

# **FCC Test Report**

Report No.: AGC01284230801FE01

| FCC ID              | : | T4K-AT500MII                                    |
|---------------------|---|-------------------------------------------------|
| APPLICATION PURPOSE | : | Original Equipment                              |
| PRODUCT DESIGNATION | : | CB RADIO                                        |
| BRAND NAME          | : | N/A                                             |
| MODEL NAME          | : | AT-500M II                                      |
| APPLICANT           | : | Qixiang Electron Science & Technology Co., Ltd. |
| DATE OF ISSUE       | : | Aug. 14, 2023                                   |
| STANDARD(S)         | : | FCC Part 15 Subpart B                           |
| REPORT VERSION      | : | V 1.0                                           |
|                     |   |                                                 |







# **REPORT REVISE RECORD**

| Report Version | Revise Time | Issued Date   | Valid Version | Notes           |
|----------------|-------------|---------------|---------------|-----------------|
| V1.0           | /           | Aug. 14, 2023 | Valid         | Initial Release |



# **TABLE OF CONTENTS**

| 1. | GENERAL INFORMATION                                                      | 5  |
|----|--------------------------------------------------------------------------|----|
| 2. | PRODUCT INFORMATION                                                      | 6  |
|    | 2.1 PRODUCT TECHNICAL DESCRIPTION                                        | 6  |
|    | 2.2 AUXILIARY SURROUNDING DESCRIPTION                                    | 6  |
|    | 2.3 TEST METHODOLOGY                                                     | 7  |
|    | 2.4 DEFINITION OF DEVICE CLASSIFICATION                                  | 7  |
|    | 2.5 DESCRIPTION OF TEST MODES                                            | 7  |
| 3. | TEST ENVIRONMENT                                                         | 8  |
|    | 3.1 ADDRESS OF THE TEST LABORATORY                                       | 8  |
|    | 3.2 TEST FACILITY                                                        | 8  |
|    | 3.3 ENVIRONMENTAL CONDITIONS                                             | 9  |
|    | 3.4 MEASUREMENT UNCERTAINTY                                              | 9  |
|    | 3.5 LIST OF EQUIPMENTS USED                                              | 10 |
| 4. | SUMMARY OF TEST RESULTS                                                  | 11 |
| 5. | RADIATED EMISSION MEASUREMENTS                                           | 12 |
|    | 5.1 PROVISIONS APPLICABLE                                                | 12 |
|    | 5.2 MEASUREMENT SETUP                                                    | 12 |
|    | 5.3 MEASUREMENT PROCEDURE                                                | 13 |
|    | 5.4 MEASUREMENT RESULT                                                   | 15 |
| 6. | CONDUCTED EMISSION MEASUREMENTS                                          | 27 |
|    | 6.1 PROVISIONS APPLICABLE                                                | 27 |
|    | 6.2 MEASUREMENT SETUP                                                    | 27 |
|    | 6.3 MEASUREMENT PROCEDURE                                                | 28 |
|    | 6.4 MEASUREMENT RESULT                                                   | 28 |
| 7. | ANTENNA CONDUCTED POWER FOR RECEIVERS                                    | 29 |
|    | 7.1 PROVISIONS APPLICABLE                                                | 29 |
|    | 7.2 MEASUREMENT SETUP                                                    | 29 |
|    | 7.3 MEASUREMENT PROCEDURE                                                | 29 |
|    | 7.4 MEASUREMENT RESULT                                                   | 30 |
| 8. | SCANNING RECEIVERS AND FREQUENCY CONVERTERS USED WITH SCANNING RECEIVERS | 32 |
|    | 8.1 PROVISIONS APPLICABLE                                                | 32 |
|    | 8.2 MEASUREMENT SETUP                                                    | 32 |
|    | 8.3 MEASUREMENT PROCEDURE                                                | 32 |
|    | 8.4 MEASUREMENT RESULT                                                   | 33 |
| ۸C |                                                                          | 31 |





# **1. GENERAL INFORMATION**

| Applicant                    | Qixiang Electron Science & Technology Co., Ltd.                                         |  |  |
|------------------------------|-----------------------------------------------------------------------------------------|--|--|
| Address                      | Qixiang Building, Tangxi Industrial Zone, Luojiang District, Quanzhou, Fujian,<br>China |  |  |
| Manufacturer                 | Dixiang Electron Science & Technology Co., Ltd.                                         |  |  |
| Address                      | Ωixiang Building, Tangxi Industrial Zone, Luojiang District, Quanzhou, Fujian,<br>China |  |  |
| Factory                      | Qixiang Electron Science & Technology Co., Ltd.                                         |  |  |
| Address                      | Qixiang Building, Tangxi Industrial Zone, Luojiang District, Quanzhou, Fujian,<br>China |  |  |
| Product Designation          | CB RADIO                                                                                |  |  |
| Brand Name                   | N/A                                                                                     |  |  |
| Test Model                   | AT-500M II                                                                              |  |  |
| Date of receipt of test item | Aug. 01, 2023                                                                           |  |  |
| Date of Test                 | Aug. 01, 2023~Aug. 14, 2023                                                             |  |  |
| Deviation from Standard      | No any deviation from the test method                                                   |  |  |
| Condition of Test Sample     | Normal                                                                                  |  |  |
| Test Result                  | Pass                                                                                    |  |  |
| Test Report Form No          | AGCTR-ER-FCC-SDOC V1.0                                                                  |  |  |

The above equipment was tested by Attestation Of Global Compliance (Shenzhen) Co., Ltd. for compliance with the requirements set forth in the FCC Rules and Regulations Part 15, the measurement procedure according to ANSI C63.4:2014. This said equipment in the configuration described in this report shows the maximum emission levels emanating from equipment are within the compliance requirements. The test results of this report relate only to the tested sample identified in this report.

| Prepared By                   | Bibo zhang                                                                           |               |
|-------------------------------|--------------------------------------------------------------------------------------|---------------|
| _                             | Bibo Zhang<br>(Project Engineer)                                                     | Aug. 14, 2023 |
| Reviewed By                   | Calvin Lin                                                                           |               |
| _                             | Calvin Liu<br>(Reviewer)                                                             | Aug. 14, 2023 |
| Approved By                   | Max Zhang                                                                            |               |
| ned by authorized approver or | Max Zhang<br>Authorized Officer<br>having been altered without authorization, or hav | Aug. 14, 2023 |



