



Proiect No: TM-2403000246P Report No.: TMWK2403000729KR Page 1 / 37 Rev. 02

# FCC/IC RADIO TEST REPORT

**Test Standard** : FCC Part 15.231+ IC RSS-210 Issue 11

FCC ID T4518137

IC 6450A-18137

: BELT 434 4x4 Product name

Model No. : 18137

Trade name : LID Technologies

**Operation Freq.** : TX: 433.92MHz

**RX: 125kHz** 

Test Result : Pass

Statements of Conformity

Determination of compliance is based on the results of the

compliance measurement,

not taking into account measurement instrumentation

uncertainty.

The test Result was tested by Compliance Certification Services Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were given in ANSI C63.10: 2013 and compliance standards.

The test results of this report relate only to the tested sample (EUT) identified in this report.

The test report of full or partial shall not copy. Without written approval of Compliance Certification Services Inc. (Wugu Laboratory)

Approved by:

Shawn Wu Supervisor

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製

mul)

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com.tw/Terms-and-Conditions and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="http://www.sqs.com.tw/Terms-and-Conditions">http://www.sqs.com.tw/Terms-and-Conditions</a>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instruction, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced, except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.



 Project No:
 TM-2403000246P
 Page
 2 / 37

 Report No.:
 TMWK2403000729KR
 Rev. 02

## **Revision History**

| Rev. | Issue<br>Date      | Revisions                       | Effect Page           | Revised By   |
|------|--------------------|---------------------------------|-----------------------|--------------|
| 00   | September 25, 2024 | Initial Issue                   | ALL                   | Allison Chen |
| 01   | October 25, 2024   | See the following Note Rev.(01) | P.5, 17,<br>28-31, 34 | Allison Chen |
| 02   | November 18, 2024  | See the following Note Rev.(02) | P.1, 35, A-2          | Allison Chen |

#### Note:

#### Rev.(01)

- 1. Modify modulation type in section 1.2, test result in section 4.2.4 and 4.5.4.
- 2. Modify radiated emission setting in section 4.4.4.
- 3. Modify IC standard version.

#### Rev.(02)

1. Modify laboratory name, update duty cycle plot and conducted setup photo.



Project No: TM-2403000246P Report No.: TMWK2403000729KR

Page 3 / 37 Rev. 02

# **Table of contents**

| 1.   | GENERAL INFORMATION                            | 4  |
|------|------------------------------------------------|----|
| 1.1  | EUT INFORMATION                                | 4  |
| 1.2  | EUT CHANNEL INFORMATION                        | 5  |
| 1.3  | ANTENNA INFORMATION                            | 5  |
| 1.4  | MEASUREMENT UNCERTAINTY                        | 6  |
| 1.5  | FACILITIES AND TEST LOCATION                   | 7  |
| 1.6  | INSTRUMENT CALIBRATION                         | 8  |
| 1.7  | SUPPORT AND EUT ACCESSORIES EQUIPMENT          | 9  |
| 1.8  | TEST SETUP DIAGRAM                             | 9  |
| 1.9  | TEST PROGRAM                                   | 9  |
| 1.10 | TEST METHODOLOGY AND APPLIED STANDARDS         | 9  |
| 2.   | TEST SUMMARY                                   | 10 |
| 3.   | DESCRIPTION OF TEST MODES                      | 11 |
| 3.1  | THE WORST MODE OF OPERATING CONDITION          |    |
| 3.2  | THE WORST MODE OF MEASUREMENT                  | 11 |
| 3.3  | FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS |    |
| 3.4  | EUT DUTY CYCLE                                 | 14 |
| 4.   | TEST RESULT                                    |    |
| 4.1  | AC POWER LINE CONDUCTED EMISSION               | 15 |
| 4.2  | EMISSION BANDWIDTH                             | 16 |
| 4.3  | FIELD STRENGTH OF FUNDAMENTAL                  | 18 |
| 4.4  | RADIATION UNWANTED EMISSION                    | 23 |
| 4.5  | OPERATION RESTRICTION                          | 32 |
| 4.6  | ANTENNA REQUIREMENT                            | 37 |
| APPI | ENDIX 1 – PHOTOGRAPHS OF EUT                   |    |



Project No: TM-2403000246P Page 4 / 37 Report No.: TMWK2403000729KR Rev. 02

# 1. GENERAL INFORMATION

# 1.1 EUT INFORMATION

| Annlinant           | LID Technologies S.A.S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Applicant           | 3 rue GIOTTO Parc Technologique du canal,<br>Ramonville-Saint-Agne, France 31520                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                     | LID Technologies S.A.S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Manufacturer        | 3 rue GIOTTO Parc Technologique du canal,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                     | Ramonville-Saint-Agne, France 31520                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                     | SVI Public Company Limited                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Factory             | 141-142 Moo 5 Bangkadi Industrial Park, Tiwanon Road                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                     | Bangkadi, Muang, Pathumthani 12000 Thailand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Equipment           | BELT 434 4x4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Model Name          | 18137                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Model Discrepancy   | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Received Date       | March 14, 2024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Date of Test        | March 20~October 09, 2024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Periodic operation  | <ul> <li>☐ (1) A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.</li> <li>☐ (2) A transmitter activated automatically shall cease transmission within 5 seconds after activation</li> <li>☐ (3) Periodic transmissions at regular predetermined intervals are not permitted.</li> <li>☐ (4) Periodic transmissions (lower field strength): each transmission is not greater than 1 sec and the silent period between transmissions is at least 30 times the duration of the transmission but in no case less than 10 sec.</li> </ul> |
| Power Operation     | Power from Battery: DC 3V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Operation Frequency | TX: 433.92MHz<br>RX: 125kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| H/W Version         | 322-093-5090-B0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| S/W Version         | B14127810138                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| EUT Serial Number   | 00001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| PMN                 | 18137                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

#### Remark:

- 1. For more details, please refer to the User's manual of the EUT.
- 2. Disclaimer: Antenna information is provided by the applicant, test results of this report are applicable to the sample EUT received.



 Project No:
 TM-2403000246P
 Page 5 / 37

 Report No.:
 TMWK2403000729KR
 Rev. 02

# **1.2 EUT CHANNEL INFORMATION**

| Frequency Range | TX: 433.92MHz<br>RX: 125kHz |
|-----------------|-----------------------------|
| Modulation Type | TX: FSK<br>RX: ASK          |

#### Remark:

Refer as ANSI 63.10:2013 clause 5.6.1 Table 4 for test channels

| Number of frequencies to be tested                                                                      |   |                                              |  |  |  |
|---------------------------------------------------------------------------------------------------------|---|----------------------------------------------|--|--|--|
| Frequency range in Number of Location in frequency which device operates frequencies range of operation |   |                                              |  |  |  |
| 1 MHz or less                                                                                           | 1 | Middle                                       |  |  |  |
| 1 MHz to 10 MHz                                                                                         | 2 | 1 near top and 1 near bottom                 |  |  |  |
| More than 10 MHz                                                                                        | 3 | 1 near top, 1 near middle, and 1 near bottom |  |  |  |

# **1.3 ANTENNA INFORMATION**

| Antenna Type      | ☐ PIFA ☐ PCB ☐ Dipole ☐ Coils ☒ Other: Loop |  |
|-------------------|---------------------------------------------|--|
| Antenna Gain      | Gain: -10.59 dBi                            |  |
| Brand / Model     | Brand: OMON, Model: 06-030-0003-A2          |  |
| Antenna Connector | N/A                                         |  |

#### Notes:

<sup>1.</sup>The antenna(s) of the EUT are permanently attached and there are no provisions for connection to an external antenna. So the EUT complies with the requirements of §15.203 & RSS-Gen 6.8.



