
Report on the FCC and IC Testing of the LDL Technology S.A.S. RF Receiver Model: 20152 RCU Gen2 434 Autolocation S3P In accordance with FCC 47 CFR Part 15 C and ISED RSS-210 and ISED RSS-GEN

Prepared for	: LDL Technology S.A.S.
	Parc Technologique du Canal
	3 rue Giotto
	31520 Ramonville-Saint-Agne
	France
FCC ID:	T4520152
IC:	6450A-20152

Date: 2021-01-28

Document Number: TR-55559-02734-02 | Issue 2

Signatures in this approval box have checked this document in line with the requirements of TÜV SÜD Product Service document control rules. Engineering Statement:

This measurement shown in this report were made in accordance with the procedures described on test pages. All reported testing was carried out on a sample equipment to demonstrate limited compilance with with FCC 47 CFR Part 15 C and ISED RSS-210 and RSS-GEN.

The sample tested was found to comply with the requirements defined in the applied rules.

RESPONSIBLE FOR	NAME		DATE		SIGNATURE
Testing	Alex Fink		2021-01-	-28	Sint
					SIGN-ID 465040
Laboratory Accreditation		Laboratory recognition		Industry Canac	la test site registration
DAkkS Reg. No. D-PL-113	321-11-02	Registration No. BNetzA-CAB-16	/21-15	3050A-2	-
DAkkS Reg. No. D-PL-113	321-11-03				

Executive Statement:

A sample of this product was tested and found to be compilant with FCC 47 CFR Part 15 C:2019 and ISED RSS-210:2020 and RSS-GEN:2019

DISCLAIMER AND COPYRIGHT

This non-binding report has been prepared by TÜV SÜD Product Service with all reasonable skill and care. The document is confidential to the potential Client and TÜV SÜD Product Service. No part of this document may be reproduced without the prior written approval of TÜV SÜD Product Service. © 2021 TÜV SÜD Product Service. ACCREDITATION

Our BNetzA Accreditation does not cover opinions and interpretations and any expressed are outside the scope of our BNetzA Accreditation.

Trade Register Munich HRB 85742 VAT ID No. DE129484267 Information pursuant to Section 2(1) DL-InfoV (Germany) at www.tue-sued.com/imprint Managing Directors: Dr. Peter Havel (Sprecher / CEO) Dr. Jens Butenandt Patrick van Welij Phone: +49 (0) 9421 55 22-0 Fax: +49 (0) 9421 55 22-99 www.tuev-sued.de TÜV SÜD Product Service GmbH

Äußere Frühlingstraße 45 94315 Straubing Germany

TÜV SÜD Product Service

Product Service

Add value. Inspire trust.

Content

1 R	Report Summary	2
1.1	·····	2
1.2	Introduction	2
1.3	Brief Summary of Results	
1.4	Product Information	
1.5		5
1.6		5
2 T	Test Details	6
2.1	Bandwidth of Momentary Signals	6
2.2	Periodic Operation Requirement	
2.3	Temperature Stability	
2.4		
2.5	RF Exposure	
3 N	Measurement Uncertainty	

Annex to Test Report TR-55559-02734-02 | Issue: 01

5 pages

1 Report Summary

1.1 Modification Report

Alternations and additions of this report will be issued to the holders of each copy in the form of a complete document.

Issue	Description of changes	Date of Issue	
1	First Issue	2021-01-20	
2	test results for 125 kHz transmitter added	2021-01-28	

Table 1: Report of Modifications

1.2 Introduction

Applicant	LDL Technology S.A.S.
Manufacturer	LDL Technology S.A.S.
Model Number(s)	20152 RCU GEN2 434 AUTOLOCATION S3P
Serial Number(s)	0525bFba
	0525bFbd
Hardware Version(s)	
Software Version(s)	
Number of Samples Tested	1
Test Specification(s) /	FCC 47 CFR Part 15 C: 2019
Issue / Date	ISED RSS-210, Issue 10, Amendment 1: 2020
	ISED RSS-GEN, Issue 5, Amendment 1: 2019
Test Plan/Issue/Date	
Order Number	CD20982
Date	2020-11-24
Date of Receipt of EUT	2020-12-03
Start of Test	2021-01-05
Finish of Test	2021-01-28
Name of Engineer(s)	Alex Fink
Related Document(s)	ANSI C63.4: 2014
	ANSI C63.10: 2013
	FCC 47 CFR Part 2 J: 2019
	KDB 558074 D01 V05R02
	ISED RSS-102, Issue 5, 2015

1.3 Brief Summary of Results

A brief summary of the tests carried out in accordance with FCC 47 CFR Part 15 C, ISED RSS-210 and ISED RSS-GEN is shown below.

Section	Specification	Test Description	Result
	Clause		
Transmittin	g continuously		
2.1	15.231(c)	Bandwidth of momentary signals	Pass
2.2	15.231(e)/	Periodic operation requirement	Pass
	15.231(3)		
2.4	15.231(e)	Radiated Emissions	Pass
	15.205, 15.209		
N/A	15.207	Conducted Emissions on Mains Terminals	Not applicable,
			battery supply
2.5	15.212 (1)(viii)	RF Exposure	Pass

Table 2: Results according to FCC 47 CFR Part 15 C

Section	Specification	Test Description	Result
	Clause		
Transmittin	g continuously		
2.1	A1.3	Bandwidth of momentary signals	Pass
2.2	A.1.1	Periodic operation requirement	Pass
2.4	A.1.1	Radiated Emissions	Pass

Table 3: Results according to ISED RSS-210

Section	Specification	Test Description	Result
	Clause		
Transmittin	g continuously		
2.1	6.7	Bandwidth of momentary signals	Pass
2.4	8.9, 8.10	Spurious Emissions	Pass
2.3	6.11	Temperature Stability	Pass
N/A	8.8	Conducted Emissions on Mains Terminals	Not applicable,
			battery supply
2.5	3.4	RF Exposure	Pass

Table 4: Results according to RSS-Gen

1.4 Product Information

1.1.1 Technical Description

The RCU GEN2 DTC main function is to receive RF frames from sensors and RCUs and transmit data by RF or CAN. An optional LF initiator with integrated antenna is also provided. The RCU is to be located under the truck's floor, and receives data supplied by Wheel Unit Sensors. It is powered by the vehicle battery (12 or 24V).

Working temperature: -40° to +85° C Supply voltage: 12/24 V (nominal), 10-32 V (limit)

This device has 2 RF interfaces / radio technologies.