# **2. PRODUCT INFORMATION**

# 2.1 PRODUCT TECHNICAL DESCRIPTION

| Housing Type       | Plastic and metal                       |  |
|--------------------|-----------------------------------------|--|
| RX Frequency Range | 26.965MHz-27.405MHz (Scanning Receiver) |  |
| Equipment Type     | Table-Top                               |  |
| Hardware Version   | 1.0                                     |  |
| Software Version   | 1.0                                     |  |
| Power Supply       | DC 12V/DC 24V                           |  |

| I/O Port Information (Applicable Not Applicable) |      |                 |             |  |
|--------------------------------------------------|------|-----------------|-------------|--|
| I/O Port of EUT                                  |      |                 |             |  |
| I/O Port Type                                    | Q'TY | Cable           | Tested with |  |
| Hand microphone port                             | 1    | 0.8m,Unshielded | 1           |  |

# 2.2 AUXILIARY SURROUNDING DESCRIPTION

The Following Peripheral Devices And Interface Cables Were Connected During The Measurement:

☐ Test Accessories Come From The Laboratory

| Equipment    | Manufacturer | Model Name | Specification            | Data Cable | Power Cable |
|--------------|--------------|------------|--------------------------|------------|-------------|
| Load Antenna | -            | HG-E10     | Terminator DC -3G<br>50W | -          | -           |

# ☑ Test Accessories Come From The Manufacturer

| Equipment          | Manufacturer | Model Name | Specification | Data Cable | Power Cable     |
|--------------------|--------------|------------|---------------|------------|-----------------|
| Hand<br>microphone | -            | -          | -             | -          | 0.8m Unshielded |



# 2.3 TEST METHODOLOGY

The tests were performed according to following standards:

| No. | Identity           | Document Title                                                                                                                                                            |
|-----|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | FCC 47 CFR Part 15 | Radio Frequency Devices                                                                                                                                                   |
| 2   | ANSI C63.4-2014    | American National Standard for Methods of Measurement of Radio Noise<br>Emissions from Low-Voltage Electrical and Electronic Equipment in the Range<br>of 9 kHz to 40 GHz |

#### 2.4 DEFINITION OF DEVICE CLASSIFICATION

Unintentional radiator:

A device which is not intended to emit RF energy by radiation or induction.

Class A Digital Device:

A digital device which is marketed for use in commercial or business environment.

Class B Digital Device:

A digital device which is marketed for use by the general public or in a residential environment.

Note:

A manufacturer may also qualify a device intended to be marketed in a commercial, business or industrial environment as a Class B digital device, and in fact is encouraged to do so, provided the device complies with the technical specifications for a Class B Digital Device. In the event that a particular type of device has been found to repeatedly cause harmful interference to radio communications, the Commission may classify such a digital device as a Class B Digital Device, Regardless of its intended use.

# 2.5 DESCRIPTION OF TEST MODES

| Scanning mode by DC 12V                                                           | Worst                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Scanning stopped/Receiving at low channel of 26.965MHz to 27.405 MHz by DC 12V    |                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Scanning stopped/Receiving at middle channel of 26.965MHz to 27.405 MHz by DC 12V |                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Scanning stopped/Receiving at high channel of 26.965MHz to 27.405 MHz by DC 12V   |                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Scanning mode by DC 24V                                                           | Worst                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Scanning stopped/Receiving at low channel of 26.965MHz to 27.405 MHz by DC 24V    |                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Scanning stopped/Receiving at middle channel of 26.965MHz to 27.405 MHz by DC 24V |                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Scanning stopped/Receiving at high channel of 26.965MHz to 27.405 MHz by DC 24V   |                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                   | Scanning stopped/Receiving at low channel of 26.965MHz to 27.405 MHz by DC 12V<br>Scanning stopped/Receiving at middle channel of 26.965MHz to 27.405 MHz by DC 12V<br>Scanning stopped/Receiving at high channel of 26.965MHz to 27.405 MHz by DC 12V<br>Scanning mode by DC 24V<br>Scanning stopped/Receiving at low channel of 26.965MHz to 27.405 MHz by DC 24V<br>Scanning stopped/Receiving at middle channel of 26.965MHz to 27.405 MHz by DC 24V |

Note: Only the result of the worst case was recorded in the report.



# **3. TEST ENVIRONMENT**

# 3.1 ADDRESS OF THE TEST LABORATORY

Laboratory: Attestation of Global Compliance (Shenzhen) Co., Ltd.

Address: 1-2/F, Building 19, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

# 3.2 TEST FACILITY

The test facility is recognized, certified, or accredited by the following organizations:

#### CNAS-Lab Code: L5488

Attestation of Global Compliance (Shenzhen) Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2017 General Requirements) for the Competence of Testing and Calibration Laboratories.

#### A2LA-Lab Cert. No.: 5054.02

Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

#### FCC-Registration No.: 975832

Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files with Registration 975832.

#### IC-Registration No.: 24842 (CAB identifier: CN0063)

Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the Certification and Engineering Bureau of Industry Canada. The acceptance letter from the IC is maintained in our files with Registration 24842.



# **3.3 ENVIRONMENTAL CONDITIONS**

|                        | NORMAL CONDITIONS |
|------------------------|-------------------|
| Temperature range (°C) | 15 - 35           |
| Relative humidty range | 20 % - 75 %       |
| Pressure range (kPa)   | 86 - 106          |

# **3.4 MEASUREMENT UNCERTAINTY**

The reported uncertainty of measurement y ±U, where expended uncertainty U is based on a standard

uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%.

| Item                                        | Measurement Uncertainty    |
|---------------------------------------------|----------------------------|
| Uncertainty of Conducted Emission           | $U_c = \pm 2.9 \text{ dB}$ |
| Uncertainty of Radiated Emission below 1GHz | $U_c = \pm 3.9 \text{ dB}$ |
| Uncertainty of Radiated Emission above 1GHz | $U_c = \pm 4.9 \text{ dB}$ |



