

FCC Test Report

Report No.: AGC01284240502FR01

FCC ID	:	T4K-AT505PRO
APPLICATION PURPOSE	:	Original Equipment
PRODUCT DESIGNATION	:	CB Radio
BRAND NAME	:	N/A
MODEL NAME	:	AT-505PRO, MG57 MEGASTAR
APPLICANT	:	Qixiang Electron Science & Technology Co., Ltd.
DATE OF ISSUE	:	Jun. 26, 2024
STANDARD(S)	:	FCC Part 95 Subpart D
REPORT VERSION	:	V1.0

Report Revise Record

Report Version	Revise Time Issued Date		Valid Version	Notes	
V1.0	/	Jun. 26, 2024	Valid	Initial Release	

Table of Contents

1. General Information	5
2. Product Information	6
2.1 Product Technical Description	6
2.2 Test Frequency List	7
2.3 Related Submittal(S) / Grant (S)	
2.4 Test Methodology	
2.5 Calculation of Emission Indicators	
2.6 Statement-Compliance To §95.977	
2.7 Special Accessories	
2.8 Equipment Modifications	
3. Test Environment	9
3.1 Address of The Test Laboratory	9
3.2 Test Facility	9
3.3 Environmental Conditions	
3.4 Measurement Uncertainty	
3.5 List of Equipment Used	11
4. System Test Configuration	
4.1 EUT Configuration	
4.2 EUT Exercise	
4.3 Configuration of Tested System	
4.4 Equipment Used in Tested System	
4.5 Summary of Test Results	
5. Description of Test Modes	14
6. Frequency Stability	15
6.1 Provisions Applicable	15
6.2 Measurement Procedure	15
6.3 Measurement Setup	15
6.4 Measurement Result	
7. 26dB Emission Bandwidth and 99% Occupied Bandwidth	
7.1 Provisions Applicable	17
7.2 Measurement Procedure	17
7.3 Measurement Setup	
7.4 Measurement Result	
8. Radiated Spurious Emission and Emission Mask	
8.1 Provisions Applicable	
8.2 Measurement Procedure	
8.3 Measurement Setup	21
8.4 Measurement Result	
8.5 Emission Mask Measurement Part	
0 Maximum Transmittar Dawar	97

Report No.: AGC01284240502FR01 Page 4 of 51

9.1 Provisions Applicable	
9.2 Measurement Procedure	
9.3 Measurement Setup	
9.4 Measurement Result	
10. Spurious Emission on Antenna Port	40
10.1 Provisions Applicable	40
10.2 Measurement Procedure	40
10.3 Measurement Setup	40
10.4 Measurement Result	
11. Modulation Characteristics	45
11.1 Provisions Applicable	45
11.2 Measurement Procedure	45
11.3 Measurement Setup	
11.4 Measurement Result	
Appendix I: Photographs of Test Setup	51
Appendix II: Photographs of Test EUT	51

1. General Information

Applicant	Qixiang Electron Science & Technology Co., Ltd.
Address	Qixiang Building, Tangxi Industrial Zone, Luojiang, Quanzhou, Fujian, 362011 China
Manufacturer	Qixiang Electron Science & Technology Co., Ltd.
Address	Qixiang Building, Tangxi Industrial Zone, Luojiang, Quanzhou, Fujian, 362011 China
Factory	Qixiang Electron Science & Technology Co., Ltd.
Address	Qixiang Building, Tangxi Industrial Zone, Luojiang, Quanzhou, Fujian, 362011 China
Product Designation	CB Radio
Brand Name	N/A
Test Model	AT-505PRO
Series Model(s)	MG57 MEGASTAR
Difference Description	All the series models are the same as the test model except for the model names.
Date of receipt of test item	May 10, 2024
Date of Test	May 25, 2024 to Jun. 26, 2024
Deviation from Standard	No any deviation from the test method
Condition of Test Sample	Normal
Test Result	Pass
Test Report Form No	AGCER-FCC-CBRS-V1

Note: The test results of this report relate only to the tested sample identified in this report.

Prepared By

Bibo zhang

Bibo Zhang (Project Engineer)

Jun. 26, 2024

Reviewed By

Calvin Liu (Reviewer)

Jun. 26, 2024

Approved By

Max Zhang

Max Zhang Authorized Officer

Jun. 26, 2024

2. Product Information

2.1 Product Technical Description

Equipment Type	Citizens' Band (CB) Radio			
Communication Type	Voice / Tone only			
Operation Frequency Range	26.965MHz-27.405MI	Hz		
Hardware Version	V1.0			
Software Version	V1.00			
Modulation Type	AM/FM			
Channel Separation	10kHz			
Emission Designator	8K00A3E/8K00F3E			
Number of Channels:	40 Channels			
Rated Output Power	4W (It was fixed by the ma	anufacturer, any individual can't arbitrarily change it)		
Maximum Transmitter Power	AM: 35.647dBm	FM: 35.700dBm		
Antenna Designation	Vehicle antenna			
Antenna Gain	0dBi (Typical), 3dBi (Max)			
Frequency Tolerance	1.092ppm			
Power Supply	DC 13.8V 3A from DC power supply			

2.2 Test Frequency List

According to ANSI C63.26 section 5.1.2.1:

Measurements of transmitters shall be performed and, if required, reported for each frequency band in which the EUT can be operated with the device transmitting at the number of frequencies in each band specified in Table 2.

Frequency range Over which EUT operates	Number of Frequencies	Location in frequency range of operation
1 MHz or less	1	Middle
1 MHz to 10 MHz	2	1 near top and 1 near bottom
More than 10 MHz	3	1 near top, 1 near middle, and 1 near bottom

Operation Frequency Each of Channel					
	CBRS	CBRS			
Channel	Frequency	Channel	Frequency		
1	26.965 MHz	21	27.215 MHz		
2	26.975 MHz	22	27.225 MHz		
3	26.985 MHz	23	27.255 MHz		
4	27.005 MHz	24	27.235 MHz		
5	27.015 MHz	25	27.245 MHz		
6	27.025 MHz	26	27.265 MHz		
7	27.035 MHz	27	27.275 MHz		
8	27.055 MHz	28	27.285 MHz		
9	27.065 MHz	29	27.295 MHz		
10	27.075 MHz	30	27.305 MHz		
11	27.085 MHz	31	27.315 MHz		
12	27.105 MHz	32	27.325 MHz		
13	27.115 MHz	33	27.335 MHz		
14	27.125 MHz	34	27.345 MHz		
15	27.135 MHz	35	27.355 MHz		
16	27.155 MHz	36	27.365 MHz		
17	27.165 MHz	37	27.375 MHz		
18	27.175 MHz	38	27.385 MHz		
19	27.185 MHz	39	27.395 MHz		
20	27.205 MHz	40	27.405 MHz		

2.3 Related Submittal(S) / Grant (S)

This submittal(s) (test report) is intended for FCC ID: T4K-AT505PRO, filing to comply with Part 2, Part 95 of the Federal Communication Commission rules.

