Technical Information

	Applicant		Manufacturer
Name:	Bosch Security Systems	Name:	Bosch Security Systems Inc. China Factory
Address:	130 Perinton Parkway	Address:	Mei Chi Industrial Area, Blk B
City, State, Zip:	Fairport, New York 14450	City, State, Zip: Qian Shan Zhuhai, Guangdong 51	
			China

Test Specifications: FCC Part 15, Subpart C Paragraph 15.247, FCC Part 15, Subpart B Paragraph 15 (a) Industry Canada RSS-210 Issue 7 Annex 8, and RSS-Gen Issue 2

Test Procedure: ANSI C63.4: 2003

Test Sample Description

Test Sample:	wLSN Mini Do	or/Window Contact	
Brandname:	Bosch		
Model Number:	ISW-BMC1-M82Y		
FCC ID:	T3XBMC1-M82Y		
Туре:	Frequency Hopping Spread Spectrum Transceiver		
Power Requirements:		CR2 3V Lithium Battery	
Frequency of Op	eration:	902 MHz to 928 MHz	

Tests Performed

FCC	Industry Canada	Test Method
15.247(a)(1)	RSS-210 Annex 8 A8.1(2)	Carrier Frequency Separation / Number of hopping frequencies
15.247(a)(1)	RSS-210 Annex 8 A8.1(2)	20 dB Bandwidth
15.247(a)(1)(i)	RSS-210 Annex 8 A8.1(3)	Occupancy Time
15.247(b)(2)	RSS-210 Annex 8 A8.4(1)	Output Power
15.247 (d)	RSS-210 Annex 8 A8.5	Transmitter Spurious Radiated Emissions, Restricted Bands / Band edge Measurements
15.109(a)	RSS-Gen Paragraph 6	Receiver Spurious Radiated Emissions
15.35	RSS-Gen Paragraph 4.5	Duty Cycle Determination

TESTS RESULTS

DETERMINATION OF FIELD STRENGTH LIMITS

- 15.203: The intentional radiator is designed to ensure that no antenna other than that furnished by the applicant can be used with the device. The antenna is permanently soldered in place to the PCB.
- 15.204: The antenna used is not commercially available. It is a custom designed circularly polarized Omni-directional antenna with 1dBi gain.
- 15.247(a)(1): The frequency hopping system has hopping channel carrier frequencies separated by 100 kHz, which is less than the 20 dB bandwidth of the hopping channel.
- 15.247(a)(1)(i):The frequency hopping system operated in the 902-928 MHz band and uses 59 frequencies. The maximum 20 dB bandwidth of the hopping channel is less then 250 kHz, Measured 43.8 kHz. The average time of occupancy on any frequency is 0.021 seconds within a 20 second period.
- 15.247(b)(3): The device operates in the 902-928 MHz band. The maximum peak output power measured to be 30.0 mWatts and did not exceed 1 watt.
- 15.247(b)(3): The system operating under the provisions of this section is operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines. The maximum Output Power was measured to be 30.0 mWatts.
- 15.247 (d): In any 100 kHz bandwidth outside the frequency band in which the Spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator is at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. All emissions, which fell within the restricted bands specified in 15.205(a), were measured and found to be in compliance with the limits specified in 15.209(a).
- 15.109 (a): The field strength of spurious radiated emissions generated by the receiver did not exceed the class B limits specified.

15.247(a): Description of pseudorandom hopping sequence -

The following describes the hopping sequence used by the "Hub" or central point in the network for Beacon announcements as well as the hopping sequence used by the individual points for sending status updates to the Hub.

Frequency Announcements (Beacon) Hopping

• Using 59 frequencies channels (all system frequencies)

- Frequency channels are numbered from 0 to 58 (for 59 overall channels)
- Frequency 0 and 1 are adjacent, etc.

The Beacon hop pattern is generated uniquely for each system as follows:

We start with a set of groups

Group $0 = \{0, 1, 2, 3, ..., 9\}$ Group $1 = \{10, 11, ..., 19\}$ Group $2 = \{20, 21, ..., 29\}$ Group $3 = \{30, 31, ..., 39\}$ Group $4 = \{40, 41, ..., 49\}$ Group $5 = \{50, ..., 58\}$ Note one less than others!