# 3.5 LIST OF EQUIPMENTS USED

| • Ra        | Radiated Emission |                   |              |           |            |                              |                              |  |  |  |  |  |
|-------------|-------------------|-------------------|--------------|-----------|------------|------------------------------|------------------------------|--|--|--|--|--|
| Used        | Equipment No.     | Test Equipment    | Manufacturer | Model No. | Serial No. | Last Cal. Date<br>(YY-MM-DD) | Next Cal. Date<br>(YY-MM-DD) |  |  |  |  |  |
| $\square$   | AGC-EM-E046       | EMI Test Receiver | R&S          | ESCI      | 10096      | 2023/02/18                   | 2024/02/17                   |  |  |  |  |  |
| $\boxtimes$ | AGC-EM-E116       | EMI Test Receiver | R&S          | ESCI      | 100034     | 2023/06/03                   | 2024/06/02                   |  |  |  |  |  |
| $\boxtimes$ | AGC-EM-E001       | Wideband Antenna  | SCHWARZBECK  | VULB9168  | D69250     | 2023/05/11                   | 2025/05/10                   |  |  |  |  |  |
| $\boxtimes$ | AGC-EM-E029       | Horn Antenna      | ETS          | 3117      | 00034609   | 2023/03/23                   | 2024/03/22                   |  |  |  |  |  |
| $\boxtimes$ | AGC-EM-E096       | Pre-amplifier     | ETS          | 3117-PA   | 00246148   | 2022/08/04                   | 2024/08/03                   |  |  |  |  |  |
| $\square$   | AGC-EM-S003       | Test Software     | FARA         | V.RA-03A  | N/A        | N/A                          | N/A                          |  |  |  |  |  |
| $\boxtimes$ | AGC-EM-S004       | Test Software     | Tonscend     | 4.0.0.0   | N/A        | N/A                          | N/A                          |  |  |  |  |  |

| • Co        | Conducted Emission |                   |              |                      |            |                              |                              |  |  |  |  |  |
|-------------|--------------------|-------------------|--------------|----------------------|------------|------------------------------|------------------------------|--|--|--|--|--|
| Used        | Equipment No.      | Test Equipment    | Manufacturer | Model No.            | Serial No. | Last Cal. Date<br>(YY-MM-DD) | Next Cal. Date<br>(YY-MM-DD) |  |  |  |  |  |
| $\boxtimes$ | AGC-EM-E045        | EMI Test Receiver | R&S          | ESPI                 | 101206     | 2023/06/03                   | 2024/06/02                   |  |  |  |  |  |
| $\boxtimes$ | AGC-EM-E023        | AMN               | R&S          | 100086               | ESH2-Z5    | 2023/06/03                   | 2024/06/02                   |  |  |  |  |  |
|             | AGC-EM-S001        | Test Software     | R&S          | ES-K1<br>(Ver.V1.71) | N/A        | N/A                          | N/A                          |  |  |  |  |  |

| • RI        | RF Conducted Measurement |                                 |              |           |            |                              |                              |  |  |  |  |
|-------------|--------------------------|---------------------------------|--------------|-----------|------------|------------------------------|------------------------------|--|--|--|--|
| Used        | Equipment No.            | Test Equipment                  | Manufacturer | Model No. | Serial No. | Last Cal. Date<br>(YY-MM-DD) | Next Cal. Date<br>(YY-MM-DD) |  |  |  |  |
|             | AGC-EM-E002              | RF<br>Communication<br>Test Set | HP           | 8920B     | US35010161 | 2023/06/02                   | 2024/06/01                   |  |  |  |  |
| $\boxtimes$ | AGC-ER-E086              | Spectrum Analyzer               | KEYSIGHT     | N9020A    | MY53300860 | 2023/06/01                   | 2024/05/31                   |  |  |  |  |
| $\boxtimes$ | AGC-EM-A007              | 30dB Attenuator                 | N/A          | 58-30-33  | N/A        | 2023/06/01                   | 2024/05/31                   |  |  |  |  |

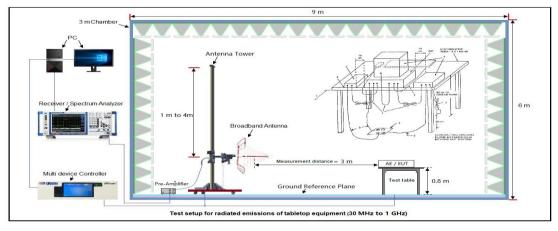


# 4. SUMMARY OF TEST RESULTS

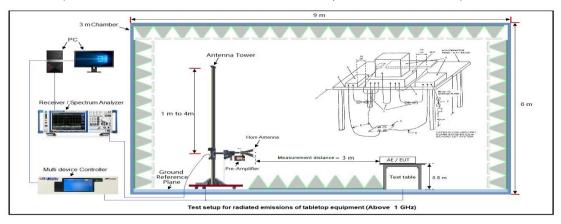
| Item | FCC Rules  | Description Of Test                                                         | Class/Severity | Result |
|------|------------|-----------------------------------------------------------------------------|----------------|--------|
| 1    | §15.107    | Radiated Emission                                                           | Class B        | Pass   |
| 2    | §15.109    | Conducted Emission                                                          | Class B        | Pass   |
| 3    | §15.111    | Antenna Conducted Power for Receivers                                       | /              | Pass   |
| 4    | §15.121(b) | Scanning receivers and frequency converters<br>used with scanning receivers | /              | Pass   |

NOTE: The device under test is a DC power supply device, and the conducted disturbance test is not applicable.




# **5. RADIATED EMISSION MEASUREMENTS**

# **5.1 PROVISIONS APPLICABLE**


#### FCC CFR Title 47 Part 15 Subpart B Section 15.109:

| Frequency Range | Class B Limit<br>(dBuV/m @3m) | Class A Limit<br>(dBuV/m @3m) | Value      |
|-----------------|-------------------------------|-------------------------------|------------|
| 30MHz-88MHz     | 40.00                         | 50.00                         | Quasi-peak |
| 88MHz-216MHz    | 43.50                         | 53.50                         | Quasi-peak |
| 216MHz-960MHz   | 46.00                         | 56.00                         | Quasi-peak |
| 960MHz-1GHz     | 54.00                         | 64.00                         | Quasi-peak |
| Above 1GHz      | 54.00                         | 60.00                         | Average    |
| Above IGHZ      | 74.00                         | 80.00                         | Peak       |