2.4 Test Methodology

The tests were performed according to following standards:

No.	Identity	Document Title
1	FCC 47 CFR Part 95	Personal Radio Services
2	FCC 47 CFR Part 2	Frequency allocations and radio treaty matters; general rules and regulations
3	ANSI C63.26-2015	American National Standard for Compliance Testing of Transmitters Used in Licensed Radio Services
4	ANSI EIA/TIA 382-A-1989	Minimum standards – Citizens band radio service amplitude modulated (AM) transceivers operating in the 27MHz band.

2.5 Calculation of Emission Indicators

FCC Rules and Regulations Part 2.202: Necessary Bandwidth and Emission Bandwidth

For AM Mode (Channel Spacing: 10kHz)

Emission Designator 8K00A3E

Bn = 2M, M may vary between 4000 and 10000 depending on the quality desired. Speech and music, M = 4000, Bandwidth: 8000 Hz= 8 kHz A3E portion of the designator represents an AM voice transmission. Therefore, the entire designator for 10 kHz channel spacing AM mode is 8K00A3E.

For FM Mode (Channel Spacing: 10kHz)

Emission Designator 8K00F3E Bn = 2M, M may vary between 4000 and 10000 depending on the quality desired. Speech and music, M = 4000, Bandwidth: 8000 Hz= 8 kHz F3E portion of the designator represents an FM voice transmission. Therefore, the entire designator for 10 kHz channel spacing FM mode is 8K00F3E.

2.6 Statement-Compliance To §95.977

§95.977 CBRS tone transmissions.

In addition to the tones permitted under §95.377, CBRS transmitter types may be designed to transmit brief tones to indicate the beginning or end of a transmission.

This device is capable of transmitting a brief (less than one second) audio tone, "Roger Beep", when the PTT button is released on the microphone indicating end of transmission. This function is user selectable and complies with the requirements of §95.377. See User's Manual .

2.7 Special Accessories

Not available for this EUT intended for grant.

2.8 Equipment Modifications

Not available for this EUT intended for grant.

3. Test Environment

3.1 Address of The Test Laboratory

Laboratory: Attestation of Global Compliance (Shenzhen) Co., Ltd.

Address: 1-2/F, Building 19, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L5488

Attestation of Global Compliance (Shenzhen) Co., Ltd. has been assessed and proved to follow CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories.)

A2LA-Lab Cert. No.: 5054.02

Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to follow ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 975832

Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files with Registration 975832.

IC-Registration No.: 24842(CAB identifier: CN0063)

Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the Certification and Engineering Bureau of Industry Canada. The acceptance letter from the IC is maintained in our files with Registration 24842.

3.3 Environmental Conditions

	Normal Conditions	Extreme Conditions		
Temperature range ($^\circ\!\mathbb{C}$)	15 - 35	-30 - 50		
Relative humidty range	20 % - 75 %	20 % - 75 %		
Pressure range (kPa)	86 - 106	86 - 106		
Power supply	DC 13.8V	DC 11.73V-DC 15.87V		
Note: The Extreme Temperature and Extreme Voltages declared by the manufacturer.				

3.4 Measurement Uncertainty

The reported uncertainty of measurement y $\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%.

Test Items	Measurement Uncertainty		
Frequency stability	±0.5%		
Transmitter power conducted	±0.8dB		
Transmitter power Radiated	±1.3dB		
Conducted spurious emission 9kHz-40 GHz	±2.7dB		
Conducted Emission	±3.2 dB		
Radiated Emission below 1GHz	±3.9 dB		
Radiated Emission above 1GHz	±4.8 dB		
Occupied Channel Bandwidth	±2 %		
FM deviation	±2 %		
Audio level	±0.98dB		
Low Pass Filter Response	±0.65dB		
Modulation Limiting	0.42 %		
Transient Frequency Behavior	6.8 %		

3.5 List of Equipment Used

• F	RF Conducted Test System							
Used	Equipment No.	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)	
\square	AGC-ER-E086	Spectrum Analyzer	KEYSIGHT	N9020A	MY53300860	2024-05-24	2025-05-23	
\boxtimes	AGC-EM-E002	Wireless Connectivity Tester	HP	8920B	US35010161	2024-05-24	2025-05-23	
	AGC-ER-E002	Modulation Domain analyzer	HP	53310A	3121A02467	2023-06-06	2025-06-02	
\boxtimes	AGC-ER-E075	Small Environmental Tester	SH-242	ESPEC	93008290	2022-08-03	2024-08-02	
\bowtie	AGC-EM-A007	30dB Attenuator	Weinachel	58-30-33	ML030	2024-05-24	2025-05-23	
\square	AGC-EM-E040	Directional coupler	Werlatone	C5571-10	99463	2024-05-24	2025-05-23	
		RF Connection Cable	N/A	1#	N/A	Each time	N/A	
		RF Connection Cable	N/A	2#	N/A	Each time	N/A	

● F	 Radiated Spurious Emission 								
Used	Equipment No.	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)		
\boxtimes	AGC-EM-E046	EMI Test Receiver	R&S	ESCI	10096	2024-02-01	2025-01-31		
\boxtimes	AGC-EM-E086	Loop Antenna	ZHINAN	ZN30900C	18051	2024-03-05	2026-03-04		
\square	AGC-EM-E005	Wideband Antenna	SCHWARZBECK	VULB9168	VULB9168-494	2023-01-05	2025-01-04		
\square	AGC-EM-A139	6dB Attenuator	Eeatsheep	LM-XX-6-5W	N/A	2023-01-05	2025-01-04		
	AGC-EM-A136	Band Pass Filter	SHWHPH	50S	N/A	2023-01-05	2025-01-04		

Test Software						
Used	Equipment No.	Test Equipment	Manufacturer	Model No.	Version Information	
\square	AGC-EM-S011	RSE Test System	Tonscend	TS⁺ Ver2.1(JS36-RSE)	4.0.0.0	

4. System Test Configuration

4.1 EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commission's requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

4.2 EUT Exercise

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

4.3 Configuration of Tested System

Fig. 2-1 Configuration of Tested System

EUT

Table 2-1 Equipment Used in Tested System

4.4 Equipment Used in Tested System

Th The following peripheral devices and interface cables were connected during the measurement:

☐ Test Accessories Come From The Laboratory

No.	Equipment	Model No.	Manufacturer	Specification Information	Cable		
1	Load Antenna	DC-3G	Terminator	DC-3G(50W Max.)			
	I Test Accessories Come From The Manufacturer						
No.	Equipment	Model No.	Manufacturer	Specification Information	Cable		
1	Hand microphone	N/A	Qixiang		Unshielded 1.6m		

4.5 Summary of Test Results

Item	FCC Rules	Description of Test	Result
1	§ 95.967& 2.1046(a)	Maximum Transmitter Power	Pass
2	§95.975& 2.1047(a) (b)	Modulation Limit	Pass
3	§95.975& 2.1047(a)	Audio Frequency Response	Pass
4	§95.973& 2.1049	Emission Bandwidth	Pass
5	§95.979& 2.1049	Emission Mask	Pass
6	§95.965& 2.1055(a) (1)	Frequency Stability	Pass
7	§95.979& 2.1051	Spurious Emission on Antenna Port	Pass
8	§95.979& 2.1053	Radiated Spurious Emission	Pass

5. Description of Test Modes

The EUT (**Two-way radio**) has been tested under normal operating condition. (CBRS TX) are chosen for testing at each channel separation.