Project No: TM-2403000246P Page 6 / 37 Report No.: TMWK2403000729KR Rev. 02

# 1.4 MEASUREMENT UNCERTAINTY

| PARAMETER                       | UNCERTAINTY |
|---------------------------------|-------------|
| AC Powerline Conducted Emission | ±2.21dB     |
| Channel Bandwidth               | ±2.79dB     |
| Radiated Emission_9kHz-30MHz    | ± 3.492 dB  |
| Radiated Emission_30MHz-200MHz  | ± 3.62 dB   |
| Radiated Emission_200MHz-1GHz   | ± 3.899 dB  |
| Radiated Emission_1GHz-6GHz     | ± 5.063 dB  |

#### Remark:

<sup>1.</sup> This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2

<sup>2.</sup> ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report.



Project No: TM-2403000246P Page 7 / 37 Report No.: TMWK2403000729KR Rev. 02

# 1.5 FACILITIES AND TEST LOCATION

All measurement facilities used to collect the measurement data are located at No.11, Wugong 6th Rd., Wugu Dist., New Taipei City, Taiwan.

CAB identifier: TW1309

| Test site          | Test Engineer | Remark                                                                |
|--------------------|---------------|-----------------------------------------------------------------------|
| AC Conduction Room | N/A           | Not applicable, because EUT doesn't connect to AC Main Source direct. |
| Radiation          | Tony Chao     | -                                                                     |
| RF Conducted       | Jerry Chang   | -                                                                     |

**Remark:** The lab has been recognized as the FCC accredited lab. under the KDB 974614 D01 and is listed in the FCC pubic Access Link (PAL) database, FCC Registration No.:444940, the FCC Designation No.:TW1309



 Project No:
 TM-2403000246P
 Page
 8 / 37

 Report No.:
 TMWK2403000729KR
 Rev. 02

# **1.6 INSTRUMENT CALIBRATION**

| 966A_Radiated 433/315MHz |                          |           |                          |                     |                    |  |
|--------------------------|--------------------------|-----------|--------------------------|---------------------|--------------------|--|
| Name of<br>Equipment     | Manufacturer             | Model     | Serial Number            | Calibration<br>Date | Calibration<br>Due |  |
| PXA Signal<br>Analyzer   | Keysight<br>Technologies | N9010A    | MY52220817               | 2024-03-15          | 2025-03-14         |  |
| Thermo-Hygro<br>Meter    | WISEWIND                 | 1206      | D07                      | 2023-12-08          | 2024-12-07         |  |
| Loop Antenna             | COM-POWER                | AL-130    | 121051                   | 2023-05-23          | 2024-05-22         |  |
| Bi-Log Antenna           | Sunol Sciences           | JB3       | A030105                  | 2023-08-08          | 2024-08-07         |  |
| Preamplifier             | EMEC                     | EM330     | 060609                   | 2024-02-21          | 2025-02-20         |  |
| Cable                    | Huber+Suhner             | 104PEA    | 20995+21000+<br>182330   | 2024-02-21          | 2025-02-20         |  |
| Horn Antenna             | ETC                      | MCTD 1209 | DRH13M02003              | 2023-12-28          | 2024-12-27         |  |
| Preamplifier             | HP                       | 8449B     | 3008A00965               | 2023-12-22          | 2024-12-21         |  |
| Cable                    | EMCI                     | EMC101G   | 221213+221011<br>+221012 | 2023-10-17          | 2024-10-16         |  |
| Turn Table               | ccs                      | CC-T-1F   | N/A                      | N.C.R               | N.C.R              |  |
| Controller               | CCS                      | CC-C-1F   | N/A                      | N.C.R               | N.C.R              |  |
| Antenna Tower            | CCS                      | CC-A-1F   | N/A                      | N.C.R               | N.C.R              |  |
| Site Validation CCS 966A |                          | 966A      | N/A                      | 2023-07-10          | 2024-07-09         |  |
| Software                 |                          |           | e3 V9-210616c            |                     |                    |  |

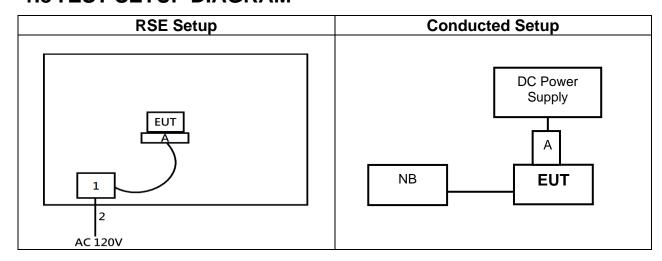
|                        | Conducted_FCC_15_231_433M |           |               |                     |                    |  |  |  |  |
|------------------------|---------------------------|-----------|---------------|---------------------|--------------------|--|--|--|--|
| Name of<br>Equipment   | Manufacturer              | Model     | Serial Number | Calibration<br>Date | Calibration<br>Due |  |  |  |  |
| EXA Signal<br>Analyzer | Keysight                  | N9010B    | MY55460167    | 2024-01-03          | 2025-01-02         |  |  |  |  |
| DC Power               | GWINSTEK                  | GPC-3030D | 8070184       | 2023-10-02          | 2024-10-01         |  |  |  |  |
| Source                 |                           |           |               | 2024-09-20          | 2025-09-19         |  |  |  |  |
| Software               | N/A                       |           |               |                     |                    |  |  |  |  |

#### Remark:

- 1. Each piece of equipment is scheduled for calibration once a year.
- 2. N.C.R. = No Calibration Required.



Project No: TM-2403000246P Page 9 / 37 Rev. 02


Report No.: TMWK2403000729KR

## 1.7 SUPPORT AND EUT ACCESSORIES EQUIPMENT

| Support Unit List           |              |               |               |                     |                    |        |
|-----------------------------|--------------|---------------|---------------|---------------------|--------------------|--------|
| Name of<br>Equipment        | Manufacturer | Model         | Serial Number | Calibration<br>Date | Calibration<br>Due | Remark |
| NB(D)                       | Lenovo       | ThinkPad X260 | N/A           | N/A                 | N/A                | 1      |
| Adapter                     | Lenovo       | ADLX45DLC3A   | N/A           | N/A                 | N/A                | 2      |
| Programming Tool Unit (PTU) | N/A          | N/A           | N/A           | N/A                 | N/A                | А      |

| Conducted433M                  |        |       |               |                     |                    |        |
|--------------------------------|--------|-------|---------------|---------------------|--------------------|--------|
| Name of Equipment Manufacturer |        | Model | Serial Number | Calibration<br>Date | Calibration<br>Due | Remark |
| NB(E)                          | Lenovo | X260  | N/A           | N/A                 | N/A                | -      |
| Programming Tool Unit (PTU)    | N/A    | N/A   | N/A           | N/A                 | N/A                | Α      |

### 1.8 TEST SETUP DIAGRAM



### 1.9 TEST PROGRAM

This EUT uses "WUS\_TRUCK\_4x4\_CW\_434.exe v1" software to set the frequency, modulation, and power to allow the sample to continuously transmit.