# **5.2 MEASUREMENT SETUP**



#### (Radiated Emission Measurements Test Setup for 30MHz to 1GHz)



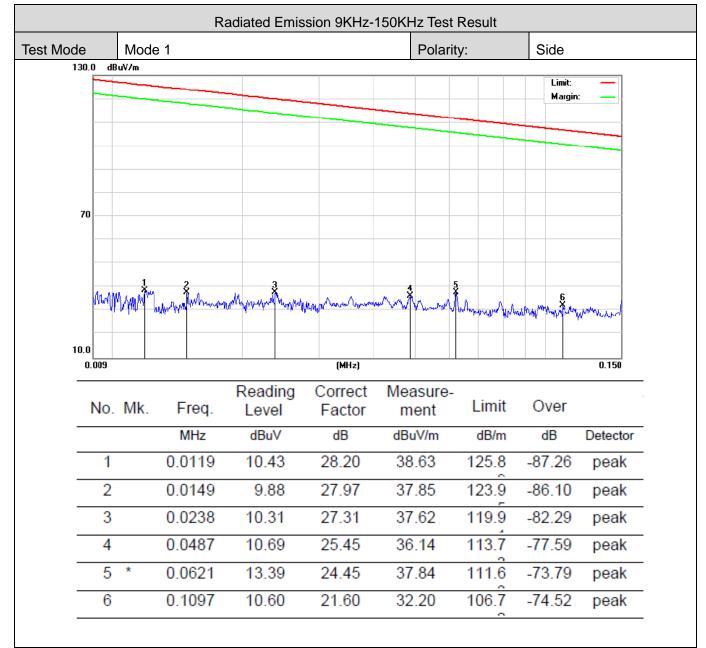
(Radiated Emission Measurements Test Setup for above 1GHz)



# **5.3 MEASUREMENT PROCEDURE**

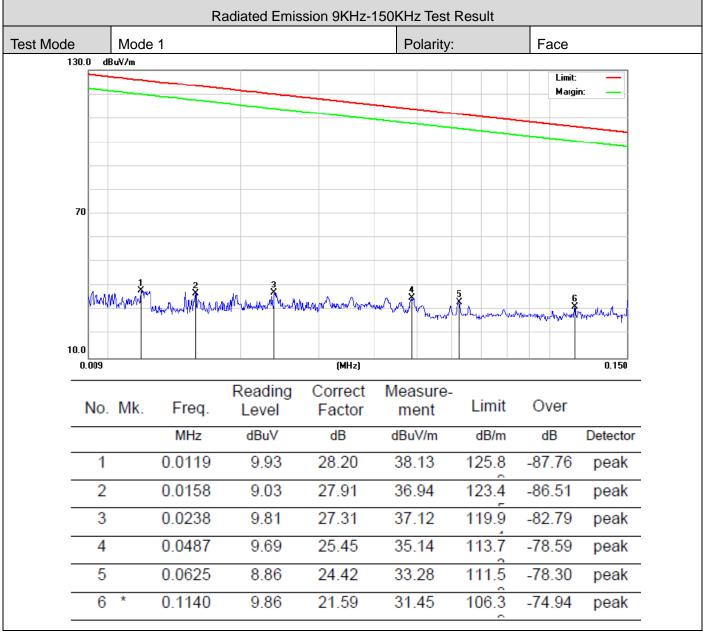
- 1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. When the EUT is a tabletop system, a wooden turntable with a height of 0.8 meters is used which is placed on the ground plane as per ANSI C63.4 (see Test Facility for the dimensions of the ground plane used). When the EUT is floor-standing equipment, it is placed on the ground plane which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.
- 2. Support equipment, if needed, was placed as per ANSI C63.4.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.4.
- 4. The EUT received power by AC 120V/60Hz.
- 5. The antenna was placed at 3 meter away from the EUT as stated in FCC Part 15. The antenna connected to the Analyzer via a cable and at times a pre-amplifier would be used.
- 6. The Analyzer / Receiver quickly scanned from 30MHz to 1000MHz. The EUT test program was started. Emissions were scanned and measured rotating the EUT to 360 degrees and positioning the antenna 1 to 4 meters above the ground plane, in both the vertical and the horizontal polarization, to maximize the emission reading level.
- 7. The test mode(s) were scanned during the test:
- 8. Recorded at least the six highest emissions. Emission frequency, amplitude, antenna position, polarization and turntable position were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit and Q.P./Peak reading is presented. For emissions below 1GHz, use 120KHz RBW and VBW>=3RBW for QP reading.
- 9. For emissions above 1GHz, use 1MHz RBW and 3MHz VBW for peak reading. Then 1MHz RBW and 10Hz VBW for average reading in spectrum analyzer.
- 10. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum values.
- 11. If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 12. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 13. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.
- 14. The test data of the worst case condition (mode 1&mode 5) was reported on the following Data page.



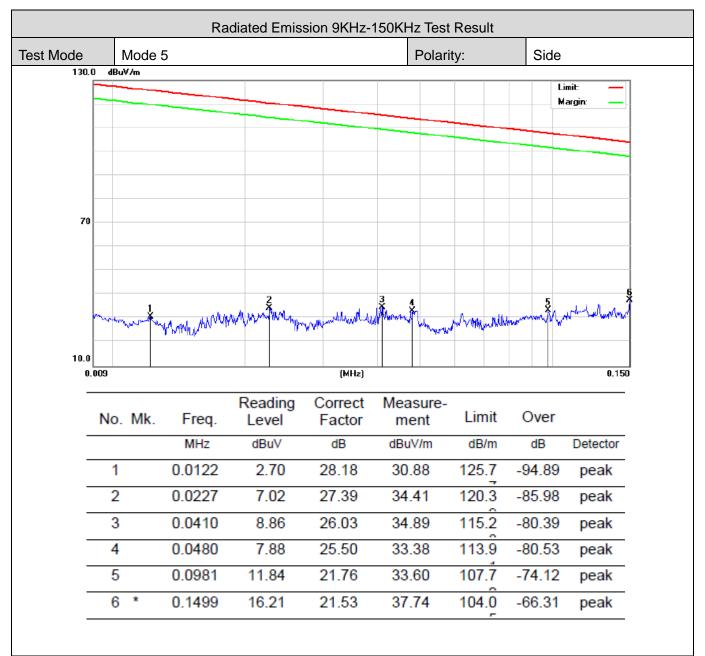

# **EMI TEST RECEIVER SETUP:**

During the radiated emission test, the EMI test receiver was set with the following configurations:

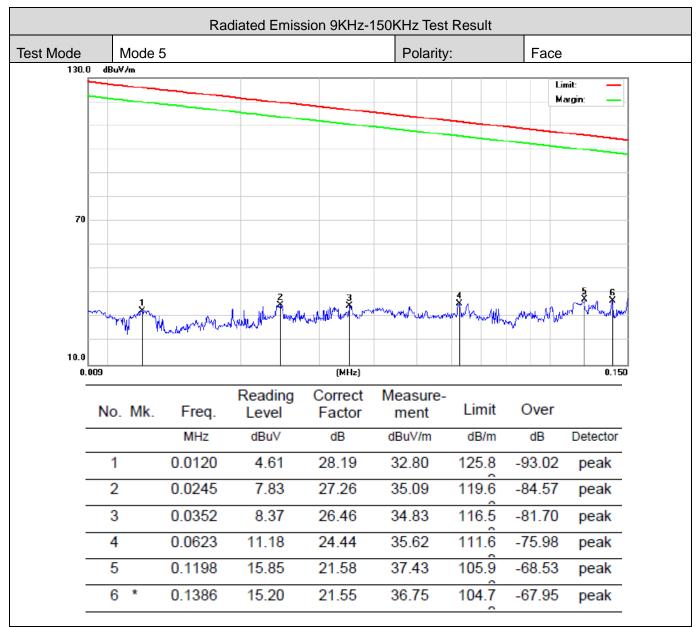
| Frequency Range   | RBW     | Video B/W | IF B/W  | Measurment |
|-------------------|---------|-----------|---------|------------|
| 30 MHz – 1000 MHz | 100 kHz | 300 kHz   | 120 kHz | QP         |
| Above 1 GHz       | 1MHz    | 3 MHz     | /       | PK         |
| Above T GHz       | 1MHz    | 10 Hz     | /       | Ave.       |