No.	Test Mode Description	Channel Separation
1	CBRS AM TX Channel 01	10.0 kHz
2	CBRS AM TX Channel 20	10.0 kHz
3	CBRS AM TX Channel 40	10.0 kHz
4	CBRS FM TX Channel 01	10.0 kHz
5	CBRS FM TX Channel 20	10.0 kHz
6	CBRS FM TX Channel 40	10.0 kHz

Note:

1. Only the result of the worst case was recorded in the report, if no other cases.

2. For Radiated Emission, 3axis were chosen for testing for each applicable mode.

3. Manufacturers use computer PC programming software to switch and operate frequency points, refer to the instructions for details

6. Frequency Stability

6.1 Provisions Applicable

Standard Applicable [Part 95.963] The carrier frequency stability is the ability of the transmitter to maintain an assigned carrier frequency.

• The carrier frequency of each CBRS transmitter type must be designed such that the transmit carrier frequency (or in the case of SSB transmissions, the reference frequency) remains within 50 ppm

6.2 Measurement Procedure

6.2.1 Frequency stability versus environmental temperature

- 1. Setup the configuration per figure 1 for frequencies measurement inside an environment chamber, Install new battery in the EUT.
- 2. Turn on EUT and set SA center frequency to the EUT radiated frequency. Set SA Resolution Bandwidth to 1kHz and Video Resolution Bandwidth to 1kHz and Frequency Span to 50kHz.Record this frequency as reference frequency.
- 3. Set the temperature of chamber to 50°C. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize. While maintaining a constant temperature inside the chamber, turn the EUT on and measure the EUT operating frequency.
- 4. Repeat step 2 with a 10[°]C decreased per stage until the lowest temperature -30[°]C is measured, record all measured frequencies on each temperature step.

6.2.2 Frequency stability versus input voltage

- 1. Setup the configuration per figure 1 for frequencies measured at temperature if it is within 15℃ to 25℃. Otherwise, an environment chamber set for a temperature of 20℃ shall be used. The EUT should be powered by the normal operating voltage.
- 2. Set SA center frequency to the EUT radiated frequency. Set SA Resolution Bandwidth to 1 kHz and Video Resolution Bandwidth to 1kHz. Record this frequency as reference frequency.
- 3. Supply the EUT primary voltage at the operating end point which is specified by manufacturer and record the frequency.

6.3 Measurement Setup

6.4 Measurement Result

10 kHz Channel Separation, AM modulation, Assigned Frequency For CBRS						
Test conditions Frequency error (ppm)						
Voltage	Temp	Test Frequency (MHz)			Limit (ppm)	Result
(V)	(°C)	26.965MHz	27.205MHz	27.405MHz	(ppm)	
	-30	1.091	0.669	0.782		
	-20	0.833	0.808	0.747	-	
	-10	0.862	0.620	0.452		
	0	0.845	0.640	0.960		
13.80	10	1.041	0.859	0.778		
	20	1.086	0.857	0.749	50	Pass
	30	0.988	0.919	0.526		
	40	0.654	0.519	0.534		
	50	0.530	0.582	0.745		
15.87	20	0.577	0.948	0.510		
11.73	20	0.566	0.726	0.943		

10 kHz Channel Separation, FM modulation, Assigned Frequency For CBRS						
Test conditions		Frequency error (ppm)				
Voltage	Temp	Test Frequency (MHz)			Limit (ppm)	Result
(V)	(°C)	26.965MHz	27.205MHz	27.405MHz	(PPIII)	
	-30	0.693	1.047	0.858		
	-20	0.998	1.085	0.912		
	-10	0.624	0.533	0.661		
	0	0.824	0.939	0.676		
13.80	10	0.718	0.689	0.357		
	20	0.713	0.887	0.962	50	Pass
	30 (40 (0.660	0.940	0.383	-	
		0.725	0.632	0.521		
	50	0.869	1.092	0.490		
15.87	20	1.037	0.610	0.632		
11.73	20	0.804	1.002	0.572		

7. 26dB Emission Bandwidth and 99% Occupied Bandwidth

7.1 Provisions Applicable

According to standard FCC Part 95.973, FCC Part 2.1049 reference is as follows: Each CBRS transmitter type must be designed such that the occupied bandwidth does not exceed the authorized bandwidth for the emission type under test.

- a) AM or FM modulation: the authorized bandwidth for emission type A3E and F3E is 8 kHz.
- b) SSB modulation: the authorized bandwidth for emission types J3E, R3E, and H3E is 4 kHz.

7.2 Measurement Procedure

- 1. Connect the equipment as illustrated
- 2. The EUT was modulated by 2.5kHz sine wave audio signal; the level of the audio signal employed is 16dB
- 3. greater than that necessary to produce 50% of rated system deviation.
- 4. Rated system deviation is 2.5 kHz for 12.5kHz channel spacing).
- 5. Spectrum set as follow:
- 6. Centre frequency = the nominal EUT channel center frequency,
- 7. The frequency span for the spectrum analyzer shall be set wide enough to capture all modulation products
- 8. including the emission skirts (typically a span of 1.5 × OBW is sufficient)
- 9. RBW = 1% to 5% of the anticipated OBW, VBW ≥ 3 × RBW, Sweep = auto, Detector function = peak,
- 10. Trace = max hold
- 11. Set 99% Occupied Bandwidth and 26dB Bandwidth
- 12. Measure and record the results in the test report.

