date/Time: 11/24/2010 7:41:21 AM Communication System: CW; Frequency: 450 MHz;Duty Cycle: 1:1 Medium parameters used: f = 450 MHz; σ = 0.94 mho/m; ϵ_r = 57.02; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liqiud Temperature: 21.5 °C DASY5 Configuration: Probe: ET3DV6 - SN1737; ConvF(7.52, 7.52, 7.52) Calibrated: 11/20/2010; Electronics: DAE4 Sn871; Calibrated: 11/11/2010 Phantom: ELI 4.0; Type: QDOVA001BA; Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

d=15mm, Pin=398mW/Area Scan (61x221x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.9 mW/g


d=15mm, Pin=398mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 44.7 V/m; Power Drift = -0.014 dB


Peak SAR (extrapolated) = 2.64 W/kg

SAR(1 g) = 1.76 mW/g; SAR(10 g) = 1.18 mW/g

Maximum value of SAR (measured) = 1.89 mW/g

 $0 \; dB = 1.89 mW/g$

ANNEX C: Graph Results

Face Held, Front Towards Phantom for 25kHz, High

Date/Time: 11/24/2010 6:05:49 PM Communication System: PTT 450; Frequency: 479.975 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 479.975MHz; σ = 0.854 mho/m; ϵ_r = 45.4; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liqiud Temperature: 21.5 °C DASY5 Configuration: Probe: ET3DV6 - SN1737; ConvF(7.2, 7.2, 7.2); Calibrated: 11/20/2010 Electronics: DAE4 Sn871; Calibrated: 11/11/2010 Phantom: ELI 4.0; Type: QDOVA001BA; Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

Towards Phantom High/Area Scan (61x201x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 10.8 mW/g

Towards Phantom High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 109.4 V/m; Power Drift = -0.082 dB Peak SAR (extrapolated) = 14.9 W/kg

SAR(1 g) = 10 mW/g; SAR(10 g) = 7.16 mW/g

Maximum value of SAR (measured) = 10.5 mW/g

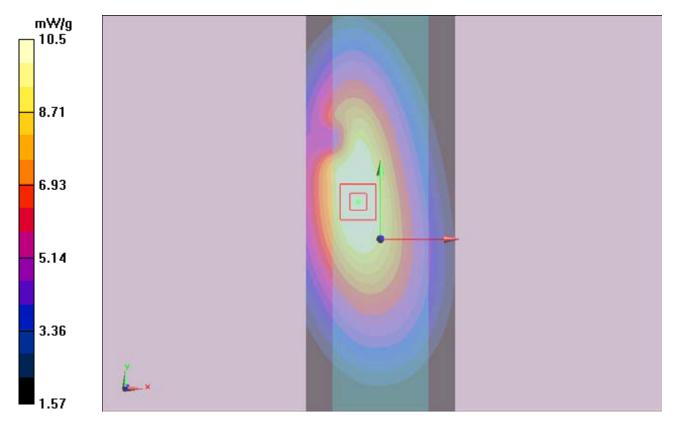


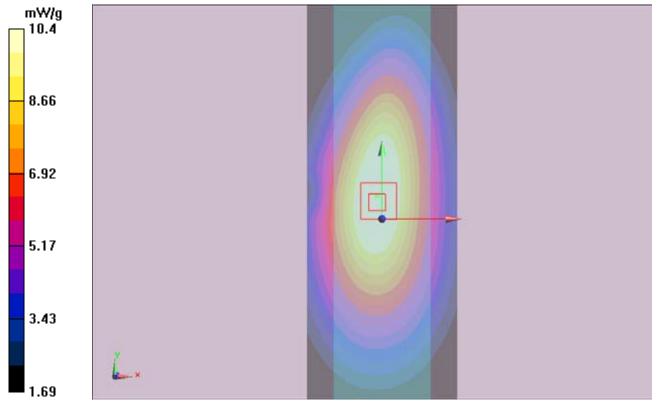
Figure 9 Face Held, Towards Phantom for 25KHz, 479.975 MHz

Page 29of 59

Face Held, Front Towards Phantom for 25kHz, Middle

Date/Time: 11/24/2010 9:18:26 AM Communication System: PTT 450; Frequency: 439.975 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 439.975MHz; σ = 0.846 mho/m; ϵ_r = 45.6; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liqiud Temperature: 21.5 °C DASY5 Configuration: Probe: ET3DV6 - SN1737; ConvF(7.2, 7.2, 7.2); Calibrated: 11/20/2010 Electronics: DAE4 Sn871; Calibrated: 11/11/2010 Phantom: ELI 4.0; Type: QDOVA001BA; Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

Towards Phantom Middle/Area Scan (61x201x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 10.8 mW/g

Towards Phantom Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 115.4 V/m; Power Drift = -0.000 dB Peak SAR (extrapolated) = 26.6 W/kg

SAR(1 g) = 10.3 mW/g; SAR(10 g) = 7.28 mW/g

Maximum value of SAR (measured) = 10.4 mW/g

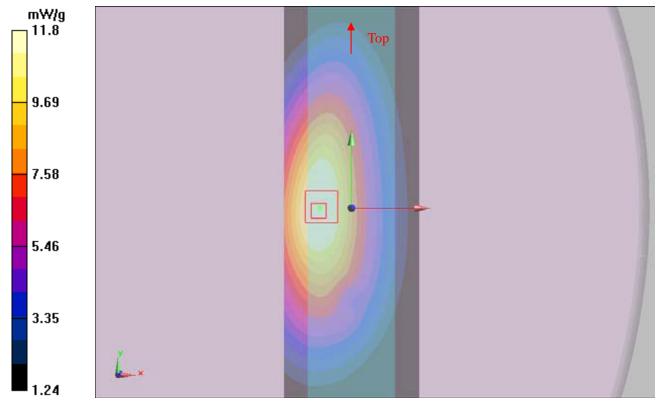
Page 30of 59

Face Held, Front Towards Phantom for 25kHz, Low

Date/Time: 11/24/2010 9:46:17 AM Communication System: PTT 450; Frequency: 400.025 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 400.025 MHz σ = 0.834 mho/m; ϵ_r = 45.7; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liqiud Temperature: 21.5 °C DASY5 Configuration: Probe: ET3DV6 - SN1737; ConvF(7.2, 7.2, 7.2); Calibrated: 11/20/2010 Electronics: DAE4 Sn871; Calibrated: 11/11/2010 Phantom: ELI 4.0; Type: QDOVA001BA; Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