#### TEST METHODOLOGY AND APPLIED STANDARDS 1.10

The test methodology, setups and results comply with all requirements in accordance with ANSI C63.10:2013, FCC 15.231, IC RSS-210, IC RSS-Gen Rules.



Project No: TM-2403000246P Page 10 / 37

Report No.: TMWK2403000729KR Rev. 02

# 2. TEST SUMMARY

| FCC<br>Standard<br>Sec. | IC<br>Standard<br>Sec.  | Chapter | Test Item                           | Result            |
|-------------------------|-------------------------|---------|-------------------------------------|-------------------|
| 15.207                  | RSS-GEN<br>Sec. 8.8     | 4.1     | AC Power-line Conducted<br>Emission | Not<br>applicable |
| 15.231(c)               | RSS-210<br>A.1.3        | 4.2     | Emission Bandwidth                  | Pass              |
| 15.231(e)               | RSS-210<br>A.1.4        | 4.3     | Fundamental Emission                | Pass              |
| 15.209(b)               | RSS-GEN<br>Sec. 8.9     | 4.4     | Transmitter Radiated Emission       | Pass              |
| 15.231(e),<br>15.231(a) | RSS-210<br>A.1.5, A.1.2 | 4.5     | Operation Restriction               | Pass              |
| 15.203                  | RSS-GEN<br>Sec. 6.8     | 4.6     | Antenna Requirement                 | Pass              |



Project No: TM-2403000246P Page 11 / 37 Report No.: TMWK2403000729KR Rev. 02

# 3. DESCRIPTION OF TEST MODES

## 3.1 THE WORST MODE OF OPERATING CONDITION

| Operation mode    | TX: 433.92MHz                                         |
|-------------------|-------------------------------------------------------|
| RF Field strength | TX 433.92MHz Peak: 84.82 dBuv/m Average: 63.51 dBuv/m |

Remark: Field strength performed Average level at 3m.

### 3.2 THE WORST MODE OF MEASUREMENT

| Radiated Emission Measurement Above 1G |                                                                                                                                                                                                                              |  |  |  |
|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Test Condition                         | Radiated Emission Above 1G                                                                                                                                                                                                   |  |  |  |
| Power supply Mode                      | Mode 1: EUT power by Battery                                                                                                                                                                                                 |  |  |  |
| Worst Mode                             |                                                                                                                                                                                                                              |  |  |  |
| Worst Position                         | <ul> <li>□ Placed in fixed position.</li> <li>☑ Placed in fixed position at X-Plane (E2-Plane)</li> <li>□ Placed in fixed position at Y-Plane (E1-Plane)</li> <li>□ Placed in fixed position at Z-Plane (H-Plane)</li> </ul> |  |  |  |

| Radiated Emission Measurement Below 1G         |  |  |
|------------------------------------------------|--|--|
| Test Condition Radiated Emission Below 1G      |  |  |
| Power supply Mode Mode 1: EUT power by Battery |  |  |
| Worst Mode                                     |  |  |

#### Remark:

- 1. The worst mode was record in this test report.
- 2. EUT pre-scanned in three axis X, Y, Z and two polarity, for radiated measurement. The worst case (X-Plane) were recorded in this report



Project No: TM-2403000246P Page 12 / 37

Report No.: TMWK2403000729KR Rev. 02

### 3.3 FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS

According to FCC 15.231(b), 15.231(e),

(b) In addition to the provisions of §15.205, the field strength of emissions from intentional radiators operated under this section shall not exceed the following:

| Fundamental frequency<br>(MHz) | Field strength of fundamental (microvolts/meter) | Field strength of spurious emissions (microvolts/meter) |
|--------------------------------|--------------------------------------------------|---------------------------------------------------------|
| 40.66-40.70                    | 2,250                                            | 225                                                     |
| 70-130                         | 1,250                                            | 125                                                     |
| 130-174                        | <sup>1</sup> 1,250 to 3,750                      | <sup>1</sup> 125 to 375                                 |
| 174-260                        | 3,750                                            | 375                                                     |
| 260-470                        | <sup>1</sup> 3,750 to 12,500                     | <sup>1</sup> 375 to 1,250                               |
| Above 470                      | 12,500                                           | 1,250                                                   |

<sup>&</sup>lt;sup>1</sup>Linear interpolations.

- (1) The above field strength limits are specified at a distance of 3 meters. The tighter limits apply at the band edges.
- (2) Intentional radiators operating under the provisions of this section shall demonstrate compliance with the limits on the field strength of emissions, as shown in the above table, based on the average value of the measured emissions. As an alternative, compliance with the limits in the above table may be based on the use of measurement instrumentation with a CISPR quasi-peak detector. The specific method of measurement employed shall be specified in the application for equipment authorization. If average emission measurements are employed, the provisions in §15.35 for averaging pulsed emissions and for limiting peak emissions apply. Further, compliance with the provisions of §15.205 shall be demonstrated using the measurement instrumentation specified in that section.
- (3) The limits on the field strength of the spurious emissions in the above table are based on the fundamental frequency of the intentional radiator. Spurious emissions shall be attenuated to the average (or, alternatively, CISPR quasi-peak) limits shown in this table or to the general limits shown in §15.209, whichever limit permits a higher field strength.



Project No: TM-2403000246P Page 13 / 37

Report No.: TMWK2403000729KR Rev. 02

(e) Intentional radiators may operate at a periodic rate exceeding that specified in paragraph (a) of this section and may be employed for any type of operation, including operation prohibited in paragraph (a) of this section, provided the intentional radiator complies with the provisions of paragraphs (b) through (d) of this section, except the field strength table in paragraph (b) of this section is replaced by the following:

| Fundamental frequency<br>(MHz) | Field strength of fundamental (microvolts/meter) | Field strength of spurious emissions (microvolts/meter) |
|--------------------------------|--------------------------------------------------|---------------------------------------------------------|
| 40.66-40.70                    | 1,000                                            | 100                                                     |
| 70-130                         | 500                                              | 50                                                      |
| 130-174                        | 500 to 1,500 <sup>1</sup>                        | 50 to 150 <sup>1</sup>                                  |
| 174-260                        | 1,500                                            | 150                                                     |
| 260-470                        | 1,500 to 5,000 <sup>1</sup>                      | 150 to 500 <sup>1</sup>                                 |
| Above 470                      | 5,000                                            | 500                                                     |

<sup>&</sup>lt;sup>1</sup>Linear interpolations.

In addition, devices operated under the provisions of this paragraph shall be provided with a means for automatically limiting operation so that the duration of each transmission shall not be greater than one second and the silent period between transmissions shall be at least 30 times the duration of the transmission but in no case less than 10 seconds.