- 1. Tx/Rx @ 433 MHz
- 2. Inductive @125 kHz

	1
RF Module	MTAGEN2 Model: 312-003-1090-B Manufacturer: LDL-TECHNOLOGY Using RF IC: ATA5831 Manufacturer: ATMEL
Frequency range	433,80 to 434,01 MHz
Maximum RF output power	3dBm
Emission designator	FID
Modulations	FSK
Channel spacing	NA
Number of channels	1
Channel bandwidth	100kHz
Antenna type	Custom Vertical Helix Antenna Model: 205-008-0003-A2 Manufacturer: WIREFORM
Antenna frequency band	432 – 436 MHz
Antenna maximum gain	-3dBi

Transmitter	Custom discrete design
Frequency range	125kHz
Maximum output current	2A peak-peak
Emission designator	AID
Modulations	ASK
Channel spacing	NA
Number of channels	1
Channel bandwidth	100kHz
Antenna type	Embedded LC resonant Ferrite antenna Model: KGEA-BFCAM Manufacturer: PREMO
Antenna frequency band	125kHz +/- 1,5kHz

1.5 EUT Modifications Record

The table below details modifications made to the EUT during the test programme. The modifications incorporated during each test are recorded on the appropriate test pages.

Modification State	Description of Modification still fitted to EUT	Modification Fitted By	Date Modification Fitted		
0	As supplied by the customer, S/N: 0525bFbA	Not Applicable	Not Applicable		
Table 5					

Modification State	Description of Modification still fitted to EUT	Modification Fitted By	Date Modification Fitted		
0	As supplied by the customer, S/N: 0525bFbd - sample for periodic operation requirement test	Not Applicable	Not Applicable		
T-bla 0					

Table 6

1.6 Test Location

TÜV SÜD Product Service conducted the following tests at our Straubing test laboratory:

Test Name	Name of Engineer(s)
Transmitting continuously	
Bandwidth of momentary signals	Alex Fink
Periodic operation requirement	Alex Fink
Radiated Emissions	Alex Fink
Temperature Stability	Alex Fink
RF Exposure	Alex Fink

Office Address:

Äußere Frühlingstraße 45 94315 Straubing Germany

2 Test Details

2.1 Bandwidth of Momentary Signals

2.1.1 Specification Reference

FCC 47 CFR Part 15 C, Clause 15.231(c) FCC 47 CFR Part 15 C, Clause 15.215(c) ISED RSS-210, Clause A.1.3 ISED RSS-Gen, Clause 6.7

2.1.2 Equipment under Test and Modification State

20152 RCU GEN2 434 AUTOLOCATION S3P, S/N: 0525bFbA - Modification State 0

2.1.3 Date of Test

2021-01-05 and 2021-01-28

2.1.4 Environmental Conditions

Ambient Temperature	19 °C
Relative Humidity	36 %

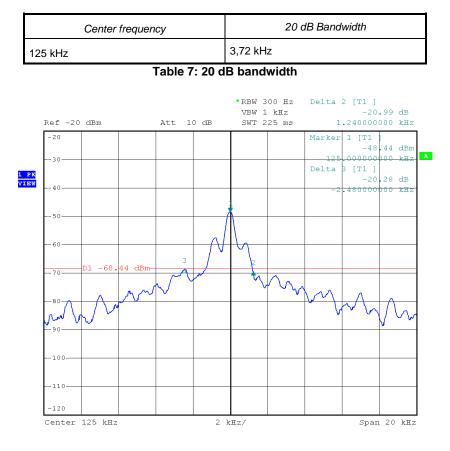
2.1.5 Specification Limits

FCC 47 CFR, clause 15.231(c)

The bandwidth of the emission shall be no wider than 0.25 % of the center frequency for devices operating above 70 MHz and below 900 MHz. For devices operating above 900 MHz, the emission shall no wider than 0.5 % of the center frequency. Bandwidth is determined at the points 20 dB down from the modulation carrier.

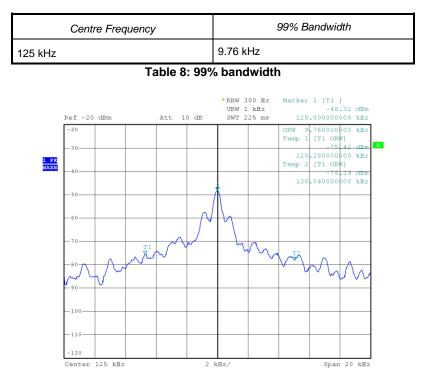
ISED RSS-210 Issue 10, Amd. 1; clause A1.3

The occupied bandwidth of the momentary devices shall be less than or equal to 0.25 % of the centre frequency for devices operating between 70 MHz and 900 MHz. For devices operating above 900 MHz, the occupied bandwidth shall be less than or equal to 0.5 % of the centre frequency.


2.1.6 Test Method

The test was performed according to ANSI C63.10, clauses 6.9 See section 2.4.6 of this test report for details.

2.1.7 Test Results


Transmitting continuously on 125 kHz

Date: 28.JAN.2021 09:45:33

Transmitting continuously on 125 kHz

Date: 28.JAN.2021 09:43:11

Transmitting continuously on 433.92 MHz

		Center frequ	uency			20 dE	3 Bandwid	lth	
433	.92 MHz	<u>.</u>		9	91 kHz				
			Tab	le 9: 20 dE	bandw	idth			
Spectrum	S	pectrum 2	×						Ē
Ref Level				RBW 3 kHz					
Att	10 c	IB SWT 631	.8 µs 👄 ۷	BW 30 kHz	Mode Auto	FFT			
1Pk View									
					D3[1]			-20.05 dB
-20 dBm					M1				34.330 kHz
20 0.0111				$ \Lambda_{\alpha} \Lambda_{\alpha} $	<u></u> м1	.1]			20.57 dBm 27800 MHz
-30 dBm				AN VO TO	hat			100.52	27000 11112
40 dBm	D1 -40.57	0 dBm	D2	A		D3			
			m			\sim			
-50 dBm			ſ		ŕ	- h	1		
							m		
60.dBm -4									
.70 dBm									
, o abiii									
-80 dBm									
-90 dBm		++		+					
-100 dBm		+ +		+ +					
CF 433.92	MHz	· · ·		2001 p	ts			Span 3	300.0 kHz
larker									
	Trc	X-value		Y-value	Function	on	Fun	ction Result	
M1 D2 M	1	433.9278 -56.8		-20.57 dBm -20.27 dB					
D2 M			2 KHZ 3 kHz	-20.27 dB -20.05 dB					