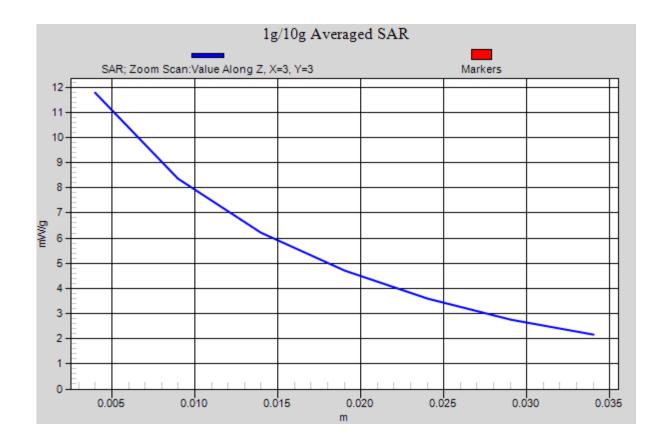
Towards Phantom Low/Area Scan (61x201x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 12 mW/g


Towards Phantom Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 104.0 V/m; Power Drift = -0.041 dB

Peak SAR (extrapolated) = 21.5 W/kg


SAR(1 g) = 11.2 mW/g; SAR(10 g) = 8.04 mW/g

Maximum value of SAR (measured) = 11.8 mW/g

TA Technology (Shanghai) Co., Ltd. Test Report

Report No. RZA2010-0812

Figure 11 Face Held, Towards Phantom for 25kHz, 400.025 MHz

Body-Worn, Front Towards Ground for 25kHz, Belt clip attach Phantom High

Date/Time: 11/24/2010 5:36:38 PM Communication System: PTT 450; Frequency: 479.975 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 479.975MHz; σ = 0.929 mho/m; ϵ_r = 57.4; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liqiud Temperature: 21.5 °C DASY5 Configuration: Probe: ET3DV6 - SN1737; ConvF(7.52, 7.52, 7.52); Calibrated: 11/20/2010 Electronics: DAE4 Sn871; Calibrated: 11/11/2009 Phantom: ELI 4.0; Type: QDOVA001BA; Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

Towards Phantom High/Area Scan (61x201x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 10.9 mW/g

Towards Phantom High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 106.0 V/m; Power Drift = -0.057 dB

Peak SAR (extrapolated) = 14.6 W/kg

```
SAR(1 g) = 9.79 mW/g; SAR(10 g) = 6.85 mW/g
```

Maximum value of SAR (measured) = 10.3 mW/g

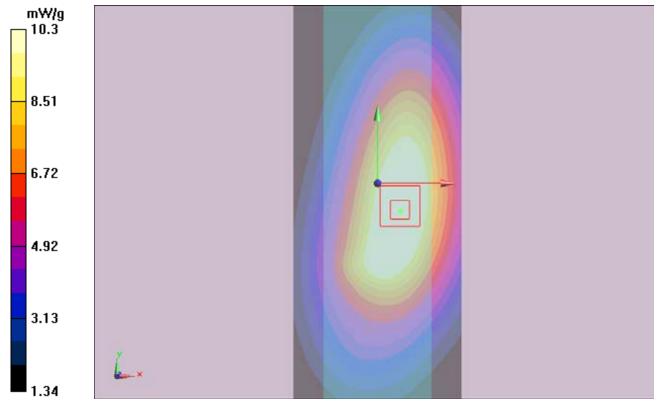


Figure 12 Body-Worn, Front Towards Ground for 25kHz, Belt clip attach Phantom 479.975MHz

TA Technology (Shanghai) Co., Ltd. Test Report

Body-Worn, Front Towards Ground for 25KHz, Belt clip attach Phantom Middle

Date/Time: 11/24/2010 10:34:19 AM Communication System: PTT 450; Frequency: 439.975 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 439.975MHz; σ = 0.918 mho/m; ϵ_r = 57.5; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liqiud Temperature: 21.5 °C DASY5 Configuration: Probe: ET3DV6 - SN1737; ConvF(7.52, 7.52, 7.52); Calibrated: 11/20/2010 Electronics: DAE4 Sn871; Calibrated: 11/11/2010 Phantom: ELI 4.0; Type: QDOVA001BA; Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

Towards Phantom Middle/Area Scan (61x201x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 11.5 mW/g

Towards Phantom Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 94.8 V/m; Power Drift = 0.088 dB

Peak SAR (extrapolated) = 15.3 W/kg

SAR(1 g) = 10.2 mW/g; SAR(10 g) = 7.24 mW/g

Maximum value of SAR (measured) = 10.8 mW/g



Figure 13 Body-Worn, Front Towards Ground for 25KHz, Belt clip attach Phantom 439.975MHz

TA Technology (Shanghai) Co., Ltd. Test Report

Body-Worn, Front Towards Ground for 25kHz, Belt clip attach Phantom Low

Date/Time: 11/24/2010 11:52:12 AM Communication System: PTT 450; Frequency: 400.025 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 400.025MHz; σ = 0.906 mho/m; ϵ_r = 57.6; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liqiud Temperature: 21.5 °C DASY5 Configuration: Probe: ET3DV6 - SN1737; ConvF(7.52, 7.52, 7.52); Calibrated: 11/20/2010 Electronics: DAE4 Sn871; Calibrated: 11/11/2010 Phantom: ELI 4.0; Type: QDOVA001BA; Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

Towards Phantom Low/Area Scan (61x201x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 11.6 mW/g

Towards Phantom Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 100.2 V/m; Power Drift = -0.007 dB

Peak SAR (extrapolated) = 16.6 W/kg

SAR(1 g) = 11.2 mW/g; SAR(10 g) = 7.9 mW/g

Maximum value of SAR (measured) = 11.7 mW/g

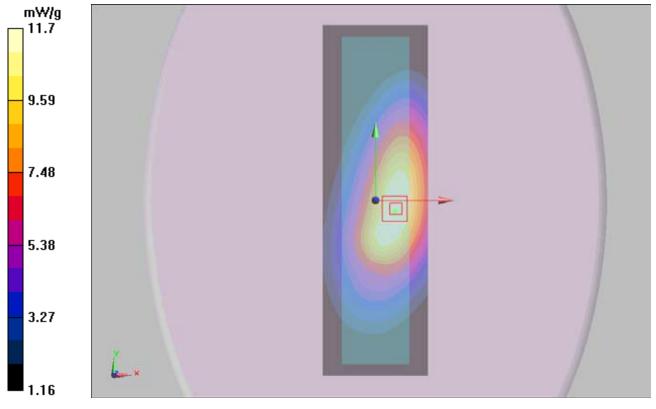


Figure 14 Body-Worn, Front Towards Ground for 25KHz, Belt clip attach Phantom 400.025MHz