Project No: TM-2403000246P Page 14 / 37 Report No.: TMWK2403000729KR Rev. 02

## 3.4 EUT DUTY CYCLE

**Temperature:** 20.1~25.5°C **Test Date:** March 20~October 09, 2024

Humidity: 40~66% RH Tested by: Jerry Chang

| Duty Cycle |            |                |                 |  |
|------------|------------|----------------|-----------------|--|
| TX ON (ms) | TX All(ms) | Duty Cycle (%) | Duty Factor(dB) |  |
| 8.60       | 100.00     | 8.60%          | <u>-21.31</u>   |  |

#### **DUTY CYCLE**



#### Notes:

- 1. The transmitter duty cycle was measured using a spectrum analyser in the time domain and calculated by 20 log( Time(on) / Time(all) )
- 2. The EUT transmits for a Time(on) of 100 milliseconds.

20 log (Time(on) / Time(all)). 20 log (0.086) = -21.31 dB



Project No: TM-2403000246P Page 15 / 37 Report No.: TMWK2403000729KR Rev. 02

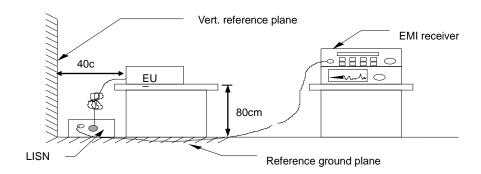
## 4. TEST RESULT

## 4.1 AC POWER LINE CONDUCTED EMISSION

#### 4.1.1 Test Limit

According to §15.207(a), RSS-Gen Sec.8.8,

| Frequency Range | Limits(dBµV) |           |  |
|-----------------|--------------|-----------|--|
| (MHz)           | Quasi-peak   | Average   |  |
| 0.15 to 0.50    | 66 to 56*    | 56 to 46* |  |
| 0.50 to 5       | 56           | 46        |  |
| 5 to 30         | 60           | 50        |  |


<sup>\*</sup> Decreases with the logarithm of the frequency.

#### 4.1.2 Test Procedure

Test method Refer as ANSI 63.10:2013 clause 6.2,

- 1. The EUT was placed on a table, which is 0.8m above ground plane.
- 2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 3. Repeat above procedures until all frequency measured were complete

# 4.1.3 Test Setup



### 4.1.4 Test Result

Not applicable, because EUT doesn't connect to AC Main Source direct.

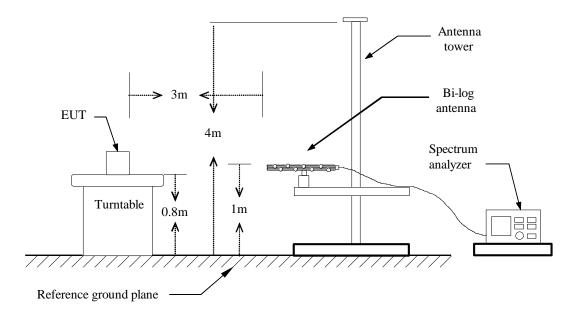


Project No: TM-2403000246P Page 16 / 37 Report No.: TMWK2403000729KR Rev. 02

# **4.2 EMISSION BANDWIDTH**

#### 4.2.1 Test Limit

According to §15.231(c), RSS-210 A.1.3,


| Limit | <ul><li></li></ul> |
|-------|--------------------|
|-------|--------------------|

#### 4.2.2 Test Procedure

Test method Refer as ANSI 63.10:2013 clause 6.9.2,

SA set RBW =  $1\% \sim 5\%$  OBW, VBW = three times the RBW and Detector = Peak, Trace mode = Max hold, Sweep = Auto. Measure the maximum width of the emission that is constrained by the frequencies associated with the Occupied Bandwidth (99%) and 20dB Bandwidth.

## 4.2.3 Test Setup



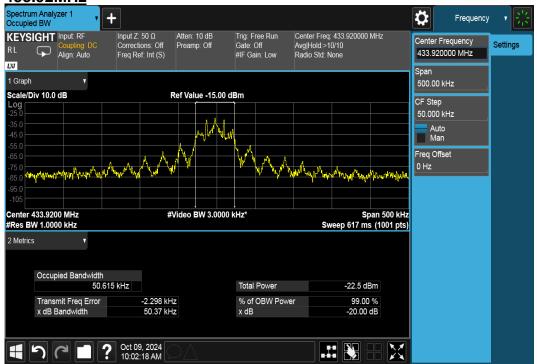


Project No: TM-2403000246P Page 17 / 37 02

Report No.: TMWK2403000729KR Rev.

#### 4.2.4 Test Result

Temperature: 20.1~25.5°C **Test Date:** March 20~October 09, 2024


**Humidity:** 40~66% RH Tested by: Jerry Chang

| Spectrum Bandwidth |                         |                                |                          |                               |
|--------------------|-------------------------|--------------------------------|--------------------------|-------------------------------|
| Frequency<br>(MHz) | 20dB Bandwidth<br>(KHz) | 20dB Bandwidth<br>Limits (MHz) | 99% Occupied BW<br>(KHz) | 99% Bandwidth<br>Limits (MHz) |
| 433.92             | 50.37                   | 1.0848                         | 50.615                   | 1.0848                        |

# Test Data

### 20dB Bandwidth and 99% Occupied BW

#### 433.92MHz





Project No: TM-2403000246P Page 18 / 37

Report No.: TMWK2403000729KR Rev. 02

### 4.3 FIELD STRENGTH OF FUNDAMENTAL

#### 4.3.1 Test Limit

According to §15.231(e)

| Fundamental frequency<br>(MHz) | Field strength of fundamental (microvolts/meter) | Field strength of spurious emissions (microvolts/meter) |
|--------------------------------|--------------------------------------------------|---------------------------------------------------------|
| 40.66-40.70                    | 1,000                                            | 100                                                     |
| 70-130                         | 500                                              | 50                                                      |
| 130-174                        | 500 to 1,500 <sup>1</sup>                        | 50 to 150 <sup>1</sup>                                  |
| 174-260                        | 1,500                                            | 150                                                     |
| 260-470                        | 1,500 to 5,000 <sup>1</sup>                      | 150 to 500 <sup>1</sup>                                 |
| Above 470                      | 5,000                                            | 500                                                     |

<sup>\*</sup> Linear interpolation with frequency, f, in MHz:

For 130-174 MHz: Field Strength ( $\mu$ V/m) = (22.73 x f)-2454.55 For 260-470 MHz: Field Strength ( $\mu$ V/m) = (16.67 x f)-2833.33

### According to RSS-210 A.1.4

| Table A2— Permissible Field Strength Limits for Momentarily Operated Devices                 |                                                           |  |  |
|----------------------------------------------------------------------------------------------|-----------------------------------------------------------|--|--|
| Fundamental Frequency (MHz), Excluding<br>Restricted Frequency Bands Specified in<br>RSS-Gen | Field Strength of the Fundamental Emissions (μV/m at 3 m) |  |  |
| 70-130                                                                                       | 500                                                       |  |  |
| 130-174                                                                                      | 500 to 1,500*                                             |  |  |
| 174-260 (Note 1)                                                                             | 1,500                                                     |  |  |
| 260-470 (Note 1)                                                                             | 1,500 to 5,000*                                           |  |  |
| Above 470                                                                                    | 5,000                                                     |  |  |