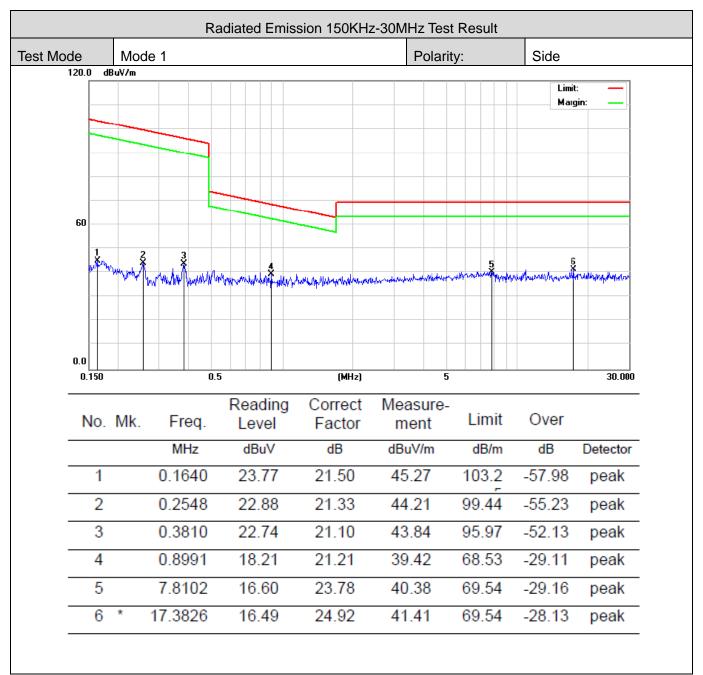

#### **5.4 MEASUREMENT RESULT**




# **RESULT: PASS**







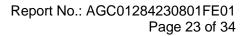




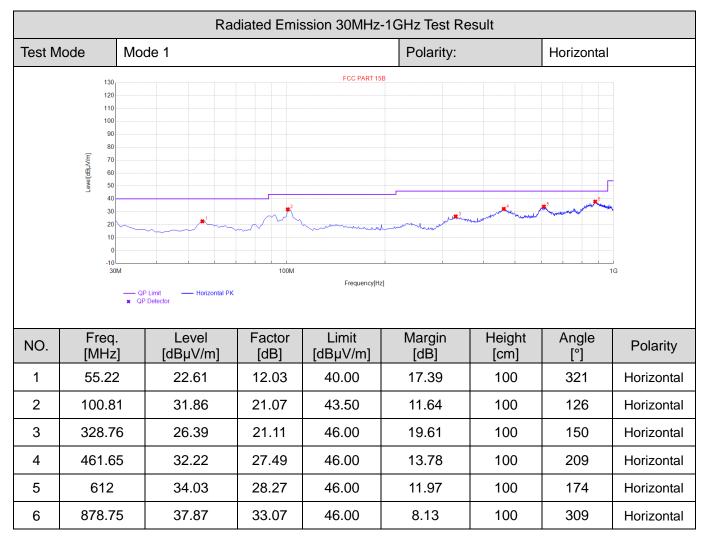


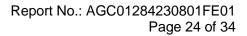




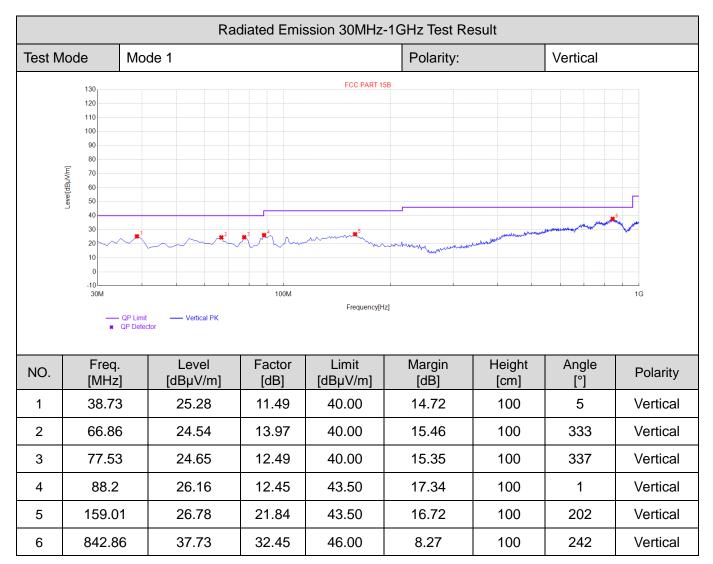


|           | R                               | adiated Emiss                  | ion 150KHz              | -30MHz Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Result                                       |                                                |                      |
|-----------|---------------------------------|--------------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|------------------------------------------------|----------------------|
| Test Mode | Mode 1                          |                                |                         | Polarity:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                              | Face                                           |                      |
| 120.0 dBu | N/m                             |                                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                              | Limit:                                         | ]                    |
|           |                                 |                                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                              | Margin:                                        |                      |
|           |                                 |                                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                              |                                                |                      |
|           |                                 |                                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                              |                                                |                      |
|           |                                 |                                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                              |                                                |                      |
|           | <b>-</b> _                      |                                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                              |                                                |                      |
| 60        |                                 |                                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                              |                                                |                      |
|           |                                 |                                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                              |                                                |                      |
| white may | Martin Martin Martin            | 4                              |                         | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | an worth a server                            |                                                | al ann an the        |
|           | on the polymorphic provided and | had white a part of the second | - ANN ANNAL HARMAN      | with the state of | ALCON TO A A A A A A A A A A A A A A A A A A | HATTER AND | An Anna an An        |
|           |                                 |                                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                              |                                                |                      |
|           |                                 |                                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                              |                                                |                      |
| 0.0       |                                 |                                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                              |                                                |                      |
| 0.150     | 0.5                             | i                              | (MHz)                   | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                              |                                                | 30.000               |
|           |                                 | Reading                        | Correct                 | Measure-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Limit                                        | Over                                           |                      |
| No.       | Mk. Freq.                       | Level                          | Factor                  | ment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Limit                                        | Over                                           |                      |
|           | MHz                             | dBuV                           | dB                      | dBuV/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | dB/m                                         | dB                                             | Detector             |
| 1         | 0.1749                          | 24.81                          | 21.48                   | 10.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 400.0                                        | EC 40                                          | neek                 |
|           | 0.1749                          | 24.01                          | 21.40                   | 46.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 102.6                                        | -56.40                                         | peak                 |
| 2         | 0.1749                          | 22.48                          | 21.40                   | 46.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 102.6<br>99.40                               | -56.40                                         | peak                 |
|           | 0.2562                          | 22.48                          | 21.33                   | 43.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 99.40                                        | -55.59                                         | peak                 |
| 3         | 0.2562<br>0.3832                | 22.48<br>23.46                 | 21.33<br>21.10          | 43.81<br>44.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 99.40<br>95.92                               | -55.59<br>-51.36                               | peak<br>peak         |
| 3         | 0.2562<br>0.3832<br>0.8349      | 22.48<br>23.46<br>17.95        | 21.33<br>21.10<br>21.15 | 43.81<br>44.56<br>39.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 99.40<br>95.92<br>69.17                      | -55.59<br>-51.36<br>-30.07                     | peak<br>peak<br>peak |
| 3         | 0.2562<br>0.3832                | 22.48<br>23.46                 | 21.33<br>21.10          | 43.81<br>44.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 99.40<br>95.92                               | -55.59<br>-51.36                               | peak<br>peak         |

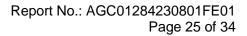



|                        |         |                                                                                                                 |                            | z-30MHz Tes |       |        |                  |
|------------------------|---------|-----------------------------------------------------------------------------------------------------------------|----------------------------|-------------|-------|--------|------------------|
| est Mode Mode          | e 5     |                                                                                                                 |                            | Polar       | ity:  | Side   |                  |
| 60                     |         | Antonio | Arring range and           |             |       |        | imit:<br>Aargin: |
| 0.0<br>0.150<br>No. Mk | 0.5     | Reading                                                                                                         | (MHz)<br>Correct<br>Factor |             | 5     | Over   | 30.00            |
|                        | MHz     | dBuV                                                                                                            | dB                         | dBuV/m      | dB/m  | dB     | Detector         |
| 1                      | 0.1731  | 25.22                                                                                                           | 21.48                      | 46.70       | 102.8 | -56.11 | peak             |
| 2                      | 0.2268  | 23.12                                                                                                           | 21.39                      | 44.51       | 100.4 | -55.96 | peak             |
| 3                      | 0.3392  | 25.20                                                                                                           | 21.18                      | 46.38       | 96.98 | -50.60 | peak             |
| 4 *                    | 1.5113  | 18.58                                                                                                           | 21.71                      | 40.29       | 64.02 | -23.73 | peak             |
| 5                      | 7.8933  | 18.22                                                                                                           | 23.81                      | 42.03       | 69.54 | -27.51 | peak             |
| 6                      | 21.6001 | 16.14                                                                                                           | 24.95                      | 41.09       | 69.54 | -28.45 | peak             |

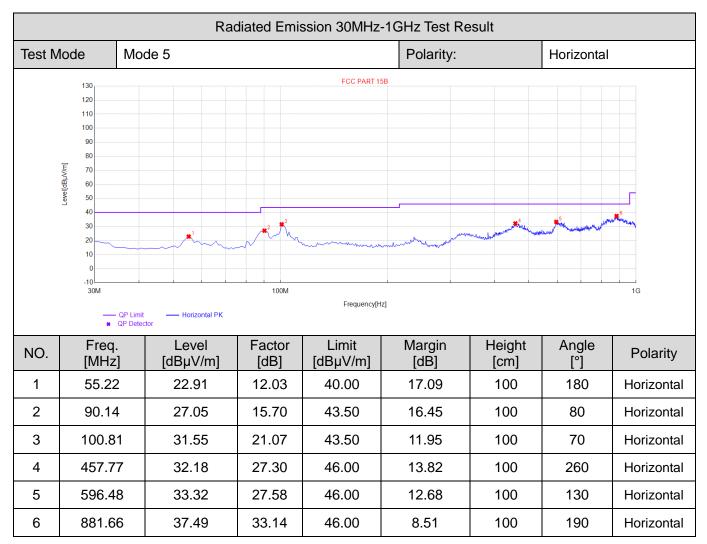


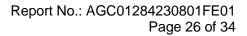

| est Mode | Mo     | ode 5 |         |                  |                       | Polarity:        |       | Face          |          |
|----------|--------|-------|---------|------------------|-----------------------|------------------|-------|---------------|----------|
| 120.0    | dBu∀/n | 1     |         |                  |                       |                  |       | Limit<br>Marg |          |
| 60       | 1      | Min   | 3       | Wr Wr Wr Marken  | March 1998 Welet Whee |                  |       | -v.,          |          |
| 0.0      | D      |       | 0.5     |                  | (MHz)                 | 5                |       |               | 30.00    |
| _        | No.    | Mk.   | Freq.   | Reading<br>Level | Correct<br>Factor     | Measure-<br>ment | Limit | Over          |          |
|          |        |       | MHz     | dBuV             | dB                    | dBuV/m           | dB/m  | dB            | Detector |
|          | 1      |       | 0.1731  | 24.46            | 21.48                 | 45.94            | 102.8 | -56.87        | peak     |
|          | 2      |       | 0.2255  | 22.64            | 21.39                 | 44.03            | 100.5 | -56.49        | peak     |
| _        | 3      |       | 0.3356  | 24.33            | 21.18                 | 45.51            | 97.07 | -51.56        | peak     |
|          | 4      |       | 0.7960  | 19.69            | 21.12                 | 40.81            | 69.58 | -28.77        | peak     |
|          | 5      | *     | 6.2519  | 17.81            | 23.36                 | 41.17            | 69.54 | -28.37        | peak     |
|          | 6      |       | 25.5912 | 16.30            | 24.55                 | 40.85            | 69.54 | -28.69        | peak     |