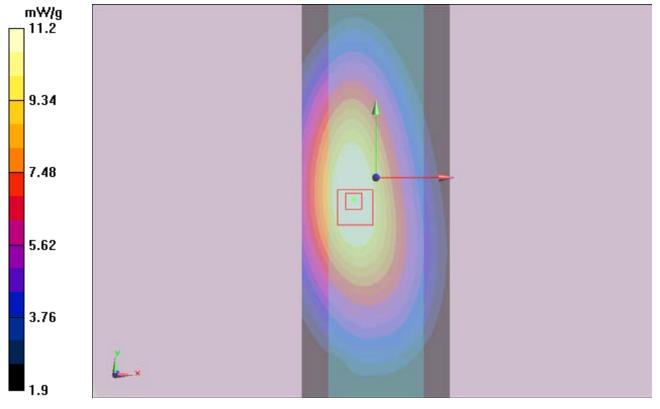
Page 35of 59

Face Held, Front Towards Phantom for 12.5kHz, Low

Date/Time: 11/24/2010 11:11:56 AM Communication System: PTT 450; Frequency: 400.025 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 400.025MHz; σ = 0.834 mho/m; ϵ_r = 45.7; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liqiud Temperature: 21.5 °C DASY5 Configuration: Probe: ET3DV6 - SN1737; ConvF(7.2, 7.2, 7.2); Calibrated: 11/20/2010 Electronics: DAE4 Sn871; Calibrated: 11/11/2010 Phantom: ELI 4.0; Type: QDOVA001BA; Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

Towards Phantom Low/Area Scan (61x201x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 11.5 mW/g


Towards Phantom Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 109.7 V/m; Power Drift = -0.002 dB

Peak SAR (extrapolated) = 15.3 W/kg

SAR(1 g) = 10.7 mW/g; SAR(10 g) = 7.78 mW/g

Maximum value of SAR (measured) = 11.2 mW/g

ANNEX D: Probe Calibration Certificate

Tel: +86-10-62303: E-mail: Info@emci	288-2082 Fax:	n District, Beijing, 100191, China +86-10-62304793 p://www.emcite.com Certificate No: ET	CNAS L0442
Client TA	ERTIFIC		13-1737_N0V10
		,	
Dbject	ET3D	V6 - SN: 1737	
Soliburation Descendence(a)			
Calibration Procedure(s)		XZ-01-028	
	Calibr	ation procedure for dosimetric E-field probe	cs
Calibration date:	Noven	nber 20, 2010	
neasurements(S1). The measu re part of the certificate.	documents the	traceability to national standards, whic uncertainties with confidence probability ar	e given on the following pages
This calibration Certificate neasurements(SI). The measu re part of the certificate. All calibrations have been con	documents the rements and the ducted in the close	traceability to national standards, whic uncertainties with confidence probability ar sed laboratory facility: environment tempera	e given on the following pages
This calibration Certificate neasurements(SI). The measu re part of the certificate. All calibrations have been con Calibration Equipment used (N	documents the rements and the ducted in the close	traceability to national standards, whic uncertainties with confidence probability ar sed laboratory facility: environment tempera	e given on the following pages
This calibration Certificate neasurements(SI). The measu re part of the certificate. All calibrations have been con Calibration Equipment used (M Primary Standards	documents the rements and the ducted in the close M&TE critical for	traceability to national standards, whic uncertainties with confidence probability ar sed laboratory facility: environment tempera r calibration)	e given on the following pages ature(22±3)°C and humidity<70
This calibration Certificate neasurements(SI). The measu re part of the certificate. All calibrations have been con Calibration Equipment used (N Primary Standards Power Meter NRVD Power sensor NRV-25	documents the rements and the ducted in the close M&TE critical for SN. 101253 100333	traceability to national standards, whic uncertainties with confidence probability ar sed laboratory facility: environment tempera r calibration) <u>Cal Date (Calibrated by, Certificate No.)</u> 18-Jun-10 (TMC, No.JZ09-248) 18-Jun-10 (TMC, No. JZ08-248)	e given on the following pages ature(22±3)°C and humidity<70 Scheduled Calibration
This calibration Certificate neasurements(SI). The measu re part of the certificate. All calibrations have been con Calibration Equipment used (N Primary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe EX3DV4	documents the rements and the r ducted in the close M&TE critical for SN. 101253 100333 SN 3631	traceability to national standards, whic uncertainties with confidence probability ar sed laboratory facility: environment tempera r calibration) <u>Cal Date (Calibrated by, Certificate No.)</u> 18-Jun-10 (TMC, No.JZ09-248) 18-Jun-10 (TMC, No.JZ08-248) 13-Dec-08(TMC, No.EX3-3631_Dec08)	e given on the following pages ature(22±3)°C and humidity<70 Scheduled Calibration Jun-11 Jun-11 Dec-10
This calibration Certificate neasurements(SI). The measu re part of the certificate. All calibrations have been con Calibration Equipment used (M Primary Standards Power Meter NRVD Power Sensor NRV-Z5 Reference Probe EX3DV4 DAE4	documents the rements and the r ducted in the close M&TE critical for SN. 101253 100333 SN 3631 SN 777	traceability to national standards, whic uncertainties with confidence probability ar sed laboratory facility: environment tempera r calibration) <u>Cal Date (Calibrated by, Certificate No.)</u> 18-Jun-10 (TMC, No.JZ09-248) 18-Jun-10 (TMC, No.JZ08-248) 13-Dec-08(TMC, No.EX3-3631_Dec08) 09-Jul-10 (TMC, No.DAE4-777_Jul09)	e given on the following pages ature(22±3)°C and humidity<70 Scheduled Calibration Jun-11 Jun-11 Dec-10 Jul-11
This calibration Certificate neasurements(SI). The measu re part of the certificate. All calibrations have been con Calibration Equipment used (N Primary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe EX3DV4 DAE4 RF generator E4438C	documents the rements and the r ducted in the close M&TE critical for SN. 101253 100333 SN 3631	traceability to national standards, whic uncertainties with confidence probability ar sed laboratory facility: environment tempera r calibration) <u>Cal Date (Calibrated by, Certificate No.)</u> 18-Jun-10 (TMC, No.JZ09-248) 18-Jun-10 (TMC, No.JZ08-248) 13-Dec-08(TMC, No.EX3-3631_Dec08)	e given on the following pages ature(22±3)°C and humidity<70 Scheduled Calibration Jun-11 Jun-11 Dec-10
This calibration Certificate neasurements(SI). The measu re part of the certificate. All calibrations have been con Calibration Equipment used (N Primary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe EX3DV4 DAE4 RF generator E4438C	documents the rements and the o ducted in the close M&TE critical for SN. 101253 100333 SN 3631 SN 777 MY45092879 US38433212	traceability to national standards, whic uncertainties with confidence probability ar sed laboratory facility: environment tempera r calibration) Cal Date (Calibrated by, Certificate No.) 18-Jun-10 (TMC, No.JZ09-248) 18-Jun-10 (TMC, No.JZ08-248) 13-Dec-08(TMC, No.EX3-3631_Dec08) 09-Jul-10(TMC, No.DAE4-777_Jul09) 17-Jun-10(TMC, No.JZ09-302) 02-Aug-10(TMC, No.JZ09-056)	e given on the following pages ature(22±3)°C and humidity<70 Scheduled Calibration Jun-11 Jun-11 Dec-10 Jul-11 Jun-11 Aug-11
This calibration Certificate neasurements(SI). The measu re part of the certificate. All calibrations have been con Calibration Equipment used (M Primary Standards Power Meter NRVD Power Sensor NRV-Z5 Reference Probe EX3DV4 DAE4	documents the rements and the r ducted in the close M&TE critical for SN. 101253 100333 SN 3631 SN 777 MY45092879	traceability to national standards, whic uncertainties with confidence probability ar sed laboratory facility: environment tempera r calibration) Cal Date (Calibrated by, Certificate No.) 18-Jun-10 (TMC, No.JZ09-248) 18-Jun-10 (TMC, No.JZ08-248) 13-Dec-08(TMC, No.JZ08-248) 13-Dec-08(TMC, No.DAE4-777_Jul09) 17-Jun-10(TMC, No.JZ09-302)	se given on the following pages ature(22±3)°C and humidity<70 Scheduled Calibration Jun-11 Jun-11 Dec-10 Jul-11 Jun-11
This calibration Certificate neasurements(SI). The measu re part of the certificate. All calibrations have been con Calibration Equipment used (M Primary Standards Power Meter NRVD Power Sensor NRV-Z5 Reference Probe EX3DV4 DAE4 RF generator E4438C Network Analyzer 8753E	documents the rements and the r ducted in the close M&TE critical for 101253 100333 SN 3631 SN 777 MY45092879 US38433212 Name	traceability to national standards, whic uncertainties with confidence probability ar sed laboratory facility: environment tempera r calibration) <u>Cal Date (Calibrated by, Certificate No.)</u> 18-Jun-10 (TMC, No.JZ09-248) 18-Jun-10 (TMC, No.JZ09-248) 13-Dec-08(TMC, No.JZ09-248) 13-Dec-08(TMC, No.DAE4-777_Jul09) 17-Jun-10(TMC, No.JZ09-302) 02-Aug-10(TMC, No.JZ09-056) Function	e given on the following pages ature(22±3)°C and humidity<70 Scheduled Calibration Jun-11 Jun-11 Dec-10 Jul-11 Jun-11 Aug-11