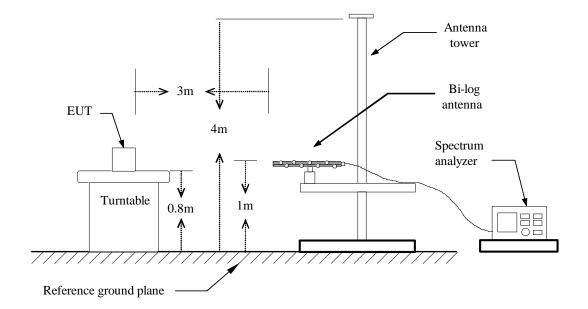
<sup>\*</sup> Linear interpolation with frequency, f, in MHz:

For 130-174 MHz: Field Strength ( $\mu$ V/m) = (22.73 x f)-2454.55 For 260-470 MHz: Field Strength ( $\mu$ V/m) = (16.67 x f)-2833.33

**Note 1**: Frequency bands 225-328.6 MHz and 335.4-399.9 MHz are designated for the exclusive use of the Government of Canada. Manufacturers should be aware of possible harmful interference and degradation of their licence-exempt radio equipment in these frequency bands.

#### 4.3.2 Test Procedure

Test method Refer as ANSI 63.10:2013 clause 4.1.4 and clause 6.5


| clause 4.1.4 | <ul><li> 4.1.4.2.2: Measurement Peak value.</li><li> 4.1.4.2.3: Duty cycle ≥ 100%.</li><li> 4.1.4.2.4: Measurement Average value.</li></ul> |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------|
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------|



Project No: TM-2403000246P Page 19 / 37

Report No.: TMWK2403000729KR Rev. 02

# 4.3.3 Test Setup





Project No: TM-2403000246P Page 20 / 37

Report No.: TMWK2403000729KR Rev. 02

### 4.3.4 Test Result

| Field Strength     |                               |                         |                |           |        |  |
|--------------------|-------------------------------|-------------------------|----------------|-----------|--------|--|
| Frequency<br>(MHz) | Fundamental<br>(dBuV/m) at 3m | Limit<br>(dBuV/m) at 3m | Margin<br>(dB) | Axis/Pol. | Remark |  |
| 433.920            | 63.51                         | 72.87                   | -8.11          | X/H       | AVG    |  |

#### Remark:

1. Fundamental measured method setting on spectrum, RBW=100 kHz, VBW=100kHz and Detector=Peak.

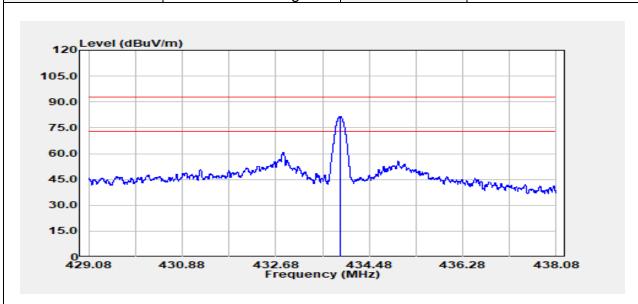
2. Average result = Peak result + Duty factor = 84.82 dBuV/m - 21.31 = 63.51 dBuV/m

3. 260MHz ~ 470MHz limit is 16.67  $^{*}$  (Frequency, MHz) - 2833.3333

Limit = 16.67 \* (433.92 MHz) - 2833.3333

= 4400.1131 (uV/m)

dBuv/m = 20 Log (uV/m) = 20 Log (4400.1131 uV/m) = 72.87 dBuV/m




 Project No:
 TM-2403000246P
 Page
 21 / 37

 Report No.:
 TMWK2403000729KR
 Rev.
 02

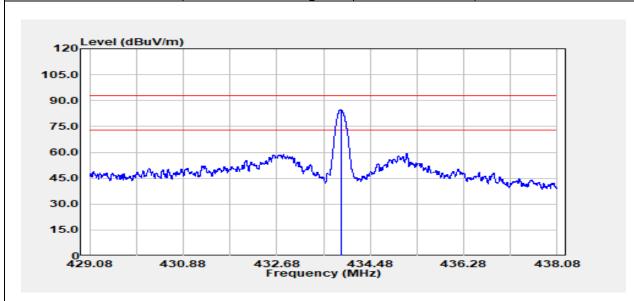
### **Test Data**

| Test Mode:    | TX-433.92MHz   | Temp/Hum      | 24.6(°ℂ)/ 57%RH |
|---------------|----------------|---------------|-----------------|
| Test Item     | Fundamental    | Test Date     | March 22, 2024  |
| Axis/Polarize | X-Plane / Ver. | Test Engineer | Tony Chao       |
| Detector      | Peak & Average |               |                 |



| No | Frequency<br>(MHz) | Detector<br>Mode<br>(PK/QP/AV) | Spectrum<br>Reading Level<br>(dBuV) | Factor (dB) | Actual<br>FS<br>(dBuV/m) | Limit<br>@3m<br>(dBuV/m) | Margin<br>(dB) |
|----|--------------------|--------------------------------|-------------------------------------|-------------|--------------------------|--------------------------|----------------|
| 1  | 433.92             | Peak                           | 86.06                               | -4.74       | 81.31                    | 92.87                    | -11.55         |
| 2  | 433.92             | Average                        |                                     | -21.31      | 60.00                    | 72.87                    | -12.86         |

#### Note:


Average result = Peak result + Duty factor = 81.31 - 21.31 = 60.00 (dBuV/m)



Project No: TM-2403000246P Page 22 / 37

Report No.: TMWK2403000729KR Rev. 02

| Test Mode:    | TX-433.92MHz   | Temp/Hum      | 24.6(°C)/ 57%RH |
|---------------|----------------|---------------|-----------------|
| Test Item     | Fundamental    | Test Date     | March 22, 2024  |
| Axis/Polarize | X-Plane / Hor. | Test Engineer | Tony Chao       |
| Detector      | Peak & Average |               |                 |



| No | Frequency | Detector<br>Mode | Spectrum<br>Reading Level | Factor | Actual<br>FS | Limit<br>@3m | Margin |
|----|-----------|------------------|---------------------------|--------|--------------|--------------|--------|
|    | (MHz)     | (PK/QP/AV)       | (dBuV)                    | (dB)   | (dBuV/m)     | (dBuV/m)     | (dB)   |
| 1  | 433.92    | Peak             | 89.57                     | -4.74  | 84.82        | 92.87        | -8.04  |
| 2  | 433.92    | Average          |                           | -21.31 | 63.51        | 72.87        | -9.35  |

Note:

Average result = Peak result + Duty factor = 84.82 - 21.31 = 63.51 (dBuV/m)



Project No: TM-2403000246P Page 23 / 37

Report No.: TMWK2403000729KR Rev. 02

### 4.4 RADIATION UNWANTED EMISSION

#### 4.4.1 Test Limit

According to §15.231(e) and §15.209, §15.205

Unwanted emissions limit follow the table or the FCC Part 15.209, whichever limit permits higher field strength.