Date: 5.JAN.2021 11:34:35

Transmitting continuously on 433.92 MHz

Centre Frequency			99% Bandwidth			
3.92 MHz		8	30 kHz			
	Tal	ole 10: 99%	bandwid	th		
Spectrum	Spectrum 2 🛛 🗴					
Ref Level -10.00) dBm	RBW 3 kHz				
Att	5 dB SWT 631.8 µs	🔵 VBW 30 kHz 🛛	Mode Auto FFT			
●1Pk Max						
-20 dBm		Δ.Δ.	M1[1]		-21.27 dBm 433.927240 MHz 79.910044978 kHz	
-30 dBm			m			
-40 dBm	^	ŧ.	T2			
-50 dBm	- mm		````````	h		
-60 dBm-						
-70 dBm						
-80 dBm						
-90 dBm						
-100 dBm						
CF 433.92 MHz		2001 pt	ts	1	Span 300.0 kHz	
Marker						
Type Ref Trc	X-value	Y-value	Function	Fund	tion Result	
M1 : T1 : T2 :	433.877121 MHz		Occ Bw		79.910044978 kHz	

Date: 5.JAN.2021 11:32:14

2.1.8 Test Location and Test Equipment

The test was carried out in Semi anechoic room - cabin no. 11

Instrument	Manufacturer	Type No	TE No	Calibration Period (months)	Calibration Due
Spectrum and signal analyser	Rohde & Schwarz	FSV40	20219	24	2022-01-31

Table 11

2.2 Periodic Operation Requirement

2.2.1 Specification Reference

FCC 47 CFR Part 15 C, Clause 15.231(e) ISED RSS-210, Clause A.1.1

2.2.2 Equipment under Test and Modification State

20152 RCU GEN2 434 AUTOLOCATION S3P, S/N: 0525bFbd - Modification State 0

2.2.3 Date of Test

2021-01-18

2.2.4 Environmental Conditions

Ambient Temperature	19 °C
Relative Humidity	28 %

2.2.5 Test Method

The test was performed using a spectrum analysator in zero-span-mode with the frequency set to the center frequency of the transmitter and the resolution bandwidth set to a value greater of the emission bandwidth to cover the full output power of the transmitter. Sweep time and sweep points were set to values given a reasonable resolution of test results.

Center frequency:	434 MHz
RBW:	1 MHz
Sweep time:	12 sec
Sweep points:	1001

2.2.6 Specification Limits

FCC 47 CFR 15.231(a) and ISED RSS-210 A1.1

- 1. A manually operated transmitter shall employ a push-to-operate switch that will automatically deactivate the transmitter within not more than 5 s of being released.
- 2. A transmitter activated automatically shall cease transmission within 5 s after activation.
- 3. Periodic transmissions at regular predetermined intervals are not permitted (except as defined in FCC 47 CFR 15.231(e) and ISED RSS-210 A1.1.4). However, polling or supervision transmissions, including data, to determine system integrity of transmitters used in security or safety applications are allowed if the total duration of transmissions does not exceed more than two seconds per hour (2 s/h) for each transmitter. There is no limit on the number of individual transmissions, provided the total transmission time does not exceed 2 s/h.
- 4. Intentional radiators which are employed for radio control purposes during emergencies involving fire, security of goods (e.g. burglar alarms), and safety-of-life, when activated to signal an alarm, may operate during the pendency of the alarm condition.

FCC 47 CFR 15.231(e) and ISED RSS-210 A1.1.4

In additions, devices operated under these section shall be capable of automatically limiting their operation so that the duration of each transmission is not greater than 1 s and the silent period between transmission is at least 30 times the duration of the transmission, but not less than 10 s und all circumstances.

2.2.7 Test Results

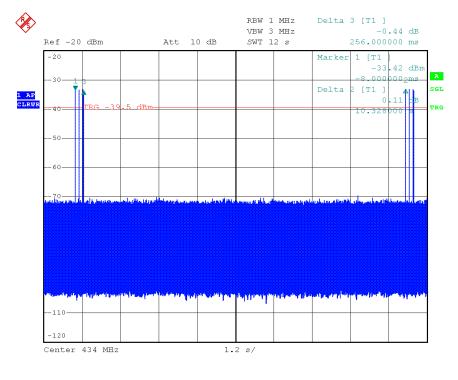
General information on transmitter:

The transmitter is used for

- □ Security or safety applications
- ⊠ other applications

The transmitter is operated

- □ manually
- ⊠ automatically

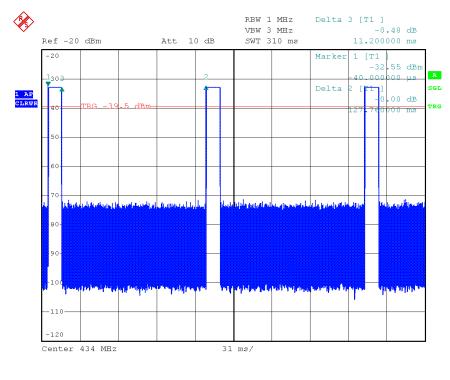

Periodic operation according to

CFR 47 Part 15, clause 15.231(e)

ISED RSS-210, Issue 10, Amd. 1, section A1.4

The device is provided with a means for automatically limiting operation so that the duration of each transmission is not greater than one second and the silent period between transmissions is at least 30 times the duration of the transmission but in no case less than 10 s.

- Declared by applicant
- Declared by applicant
- Declared by applicant ¹
- □ Declared by applicant
- ☑ Test performed
- ⊠ Passed



Date: 18.JAN.2021 09:30:50

¹ Please refer to external photos in annex for details.

COMMERCIAL-IN-CONFIDENCE

Date: 18.JAN.2021 09:32:59

Result: transmission stopped after 300ms

2.2.8 Test Location and Test Equipment

The test was carried out in Semi anechoic room - cabin no. 11

Instrument	Manufacturer	Type No	TE No	Calibration Period (months)	Calibration Due
Spectrum analyser	Rohde & Schwarz	FSP30	19533	18	2022-03-31
TRILOG Broadband Antenna	Rohde & Schwarz	VULB 9162	20116	36	2022-01-31

Table 12

2.3 Temperature Stability

2.3.1 Specification Reference

ISED RSS-Gen, Clause 6.11, 8.11

2.3.2 Equipment under Test and Modification State

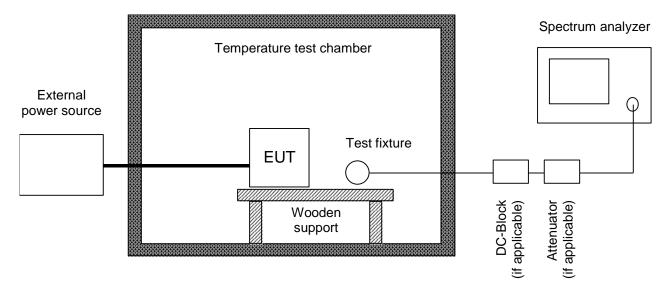
20152 RCU GEN2 434 AUTOLOCATION S3P, S/N: 0525bFbA - Modification State 0

2.3.3 Date of Test

2021-01-13

2.3.4 Environmental Conditions

Ambient Temperature	21 °C
Relative Humidity	28 %


2.3.5 Specification Limits

If the stability of the license-exempt radio apparatus is not specified in the applicable RSS, the fundamental emissions of the radio apparatus should be kept within at least the central 80 % of its permitted operating frequency band in order to minimize the possibility of out-of-band operation. In additions, its occupied bandwidth shall be entirely outside the restricted bands and the prohibited TV bands of 85 MHz - 72 MHz, 76 MHz - 88 MHz, 174 MHz - 216 MHz, and 470 MHz - 602 MHz, unless otherwise indicated.