Certificate No: ET3-1737_Nov10

Page 1 of 8

Report No. RZA2010-0812

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62303288-2082 Fax: +86-10-62304793 E-mail: Info@emcite.com Http://www.emcite.com

Glossary:

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
Polarization Φ	Φ rotation around probe axis
Polarization θ	$\boldsymbol{\theta}$ rotation around an axis that is in the plane normal to probe axis(at
	measurement center), i.e., $\theta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization $\theta = 0$ (f ≤ 900 MHz in TEM-cell; f> 1800MHz: waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E^2 -field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f>800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha,depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from \pm 50MHz to \pm 100MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ET3-1737_Nov10

Page 2 of 8

Report No. RZA2010-0812

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62303288-2082 Fax: +86-10-62304793 E-mail: Info@emcite.com Http://www.emcite.com

DASY – Parameters of Probe: ET3DV6 SN:1737

Sensitivity in Free Space^A

Diode Compression^B

NormX	$1.42 \pm 10.1\%$	$\mu V/(V/m)^2$	DCP X	93mV	
NormY	$1.68 \pm 10.1\%$	$\mu V/(V/m)^2$	DCP Y	94mV	
NormZ	$1.63 \pm 10.1\%$	$\mu V/(V/m)^2$	DCP Z	85mV	

Sensitivity in Tissue Simulating Liquid (Conversion Factors) Please see Page 8

Boundary Effect

TSL

900MHz Typical SAR gradient: 5% per mm

Sensor Center t	to Phantom Surface Distance	3.7 mm	4.7 mm
SAR _{be} [%]	Without Correction Algorithm	10.7	6.9
SAR _{be} [%]	With Correction Algorithm	0.3	0.4

TSL

1750MHz Typical SAR gradient: 10% per mm

Sensor Center	to Phantom Surface Distance	3.7 mm	4.7 mm
SAR _{be} [%]	Without Correction Algorithm	12.5	8.4
SAR _{be} [%]	With Correction Algorithm	0.8	0.5

Sensor Offset

Probe Tip to Sensor Center

2.7 mm

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX, Y,Z do not affect the E²-field uncertainty inside TSL (see Page 8).
 ^B Numerical linearization parameter: uncertainty not required.

Certificate No: ET3-1737_Nov10

Page 3 of 8

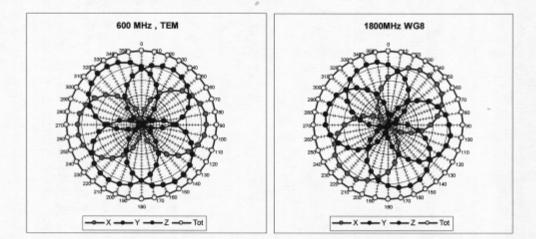
Report No. RZA2010-0812

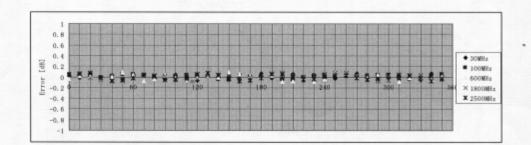
Page 39of 59

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62303288-2082 Fax: +86-10-62304793 E-mail: Info@emcite.com Http://www.emcite.com E-mail: Info@emcite.com **Frequency Response of E-Field** 1.5 Frequency response (normalized) 1.4 1.3 1.2 1.11 0.9 0.8 0.7 0.6 0.5 0 500 1000 1500 2000 2500 3000 f [MHz] - TEM Cell ----Waveguide

Uncertainty of Frequency Response of E-field: ±6.3% (k=2)

Certificate No: ET3-1737_Nov10

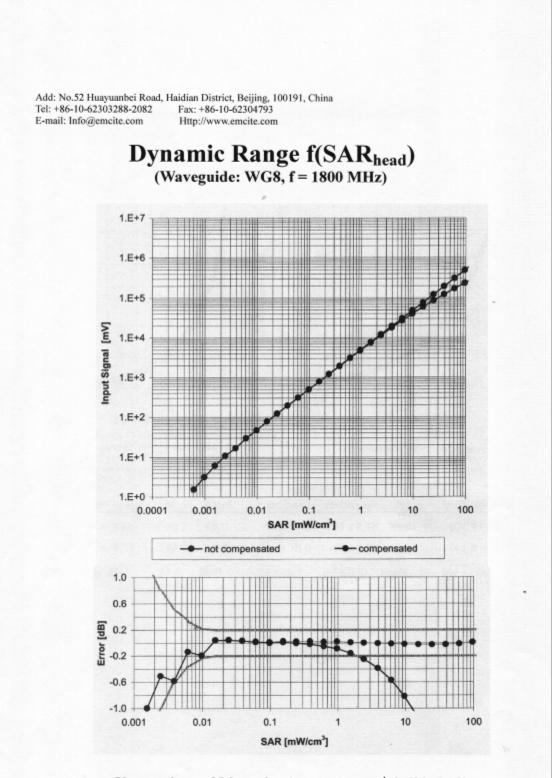

Page 4 of 8


Report No. RZA2010-0812

Page 40of 59

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62303288-2082 Fax: +86-10-62304793 E-mail: Info@emcite.com Http://www.emcite.com