7.3 Measurement Setup

7.4 Measurement Result

Emission Bandwidth Measurement Result-CBRS					
Operating Frequency	10 kHz Channel Separation				
(MHz)	Occupied Bandwidth (kHz)	Emission Bandwidth (kHz)	Limits (kHz)	Result	
26.965	5.525	5.823	8.0	Pass	
27.205	5.523	5.824	8.0	Pass	
27.405	5.524	5.821	8.0	Pass	

Test plot as follows:

Emission Bandwidth Measurement Result-CBRS					
Operating Frequency	10 kHz Channel Separation				
(MHz)	Occupied Bandwidth (kHz)	Emission Bandwidth (kHz)	Limits (kHz)	Result	
26.965	5.490	5.754	8.0	Pass	
27.205	5.491	5.751	8.0	Pass	
27.405	5.489	5.755	8.0	Pass	

Test plot as follows:

8. Radiated Spurious Emission and Emission Mask

8.1 Provisions Applicable

According to the standard FCC Part 95.979(a), the requirements of FCC Part 2.1053 are as follows:

Each GMRS transmitter type must be designed to comply with the applicable unwanted emissions limits in this section.

 Emission masks. Emission masks applicable to transmitting equipment in the GMRS are defined by the requirements in the following table. The numbers in the attenuation requirements column refer to rule paragraph numbers under paragraph (b) of this section.

Emission Types	Attenuation Requirements
A3E,F3E	(1), (3), (5), (6)
H3E, J3E, R3E	(2), (4), (5), (6)

1) 25 dB (decibels) in the frequency band 4 kHz to 8 kHz removed from the channel center frequency;

- 2) 25 dB in the frequency band 2 kHz to 6 kHz removed from the channel center frequency;
- 3) 35 dB in the frequency band 8 kHz to 20 kHz removed from the channel center frequency;
- 4) 35 dB in the frequency band 6 kHz to 10 kHz removed from the channel center frequency;
- 5) 53 + 10 log (P) dB in any frequency band removed from the channel center frequency by more than 250% of the authorized bandwidth.
- 6) 60 dB in any frequency band centered on a harmonic (i.e., an integer multiple of two or more times) of the carrier frequency.

8.2 Measurement Procedure

- 1) EUT was placed on a 0.8 or 1.5meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The disturbance of the transmitter was maximized on the test receiver display by raising and lowering from 1m to 4m the receive antenna and by rotating through 360° the turntable. After the fundamental emission was maximized, a field strength measurement was made. The radiated emission measurements of all transmit frequencies in all channels were measured with peak detector.
- 2) A log-periodic antenna or double-ridged waveguide horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.
- 3) The EUT is then put into continuously transmitting mode at its maximum power level during the test. Set Test Receiver or Spectrum RBW=1MHz, VBW=3MHz for above 1GHz and RBW=100kHz, VBW=300kHz for 30MHz to 1GHz, And the maximum value of the receiver should be recorded as (Pr).
- 4) The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (PMea) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (Pr). The power of signal source (PMea) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.

- 5) A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna. The cable loss (Pcl), the Substitution Antenna Gain (Ga) and the Amplifier Gain (PAg) should be recorded after test
- The measurement results are obtained as described below: Power(EIRP)=PMea- PAg Pcl Ga The 6) measurement results are amend as described below:Power(EIRP)=PMea- Pcl - Ga
- 7) This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.
- 8) ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP-2.15dBi.
- 9) Test the EUT in the lowest channel, the middle channel the Highest channel

8.3 Measurement Setup

Radiated Emissions 30MHz-1000MHz Test Setup

Any report having not

Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

Attestation of Global Compliance(Shenzhen)Co., Ltd Attestation of Global Compliance(Shenzhen)Std & Tech Co., Ltd Tel: +86-755 2523 4088 E-mail: agc@agccert.com Web: http://www.agccert.com/

8.4 Measurement Result

• The Unwanted spurious emissions limits are as follows:

Attenuation Requirement Results	Reference limit
At least 53+10*log (P) =53+10log*(4W) =59.02 (dB)	Limit=P(dBm)- Preliminary calculation=-23dBm

• The Harmonic emissions spurious limits are as follows:

The maximum power of the measured fundamental frequency drops by at least 60dB

Test Mode	Measuring Center frequency (MHz)	Maximum Power (dBm)	Reference limit (dBm)
	26.965	35.459	-24.54
AM	27.205	35.647	-24.35
	27.405	35.598	-24.40
	26.965	35.700	-24.30
FM	27.205	35.616	-24.38
	27.405	35.507	-24.49

There will be accuracy errors when the radiation spurious software reads the harmonic frequency points, which are in correspondence with the harmonic frequency points given by the reference limit. Please ignore them.

■ The Radiated Spurious Measurement Parameters are as Follows:

Note 1: Factor=Antenna Factor + Cable loss. (Below 1GHz)

Note 2: Factor=Antenna Factor+ Cable loss -Pre-amplifier. (Above 1 GHz)

Note 3: Margin=Limit- Level

Note 4: Unwanted spurious signals in the 9kHz-30MHz band are below the limit by 20dB and are not recorded.

Test	t Mode	Mode	1			Supply Voltage DC 13.8V				
			Test graph	and data for	Unwanted S	Spurious Emis	ssions			
		80 70 60 50 40 30 20 10 0 			FCC Part 95D OPER TX				5	
No.	Freque [MH	ency	 Final Test — Horizo Reading [dBm] 	Level [dBm]	Limit [dBm]	Margin [dB]	Factor [dB]	Detector	Polarity	
1	50.3	35	-92.29	-63.68	-23.00	40.68	28.61	Peak	Horizontal	
2	84.4	75	-92.37	-68.96	-23.00	45.96	23.41	Peak	Horizontal	
3	107.8	375	-87.17	-66.60	-23.00	43.60	20.57	Peak	Horizontal	
4	242.4	425	-85.09	-57.22	-23.00	34.22	27.87	Peak	Horizontal	
5	269.7	725	-92.29	-63.88	-23.00	40.88	28.41	Peak	Horizontal	
6	945	.4	-93.95	-55.52	-23.00	32.52	38.43	Peak	Horizontal	
			Test	data for Harn	nonic emissi	ions spurious	1	-		
1	50.3	35	-92.29	-63.68	-24.54	39.14	28.61	Peak	Horizontal	
2	242.4	125	-85.09	-57.22	-24.54	32.68	27.87	Peak	Horizontal	

Test	t Mode	Mode	1			Supply Volta	ige DC 1	I3.8V	
-			Test graph	and data for	Unwanted S	Spurious Emis	ssions		
		80			FCC Part 95D OPER TX				
		70 60							
		50 40							
		30							
	el[dBm]	0							
	Lev	-20							
		-40 -50							
		-60			* Annound	Landard adams	and the second second	mon an annual falle have the	
		-80 -90 25M		100M				16	
					Frequency[Hz]				
		Limit	# Final Test Vert	ical					
No	Frequ	ency	Reading	Level	Limit	Margin	Factor	Detector	Polarity
INO.	[MH	lz]	[dBm]	[dBm]	[dBm]	[dB]	[dB]	Delector	Folanty
1	50.3	35	-93.50	-64.89	-23.00	41.89	28.61	Peak	Vertical
2	67.	9	-90.33	-65.31	-23.00	42.31	25.02	Peak	Vertical
3	87.	4	-86.10	-63.27	-23.00	40.27	22.83	Peak	Vertical
4	130	.3	-91.84	-66.79	-23.00	43.79	25.05	Peak	Vertical
5	242.4	125	-84.41	-56.54	-23.00	33.54	27.87	Peak	Vertical
6	269.7	725	-87.72	-59.31	-23.00	36.31	28.41	Peak	Vertical
			Test	data for Harr	nonic emissi	ons spurious			
1	242.4	125	-84.41	-56.54	-24.54	32.00	27.87	Peak	Vertical
2	269.7	725	-87.72	-59.31	-24.54	34.77	28.41	Peak	Vertical