2.3.6 Test Method

The test was performed according to ANSI C63.10, section 6.8.

The frequency tolerance of the carrier signal is measured over a temperature variation of -20 °C to +50 °C at normal supply voltage, and for a variation in the primary supply voltage from 85 % to 115 % of the rates supply voltage at a temperature of 20 °C. Temperature and voltage range may vary if the manufacturer states another temperature or voltage range.

If the EUT provides an antenna connector the spectrum analyzer is connected to this port. If required, a resistive matching network equal to the impedance specified or employed for the antenna is used as well as a DC block and appropriate (50 Ω) attenuators. In case where the EUT does not provide an antenna connector or a test fixture is used.

For battery operated equipment, the test is performed using a new battery. Alternatively, an external supply voltage can be used and is at least set to:

- The maximum battery voltage as delivered by a new battery or 115 % of the battery nominal voltage;
- The battery nominal voltage
- 85 % of the battery nominal voltage

• The battery operating end point voltage which shall be specified by the equipment manufacturer. The EUT is operating providing an unmodulated carrier for frequency error tests. The peak detector of the spectrum analyzer is selected and resolution as well as video bandwidth are set to values appropriate to shape of the spectrum of the EUT. The frequency counter mode of the spectrum analyzer is used to maximize the accuracy of the measured frequency tolerance.

If an unmodulated carrier is not available a significant and stable point of the spectrum is selected and the span is reduced to a value that delivers an accuracy which shall be better than 1 % of the maximum frequency tolerance allowed for the carrier signal. This method may be performed as long as the margin to the frequency tolerance is larger than the uncertainty of the measured frequency tolerance.

2.3.7 Test Results

Transmitting	continuously	/ on 433.92 MHz

Temperature	Supply Voltage	Tested Centre Frequency	Frequency drift
20.0°C	12.0 V DC	433.905820 MHz	0
20.0°C	10.0 V DC	433.905820 MHz	0
20.0°C	32.0 V DC	433.906020 MHz	0.2 kHz
-40.0°C	12.0 V DC	433.910220 MHz	4.4 kHz
85.0°C	12.0 V DC	433.897020 MHz	-8.8 kHz

Table 13

2.3.8 Test Location and Test Equipment

The test was carried out in Semi anechoic room - cabin no. 11

Instrument	Manufacturer	Туре No	TE No	Calibration Period (months)	Calibration Due
Spectrum and signal analyser	Rohde & Schwarz	FSV40	20219	24	2022-01-31
Climatic test chamber	Feutron	KPK200-2	19868	12	2021-08-31

Table 14

2.4 Radiated emissions

2.4.1 Specification Reference

FCC 47 CFR Part 15 C, Clauses 15.205, 15.209 and 15.231(e) ISED RSS-210, Clause A.1.1 ISED RSS-Gen, Clauses 8.9 and 8.10

2.4.2 Equipment under Test and Modification State

20152 RCU GEN2 434 AUTOLOCATION S3P, S/N: 0525bFbA - Modification State 0

2.4.3 Date of Test

2020-01-11 and 2020-01-28

2.4.4 Environmental Conditions

Ambient Temperature	23 °C
Relative Humidity	31 %

2.4.5 Specification Limits

Frequency Range	Test distance	Field	strength	Field strength			
(MHz)	(m)	(μA/m)	(dBµA/m)	(μV/m)	(dBμV/m)		
0.009 - 0.49	300	6.37 / f	20*lg(6.37 / f)	2400 / f	20*lg(2400 / f)		
0.49 – 1.705	0.49 - 1.705 30		20*lg(63.7 / f)	24000 / f	20*lg(24000 / f)		
1.705 - 30	30	0.08	20*lg(0.08 / f)	30	20*lg(30 / <i>f</i>)		
30 - 88	3			100	40		
88 - 216	3			150	43.5		
126 - 960	3			200	46		
above 960	3			500	54		

Table 15 General radiated emission limits

FCC 47 CFR Part 15 C, Clause 15.231(a); ISED RSS-210, Clause A.1.1

Frequency Range	Field strength o	of fundamental	Field strength of	spurious emissions					
(MHz)	(μV/m)	(dBµV/m)	(μV/m)	(dBµV/m)					
40.66 - 40.70	2500	67.96	225	47.96					
70 – 130	1250	61.94	125	41.94					
130 – 174	1250 – 3750 *	61.94 – 71.48 *	125 – 375 *	41.94 - 51.48 *					
174 – 260	3750	71.48	375	51.48					
260 - 470	3750 - 12500 *	71.48 - 81.94 *	375 – 1250 *	51.48 - 61.94 *					
Above 470	12500	81.94	1250	61.94					

* linear interpolation

The above field strength limits are specified at a distance of 3 m. The tighter limits apply at the band edges.

Intentional radiators shall demonstrate compliance with the limits above based on the (linear) average value of the measured emissions. As an alternative, compliance with these limits may be based on the use of measurement instrumentations with a CISPR quasipeak detector. If average emission measurements are employed, the provisions for averaging pulsed emissions and for limiting peak emissions apply.

The limits on the field strength of the spurious emissions in the table are based on the fundamental frequency of the intentional radiator. Spurious emissions shall be attenuated to the average (or alternatively, CISPR quasi-peak) limits shown in this table or to the general spurious emission limits, whichever limit permits a higher field strength.

Frequency Range	Field strength	of fundamental	Field strength of	spurious emissions	
(MHz)	(μV/m)	(dBµV/m)	(μV/m)	(dBµV/m)	
40.66 - 40.70	1000	60	100	40	
70 - 130	500	53.98	50	33.98	
130 – 174 500 – 1500 *		53.98 - 63.52 *	50 - 150 *	33.98 - 43.52	
174 – 260	1500	63.52	150	43.52	
260 - 470 1500 - 5000 *		63.52 – 73.98 *	150 – 500 *	43.52 - 53.98	
Above 470	5000	73.98	500	53.98	

FCC 47 CFR Part 15 C, Clause 15.231(e); ISED RSS-210, Clause A.1.4

* linear interpolation

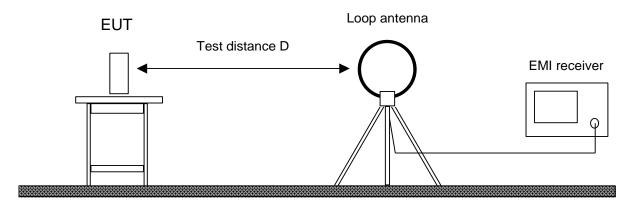
The above field strength limits are specified at a distance of 3 m. The tighter limits apply at the band edges.