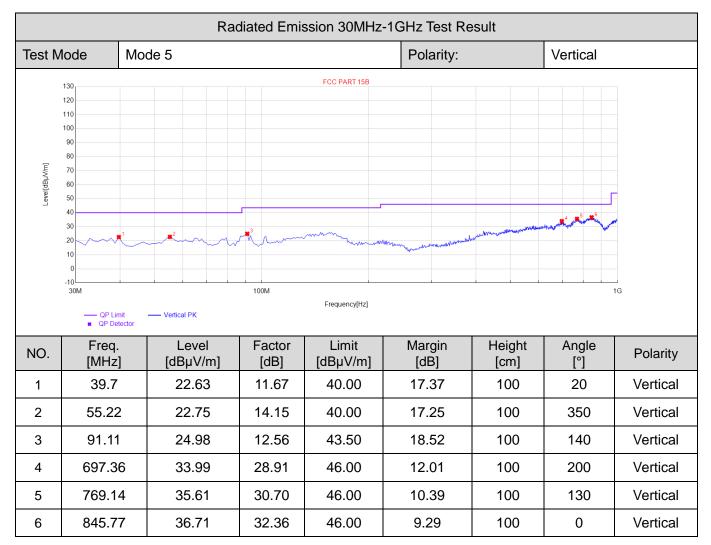


















#### Note:

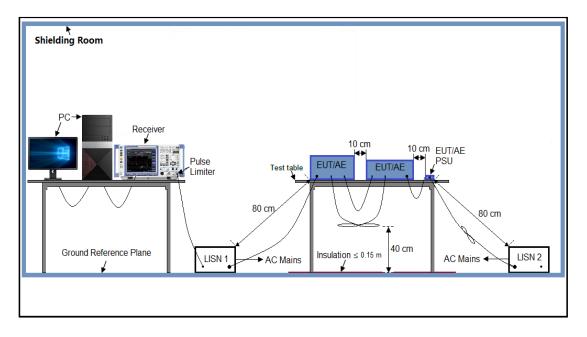
- 1. Factor=Antenna Factor + Cable loss Amplifier gain, Margin= Limit-Measurement.
- 2. The "Factor" value can be calculated automatically by software of measurement system.



# 6. CONDUCTED EMISSION MEASUREMENTS

# **6.1 PROVISIONS APPLICABLE**

# FCC CFR Title 47 Part 15 Subpart B Section 15.107:


For Class B Limits:

| Fragueney     | Maximum RF Line Voltage |                |  |  |  |
|---------------|-------------------------|----------------|--|--|--|
| Frequency     | Q.P. (dBµV)             | Average (dBµV) |  |  |  |
| 150kHz~500kHz | 66-56                   | 56-46          |  |  |  |
| 500kHz~5MHz   | 56                      | 46             |  |  |  |
| 5MHz~30MHz    | 60                      | 50             |  |  |  |

For Class A Limits:

| Frequency     | Maximum RF Line Voltage |                |  |  |  |
|---------------|-------------------------|----------------|--|--|--|
| Frequency     | Q.P. (dBµV)             | Average (dBµV) |  |  |  |
| 150kHz~500kHz | 79                      | 66             |  |  |  |
| 500kHz~30MHz  | 73                      | 60             |  |  |  |

# **6.2 MEASUREMENT SETUP**





# **6.3 MEASUREMENT PROCEDURE**

- 1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. When the EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.4 (see Test Facility for the dimensions of the ground plane used). When the EUT is a floor-standing equipment, it is placed on the ground plane which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.
- 2. Support equipment, if needed, was placed as per ANSI C63.4.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.4.
- 4. The EUT received AC 120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5. All support equipments received AC power from a second LISN, if any.
- 6. The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8. During the above scans, the emissions were maximized by cable manipulation.

#### **6.4 MEASUREMENT RESULT**

Note: Not applicable.



# 7. ANTENNA CONDUCTED POWER FOR RECEIVERS

# 7.1 PROVISIONS APPLICABLE

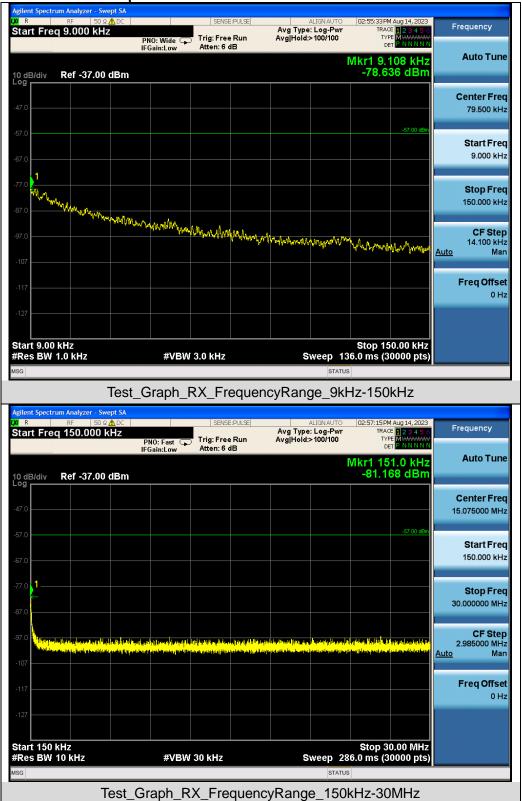
The antenna conducted power of the receiver as defined in §15.111 shall not exceed the values given in the following tables

| Frequency Range | 9 KHz to 2GHz     |  |
|-----------------|-------------------|--|
| Limit           | 2.0 nW (-57 dBm ) |  |