Test	t Mode	Mode	2			Supply Volta	ige DC 1	I3.8V	
-			Test graph	and data for	Unwanted S	Spurious Emis	ssions		
	_	80			FCC Part 95D OPER TX			·····	
		70 60							
		50 40							
		30							
	/el[dBm]	-10							
	Le.	-20							
		-40 -50				5			
		-60			- Martin	Munturturturture		an a	
		-90 25M		100M				1G	
					Frequency[Hz]				
		—— Limit	* Final Test Horizo	ontal					
No.	Frequ [MF	ency Iz]	Reading [dBm]	Level [dBm]	Limit [dBm]	Margin [dB]	Factor [dB]	Detector	Polarity
1	49.3	75	-92.31	-63.57	-23.00	40.57	28.74	Peak	Vertical
2	85.4	45	-92.11	-68.89	-23.00	45.89	23.22	Peak	Vertical
3	108.	85	-87.58	-66.98	-23.00	43.98	20.60	Peak	Vertical
4	130	.3	-95.02	-69.97	-23.00	46.97	25.05	Peak	Vertical
5	244.3	375	-89.48	-61.40	-23.00	38.40	28.08	Peak	Vertical
6	945	.4	-96.03	-57.60	-23.00	34.60	38.43	Peak	Vertical
			Test	data for Harn	nonic emissi	ons spurious			
1	49.3	75	-92.31	-63.57	-24.35	39.22	28.74	Peak	Vertical
2	244.3	375	-89.48	-61.40	-24.35	37.05	28.08	Peak	Vertical

Test	Test Mode Mode 3					Supply Volta	ige DC 1	I3.8V	
			Test graph	and data for	r Unwanted S	Spurious Emis	sions		
		80			FCC Part 95D OPER TX				
		70 60							
		50 40							
		20							
	vel[dBm]	0							
	Ľ	-20 -30							
		-40	1			. 5		 • •	
		-70			mantente	Munduntan		and and a second and a second	
		-90 25M		100M				16	i
					Frequency[Hz]				
		— Limit	# Final Test — Horiz	ontal					
No.	Freque [MH	ency z]	Reading [dBm]	Level [dBm]	Limit [dBm]	Margin [dB]	Factor [dB]	Detector	Polarity
1	49.3	75	-92.78	-64.04	-23.00	41.04	28.74	Peak	Horizontal
2	81.5	55	-92.90	-68.91	-23.00	45.91	23.99	Peak	Horizontal
3	108.	85	-89.38	-68.78	-23.00	45.78	20.60	Peak	Horizontal
4	219.0)25	-90.52	-65.16	-23.00	42.16	25.36	Peak	Horizontal
5	246.3	325	-91.92	-63.63	-23.00	40.63	28.29	Peak	Horizontal
6	949	.3	-92.38	-53.87	-23.00	30.87	38.51	Peak	Horizontal
			Test	data for Har	monic emissi	ons spurious			
1	49.3	75	-92.78	-64.04	-24.40	39.64	28.74	Peak	Horizontal
2	246.3	325	-91.92	-63.63	-24.40	39.23	28.29	Peak	Horizontal

Test	t Mode	Mode	4			Supply Volta	age DC	13.8V	
			Test graph	and data for	Unwanted S	Spurious Emis	ssions		
	_	80			FCC Part 95D OPER TX				
		70 60							
		50 40							
		30							
	a[dBm]	10							
	Leve	-20							
		-40							
		-60		2	Contrast thread 1	6			
		-80							
		25M		100M	Frequency[Hz]			16	
		1	e Circl Test Hairs						
			• Final rest — Honze	indi					
	Freque	encv	Reading		Limit	Margin	Factor		
No.	[MH	lz]	[dBm]	[dBm]	[dBm]	[dB]	[dB]	Detector	Polarity
1	49.3	75	-92.16	-63.42	-23.00	40.42	28.74	Peak	Horizontal
2	80.5	75	-94.08	-69.89	-23.00	46.89	24.19	Peak	Horizontal
3	107.8	375	-87.37	-66.80	-23.00	43.80	20.57	Peak	Horizontal
4	215.1	125	-90.81	-65.87	-23.00	42.87	24.94	Peak	Horizontal
5	242.4	125	-84.33	-56.46	-23.00	33.46	27.87	Peak	Horizontal
6	269.7	725	-92.55	-64.14	-23.00	41.14	28.41	Peak	Horizontal
			Test	data for Harn	nonic emissi	ons spurious			
1	49.3	75	-92.16	-63.42	-24.30	39.12	28.74	Peak	Horizontal
2	242.4	125	-84.33	-56.46	-24.30	32.16	27.87	Peak	Horizontal

Test	t Mode	Mode	4			Supply Volta	age DC 1	13.8V	
			Test grap	n and data f	or Unwanted	Spurious Emi	ssions		
	_	80			FCC Part 95D OPER TX				
		70 60							
		50 40							
		30							
	el[dBm]	10							
	Lev	-20							
		-40 -50							
		-60 -70		*	*******	I halus a	mart and and a start of the sta		
		-80		1004	V- minin	within the second se			
		20101		1000	Frequency[Hz]			10	
		— Limit	🗯 Final Test 🛛 —— Ve	tical					
	Frequ	encv	Reading	Level	Limit	Margin	Factor	.	
NO.	[MH	lz]	[dBm]	[dBm]	[dBm]	[dB]	[dB]	Detector	Polarity
1	50.3	35	-93.48	-64.87	-23.00	41.87	28.61	Peak	Vertical
2	66.9	25	-89.68	-64.50	-23.00	41.50	25.18	Peak	Vertical
3	87.	4	-85.60	-62.77	-23.00	39.77	22.83	Peak	Vertical
4	131.2	275	-90.46	-65.18	-23.00	42.18	25.28	Peak	Vertical
5	242.4	125	-83.91	-56.04	-23.00	33.04	27.87	Peak	Vertical
6	269.7	725	-86.97	-58.56	-23.00	35.56	28.41	Peak	Vertical
			Tes	t data for Ha	irmonic emiss	ions spurious			
1	50.3	35	-93.48	-64.87	-24.30	40.57	28.61	Peak	Vertical
2	242.4	425	-83.91	-56.04	-24.30	31.74	27.87	Peak	Vertical