Intentional radiators shall demonstrate compliance with the limits above based on the (linear) average value of the measured emissions. As an alternative, compliance with these limits may be based on the use of measurement instrumentations with a CISPR quasipeak detector. If average emission measurements are employed, the provisions for averaging pulsed emissions and for limiting peak emissions apply.

The limits on the field strength of the spurious emissions in the table are based on the fundamental frequency of the intentional radiator. Spurious emissions shall be attenuated to the average (or alternatively, CISPR quasi-peak) limits shown in this table or to the general spurious emission limits, whichever limit permits a higher field strength.

2.4.6 Test Method

The test was performed according to ANSI C63.10, sections 11.11 and 11.12

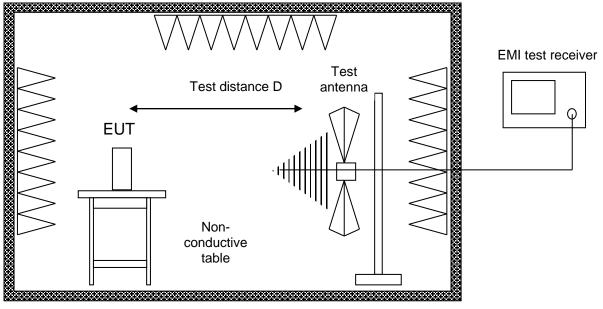

Prescans are performed in six positions of the EUT to get the full spectrum of emission caused by the EUT with the measuring antenna raised and lowered from 1 m to 4 m with vertical and horizontal polarisation to find the combination of table position, antenna height and antenna polarisation for the maximum emission levels.

Data reduction is applied to these results to select those levels having less margin than 10 dB or exceeding the limit using subranges and limited number of maximums.

Further maximisation for adjusting the maximum position is following.

Equipment and cables are placed and moved within the range of position likely to find their maximum emissions.

2.4.6.1 Frequency range 9 kHz – 30 MHz


The EUT was placed on a non-conductive table, 0.8 m above the ground.

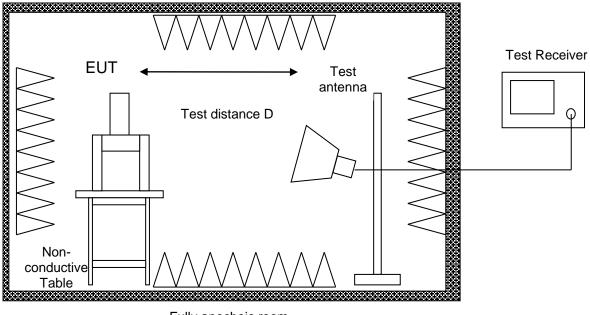
Radiated emissions in the frequency 9 kHz - 30 MHz is measured within a semi-anechoic room with an active loop antenna with the measurement detector set to peak. In addition, in the frequency range 9 kHz to 490 kHz also an average detector was used. The measurement bandwidth of the receiver was set to 300 Hz in the frequency range 9 kHz to 150 kHz and 10 kHz in the frequency range 150 kHz to 30 MHz. Prescans were performed in six positions of the EUT.

For final measurements the detector was set to CISPR quasi-peak and in addition to CISPR average in the frequency range 9 kHz to 490 kHz with a resolution bandwidth 200 Hz in the frequency range 9 kHz to 150 kHz and 9 kHz in the frequency range 150 kHz to 30 MHz. Final tests were performed immediately after a final frequency and zoom (for drifting disturbances) and maximum adjustment.

2.4.6.2 Frequency range 30 MHz – 1 GHz

Alternate test site (semi anechoic room)

The EUT was placed on a non-conductive table, 0.8 m above the ground plane


Radiated emissions in the frequency range 30 MHz - 1 GHz is measured within a semi-anechoic room with groundplane complying with the NSA requirements of ANSI C63.4. for alternative test sites. A linear polarised logarithmic periodic antenna combined with a 4:1 broadband dipole ("Trilog broadband antenna") is used.

For prescan tests the test receiver is set to peak-detector with a bandwidth of 120 kHz.

With the measurement bandwidth of the test receiver set to 120 kHz CISPR quasi-peak detector is selected for final measurements following immediately after a final frequency zoom (for drifting disturbances) and maximum adjustment.

2.4.6.3 Frequency range above 1 GHz

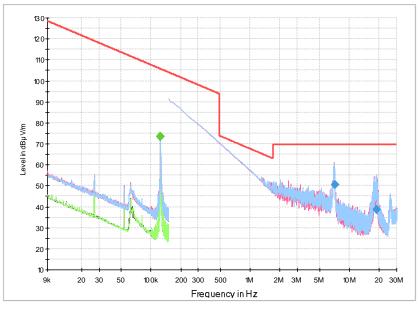
Fully anechoic room

The EUT was placed on a non-conductive table, 1.5 m above the ground plane

Radiated emission tests above 1 GHz are performed in a fully anechoic room with the S_{VSWR} requirements of ANSI C63.4. Measurements are performed both in the horizontal and vertical planes of polarisation using a test receiver with the detector function set to peak and average and the resolution bandwidth set to 1 MHz. Testing above 1 GHz is performed with horn antennas with the EUT in boresight of the antenna.

For prescan tests the test receiver is set to peak- and average-detector with a bandwidth of 1 MHz. With the measurement bandwidth of the test receiver set to 1 MHz and peak- and CISPR average-detector is selected for final measurements following immediately after a final frequency zoom (for drifting disturbances) and maximum adjustment.