# 7.2 MEASUREMENT SETUP

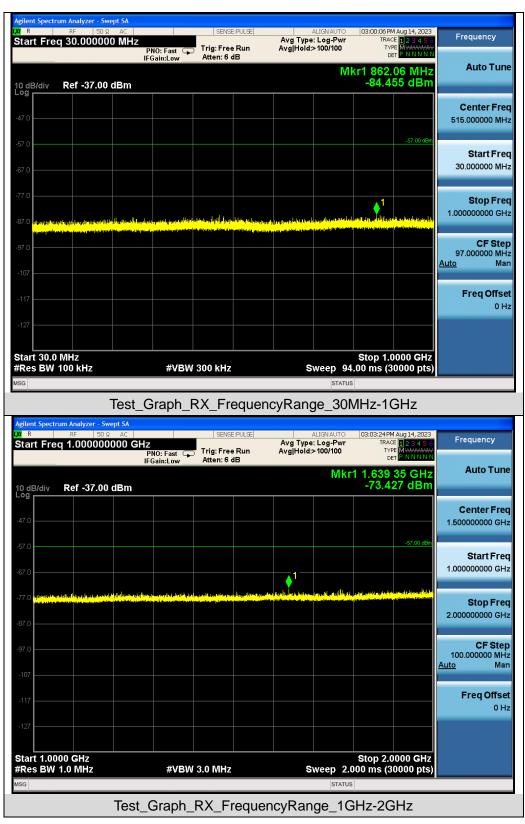
|          | nalyzer          |
|----------|------------------|
| 10 1 0.Z |                  |
|          | EUT              |
| Non-     | -Conducted Table |

# 7.3 MEASUREMENT PROCEDURE


- 1. The receiver antenna terminal connected to a spectrum analyzer.
- 2. Receiver set as follow:

| Frequency range     | RBW (kHz) | VBW (kHz) |
|---------------------|-----------|-----------|
| 9 kHz ~ 150 kHz     | 1         | 3         |
| 150 kHz ~ 30 MHz    | 10        | 30        |
| 30 MHz ~ 1000 MHz   | 100       | 300       |
| 1000 MHz ~ 3000 MHz | 1000      | 3000      |

3. The test data of the worst case condition (mode 1) was reported on the following Data page.




#### 7.4 MEASUREMENT RESULT



#### Test Graphs of Antenna Conducted Power For Receivers







# 8. SCANNING RECEIVERS AND FREQUENCY CONVERTERS USED WITH SCANNING RECEIVERS

#### **8.1 PROVISIONS APPLICABLE**

Except as provided in paragraph (c) of this section, scanning receivers shall reject any signals from the Cellular Radiotelephone Service frequency bands that are 38 dB or lower based upon a 12 dB SINAD measurement, which is considered the threshold where a signal can be clearly discerned from any interference that may be present.

# 8.2 MEASUREMENT SETUP



# **8.3 MEASUREMENT PROCEDURE**

- 1) Connected the EUT as shown in the above block diagram.
- 2) Apply a RF signal to the receiver input port at lowest, middle and highest channel frequencies of receiver operation band.
- 3) Adjust the audio output level of the receiver to it's rated value with the distortion less than 10%.
- 4) Adjust the RF Signal Generator Output Power to produce 12 dB SINAD without the audio output power dropping by more than 3 dB. This output level of the RF SG at each channel frequency is the sensitivity of the receiver.
- 5) Select the lowest or worse-case sensitivity level for all of the bands as the reference sensitivity.
- 6) Adjust the RF Signal Generator output to a level of +60 dB above the reference sensitivity obtained in step 5) and its frequency to the frequency points in the cellular band.
- 7) Set the Receiver squelch to threshold, the signal required to open the squelch must be lower than the reference sensitivity level.
- 8) Set the receiver in a scanning mode and allow it to scan through it's complete receiving range.
- 9) If the receiver unsquelched or stopped on any frequency, receiving at this frequency, then adjust the signal generator output level until 12 dB SINAD is produced, this level is the spurious value and the difference between the reference sensitivity and the spurious value is the rejection ratio and must be at least 38dB.
- 10) Repeat above procedure at the frequencies 824.5, 836.0, and 848.5 MHz for the mobile band, and 869.1, 881.5, and 893.5MHz for the cellular base band.



# **8.4 MEASUREMENT RESULT**

Note:Since the scanning operating frequency is 26.965MHz-27.405MHz, the influence of the public mobile fre quency band cannot be received, so it is ignored and not evaluated



Report No.: AGC01284230801FE01 Page 34 of 34

# **APPENDIX I: PHOTOGRAPHS OF TEST SETUP**

Refer to the Report No.: AGC01284230801AP03

# APPENDIX II: PHOTOGRAPHS OF TEST EUT

Refer to the Report No.: AGC01284230801AP02

-----END OF REPORT-----



# Conditions of Issuance of Test Reports

1. All samples and goods are accepted by the Attestation of Global Compliance (Shenzhen) Co., Ltd (the "Company") solely for testing and reporting in accordance with the following terms and conditions. The company provides its services on the basis that such terms and conditions constitute express agreement between the company and any person, firm or company requesting its services (the "Clients").

2. Any report issued by Company as a result of this application for testing services (the "Report") shall be issued in confidence to the Clients and the Report will be strictly treated as such by the Company. It may not be reproduced either in its entirety or in part and it may not be used for advertising or other unauthorized purposes without the written consent of the Company. The Clients to whom the Report is issued may, however, show or send it, or a certified copy thereof prepared by the Company to its customer, supplier or other persons directly concerned. The Company will not, without the consent of the Clients, enter into any discussion or correspondence with any third party concerning the contents of the Report, unless required by the relevant governmental authorities, laws or court orders.

3. The Company shall not be called or be liable to be called to give evidence or testimony on the Report in a court of law without its prior written consent, unless required by the relevant governmental authorities, laws or court orders.

4. In the event of the improper use of the report as determined by the Company, the Company reserves the right to withdraw it, and to adopt any other additional remedies which may be appropriate.

5. Samples submitted for testing are accepted on the understanding that the Report issued cannot form the basis of, or be the instrument for, any legal action against the Company.

6. The Company will not be liable for or accept responsibility for any loss or damage however arising from the use of information contained in any of its Reports or in any communication whatsoever about its said tests or investigations.

7. Clients wishing to use the Report in court proceedings or arbitration shall inform the Company to that effect prior to submitting the sample for testing.

8. The Company is not responsible for recalling the electronic version of the original report when any revision is made to them. The Client assumes the responsibility to providing the revised version to any interested party who uses them.

9. Subject to the variable length of retention time for test data and report stored hereinto as otherwise specifically required by individual accreditation authorities, the Company will only keep the supporting test data and information of the test report for a period of six years. The data and information will be disposed of after the aforementioned retention period has elapsed. Under no circumstances shall we provide any data and information which has been disposed of after retention period. Under no circumstances shall we be liable for damage of any kind, including (but not limited to) compensatory damages, lost profits, lost data, or any form of special, incidental, indirect, consequential or punitive damages of any kind, whether based on breach of contract of warranty, tort (including negligence), product liability or otherwise, even if we are informed in advance of the possibility of such damages.