We randomly shuffle the elements within each group Example: Shuffled G0 = { 2541763809 } Shuffled G1 = { 19181215141017161113 } Shuffled G2 = { 26212422292528232027 } Shuffled G3 = { 3833139323036343735 } Shuffled G4 = { 47454948424346414044 } Shuffled G5 = { 51585657525505354 }

Then we pick from one of 60 group permutations that keep the groups as least 2 apart so the frequencies in the hop pattern will be as least 5 channels apart (this translates into 500 KHz apart with our system):

Example: using the following group order: { G1, G5, G3, G0, G2, G4 } Shuffled G1 = { 19 18 12 15 14 10 17 16 11 13 } Shuffled G5 = { 51 58 56 57 52 55 50 53 54 XX } Shuffled G3 = { 38 33 31 39 32 30 36 34 37 35 } Shuffled G0 = { 2 5 4 1 7 6 3 8 0 9 } Shuffled G2 = { 26 21 24 22 29 25 28 23 20 27 } Shuffled G4 = { 47 45 49 48 42 43 46 41 40 44 }

We read the elements by columns to form the overall hop pattern {19,51,38,2,26,47, 18,58,33,5,21,45, 12,56,31,4,24,49, ...

Each base station uses a value generated from its unique serial number to seed the random number generator used in the above operations.

A Node wishing to join a network will pick one of the original groups at random and sample frequencies until it hears a Beacon. The Beacon will contain timing information and the seed so the Node can also calculate the hopping pattern being used and synchronize in time with the Base Station.

Network Operations Application Slot hopping

- Using 59 frequencies channels (all system frequencies)
- Frequency channels are numbered from 0 to 58 (for 59 overall channels)
- Frequency 0 and 1 are adjacent, etc.

The App Slot hop pattern is generated uniquely for each system as follows: We use 8 groups of size 7 and keep 00, 22, 44 on the side: Group 0 = { 01,02,03,04,05,06,07 } 7 elements Group 1 = { 08,09,10,11,12,13,14 } 7 elements Group 2 = { 15,16,17,18,19,20,21 } 7 elements Group 3 = { 23,24,25,26,27,28,29 } 7 elements Group 4 = { 30,31,32,33,34,35,36 } 7 elements Group 5 = { 37,38,39,40,41,42,43 } 7 elements Group 6 = { 45,46,47,48,49,50,51 } 7 elements Group 7 = { 52,53,54,55,56,57,58 } 7 elements

We randomly shuffle the elements within each group. Example:

- Group 0 = { 03, 05, 02, 04, 07, 01, 06 } 00
- Group 3 = { 29, 25, 27, 24, 26, 28, 23 } 22
- Group 6 = { 50, 46, 48, 51, 49, 45, 48 } 44
- Group 1 = { 11, 14, 10, 08, 13, 09, 12 }
- Group 4 = { 30, 33, 35, 31, 34, 36, 32 }
- Group 7 = { 58, 52, 55, 54, 53, 57, 56 }
- Group 2 = { 20, 16, 17, 21, 19, 18, 22 }
- Group 5 = { 40, 43, 39, 42, 41, 37, 38 }

Now we read the pattern column by column and add the extras at the end: • 03,29,50,11,30,58,20,40,05,25,46,14,33,52,16,42,02,...,22,38,00,22,44

The app slot hop pattern uses all system 59 frequencies:

- Every frame (every second) we move in the pattern a total of 12 hops
- We finish the whole pattern in almost 5 seconds (5x12=60)
- Every 5 seconds the pattern shifts by one to the left!

This approach ensures that more than one application slot (of the same type) is used in a second or from second to second, the frequencies used are at least 500 KHz apart. As well, all frequencies are utilized equally when the network is very busy.

15.247(a): Equal hopping Frequency Use

A beacon is transmitted only once on each frequency, every 20 seconds Beacon is transmitted for 118.3 ms under maximum communication load in the Security system, each frequency is used by a maximum of 4 application slots in every 20 second interval.

The duration of different application slots are: Alarm = 31.1 ms Back channel = 155.4 ms Supervision = 28.6 ms Maximum usage occurs when alarm, back channel and 2 supervision slots are used (243.7 ms) each frequency is used for a maximum of 362 ms (including Beacon) 15.247(a): Receiver Input Bandwidth The receiver deviation is controlled by a register setting in the RFIC, the deviation setting is 30 KHz and the Tx deviation is ± 4.95 KHz.