According to §15.231(e)

| Fundamental frequency<br>(MHz) | Field strength of<br>fundamental<br>(microvolts/meter) | Field strength of spurious emissions (microvolts/meter) |
|--------------------------------|--------------------------------------------------------|---------------------------------------------------------|
| 40.66-40.70                    | 1,000                                                  | 100                                                     |
| 70-130                         | 500                                                    | 50                                                      |
| 130-174                        | 500 to 1,500 <sup>1</sup>                              | 50 to 150 <sup>1</sup>                                  |
| 174-260                        | 1,500                                                  | 150                                                     |
| 260-470                        | 1,500 to 5,000 <sup>1</sup>                            | 150 to 500 <sup>1</sup>                                 |
| Above 470                      | 5,000                                                  | 500                                                     |

<sup>\*</sup> Linear interpolation with frequency, f, in MHz:

For 130-174 MHz: Field Strength ( $\mu$ V/m) = (22.73 x f)-2454.55 For 260-470 MHz: Field Strength ( $\mu$ V/m) = (16.67 x f)-2833.33

#### According to RSS-210 A1.4 and RSS-GEN Sec. 8.9

Unwanted emissions shall comply with the general field strength limits specified in RSS-Gen or 10 times below the fundamental emissions field strength limit in table as below, whichever is less stringent.

#### According to RSS-210 A.1.4

| Table A2— Permissible Field Strength Limits for Momentarily Operated Devices                                                                   |                 |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--|--|--|--|
| Fundamental Frequency (MHz), Excluding Restricted Frequency Bands Specified in RSS-Gen Field Strength of the Fundamental Emissio (µV/m at 3 m) |                 |  |  |  |  |
| 70-130                                                                                                                                         | 500             |  |  |  |  |
| 130-174                                                                                                                                        | 500 to 1,500*   |  |  |  |  |
| 174-260 (Note 1)                                                                                                                               | 1,500           |  |  |  |  |
| 260-470 (Note 1)                                                                                                                               | 1,500 to 5,000* |  |  |  |  |
| Above 470                                                                                                                                      | 5,000           |  |  |  |  |

<sup>\*</sup> Linear interpolation with frequency, f, in MHz:

For 130-174 MHz: Field Strength ( $\mu$ V/m) = (22.73 x f)-2454.55 For 260-470 MHz: Field Strength ( $\mu$ V/m) = (16.67 x f)-2833.33



Project No: TM-2403000246P Page 24 / 37

Report No.: TMWK2403000729KR Rev. 02

# **Below 30MHz**

| _                  |              | Field Strength |                                    |               |                                    |  |  |  |
|--------------------|--------------|----------------|------------------------------------|---------------|------------------------------------|--|--|--|
| Frequency<br>(MHz) | (µV/m)       | (dBµV/m)       | Measurement<br>Distance<br>(meter) | (dBµV/m)      | Measurement<br>Distance<br>(meter) |  |  |  |
| 0.009 - 0.490      | 2400/F(kHz)  | 48.52 – 13.80  | 300                                | 128.52–104.84 | 3                                  |  |  |  |
| 0.490 - 1.705      | 24000/F(kHz) | 33.80 – 22.97  | 30                                 | 73.80– 62.97  | 3                                  |  |  |  |
| 1.705 – 30.0       | 30           | 29.54          | 30                                 | 69.54         | 3                                  |  |  |  |

### **Above 30MHz**

| / NOO TO OOMIT II |        |            |                      |
|-------------------|--------|------------|----------------------|
| Frequency         | Field  | d Strength | Measurement Distance |
| (MHz)             | (µV/m) | (dBµV/m)   | (meter)              |
| 30-88             | 100    | 40.0       | 3                    |
| 88-216            | 150    | 43.5       | 3                    |
| 216-960           | 200    | 46.0       | 3                    |
| Above 960         | 500    | 54.0       | 3                    |



Project No: TM-2403000246P Page 25 / 37 Report No.: TMWK2403000729KR Rev. 02

#### 4.4.2 Test Procedure

Test method Refer as ANSI 63.10:2013

| □ Unwanted Emission | <ul> <li>□ clause 4.1.4.2.2: Measurement Peak value.</li> <li>□ clause 4.1.4.2.3: Duty cycle ≥ 100%.</li> <li>□ clause 4.1.4.2.4: Measurement Average value.</li> </ul>                                  |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                     |                                                                                                                                                                                                          |
| □ Radiated Emission | <ul> <li>☐ clause 6.4: below 30 MHz and test distance is 3m.</li> <li>☐ clause 6.5: below 30 MHz -1 GHz and test distance is 3m.</li> <li>☐ clause 6.6: Above 30 MHz and test distance is 3m.</li> </ul> |

- 1. The EUT is placed on a turntable, which is 0.8m for test below 1GHz and 1.5m for test above 1GHz, above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Set the spectrum analyzer in the following setting as:

Below 1GHz:

RBW=100kHz / VBW=300kHz / Sweep=AUTO

Above 1GHz:

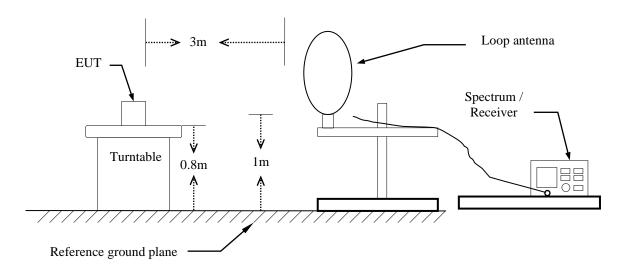
(a)PEAK: RBW=1MHz / VBW=3MHz / Sweep=AUTO

(b)AVERAGE: RBW=1MHz,

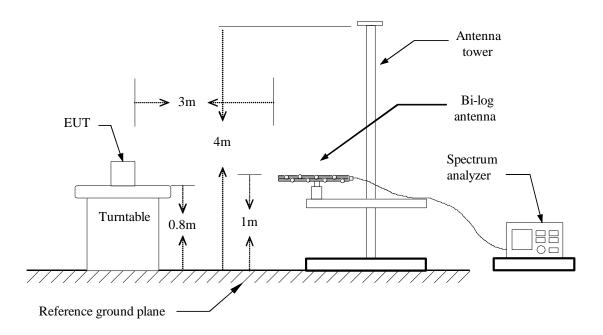
7. Repeat above procedures until the measurements for all frequencies are complete.

#### Remark.

- 1. Although these tests were performed other than open area test site, adequate comparison measurements were confirmed against 30 m open are test site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.
- 2. No emission found between lowest internal used/generated frequency to 30MHz (9kHz~30MHz).