Receiving Pattern (ϕ), $\theta = 0^{\circ}$

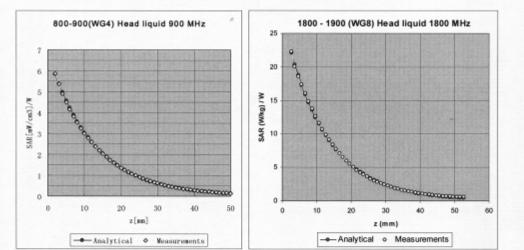


Page 5 of 8

Report No. RZA2010-0812

Uncertainty of Linearity Assessment: ±0.6% (k=2)

Page 6 of 8


Page 41of 59

Report No. RZA2010-0812

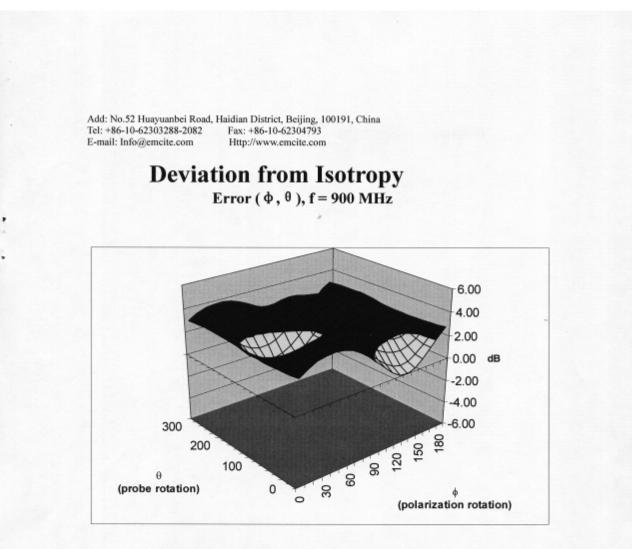
 Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62303288-2082
 Fax: +86-10-62304793

 E-mail: Info@emcite.com
 Http://www.emcite.com

Conversion Factor Assessment

f[MHz]	Validity[MHz] ^C	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty	
450	$\pm 50 / \pm 100$	Head	43.5±5%	$0.87 \pm 5\%$	0.36	1.84	7.20 ±13.3% (k=2))
835	$\pm 50 / \pm 100$	Head	41.5±5%	$0.90 \pm 5\%$	0.25	3.53	6.33 ±11.0% (k=2))
900	$\pm 50 / \pm 100$	Head	41.5±5%	0.97±5%	0.27	3.53	6.14 ±11.0% (k=2))
1750	$\pm 50 / \pm 100$	Head	40.0±5%	$1.37 \pm 5\%$	0.56	2.77	5.35 ±11.0% (k=2))
1950	$\pm 50 / \pm 100$	Head	40.0±5%	$1.40 \pm 5\%$	0.57	2.72	4.89 ±11.0% (k=2))
2450	$\pm 50 / \pm 100$	Head	39.2±5%	$1.80 \pm 5\%$	0.51 .	1.60	4.39 ±11.0% (k=2))
450	$\pm 50 / \pm 100$	Body	$56.7 \pm 5\%$	$0.94 \pm 5\%$	0.27	1.80	7.52 ±13.3% (k=2))
835	$\pm 50 / \pm 100$	Body	$55.2 \pm 5\%$	0.97±5%	0.36	2.75	6.14 ±11.0% (k=2))
900	$\pm 50 / \pm 100$	Body	$55.0 \pm 5\%$	$1.05 \pm 5\%$	0.43	2.51	5.98 ±11.0% (k=2))
1750	$\pm 50 / \pm 100$	Body	53.4±5%	1.49±5%	0.99	1.74	4.84 ±11.0% (k=2))
1950	$\pm 50 / \pm 100$	Body	53.3±5%	$1.52 \pm 5\%$	0.99	1.50	4.60 ±11.0% (k=2))
2450	$\pm 50 / \pm 100$	Body	52.7±5%	$1.95 \pm 5\%$	0.98	1.42	3.91 ±11.0% (k=2))


^C The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Certificate No: ET3-1737_Nov10

Page 7 of 8

Report No. RZA2010-0812

Uncertainty of Spherical Isotropy Assessment: ±2.6% (k=2)