- 15.247(a): System Receiver Hopping Capability Upon power up the nodes will listen for beacons from the base station device. Once a beacon is heard the device uses information in the beacon message to compute the base stations hopping pattern and current system time. The nodes will then hop in synchronization with the base station, periodically receiving beacon messages in order to maintain synchronization.
- 15.247(g): Frequency Hopping Description The system consisting of the base station and the nodes meets the requirements of a true frequency hopping system in the following ways:
 1. At power up the nodes synchronize to the base station hop pattern and continually hop in sync with the base station at the system hopping rate.
 2. All devices in the system are changing frequency at the system hopping rate even when there is no data being transmitted, this allows all devices to distribute there transmissions equally over all of the frequencies whether the data is short period bursts or continuous.
 15.247(h): Frequency Coordination
 - All nodes in a system synchronize to and follow the same hopping pattern as the base station that they are synchronized to. Base stations from different systems independently generate their hopping pattern using only a random generator that uses that base stations serial number as the initial seed value. There is no coordination of hopping between nodes in the same system or base stations in different systems for the purpose of unfairly occupying the available spectrum.

Spectrum Analyzer Desensitization Considerations

Due to the nature of the emissions being measured, care was taken to ensure that the resolution bandwidth of the spectrum analyzer was adequate to provide accurate measurements. FCC specified bandwidths of 100 kHz and 1 MHz were utilized below and above 1 GHz, respectively.

General Notes

- 1. All readings were taken utilizing a peak and/or Average detector function at a test distance of 3 meters.
- 2. All measurements were made with fully charged batteries installed in the unit.
- 3. The frequency range was scanned from 30 MHz to 10.0 GHz. All emissions not reported were more than 20dB below the specified limit.
- 4. The device has no provisions for external accessories.
- 5. The unit tunes over the frequency range of: 915.5 to 921.5 MHz. The unit was tested at the following frequencies: 915.5 MHz, 918.5 MHz & 921.3 MHz.
- 6. The Receiver was tested per "ANSI STANDARD C63.4-2003 12.1.1.2. The receiver was programmed for normal receiver mode. A CW signal was transmitted to stabilize the local oscillator.

Modifications:

Radio Frequency cans were added to the Radio Frequency portion of the PCB and a software change was utilized to lower the RF IC power output.

Certification and Signatures

We certify that this report is a true representation of the results obtained from the tests of the equipment stated. We further certify that the measurements shown in this report were made in accordance with the procedures indicated and vouch for the qualifications of all Retlif Testing Laboratories personnel taking them.

Donald C. Lerner EMC Test Engineer

Nicholas Dragotta EMC Laboratory Supervisor

Non-Warranty Provision

The testing services have been performed, findings obtained and reports prepared in accordance with generally accepted laboratory principles and practices. This warranty is in lieu of all others, either expressed or implied.

Non-Endorsement

This test report contains only findings and results arrived at after employing the specific test procedures and standards listed herein. It is not intended to constitute a recommendation, endorsement or certification of the product or material tested. This test report must not be used by the client to claim product endorsement by NVLAP or any agency of the U.S. Government.

Retlif Testing Laboratories, Report R-11965-5, Bosch Security Systems, FCC ID: T3XBMC1-M82Y Page 6 of 49

Equipment List

FCC Part 15, Subpart C, 15.247 (a)(1) Number of Hopping Frequency and Carrier Separation

EN	Туре	Manufacturer	Description	Model No.	Cal Date	Due Date
067	Open Area Test Site	Retlif	3/10 Meter	RNY	9/12/2006	9/12/2009
141	Spectrum Analyzer	Hewlett Packard	100 Hz - 40 GHz	8566B	4/27/2007	4/27/2008
141B	Quasi-Peak Adaptor	Hewlett Packard	100 Hz - 1 GHz	85650A	4/27/2007	4/27/2008
512	Graphics Plotter	Hewlett Packard	N/A	7470A	10/18/2006	10/18/2007

FCC Part 15, Subpart C, Paragraph 15.247.(a)(1) Occupied Bandwidth

EN	Туре	Manufacturer	Description	Model No.	Cal Date	Due Date
067	Open Area Test Site	Retlif	3/10 Meter	RNY	9/12/2006	9/12/2009
141	Spectrum Analyzer	Hewlett Packard	100 Hz - 40 GHz	8566B	4/27/2007	4/27/2008
141B	Quasi-Peak Adaptor	Hewlett Packard	100 Hz - 1 GHz	85650A	4/27/2007	4/27/2008
512	Graphics Plotter	Hewlett Packard	N/A	7470A	10/18/2006	10/18/2007

FCC Part 15, Subpart C, 15.247(a)(1)(i), Occupancy Time and Duty cycle

EN	Туре	Manufacturer	Description	Model No.	Cal Date	Due Date
067	Open Area Test Site	Retlif	3/10 Meter	RNY	9/12/2006	9/12/2009
141	Spectrum Analyzer	Hewlett Packard	100 Hz - 40 GHz	8566B	4/27/2007	4/27/2008
141B	Quasi-Peak Adaptor	Hewlett Packard	100 Hz - 1 GHz	85650A	4/27/2007	4/27/2008
512	Graphics Plotter	Hewlett Packard	N/A	7470A	10/18/2006	10/18/2007