 Project No:
 TM-2403000246P
 Page 26 / 37


 Report No.:
 TMWK2403000729KR
 Rev. 02

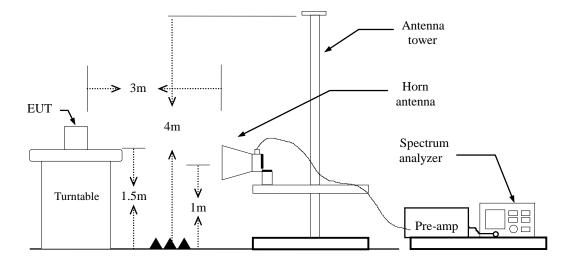
# 4.4.3 Test Setup

# 9kHz ~ 30MHz



#### 30MHz ~ 1 GHz






 Project No:
 TM-2403000246P
 Page 27 / 37

 Report No.:
 TMWK2403000729KR
 Rev. 02

report No.: TWW.Z-030007291

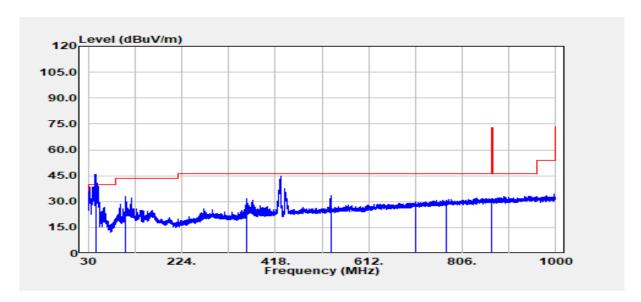
# **Above 1 GHz**



# 4.4.4 Test Result

### Pass.




 Project No:
 TM-2403000246P
 Page
 28 / 37

 Report No.:
 TMWK2403000729KR
 Rev.
 02

### **Below 1GHz**

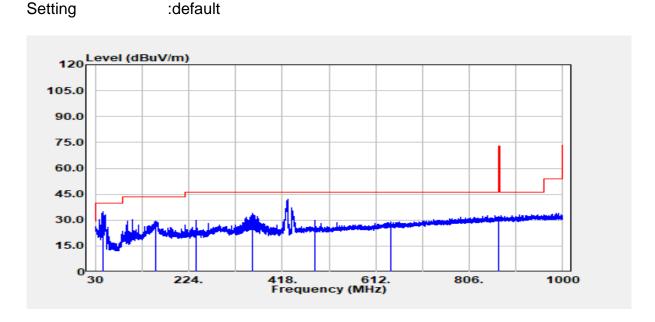
Project No :TM-2403000246P **Test Date** :2024-03-22 Operation Band :433 MHz Temp./Humi. :24.6/57 :433.92 MHz Antenna Pol. :VERTICAL Frequency Operation Mode :TX Engineer :Tony.Chao EUT Pol :E2 **Test Chamber** : 966A

Setting :default



| Freq.  | Detector<br>Mode | Spectrum<br>Read Level | Factor | Actual<br>FS | Limit  | Margin |
|--------|------------------|------------------------|--------|--------------|--------|--------|
| MHz    | PK/QP/AV         | dΒμV                   | dB     | dBµV/m       | dBµV/m | dB     |
|        |                  |                        |        |              |        |        |
| 44.91  | QP               | 49.47                  | -12.88 | 36.59        | 40.00  | -3.41  |
| 108.21 | Peak             | 43.96                  | -10.77 | 33.19        | 43.50  | -10.31 |
| 358.59 | Peak             | 38.61                  | -7.10  | 31.51        | 46.00  | -14.49 |
| 533.31 | Peak             | 36.34                  | -2.95  | 33.38        | 46.00  | -12.62 |
| 710.58 | Peak             | 29.63                  | 0.30   | 29.93        | 46.00  | -16.07 |
| 773.75 | Peak             | 29.64                  | 1.18   | 30.82        | 46.00  | -15.18 |
| 867.84 | Peak             | 29.66                  | 2.54   | 32.21        | 72.87  | -40.66 |




 Project No:
 TM-2403000246P
 Page
 29 / 37

 Report No.:
 TMWK2403000729KR
 Rev.
 02

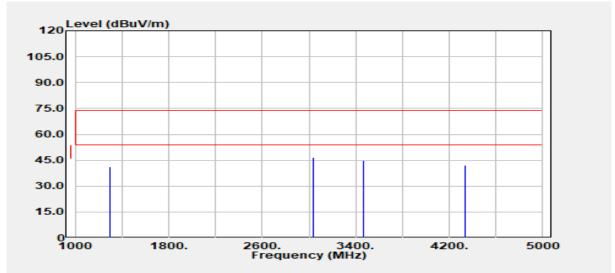
 Project No
 :TM-2403000246P
 Test Date
 :2024-03-22

 Operation Band
 :433 MHz
 Temp./Humi.
 :24.6/57

Frequency :433.92 MHz Antenna Pol. :HORIZONTAL
Operation Mode :TX Engineer :Tony.Chao
EUT Pol :E2 Test Chamber : 966A
Setting :default



| Freq.  | Detector<br>Mode | Spectrum<br>Read Level | Factor | Actual<br>FS | Limit  | Margin |
|--------|------------------|------------------------|--------|--------------|--------|--------|
| MHz    | PK/QP/AV         | dΒμV                   | dB     | dBµV/m       | dBµV/m | dB     |
|        |                  |                        |        |              |        |        |
| 45.88  | Peak             | 47.94                  | -13.22 | 34.73        | 40.00  | -5.27  |
| 155.74 | Peak             | 39.81                  | -10.41 | 29.40        | 43.50  | -14.10 |
| 240.01 | Peak             | 40.70                  | -10.60 | 30.10        | 46.00  | -15.90 |
| 357.38 | Peak             | 40.87                  | -7.12  | 33.75        | 46.00  | -12.25 |
| 485.90 | Peak             | 33.14                  | -3.42  | 29.71        | 46.00  | -16.29 |
| 644.37 | Peak             | 29.87                  | -0.70  | 29.17        | 46.00  | -16.83 |
| 867.84 | Peak             | 30.21                  | 2.54   | 32.75        | 72.87  | -40.12 |




Project No: TM-2403000246P Page 30 / 37 Report No.: TMWK2403000729KR Rev. 02

### **Above 1GHz**

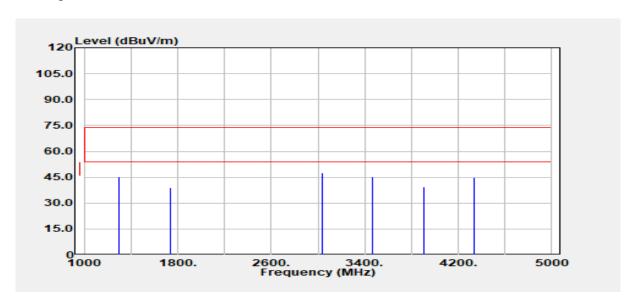
Project No :TM-2403000246P **Test Date** :2024-03-22 Operation Band :433 MHz Temp./Humi. :24.6/57 :433.92 MHz Antenna Pol. Frequency :VERTICAL Operation Mode :TX Engineer :Tony.Chao EUT Pol :E2 Test Chamber : 966A

Setting :default



| Freq.   | Detector<br>Mode | Spectrum<br>Read Level | Factor | Actual<br>FS | Limit  | Margin |
|---------|------------------|------------------------|--------|--------------|--------|--------|
| MHz     | PK/QP/AV         | dΒμV                   | dB     | dBµV/m       | dBµV/m | dB     |
|         |                  |                        |        |              |        |        |
| 1301.76 | Peak             | 48.88                  | -7.48  | 41.40        | 74.00  | -32.60 |
| 1301.76 | Average          |                        | -21.31 | 20.09        | 54.00  | -33.91 |
| 3037.44 | Peak             | 49.05                  | -2.19  | 46.86        | 74.00  | -27.14 |
| 3037.44 | Average          |                        | -21.31 | 25.55        | 54.00  | -28.45 |
| 3471.36 | Peak             | 45.59                  | -0.69  | 44.90        | 74.00  | -29.10 |
| 3471.36 | Average          |                        | -21.31 | 23.59        | 54.00  | -30.41 |
| 4339.20 | Peak             | 40.32                  | 1.69   | 42.01        | 74.00  | -31.99 |
| 4339.20 | Average          |                        | -21.31 | 20.70        | 54.00  | -33.30 |