Test	Test Mode Mode 5					Supply Volta	ige DC 1	I3.8V	
			Test graph	and data for	Unwanted S	purious Emis	sions		
		80			FCC Part 95D OPER TX				
		70 60							
		50 40							
		30							
	e[[dBm]	0							
	Lev	-20							
		-40 -50						6	
		-60 -70		2 3	munt	Frontington tomore		and some sources and the	
		-80 -90 25M		100M				16	
					Frequency[Hz]				
		Limit	 Final Test — Horizo 	ontal					
No.	Freque [MH	ency z]	Reading [dBm]	Level [dBm]	Limit [dBm]	Margin [dB]	Factor [dB]	Detector	Polarity
1	49.3	75	-92.41	-63.67	-23.00	40.67	28.74	Peak	Horizontal
2	81.5	55	-92.72	-68.73	-23.00	45.73	23.99	Peak	Horizontal
3	108.	85	-88.02	-67.42	-23.00	44.42	20.60	Peak	Horizontal
4	217.0)75	-91.35	-66.20	-23.00	43.20	25.15	Peak	Horizontal
5	244.3	375	-90.05	-61.97	-23.00	38.97	28.08	Peak	Horizontal
6	949	.3	-90.81	-52.30	-23.00	29.30	38.51	Peak	Horizontal
			Test	data for Har	monic emissi	ons spurious			
1	49.3	75	-92.41	-63.67	-24.38	39.29	28.74	Peak	Horizontal
2	949	.3	-90.81	-52.30	-24.38	27.92	38.51	Peak	Horizontal

Test	t Mode	Mode	6			Supply Volta	ige DC 1	I3.8V	
-			Test graph	and data for	Unwanted S	purious Emis	ssions		
		80 80			FCC Part 95D OPER TX				
		70 60							
		50 40							
		30 20							
	[dBm]	10							
	Leve	-10							
		-40							
		-60	1	2		4 5 6		men marker die	
		-80			- manuful	Mannahandhandhanadaraanada			
		25M		100M	Frequency[Hz]			1G	1
		Limit	 Final Test — Horiz 	ontal					
			Deeding		L insit	Manain	F astar		
No.	I Freque	ency Izl	[dBm]	[dBm]	[dBm]	IdB1	fdB1	Detector	Polarity
1	50.3	35	-91.99	-63.38	-23.00	40.38	28.61	Peak	Horizontal
2	81.5	55	-92.37	-68.38	-23.00	45.38	23.99	Peak	Horizontal
3	108.	85	-87.75	-67.15	-23.00	44.15	20.60	Peak	Horizontal
4	219.0)25	-89.35	-63.99	-23.00	40.99	25.36	Peak	Horizontal
5	246.3	325	-90.86	-62.57	-23.00	39.57	28.29	Peak	Horizontal
6	300.9	925	-94.41	-66.41	-23.00	43.41	28.00	Peak	Horizontal
			Test	data for Harr	nonic emissi	ons spurious			
1	50.3	35	-91.99	-63.38	-24.49	38.89	28.61	Peak	Horizontal
2	246.3	325	-90.86	-62.57	-24.49	38.08	28.29	Peak	Horizontal

Test	Test Mode Mode 6							Supply	Volta	ge DO	C 13.8V	
-			Test gra	aph a	and data	a for	Unwanted S	Spurious	: Emis	sions		
		80					FCC Part 95D OPER TX					
		70 60										
		50 40										
		30 20										
	el[dBm]	10				-						
	Lev	-20										
		-40										 \$
		-60					m	- Janahanan Law	Luchan			
		-80 -90 25M			10							16
		2011					Frequency[Hz]					
		Limit	 Final Test 	- Vertical	I							
No	Freque	ency	Reading		Leve	el	Limit	Mar	gin	Facto	Detecto	Polority
INO.	[MH	z]	[dBm]		[dBm	ן]	[dBm]	[dE	3]	[dB]	Delecit	Folanty
1	52.	3	-92.66		-64.5	1	-23.00	41.	51	28.15	Peak	Vertical
2	67.	9	-89.16		-64.1	4	-23.00	41.	14	25.02	Peak	Vertical
3	86.4	25	-85.75		-62.7	2	-23.00	39.	72	23.03	Peak	Vertical
4	246.3	325	-88.37		-60.0	8	-23.00	37.0	08	28.29	Peak	Vertical
5	273.6	625	-90.57		-62.2	2	-23.00	39.2	22	28.35	Peak	Vertical
6	899.5	575	-91.86		-54.3	3	-23.00	31.3	33	37.53	Peak	Vertical
			Te	est d	lata for I	Harm	nonic emissi	ons spu	irious			
1	52.	3	-92.66		-64.5	1	-24.49	40.0	02	28.15	Peak	Vertical
2	899.5	575	-91.86		-54.3	3	-24.49	29.8	84	37.53	Peak	Vertical

8.5 Emission Mask Measurement Part

The detailed procedure employed for Emission Mask measurements are specified as following:

-Connect the equipment as illustrated.

-Spectrum set as follow:

- Centre frequency = fundamental frequency, Span=150kHz for 12.5kHz and 25kHz channel spacing, RBW=300Hz, VBW=1000Hz for 12.5kHz, RBW=300Hz, VBW=1000Hz for 25kHz, Sweep = auto, Detector function = peak, Trace = max hold
- 2. Key the transmitter, and set the level of the unmodulated carrier to a full scale reference line. This is the 0dB reference for the measurement.
- Modulate the transmitter with a 2500 Hz sine wave at an input level 16 dB greater than that necessary to produce 50% of rated system deviation (Rated system deviation is 2.5 kHz for 12.5kHz channel spacing). The input level shall be established at the frequency of maximum response of the audio modulating circuit.
- 4. Transmitters employing digital modulation techniques that bypass the limiter and the audio low-pass filter shall be modulated as specified by the manufacturer.
- 5. Measure and record the results in the test report.

Test plot as follows:

9. Maximum Transmitter Power

9.1 Provisions Applicable

According to FCC§2.1046(a) and §95.967 the following requirements are required:

The maximum transmit power limits for each CBRS transmitter type are as follows:

(a) When transmitting amplitude modulated (AM) voice signals or frequency modulated (FM) voice signals, the mean carrier power must not exceed 4 Watts

(b) When transmitting single sideband (SSB) voice signals, the peak envelope power must not exceed 12 Watts.