FCC Part 15, Subpart C, Radiated Emissions, Fundamental Power Output

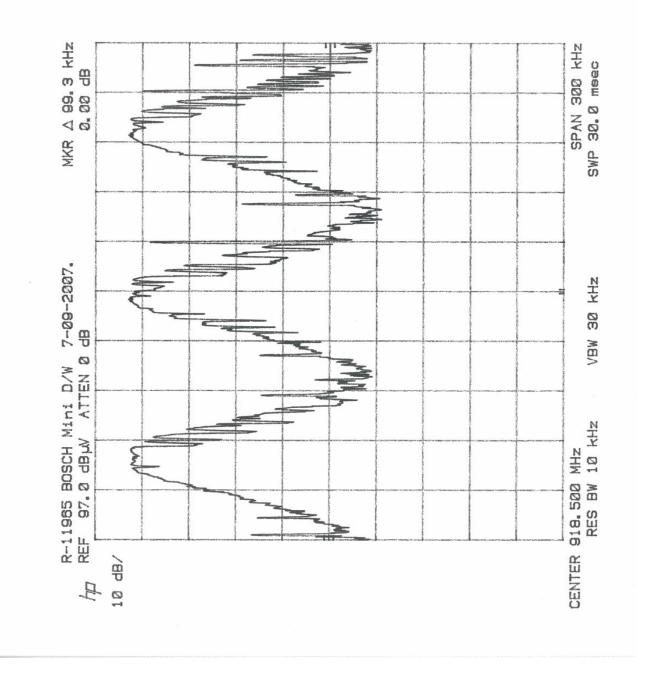
EN	Туре	Manufacturer	Description	Model No.	Cal Date	Due Date
067	Open Area Test Site	Retlif	3/10 Meter	RNY	9/12/2006	9/12/2009
133	Broadband Pre-Amplifier	Electro-Metrics	10 kHz - 1 GHz, 26dB	BPA-1000	6/27/2006	6/27/2007
141	Spectrum Analyzer	Hewlett Packard	100 Hz - 40 GHz	8566B	4/27/2007	4/27/2008
141B	Quasi-Peak Adaptor	Hewlett Packard	100 Hz - 1 GHz	85650A	4/27/2007	4/27/2008
206B	6.0 dB Attenuator	Texscan	0 - 1.0 GHz	FP-50 - 6 dB	6/27/2006	6/27/2007
512	Graphics Plotter	Hewlett Packard	N/A	7470A	10/18/2006	10/18/2007
617	Interference Analyzer	Electro-Metrics	10 kHz - 1 GHz	EMC-30	3/30/2007	3/30/2008
767	Biconilog	EMCO	26 - 2000 MHz	3142B	10/12/2006	10/12/2007

FCC Part 15, Subpart C, 15.247(d) Band Edge Measurements, 902 to 928 MHz Band

EN	Туре	Manufacturer	Description	Model No.	Cal Date	Due Date
067	Open Area Test Site	Retlif	3/10 Meter	RNY	9/12/2006	9/12/2009
141	Spectrum Analyzer	Hewlett Packard	100 Hz - 40 GHz	8566B	4/27/2007	4/27/2008
141B	Quasi-Peak Adaptor	Hewlett Packard	100 Hz - 1 GHz	85650A	4/27/2007	4/27/2008
512	Graphics Plotter	Hewlett Packard	N/A	7470A	10/18/2006	10/18/2007