Certificate No: ET3-1737_Nov10

Page 8 of 8

ANNEX E: D450V3 Dipole Calibration Certificate

Client TA (Auden)	the recognition of calibration	Certificate No:	D450V3-1065 Nov10
CALIBRATION		to provide a series series and the series of	
Object			
	D450V3 - SN: 10	65	
Calibration procedure(s)	QA CAL-15.v5 Calibration Proce	dure for dipole validation kits belo	w 800 MHz
Calibration date:	November 09, 20	010	
		ry facility: environment temperature (22 \pm 3)°C $_{\rm 2}$	and humidity < 70%.
Calibration Equipment used Primary Standards	(M&TE critical for calibration)	Cal Date (Calibrated by, Certificate No.)	and humidity < 70%. Scheduled Calibration
Calibration Equipment used Primary Standards Power meter E44198	(M&TE critical for calibration) ID # GB41293874	Cal Date (Calibrated by, Certificate No.) 1-Apr-10 (No. 217-01030)	Scheduled Calibration Apr-11
Calibration Equipment used Primary Standards Power meter E44198 Power sensor E4412A	(M&TE critical for calibration) ID # GB41293874 MY41495277	Cal Date (Calibrated by, Certificate No.) 1-Apr-10 (No. 217-01030) 1-Apr-10 (No. 217-01030)	Scheduled Calibration Apr-11 Apr-11
Calibration Equipment used Primary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A	(M&TE critical for calibration) ID # GB41293874 MY41495277 MY41498087	Cal Date (Calibrated by, Certificate No.) 1-Apr-10 (No. 217-01030) 1-Apr-10 (No. 217-01030) 1-Apr-10 (No. 217-01030)	Scheduled Calibration Apr-11 Apr-11 Apr-11
Calibration Equipment used Primary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator	(M&TE critical for calibration) ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c)	Cal Date (Calibrated by, Certificate No.) 1-Apr-10 (No. 217-01030) 1-Apr-10 (No. 217-01030) 1-Apr-10 (No. 217-01030) 31-Mar-10 (No. 217-01026)	Scheduled Calibration Apr-11 Apr-11 Apr-11 Mar-11
Calibration Equipment used Primary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator	(M&TE critical for calibration) ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b)	Cal Date (Calibrated by, Certificate No.) 1-Apr-10 (No. 217-01030) 1-Apr-10 (No. 217-01030) 1-Apr-10 (No. 217-01030) 31-Mar-10 (No. 217-01026) 31-Mar-10 (No. 217-01028)	Scheduled Calibration Apr-11 Apr-11 Apr-11 Mar-11 Mar-11
Calibration Equipment used Primary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Type-N mismatch combinati	(M&TE critical for calibration) ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) on SN: 5047.2 / 06327	Cal Date (Calibrated by, Certificate No.) 1-Apr-10 (No. 217-01030) 1-Apr-10 (No. 217-01030) 1-Apr-10 (No. 217-01030) 31-Mar-10 (No. 217-01026) 31-Mar-10 (No. 217-01028) 31-Mar-10 (No. 217-01029)	Scheduled Calibration Apr-11 Apr-11 Apr-11 Mar-11 Mar-11 Mar-11
Calibration Equipment used Primary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Type-N mismatch combinati Reference Probe ET3DV6 (I	(M&TE critical for calibration) ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) on SN: 5047.2 / 06327	Cal Date (Calibrated by, Certificate No.) 1-Apr-10 (No. 217-01030) 1-Apr-10 (No. 217-01030) 1-Apr-10 (No. 217-01030) 31-Mar-10 (No. 217-01026) 31-Mar-10 (No. 217-01028)	Scheduled Calibration Apr-11 Apr-11 Apr-11 Mar-11 Mar-11 Mar-11 Jul-11
Calibration Equipment used Primary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Type-N mismatch combinati Reference Probe ET3DV6 (I DAE4	(M&TE critical for calibration) ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) on SN: 5047.2 / 06327 LF) SN: 1507 SN: 654	Cal Date (Calibrated by, Certificate No.) 1-Apr-10 (No. 217-01030) 1-Apr-10 (No. 217-01030) 31-Apr-10 (No. 217-01030) 31-Mar-10 (No. 217-01026) 31-Mar-10 (No. 217-01028) 31-Mar-10 (No. 217-01029) 03-Jul-10 (No. ET3-1507_Jul09) 04-May-10 (No. DAE4-654_May09)	Scheduled Calibration Apr-11 Apr-11 Mar-11 Mar-11 Mar-11 Jul-11 May-11
Calibration Equipment used Primary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Type-N mismatch combinati Reference Probe ET3DV6 (I DAE4 Secondary Standards	(M&TE critical for calibration) ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) on SN: 5047.2 / 06327 LF) SN: 1507 SN: 654 *	Cal Date (Calibrated by, Certificate No.) 1-Apr-10 (No. 217-01030) 1-Apr-10 (No. 217-01030) 1-Apr-10 (No. 217-01030) 31-Mar-10 (No. 217-01026) 31-Mar-10 (No. 217-01028) 31-Mar-10 (No. 217-01029) 03-Jul-10 (No. ET3-1507_Jul09) 04-May-10 (No. DAE4-654_May09) Check Date (in house)	Scheduled Calibration Apr-11 Apr-11 Mar-11 Mar-11 Mar-11 Jul-11 Jul-11 May-11 Scheduled Check
Calibration Equipment used Primary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Type-N mismatch combinati Reference Probe ET3DV6 (I DAE4 Secondary Standards RF generator HP 8648C	(M&TE critical for calibration) ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) on SN: 5047.2 / 06327 SN: 5507 SN: 654 * ID # US3642U01700	Cal Date (Calibrated by, Certificate No.) 1-Apr-10 (No. 217-01030) 1-Apr-10 (No. 217-01030) 31-Apr-10 (No. 217-01030) 31-Mar-10 (No. 217-01026) 31-Mar-10 (No. 217-01028) 31-Mar-10 (No. 217-01029) 03-Jul-10 (No. ET3-1507_Jul09) 04-May-10 (No. DAE4-654_May09)	Scheduled Calibration Apr-11 Apr-11 Mar-11 Mar-11 Mar-11 Jul-11 May-11
Calibration Equipment used Primary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Type-N mismatch combinati Reference Probe ET3DV6 (I DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E	(M&TE critical for calibration) ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) on SN: 5047.2 / 06327 SN: 5507 SN: 654 * ID # US3642U01700	Cal Date (Calibrated by, Certificate No.) 1-Apr-10 (No. 217-01030) 1-Apr-10 (No. 217-01030) 31-Apr-10 (No. 217-01030) 31-Mar-10 (No. 217-01026) 31-Mar-10 (No. 217-01028) 31-Mar-10 (No. 217-01029) 03-Jul-10 (No. ET3-1507_Jul09) 04-May-10 (No. DAE4-654_May09) Check Date (in house) 04-Aug-10 (in house check Oct-10)	Scheduled Calibration Apr-11 Apr-11 Mar-11 Mar-11 Mar-11 Jul-11 Jul-11 May-11 Scheduled Check In house check: Oct-11
Calibration Equipment used Primary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Type-N mismatch combinati Reference Probe ET3DV6 (I DAE4 Secondary Standards RF generator HP 8648C	(M&TE critical for calibration) ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) on SN: 5047.2 / 06327 SN: 5507 SN: 654 * ID # US3642U01700 US37390585 S4206	Cal Date (Calibrated by, Certificate No.) 1-Apr-10 (No. 217-01030) 1-Apr-10 (No. 217-01030) 31-Mar-10 (No. 217-01030) 31-Mar-10 (No. 217-01028) 31-Mar-10 (No. 217-01028) 31-Mar-10 (No. 217-01029) 03-Jul-10 (No. ET3-1507_Jul09) 04-May-10 (No. DAE4-654_May09) Check Date (in house) 04-Aug-10 (in house check Oct-10) 18-Oct-10 (in house check Oct-10)	Scheduled Calibration Apr-11 Apr-11 Mar-11 Mar-11 Mar-11 Jul-11 May-11 Scheduled Check In house check: Oct-11 In house check: Oct-10

Report No. RZA2010-0812

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS)

- SWISS 18RP
- Schweizerischer Kalibrierdienst s
- Service suisse d'étalonnage С
- Servizio svizzero di taratura s Swiss Calibration Service

The Swiss Accreditation Service is one of the signatories to the EA

Accreditation No.: SCS 108

Glossary:

TSL	tissue simulating liquid
ConF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Multilateral Agreement for the recognition of calibration certificates

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed ٠ point exactly below the center marking of the flat phantom section, with the arms eriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. ٠ No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D450V3-1065_Nov10

Page 2 of 9

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V5.2
Extrapolation	Advanced Extrapolation	
Phantom	ELI4 Flat Phantom	Shell thickness: 2 ± 0.2 mm
Distance Dipole Center - TSL	15 mm	with Spacer
Area Scan Resolution	dx, dy = 15 mm	
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	43.5	-0.87 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	44.2 ± 6 %	0.86 mho/m ± 6 %
Head TSL temperature during test	(22.0 ± 0.2) °C		

SAR result with Head TSL

SAR normalized

SAR for nominal Head TSL parameters

SAR averaged over 1 cm ³ (1 g) of Head TSL	condition	
SAR measured	398 mW input power	1.87 mW / g
SAR normalized	normalized to 1W	4.70 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	4.76 mW / g ± 18.1 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	398 mW input power	1.25 mW / g

normalized to 1W

normalized to 1W

3.14 mW / g

3.17 mW / g ± 17.6 % (k=2)