2.4.7 Test Results


Sample calculation:

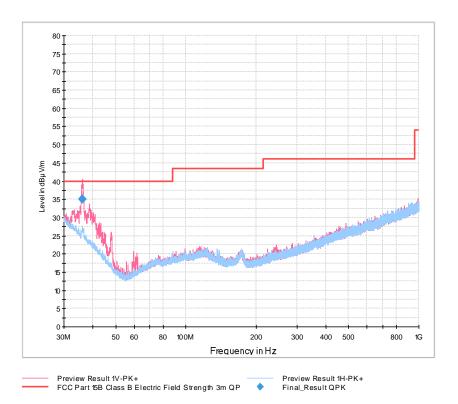
Final Value (dBµV/m) =

Reading Value (dBµV) + (Cable attenuation (dB) + Antenna Transducer (dB(1/m)))

Transmitting continuously on 125 kHz

Frequency range 9 kHz – 30 MHz:

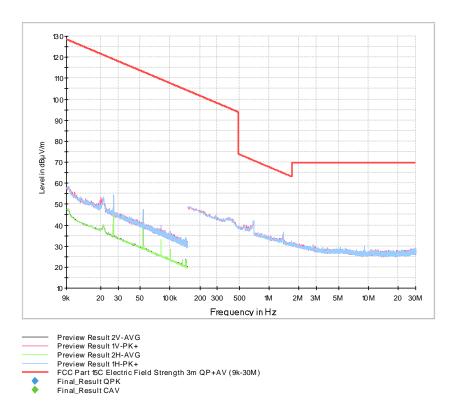
Preview Result 2V-AVG Preview Result 1V-PK+ Preview Result 2H-AVG Preview Result 1H-PK+ FCC Part 15C Electric Field Strength 3m QP+AV (9k-30M) Final_Result QPK Final_Result CAV


Final Results:

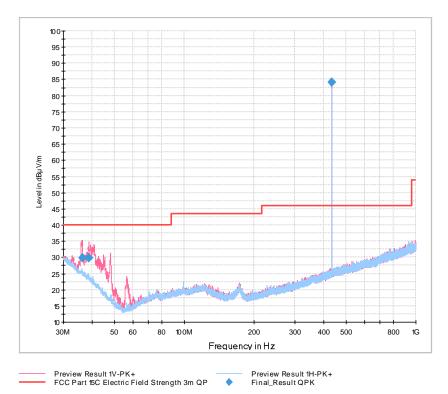
Frequency	Qua-	CAver-	Limit	Mar-	Meas.	Band-	Height	Pol	Azi-	Corr.
	siPeak	age		gin	Time	width	-		muth	
MHz	dBµV/m	dBµV/m	dBµV/m	dB	ms	kHz	ст		deg	dB/m
0.125000	73.61		105.67	32.06	1000.0	0.200	100.0	V	180.0	19.3
0.125000		73.56			1000.0	0.200	100.0	V	180.0	19.3
7.122750	50.59		69.54	18.95	1000.0	9.000	100.0	V	68.0	19.1
18.915000	38.58		69.54	30.96	1000.0	9.000	100.0	Н	-180.0	18.8

Transmitting continuously on 125 kHz

Frequency range 30 MHz – 1 GHz:

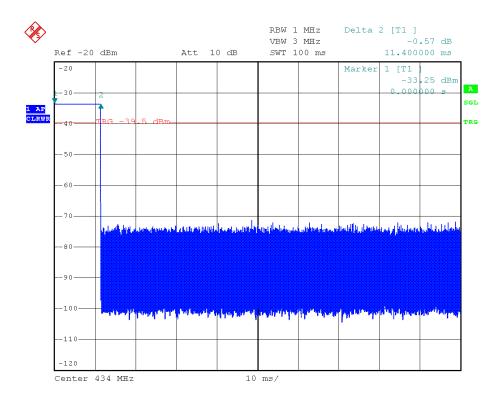

Final Results:

Frequency	Qua-	Limit	Mar-	Meas.	Band-	Height	Pol	Azi-	Corr.
	siPeak		gin	Time	width			muth	
MHz	dBµV/m	dBµV/m	dB	ms	kHz	ст		deg	dB/m
36.000000	35.04	40.00	4.96	1000.0	120.000	107.0	V	-145.0	22.6



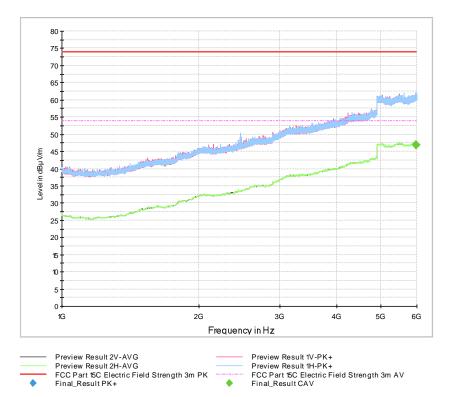
Transmitting continuously on 433.92 MHz

Frequency range 9 kHz – 30 MHz:


Frequency range 30 MHz – 1 GHz:

Final Results:

Frequency	MaxPeak	QuasiPeak	Limit	Margin	Meas.	Bandwidth	Height	Pol	Azimuth	Corr.
					Time					
MHz	dBµV/m	dBµV/m	dBµV/m	dB	ms	kHz	ст		deg	dB/m
36.180000		29.81	52.18	22.37	1000.0	120.000	104.0	V	-170.0	22.5
38.670000		29.77	52.18	22.41	1000.0	120.000	104.0	V	177.0	21.1
433.890000	65.20 ^{#1}		72.18	6.98	1000.0	120.000	107.0	Н	-129.0	22.4


Note #1: 84.06 dB μ V/m measured with max peak detector and -18.86 dB pulse train correction factor, see next page

Date: 18.JAN.2021 09:34:23

Frequency range 1 GHz – 6 GHz:

Final Results:

Frequency	Max-	CAver-	Limit	Mar-	Meas.	Band-	Height	Pol	Azi-	Corr.
	Peak	age		gin	Time	width			muth	
MHz	dBµV/m	dBµV/m	dBµV/m	dB	ms	kHz	ст		deg	dB/m
5968.000000		46.86	53.98	7.12	1000.0	1000.000	100.0	Н	-60.0	41.0

2.4.8 Test Location and Test Equipment

The test was carried out in Semi anechoic room - cabin no. 11

Instrument	Manufacturer	Туре No	TE No	Calibration Period (months)	Calibration Due
EMI test receiver	Rohde & Schwarz	ESW44	39897	12	2021-03-31
Loop antenna	Schwarzbeck	FMZB 1519 B	44334	36	2023-01-31
TRILOG Broadband Antenna	Rohde & Schwarz	VULB 9162	20116	36	2022-01-31
Double ridged horn antenna	Rohde & Schwarz	HF907	40089	24	2021-02-28
EMC measurement software	Rohde & Schwarz	EMC32 Emis- sion K11 - V10.50.10	42986		
Semi Anechoic Room	Frankonia	Cabin No. 11	42961	36	2022-08-31

2.5 RF Exposure

2.5.1 Specification Reference

FCC 47 CFR Part 2 J, Clause 2.1093 KDB 447498 D01 V06, section 4.3.1 ISED RSS-Gen, Clause 3.4 ISED RSS-102, Clause

2.5.2 Equipment under Test and Modification State

20152 RCU GEN2 434 AUTOLOCATION S3P, S/N: 0525bFbA - Modification State 0

2.5.3 Date of Test

2021-01-11

2.5.4 Environmental Conditions

Ambient Temperature	23 °C
Relative Humidity	31 %

2.5.5 Test Method

Estimation is based on output power test. For details please refer to section 2.4.7 of this test report.