Project No: TM-2403000246P Page 31 / 37 Report No.: TMWK2403000729KR Rev. 02

 Project No
 :TM-2403000246P
 Test Date
 :2024-03-22

 Operation Band
 :433 MHz
 Temp./Humi.
 :24.6/57

Frequency :433.92 MHz Antenna Pol. :HORIZONTAL
Operation Mode :TX Engineer :Tony.Chao
EUT Pol :E2 Test Chamber : 966A

Setting :default



| Freq.   | Detector<br>Mode | Spectrum<br>Read Level | Factor | Actual<br>FS | Limit  | Margin |
|---------|------------------|------------------------|--------|--------------|--------|--------|
| MHz     | PK/QP/AV         | dΒμV                   | dB     | dBµV/m       | dBµV/m | dB     |
|         |                  |                        |        |              |        |        |
| 1301.76 | Peak             | 52.68                  | -7.48  | 45.20        | 74.00  | -28.80 |
| 1301.76 | Average          |                        | -21.31 | 23.89        | 54.00  | -30.11 |
| 1735.68 | Peak             | 45.43                  | -6.34  | 39.10        | 74.00  | -34.90 |
| 1735.68 | Average          |                        | -21.31 | 17.79        | 54.00  | -36.21 |
| 3037.44 | Peak             | 49.70                  | -2.19  | 47.51        | 74.00  | -26.49 |
| 3037.44 | Average          |                        | -21.31 | 26.20        | 54.00  | -27.80 |
| 3471.36 | Peak             | 46.09                  | -0.69  | 45.40        | 74.00  | -28.60 |
| 3471.36 | Average          |                        | -21.31 | 24.09        | 54.00  | -29.91 |
| 3905.28 | Peak             | 38.47                  | 0.93   | 39.40        | 74.00  | -34.60 |
| 3905.28 | Average          |                        | -21.31 | 18.09        | 54.00  | -35.91 |
| 4339.20 | Peak             | 43.19                  | 1.69   | 44.87        | 74.00  | -29.13 |
| 4339.20 | Average          |                        | -21.31 | 23.56        | 54.00  | -30.44 |
| Domorki |                  |                        |        |              |        |        |

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit.



Project No: TM-2403000246P Page 32 / 37

Report No.: TMWK2403000729KR Rev. 02

### 4.5 OPERATION RESTRICTION

#### 4.5.1 Test Limit

#### According to §15.231(e)

In addition, devices operated under the provisions of this paragraph shall be provided with a means for automatically limiting operation so that the duration of each transmission shall not be greater than one second and the silent period between transmissions shall be at least 30 times the duration of the transmission but in no case less than 10 seconds.

#### According to §15.231(a)(3)

Periodic transmissions at regular predetermined intervals are not permitted. However, polling or supervision transmissions, including data, to determine system integrity of transmitters used in security or safety applications are allowed if the total duration of transmissions does not exceed more than two seconds per hour for each transmitter. There is no limit on the number of individual transmissions, provided the total transmission time does not exceed two seconds per hour.

### According to RSS-210 A.1.5(b)

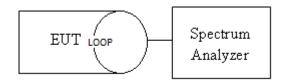
In addition, devices operated under the provisions of this section shall be capable of automatically limiting their operation so that the duration of each transmission is not greater than 1 second and the silent period between transmissions is at least 30 times the duration of the transmission, but not less than 10 seconds under any circumstances. However, devices that are designed for limited use for the purpose of initial programming, reprogramming or installing, and not for regular operations, may operate for up to 5 seconds provided such devices are used only occasionally in connection with each unit being programmed or installed.

#### According to RSS-210 A.1.2(c)

Periodic transmissions at regular, predetermined intervals are not allowed, except as specified in section A.1.5. Nonetheless, polling or supervision transmissions that determine system integrity of transmitters used in security or safety applications are permitted as long as the total duration of transmission does not exceed 2 seconds per hour for each transmitter.



Project No: TM-2403000246P Page 33 / 37


Report No.: TMWK2403000729KR Rev. 02

### 4.5.2 Test Procedure

Test method Refer as ANSI 63.10:2013 clause 7.4

Set the RBW=1MHz, VBW=1MHz, Detector = Peak, Trace mode = Max hold, Sweep = 1s. Measure

# 4.5.3 Test Setup





Project No: TM-2403000246P Page 34 / 37

Report No.: TMWK2403000729KR Rev. 02

### 4.5.4 Test Result

**Temperature:** 20.1~25.5°C **Test Date:** March 20~October 09, 2024

Humidity: 40~66% RH Tested by: Jerry Chang

Test Mode: Normal

| Dwell Time            |              |                                |                  |        |
|-----------------------|--------------|--------------------------------|------------------|--------|
| Pulse On Time<br>(ms) | Pulse Number | Total Pulse On<br>Time<br>(ms) | Off Time<br>(ms) | Result |
| 8.6                   | 3            | 25.8                           | 127400           | Pass   |

**Temperature:**  $24.3^{\circ}$ C **Test Date:** June 24, 2024

Humidity: 59% RH Tested by: Jerry Chang

**Test Mode:** Alarm mode

| Transmissions Time |                    |                                   |                            |                                    |                                         |
|--------------------|--------------------|-----------------------------------|----------------------------|------------------------------------|-----------------------------------------|
| Freq. (MHz)        | Frame Time<br>(ms) | Numbers of<br>Frames Per<br>Burst | Numbers of bursts per hour | Transmissions Time in One Hour (s) | Max.<br>Transmissions<br>Time Limit (s) |
| 433.92             | 8.45               | 3                                 | 32                         | 0.81                               | 2                                       |
| Result             |                    |                                   | PASS                       |                                    |                                         |



Project No: TM-2403000246P Page 35 / 37 Report No.: TMWK2403000729KR Rev. 02

## **Test Data**

**Duty Cycle** 





Project No: TM-2403000246P Report No.: TMWK2403000729KR Page 36 / 37 Rev. 02

#### **Transmission time burst**



#### Transmission off time





Project No: TM-2403000246P Page 37 / 37 Report No.: TMWK2403000729KR Rev. 02

### 4.6 ANTENNA REQUIREMENT

§ 15.203 Antenna requirement.

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

| Antenna Type | ☐ PIFA ☐ PCB ☐ Dipole ☐ Coils ☒ Other: Loop |
|--------------|---------------------------------------------|
| Antenna Gain | Gain: -10.59 dBi                            |

#### Remark:

1.The antenna(s) of the EUT are permanently attached and there are no provisions for connection to an external antenna. So the EUT complies with the requirements of §15.203 and RSS-Gen 6.8.

- End of Test Report -