Page 3 of 9

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	56.7	0.94 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.1 ± 6 %	0.90 mho/m ± 6 %
Body TSL temperature during test	(22.0 ± 0.2) °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	condition	
SAR measured	398 mW input power	1.77 mW / g
SAR normalized	normalized to 1W	4.37 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	4.51 mW / g ± 18.1 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	398 mW input power	1.18 mW / g
SAR normalized	normalized to 1W	2.94 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	3.03 mW / g ± 17.6 % (k=2)

Certificate No: D450V3-1065_Nov10

Page 4 of 9

Report No. RZA2010-0812

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	59.2 Ω - 4.9 jΩ	
Return Loss	- 20.5 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	56.5 Ω - 7.9 jΩ
Return Loss	- 20.4 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.354 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	July 16, 2010

Page 5 of 9

Report No. RZA2010-0812

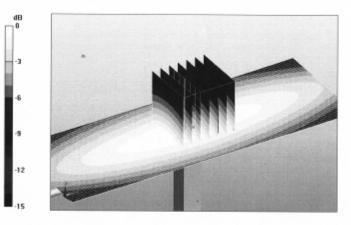
DASY5 Validation Report for Head TSL

Date/Time: 09.11.2010 10:36:58

Test Laboratory: The name of your organization

DUT: Dipole 450 MHz; Type: D450V3; Serial: D450V3 - SN:1065

Communication System: CW; Frequency: 450 MHz; Duty Cycle: 1:1 Medium: HSL450 Medium parameters used: f = 450 MHz; σ = 0.86 mho/m; ϵ_r = 44.2; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

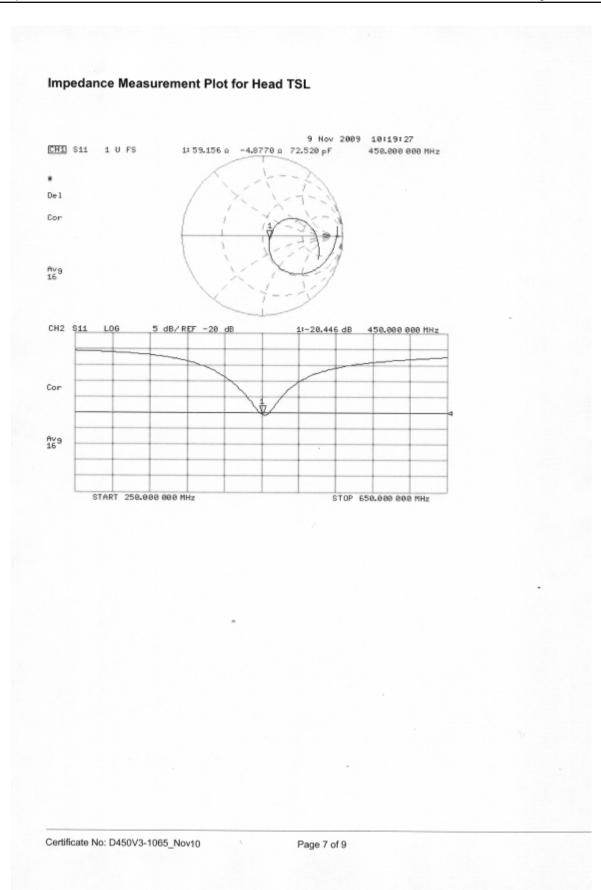

DASY5 Configuration:

- Probe: ET3DV6 SN1507 (LF); ConvF(6.66, 6.66, 6.66); Calibrated: 03.07.2009
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn654; Calibrated: 04.05.2009
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1003
- Measurement SW: DASY5, V5.2 Build 157; SEMCAD X Version 14.0 Build 57

Pin=398mW /d=15mm /Area Scan (41x111x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.99 mW/g

Pin=398mW /d=15mm /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 50.3 V/m; Power Drift = -0.00664 dB Peak SAR (extrapolated) = 2.81 W/kg SAR(1 g) = 1.87 mW/g; SAR(10 g) = 1.25 mW/g Maximum value of SAR (measured) = 2.01 mW/g


 $0 \, dB = 2.0 \, ImW/g$

Certificate No: D450V3-1065_Nov10

Page 6 of 9

Report No. RZA2010-0812

Report No. RZA2010-0812

Page 51of 59

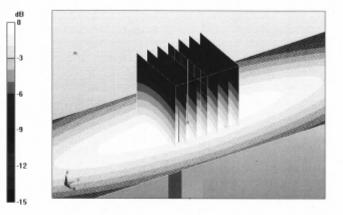
DASY5 Validation Report for Body TSL

Date/Time: 09.11.2010 13:52:55

Test Laboratory: The name of your organization

DUT: Dipole 450 MHz; Type: D450V3; Serial: D450V3 - SN:1065

Communication System: CW; Frequency: 450 MHz; Duty Cycle: 1:1 Medium: MSL450 Medium parameters used: f = 450 MHz; $\sigma = 0.9$ mho/m; $\epsilon_r = 54.1$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

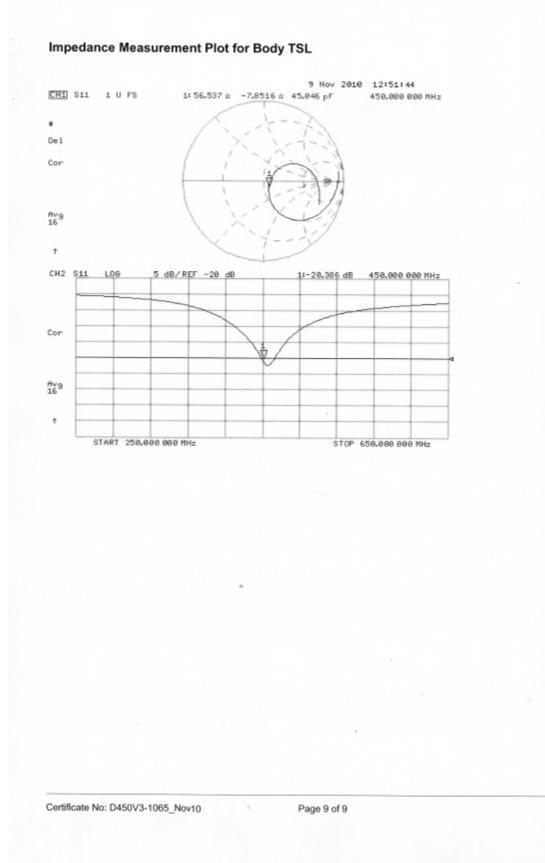

DASY5 Configuration:

- Probe: ET3DV6 SN1507 (LF); ConvF(7.11, 7.11, 7.11); Calibrated: 03.07.2009
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn654; Calibrated: 04.05.2009
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1003
- Measurement SW: DASY5, V5.2 Build 157; SEMCAD X Version 14.0 Build 57