9.2 Measurement Procedure

- Conducted RF Output Power:
- 1. The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.
- 2. The DUT was connected to a Spectrum Analyzer (SA) via a 30dB attenuator connected to the DUT's antenna port. The
- 3. SA was configured as above using the Automatic 6dB Cursor Bandwidth measurement. The output power of the DUT was set to the manufacturer's highest output power setting at the Low, Mid and High frequency channels as permitted by the device.
- 4. The DUT was set to transmit at its maximum Duty Cycle.
- 5. Spectrum set as follow:
- 6. Centre frequency = fundamental frequency, Span=150kHz , RBW=30kHz, VBW=30kHz ;
- 7. Sweep = auto, Detector function = peak, Trace = max hold
- 8. The final recorded maximum power is reported
- Calculation Formula: CP = R + A + L
 - > CP: The final Conducted Power
 - > R: The reading value from spectrum analyzer
 - > A: The attenuation value of the used attenuator
 - L: The loss of all connection cables

9.3 Measurement Setup

9.4 Measurement Result

Conducted Power Measurement Results-4W						
Test Mode	Channel Separation	Test Channel	Measurement Result (dBm)			
		26.965 MHz	35.459			
CBRS TX_AM	10 kHz	27.205 MHz	35.647			
		27.405 MHz	35.598			

Test plot as follows:

Conducted Power Measurement Results-4W							
Test Mode	Channel Separation	Test Channel	Measurement Result (dBm)				
		26.965 MHz	35.700				
CBRS TX_FM	10 kHz	27.205 MHz	35.616				
		27.405 MHz	35.507				

Test plot as follows:

10. Spurious Emission on Antenna Port

10.1 Provisions Applicable

Please refer to FCC 47 CFR 2.1051, 2.1057 & 95.979 for specification details. Emissions shall be attenuated below the mean output power of the transmitter as follows:

FCC Rules	Attenuation Limit (dBc)
§ 95.979	At least 53 + 10 log (P) dB
§ 95.979	60 dB in any frequency band centered on a harmonic (i.e., an integer multiple of two or more times) of the carrier frequency.

10.2 Measurement Procedure

- 1. The RF output of the EUT is connected to the spectrum analyzer with appropriate attenuation.
- 2. The audio input is set to an unmodulated carrier
- 3. The resolution bandwidth of the spectrum analyzer is set to 100 kHz. A sufficient sweep is performed to
- 4. Display any out-of-band emissions up to the 10th harmonic. Minimum and maximum frequency range.
- Out-of-band unwanted spurious emission requirements:
- 5. Set RBW 100 kHz, VBW 300 kHz in the frequency band from 30MHz to 1GHz, and set
- 6. From 1GHz to the 10th harmonic, RBW=1MHz.VBW=3MHz.
- Harmonic emission spurious requirements:
- 7. According to the maximum transmit power of the measurement center frequency, attenuate 60dB downward
- 8. The reference level of the maximum transmit power is the conducted maximum transmit power, set the limit
- 9. In the frequency band from 30MHz to 1GHz, set RBW 100 kHz, VBW 300 kHz, and set
- 10. From 1GHz to the 10th harmonic, RBW=1MHz.VBW=3MHz.
- 11. Record whether the corresponding harmonic meets the limit requirements
- 12. Finally, record the spectrum or table in the report.

10.3 Measurement Setup

10.4 Measurement Result

• The Unwanted spurious emissions limits are as follows:

Attenuation Requirement Results	Reference limit
At least 53+10*log (P) =53+10log*(4W) =59.02 (dB)	Limit=P(dBm)- Preliminary calculation=-23dBm

• The Harmonic emissions spurious limits are as follows:

The maximum power of the measured fundamental frequency drops by at least 60dB

Test Mode	Fundamental Frequency (MHz)	Maximum Power (dBm)	Reference limit (dBm)
	26.965	35.459	-24.54
AM	27.205	35.647	-24.35
	27.405	35.598	-24.40
	26.965	35.700	-24.30
FM	27.205	35.616	-24.38
	27.405	35.507	-24.49

- **4** The antenna end conducted spurious harmonic data are as follows:
- Worst case result with AM modulation mode:

Fundamental (MHz)	Harmonic Frequency (MHz)	Measurement Results (dBm)	Reference limit (dBm)	Margin (dB)
26.965	80.89	-39.657	-24.54	-15.12
27.205	54.43	-39.471	-24.35	-15.12
27.405	847.44	-39.680	-24.40	-15.28

The spectrum of the unwanted spurious data conducted at the antenna end is as follows:

11. Modulation Characteristics

11.1 Provisions Applicable

According to FCC§2.1047 and §95.975 the following requirements are required:

Each CBRS transmitter type must be designed such that the modulation characteristics are in compliance with the rules in this section.

- a) When emission type A3E is transmitted with voice modulation, the modulation percentage must be at least 85%, but not more than 100%.
- b) When emission type A3E is transmitted by a CBRS transmitter having a transmitter output power of more than 2.5 W, the transmitter must contain a circuit that automatically prevents the modulation percentage from exceeding 100%.
- c) When emission type F3E is transmitted the peak frequency deviation shall not exceed ±2 kHz.

11.2 Measurement Procedure

A. Modulation Limiting for AM modulation

- 1. Connect the equipment as illustrated.
- 2. Adjust to deliver 50% modulation at the audio frequency that produces the maximum modulation level
- 3. Record the modulation input level (mV) and use this level as 0dB for plotting modulation limiting.
- 4. Increment the audio signal level to 40dB above the reference level. Record the modulation level (%).
- 5. Repeat the measurements using a 400Hz and a 2500Hz sinusoidal audio signal, record the modulation level (%), perform for both positive and negative modulation.

B. Audio Frequency Response for AM modulation

- 1. Connect the equipment as illustrated.
- 2. Adjust to deliver 50% modulation at the audio frequency that produces the maximum modulation level
- 3. Record the modulation input level (mV) and use this level as 0dB for plotting modulation limiting.
- 4. Vary the modulating frequency from 100Hz to 10000Hz and record the input levels necessary to maintain a constant 50% modulation.
- 5. Graph the audio level in dB relative to the 0dB reference level as a function of the modulating frequency. Record audio frequency where it is impossible to perform the measurement.

C. Modulation Limiting for FM modulation

- 1. Test layout and build equipment as shown below.
- 2. adjust the audio input for 60% of rated system deviation at 1kHz using this level as a reference (0dB).
- 3. Vary the input level from –20 to +20dB.
- 4. Record the frequency deviation obtained as a function of the input level.
- 5. Repeat step 2 with input frequency changing to 300, 1000, 1500 and 3000Hz in sequence.

D. Audio Frequency Response for FM modulation

- 1. Test layout and build equipment as shown below.
- 2. Adjust the audio input for 20% of rated system deviation at 1 kHz using this level as a reference (0 dB).
- 3. Vary the Audio frequency from 100 Hz to 10 kHz and record the frequency deviation.
- 4. Audio Frequency Response = 20log10 (Deviation of test frequency/Deviation of 1 kHz reference).