2.5.6 Specification Limits

FCC 47 CFR Part 15 C, Clause 15.212(viii)

Systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy levels in excess of the Commission's guideline. Acc. to KDB 477498:

The 1 g and 10 g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separations distances \leq 50 mm are determined by:

 $\frac{max. \ power \ of \ channel, incl. \ tune - up \ tol., mW}{min. \ test \ separation \ distance, mm} \cdot \sqrt{f, GHz} \leq \begin{cases} 3.0 \ for \ 1 \ g \\ 7.5 \ for \ 10 \ g \end{cases} extremity \ SAR$

- 1. f (GHz) is the RF channel frequency in GHz;
- 2. Power and distance are rounded to the nearest mW and mm before calculation;
- 3. The result is rounded to one decimal place for comparison;
- 4. 3.0 and 7.5 are referred to as the numeric thresholds

The test exclusions are applicable only when the minimum test separation distance is \leq 50 mm, and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied.

ISED RSS-102, Clause 2.5.1

SAR evaluation is required if the separation distance between the user and/or bystander and the antenna and/or radiating element of the device is less than or equal to 20 cm, except when the device operates at or below the applicable output power level (adjusted for tune-up tolerance) for the specified separation distance defined in the table.

For controlled use devices where the 8 W/kg for 1 gram of tissue applies, the exemption limits for routine evaluation in the table are multiplied by a factor of 5. For limb-worn devices where the 10 gram value applies, the exemption limits for routine evaluation in the table are multiplied by a factor of 2.5. If the operating frequency of the device is between two frequencies located in the table, linear interpolation shall be applied for the applicable separation distance. For test separation distance less than 5 mm, the exemption limits for a separation distance of 5 mm can be applied to determine if a routine evaluation is required.

For medical implants devices, the exemption limit for routine evaluation is set at 1 mW. The output power of a medical implants device is defined as the higher of the conducted or e.i.r.p to determine whether the device is exempt from the SAR evaluation.:

Frequency			Exem	nption limi	ts (mW) ² :	at separat	tion distar	ice of		
(MHz)	a5 mm	10 mm	15 mm	20 mm	25 mm	30 mm	35 mm	40 mm	45 mm	≥50 mm
≤300 ³	71	101	132	162	193	223	254	284	315	345
450	52	70	88	106	123	141	159	177	195	213
835	17	30	42	55	67	80	92	105	117	130
1900	7	10	18	34	60	99	153	225	316	431
2450	4	7	15	30	52	83	123	173	235	309
3500	2	6	16	32	55	86	124	170	225	290
5800	1	6	15	27	41	56	71	85	97	106

² The excemption limit in the table are based on measurements and simulations on half-wave dipole antennas at separaton distances of 5 mm to 25 mm from a flat phantom, providing a SAR value of approximately 0.4 W/kg for 1 g of tissue. For low frequencies (300 MHz to 835 MHz), the exemption limits are derived from alinear fit. For high frequencies (1900 MHz and above), the exemption limits are derived from athird order polynomial fit.

³ Transmitters operating between 3 kHz and 10 MHz, meeting the exemption from routine SAR evaluation, shall demonstrate compliance to the instantaneous limits in IC RSS-102, issue 5, section 4.

2.5.7 Test Results

125 kHz Evaluation:

Exposure of Humans to RF Fields	Applicable	Declared by applicant	Measured	Exemption
The antenna is				
The conducted output power (CP in watts) is measured at the antenna connector:				
<i>CP</i> = W				
The effective isotropic radiated power (EIRP in watts) is calculated using				
\Box the numerical antenna gain: $G =$				
$EIRP = G \cdot CP \Longrightarrow EIRP = \dots $				
$\Box \qquad \text{the field strength}^4 \text{ in V/m:} \qquad FS = \dots V/m$				
$EIRP = \frac{(FS \cdot D)^2}{30} \Rightarrow EIRP = \dots $ W				
with:				
Distance between the antennas $D = \dots m$				
⊠ not detachable				
A field strength measurement is used to determine the effective isotropic radiated power (EIRP in watts) given by:				
$EIRP = \frac{(FS \cdot D)^2}{30} \Longrightarrow EIRP = 0.0069 \text{ mW}$				
with:				
Field strength in V/m: $FS = 0.00479$			\square	
Distance between the two antennas in m: $D = 3$			\square	
Selection of output power				

⁴ The conversion formula is valid only for properly matched antennas. In other cases the transmitter output power may have to be measured by a terminated measurement when applying the exemption clauses.

If an open area test site is used for field strength measurement, the effect due to the metal ground reflecting plane should be subtracted from the maximum field strength value in order to reference it to free space, before calculating TP.

The output power TP is the higher of the conducted or effective isotropic radiated power (e.i.r.p.):				
TP= 0.0069 mW				
Exposure of Humans to RF Fields (continued)	Applicable	Declared by applicant	Measured	Exemption
Separation distance between the user and the transmitting device is				
☐ less than or equal to 20 cm ☐ greater than 20 cm				
Transmitting device is				
in the vicinity of the human head body-worn				

SAR evaluati	on										
SAR evalua	ation is	require	ed if the	separ	ation di	stance	betwe	en the	user a	nd/or	
bystander a	and the	antenr	na and/	or radia	ating el	ement	of the o	device	is less	than	
or equal to	20 cm,	except	t when	the dev	vice op	erates	at or be	elow th	e appli	cable	
output pow	er level	(adjus	ted for	tune-u	p tolera	ance) fo	or the s	pecifie	d sepa	ra-	
tion distanc	e defin	ed in th	ne table).							
For controll	ed use	device	s wher	e the 8	W/kg f	for 1 gr	am of t	issue a	applies,	the	
exemption	limits fo	or routir	ne eval	uation	in the ta	able ar	e multij	plied by	/ a fact	or of	
5. For limb-	worn d	evices	where	the 10	gram v	alue a	oplies,	the exe	emptior	n lim-	
its for routir	ne evali	uation i	n the ta	able ar	e multip	olied by	a fact	or of 2.	5. If the	e op-	
erating freq						-					
ble, linear i	nterpola	ation sh	nall be	applied	for the	e applic	able se	eparatio	on dista	ance.	
For test sep					•		•				
ration dista	nce of t	5 mm c	an be a	applied	to dete	ermine	if a rou	itine ev	aluatio	n is	
required.											
For medica	•				•						
at 1 mW. T	•	•			•						
higher of th from the SA			•	o to det	ermine	wheth	er the o	device	is exen	npt	
Frequency (MHz)		Ex	xemptio	n limits ((mW) ⁵ a	t separa	tion dis	tance of			
(E	E	E	E	E	E	C	~	~	_	
	E		<u> </u>	_			<u> </u>		E	E	
	2	0 0	5 D	0	5 U	Е О	5 mn	0 m n	5 mm	50 mn	
	≤5 mm	10 mm	15 mm	20 mm	25 mm	30 mm	35 mm	40 mm	45 mm	≥50 mm	
≤300 ⁶	ິ vi 71	101	132	162	ц <u>9</u> 2 72 193	Е ОС 223	սա <u>գ</u> ջ 254	шш 0 1 284	հա գ 315	um 03≤ 342	
≤300 ⁶ 450										<i>,</i> .	
	71	101	132	162	193	223	254	284	315	345	
450	71 52	101 70	132 88	162 106	193 123	223 141	254 159	284 177	315 195	345 213	
450 835	71 52 17	101 70 30	132 88 42	162 106 55	193 123 67	223 141 80	254 159 92	284 177 105	315 195 117	345 213 130	
450 835 1900	71 52 17 7	101 70 30 10	132 88 42 18	162 106 55 34	193 123 67 60	223 141 80 99	254 159 92 153	284 177 105 225	315 195 117 316	345 213 130 431	