Pin=398mW /d=15mm /Area Scan (61x201x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 1.89 mW/g

Pin=398mW /d=15mm, /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 47.4 V/m; Power Drift = -0.016 dB Peak SAR (extrapolated) = 2.7 W/kg SAR(1 g) = 1.77 mW/g; SAR(10 g) = 1.18 mW/g Maximum value of SAR (measured) = 1.89 mW/g


0 dB = 1.89 mW/g

Certificate No: D450V3-1065_Nov10

Page 8 of 9

Report No. RZA2010-0812

Page 52of 59

ANNEX F: DAE4 Calibration Certificate Calibration Laboratory of SWISS Schweizerischer Kalibrierdienst s Schmid & Partner Service suisse d'étalonnage CRUBRA С Engineering AG Servizio svizzero di taratura S Zeughausstrasse 43, 8004 Zurich, Switzerland Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Certificate No: DAE4-871_Nov10 TA - SH (Auden) Client CALIBRATION CERTIFICATE DAE4 - SD 000 D04 BJ - SN: 871 Object QA CAL-06.v12 Calibration procedure(s) Calibration procedure for the data acquisition electronics (DAE) Calibration date: November 11, 2010 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Keithley Multimeter Type 2001 SN: 0810278 1-Oct-10 (No: 9055) Oct-11 Scheduled Check Secondary Standards ID # Check Date (in house) Calibrator Box V1.1 SE UMS 006 AB 1004 05-Jun-10 (in house check) In house check: Jun-11 Name Function Signature Andrea Guntli Technician Calibrated by: i.V. Beau Approved by: Fin Bomholt R&D Director Issued: November 11, 2010 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: DAE4-871_Nov10

Page 1 of 5

Test Report

Report No. RZA2010-0812

Page 54of 59

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

TA Technology (Shanghai) Co., Ltd.

S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE Connector angle data acquisition electronics information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a
 result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

DC Voltage Measurement

A/D - Converter Res	solution nominal				
High Range:	1LSB =	6.1µV,	full range =	-100+300 mV	
Low Range:	1LSB =	61nV ,	full range =	-1+3mV	
DASY measuremen	t parameters: Aut	o Zero Time: 3	sec; Measuring	time: 3 sec	

Calibration Factors X		Y	z	
High Range	404.813 ± 0.1% (k=2)	404.794 ± 0.1% (k=2)	405.237 ± 0.1% (k=2)	
Low Range	3.98191 ± 0.7% (k=2)	3.98417 ± 0.7% (k=2)	3.98912 ± 0.7% (k=2)	

Connector Angle

Connector Angle to be used in DASY system	90.0 ° ± 1 °
---	--------------

Page 56of 59

Appendix

1. DC Voltage Linearity

High Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	199994.0	1.84	0.00
Channel X + Input	19999.85	0.05	0.00
Channel X - Input	-19997.97	1.83	-0.01
Channel Y + Input	200010.3	-3.71	-0.00
Channel Y + Input	19999.12	-0.48	-0.00
Channel Y - Input	-20000.18	-0.78	0.00
Channel Z + Input	200010.2	-2.80	-0.00
Channel Z + Input	19998.54	-0.86	-0.00
Channel Z - Input	-19999.82	0.00	0.00

Low Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	2000.3	0.22	0.01
Channel X + Input	200.20	0.30	0.15
Channel X - Input	-199.89	0.21	-0.10
Channel Y + Input	1999.8	-0.13	-0.01
Channel Y + Input	200.06	-0.04	-0.02
Channel Y - Input	-200.43	-0.73	0.36
Channel Z + Input	1999.5	-0.57	-0.03
Channel Z + Input	199.58	-0.72	-0.36
Channel Z - Input	-201.11	-1.01	0.51

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (µV)	Low Range Average Reading (µV)
Channel X	200	13.79	12.75
	- 200	-12.26	-13.72
Channel Y	200	-11.82	-11.47
	- 200	10.67	10.68
Channel Z	200	-1.08	-1.35
	- 200	0.32	0.12

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (µV)	Channel Y (µV)	Channel Z (µV)
Channel X	200	-	3.36	1.06
Channel Y	200	1.52	-	3.59
Channel Z	200	2.55	1.41	-

Certificate No: DAE4-871_Nov10

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15928	16288
Channel Y	16188	15745
Channel Z	15790	16219

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input $10M\Omega$

	Average (µV)	min. Offset (µV)	max. Offset (µV)	Std. Deviation (µV)
Channel X	0.06	-3.43	1.18	0.52
Channel Y	-0.71	-2.66	0.96	0.57
Channel Z	-0.95	-1.94	0.04	0.41

6. Input Offset Current

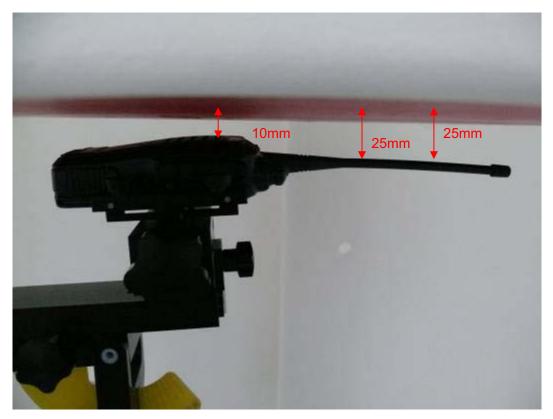
Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance

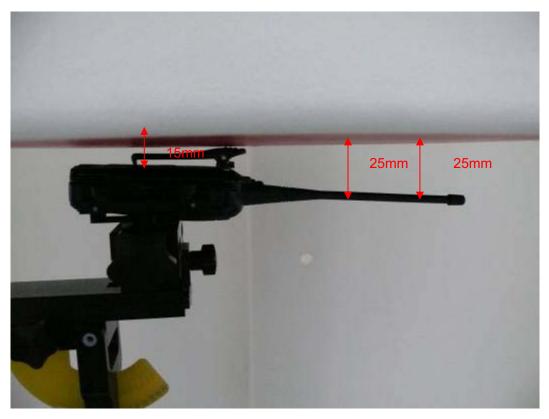
	Zeroing (MOhm)	Measuring (MOhm)
Channel X	0.1999	204.4
Channel Y	0.1999	203.6
Channel Z	0.1999	203.8

8. Low Battery Alarm Voltage (verified during pre test)

Typical values	Alarm Level (VDC)	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9		
Supply (- Vcc)	-7.6		


9. Power Consumption (verified during pre test)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.0	+6	+14
Supply (- Vcc)	-0.01	-8	-9


ANNEX G: The EUT Appearances and Test Configuration

Picture 3: Constituents of the sample

Picture 4: Face-held, The EUT display towards phantom, the distance from EUT Antenna to the bottom of the Phantom is 25mm

Picture 5: Body-worn, The EUT display towards ground, Belt clip attach the Phantom