11.3 Measurement Setup

11.4 Measurement Result

A. Modulation Limit:

10kHz, AM modulation, Assigned Frequency:27.405MHz-4W				
Modulation Level (mV)	Modulation Percentage at 400 Hz (%)	Modulation Percentage at 600 Hz (%)	Modulation Percentage at 1000 Hz (%)	Modulation Percentage at 2500 Hz (%)
1	11	22	24	25
10	22	60	55	59
100	24	77	63	70
300	25	79	66	73
500	30	80	75	79
700	32	85	81	82
800	33	88	84	86
900	34	89	86	88
1000	34	88	87	87

B. Audio Frequency Response:

10kHz, AM modulation, Assigned Frequency:27.405MHz-4W			
Frequency (Hz)	modulation level (mV)	Deviation (kHz)	Audio Frequency Response(dB)
100			
200			
300	20.10	0.08	-18.20
400	13.36	0.13	-13.98
500	12.42	0.15	-12.74
600	9.56	0.17	-11.65
700	8.00	0.23	-9.02
800	8.12	0.33	-5.89
900	6.46	0.61	-0.55
1000	6.31	0.65	0.00
1200	6.59	0.71	0.77
1400	6.21	0.83	2.12
1600	5.25	0.85	2.33
1800	5.39	0.87	2.53
2000	5.10	0.84	2.23
2400	5.19	0.81	1.91
2500	5.37	0.82	2.02
2800	5.20	0.69	0.52
3000	6.41	0.43	-3.59
3200	7.25	0.31	-6.43
3600	8.96	0.15	-12.74
3800	9.41	0.13	-13.98
4000	10.00	0.12	-14.67
4200	10.01	0.09	-17.17
4800	13.96	0.06	-20.70
5200	18.22	0.05	-22.28
6000			

Audio Frequency Response@50%MI

10KHz Channel Separations

Note: All the modes had been tested, but only the worst data recorded in the report.

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

 Attestation of Global Compliance(Shenzhen)Co., Ltd

 Attestation of Global Compliance(Shenzhen)Std & Tech Co., Ltd

 Tel: +86-755 2523 4088
 E-mail: agc@agccert.com

C. Modulation Limit:

10kHz, FM modulation, Assigned Frequency:27.405MHz-4W				
Modulation Level (dB)	Peak Freq. Deviation At 300 Hz (kHz)	Peak Freq. Deviation At 1000 Hz (kHz)	Peak Freq. Deviation At 1500 Hz (kHz)	Peak Freq. Deviation At 3000 Hz (kHz)
-20	0.09	0.32	0.62	0.74
-15	0.22	0.41	0.74	0.96
-10	0.26	0.45	0.82	1.05
-5	0.34	0.61	0.94	1.12
0	0.41	0.65	1.05	1.26
+5	0.52	0.71	1.11	1.45
+10	0.69	0.78	1.26	1.62
+15	0.71	0.81	1.34	1.74
+20	0.63	0.75	1.29	1.69

D. Audio Frequency Response:

10kHz, FM modulation, Assigned Frequency:27.405MHz-4W			
Frequency (Hz)	Deviation (kHz)	Audio Frequency Response(dB)	
100			
200			
300	0.07	-26.27	
400	0.26	-14.87	
500	0.33	-12.80	
600	0.52	-8.85	
700	0.69	-6.39	
800	1.01	-3.08	
900	1.36	-0.50	
1000	1.44	0.00	
1200	1.78	1.84	
1400	2.11	3.32	
1600	2.25	3.88	
1800	2.26	3.91	
2000	2.32	4.14	
2400	2.49	4.76	
2500	2.45	4.62	
2800	1.74	1.64	
3000	1.45	0.06	
3200	1.42	-0.12	
3600	0.91	-3.99	
4000	0.71	-6.14	
4500	0.63	-7.18	
5000	0.44	-10.30	
5500	0.32	-13.06	
6000	0.28	-14.22	
6500	0.21	-16.72	
7000	0.13	-20.89	
7500	0.08	-25.11	

10 KHz Channel Separations

Note: All the modes had been tested, but only the worst data recorded in the report.

Report No.: AGC01284240502FR01 Page 51 of 51

Appendix I: Photographs of Test Setup

Refer to the Report No.: AGC01284240502AP01

Appendix II: Photographs of Test EUT

Refer to the Report No.: AGC01284240502AP02

-----End of Report-----

Conditions of Issuance of Test Reports

1. All samples and goods are accepted by the Attestation of Global Compliance (Shenzhen) Co., Ltd (the "Company") solely for testing and reporting in accordance with the following terms and conditions. The company provides its services on the basis that such terms and conditions constitute express agreement between the company and any person, firm or company requesting its services (the "Clients").

2. Any report issued by Company as a result of this application for testing services (the "Report") shall be issued in confidence to the Clients and the Report will be strictly treated as such by the Company. It may not be reproduced either in its entirety or in part and it may not be used for advertising or other unauthorized purposes without the written consent of the Company. The Clients to whom the Report is issued may, however, show or send it, or a certified copy thereof prepared by the Company to its customer, supplier or other persons directly concerned. The Company will not, without the consent of the Clients, enter into any discussion or correspondence with any third party concerning the contents of the Report, unless required by the relevant governmental authorities, laws or court orders.

3. The Company shall not be called or be liable to be called to give evidence or testimony on the Report in a court of law without its prior written consent, unless required by the relevant governmental authorities, laws or court orders.

4. In the event of the improper use of the report as determined by the Company, the Company reserves the right to withdraw it, and to adopt any other additional remedies which may be appropriate.

5. Samples submitted for testing are accepted on the understanding that the Report issued cannot form the basis of, or be the instrument for, any legal action against the Company.

6. The Company will not be liable for or accept responsibility for any loss or damage however arising from the use of information contained in any of its Reports or in any communication whatsoever about its said tests or investigations.

7.Clients wishing to use the Report in court proceedings or arbitration shall inform the Company to that effect prior to submitting the sample for testing.

8. The Company is not responsible for recalling the electronic version of the original report when any revision is made to them. The Client assumes the responsibility to providing the revised version to any interested party who uses them.

9. Subject to the variable length of retention time for test data and report stored hereinto as otherwise specifically required by individual accreditation authorities, the Company will only keep the supporting test data and information of the test report for a period of six years. The data and information will be disposed of after the aforementioned retention period has elapsed. Under no circumstances shall we provide any data and information which has been disposed of after retention period. Under no circumstances shall we be liable for damage of any kind, including (but not limited to) compensatory damages, lost profits, lost data, or any form of special, incidental, indirect, consequential or punitive damages of any kind, whether based on breach of contract of warranty, tort (including negligence), product liability or otherwise, even if we are informed in advance of the possibility of such damages.