⁵ The excemption limit in the table are based on measurements and simulations on half-wave dipole antennas at separaton distances of 5 mm to 25 mm from a flat phantom, providing a SAR value of approximately 0.4 W/kg for 1 g of tissue. For low frequencies (300 MHz to 835 MHz), the exemption limits are derived from alinear fit. For high frequencies (1900 MHz and above), the exemption limits are derived from athird order polynomial fit.

⁶ Transmitters operating between 3 kHz and 10 MHz, meeting the exemption from routine SAR evaluation, shall demonstrate compliance to the instantaneous limits in IC RSS-102, issue 5, section 4.

Carrier frequency:	f	=	125 kHz		
Distance:	d	=	5 mm		
Transmitter output power:	TP	=	0.069 mW		
Limit:	TP limit	=	71 mW		\boxtimes
SAR evaluation is documer	nted in t	est	report no		

Specifications:	RSS-102, Issue 5, Section 4, Table 4, Uncontrolled Environment SPR-002, Issue 1
Operation mode:	24 V Battery Supply - Continuously transmitting
Comment:	The nerve stimulation exposure limit is defined for the frequency range 3 kHz to 10 MHz, only. Thus, the carrier at 125 kHz was evaluated, only.

Test procedure:	IEC 62311, Section 7.2 "Measurement to show accordance to the reference levels"				
Test distance:	Direct contact to	EUT			
Limit:	Frequency Range (MHz)	Electric Field (V/m _{rms})	Magnetic Field (A/m _{rms})	Peference Periode (min)	
	0.003 – 10	83	90	Instantaneous	
	0.1 – 10		0.73 / f	6	
	1.1 - 10	87/f ^{0.5}		6	
	<i>f</i> in MHz				
Test positions:	All surfaces: The test using a test of		ved all over the eq above.	uipment under	

Measured maximum value	Maximum Limit at 125 kHz	Margin to reference value
(V/m)	(V/m)	(V/m)
47.11	83.00	35.89

Measured maximum value	Maximum Limit at 125 kHz	Margin to reference value
(A/m)	(A/m)	(A/m)
0.376	90.00	89.62

Measured average value	Average Limit at 125 kHz	Margin to reference value
(A/m)	(A/m)	(A/m)
0.065	5.84	5.775

434 MHz Evaluation:

FCC 47 CFR Part 15 C, Clause 15.247(i)

Maximum output power: Minimum test separation distance: Frequency: SAR test exclusion threshold (calculated): Limit (1 g SAR): Limit (10 g SAR): Test Result: 0.076 mW 1 mm 433.92 MHz 0.05 3.0 7.5 Pass: 0.05 < 3.0

ISED RSS-Gen, Clause 3.4

Frequency:	433.92 MHz
Test distance:	3 m
Carrier Power (e.i.r.p.):	0.076 mW
Exemption limit:	52 mW
Test Result:	Pass

3 Measurement Uncertainty

For a 95% confidence level, the measurement uncertainties for defined systems are:

The measurement uncertainty in the laboratory is less than or equal to the maximum measurement uncertainty according to CISPR16-4-2: $2011 + A1 + A2 + Cor1 (U_{CISPR})$. This normative regulation means that the measured value is also the value to be assessed in relation to the limit value.

Radio Interference Emission Testing		
Test Name	kp	Expanded Uncertainty
Conducted Voltage Emission		
9 kHz to 150 kHz (50Ω/50μH AMN)	2	± 3.8 dB
150 kHz to 30 MHz (50Ω/50μH AMN)	2	± 3.4 dB
100 kHz to 200 MHz (50Ω/5μH AMN)	2	± 3.6 dB
Discontinuous Conducted Emission		
9 kHz to 150 kHz (50Ω/50μH AMN)	2	± 3.8 dB
150 kHz to 30 MHz (50Ω/50μH AMN)	2	± 3.4 dB
Conducted Current Emission		
9 kHz to 200 MHz	2	± 3.5 dB
Magnetic Fieldstrength		
9 kHz to 30 MHz (with loop antenna)	2	± 3.9 dB
9 kHz to 30 MHz (large-loop antenna 2 m)	2	± 3.5 dB
Radiated Emission		
30 MHz to 300 MHz	2	± 4.9 dB
300 MHz to 1 GHz	2	± 5.0 dB
1 GHz to 6 GHz	2	± 4.6 dB
Test distance 10 m		
30 MHz to 300 MHz	2	± 4.9 dB
300 MHz to 1 GHz	2	± 4.9 dB
The expanded uncertainty reported according to to CISPR16-4-2: $2011 + A^2$ on a standard uncertainty multiplied by a coverage factor of kp = 2, providing of p = 95.45%	g a level o	

Table 17 Measurement uncertainty based on CISPR 16-4-2

Test Name	kp	Expanded Uncertainty
Occupied Bandwdith	2	±5%
Conducted Power		
9 kHz ≤ f < 30 MHz	2	± 1.0 dB
30 MHz ≤ f < 1 GHz	2	± 1.5 dB
1 GHz ≤ f ≤ 40 GHz	2	± 2.5 dB
1 MS/s power sensor (TS8997)	2	± 1.5 dB
Occupied Bandwidth	2	±5%
Power Spectral Density	2	± 3.0 dB
Radiated Power		
9 kHz ≤ f < 26.5 GHz	2	± 6.5 dB
26.5 GHz ≤ f < 60 GHz	2	± 8.0 dB
60 GHz ≤ f < 325 GHz	2	± 10 dB
Conducted Spurious Emissions	2	± 3.0 dB
Radiated Spurious Emissions	2	± 6.0 dB
Voltage		
DC	2	± 1.0 %
AC	2	± 2.0 %
Time (automatic)	2	±5%
Frequency	2	± 10 ⁻⁷

Table 18 Measurement uncertainty based on ETSI TR 100 028