FCC Part 15 Subpart C, Radiated Harmonic Emissions

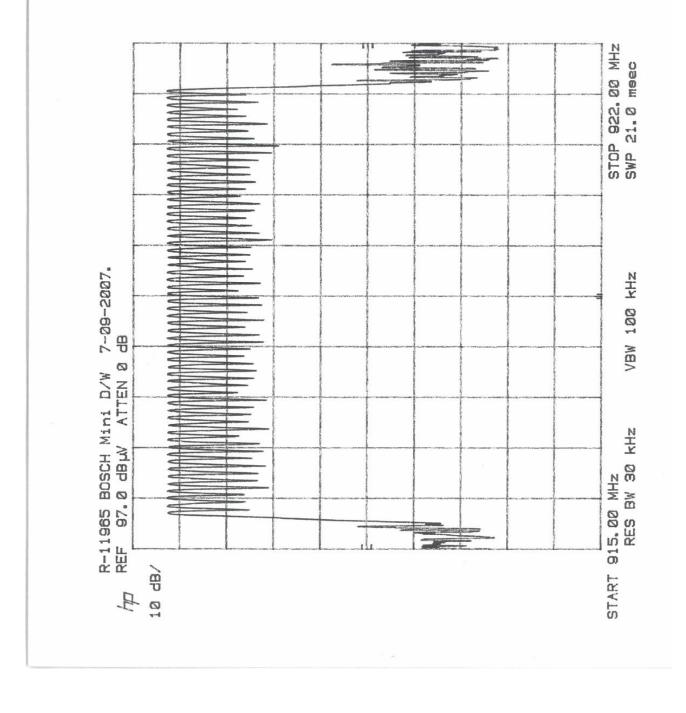
EN	Туре	Manufacturer	Description	Model No.	Cal Date	Due Date
032F	H.P. Filter	Microlab/FXR	2 GHz	HD-20N	9/22/2006	9/22/2007
032H	H.P. Filter	Microlab/FXR	4 GHz	HD-40N	2/20/2007	2/20/2008
032J	H.P. Filter	Microlab/FXR	6 GHz	HD-60N	3/13/2007	3/13/2008
067	Open Area Test Site	Retlif	3/10 Meter	RNY	9/12/2006	9/12/2009
1049	H.P. Filter	Microlab/FXR	1 GHz	HD-10N	9/22/2006	9/22/2007
128	Double Ridged Guide	Electro-Mechanics	1 GHz - 18 GHz	3105	3/27/2007	3/27/2008
133	Broadband Pre-Amplifier	Electro-Metrics	10 kHz - 1 GHz, 26dB	BPA-1000	6/27/2007	6/27/2008
141	Spectrum Analyzer	Hewlett Packard	100 Hz - 40 GHz	8566B	4/27/2007	4/27/2008
141A	Graphics Plotter	Hewlett Packard	N/A	7470A	3/12/2007	3/12/2008
206B	6.0 dB Attenuator	Texscan	0 - 1.0 GHz	FP-50 - 6 dB	6/27/2007	6/27/2008
379F	H.P. Filter	Microlab/FXR	500 MHz	HA-05N	9/22/2006	9/22/2007
543	Preamplifier	Hewlett Packard	1.0 GHz - 26.5 GHz	8449B	9/9/2005	9/9/2007
767	Biconilog	EMCO	26 - 2000 MHz	3142B	10/12/2006	10/12/2007


FCC Part 15 Subpart C, Transmitter Spurious Radiated Emissions

EN	Туре	Manufacturer	Description	Model No.	Cal Date	Due Date
032F	H.P. Filter	Microlab/FXR	2 GHz	HD-20N	9/22/2006	9/22/2007
032H	H.P. Filter	Microlab/FXR	4 GHz	HD-40N	2/20/2007	2/20/2008
032J	H.P. Filter	Microlab/FXR	6 GHz	HD-60N	3/13/2007	3/13/2008
067	Open Area Test Site	Retlif	3/10 Meter	RNY	9/12/2006	9/12/2009
1049	H.P. Filter	Microlab/FXR	1 GHz	HD-10N	9/22/2006	9/22/2007
128	Double Ridged Guide	Electro-Mechanics	1 GHz - 18 GHz	3105	3/27/2007	3/27/2008
133	Broadband Pre-Amplifier	Electro-Metrics	10 kHz - 1 GHz, 26dB	BPA-1000	6/27/2007	6/27/2008
141	Spectrum Analyzer	Hewlett Packard	100 Hz - 40 GHz	8566B	4/27/2007	4/27/2008
141A	Graphics Plotter	Hewlett Packard	N/A	7470A	3/12/2007	3/12/2008
206B	6.0 dB Attenuator	Texscan	0 - 1.0 GHz	FP-50 - 6 dB	6/27/2007	6/27/2008
379F	H.P. Filter	Microlab/FXR	500 MHz	HA-05N	9/22/2006	9/22/2007
543	Preamplifier	Hewlett Packard	1.0 GHz - 26.5 GHz	8449B	9/9/2005	9/9/2007
762	AM/FM Signal Generator	Marconi Instru.	10 kHz - 1.2 GHz	2023	7/24/2007	7/24/2008
767	Biconilog	EMCO	26 - 2000 MHz	3142B	10/12/2006	10/12/2007
826	10 DB Atten. (50 ohm)	Narda	DC - 10 GHz, 1W	774-10	5/21/2007	5/21/2008

FCC Part 15 Subpart B, Class B, Radiated Emissions, 30 MHz to 5 GHz

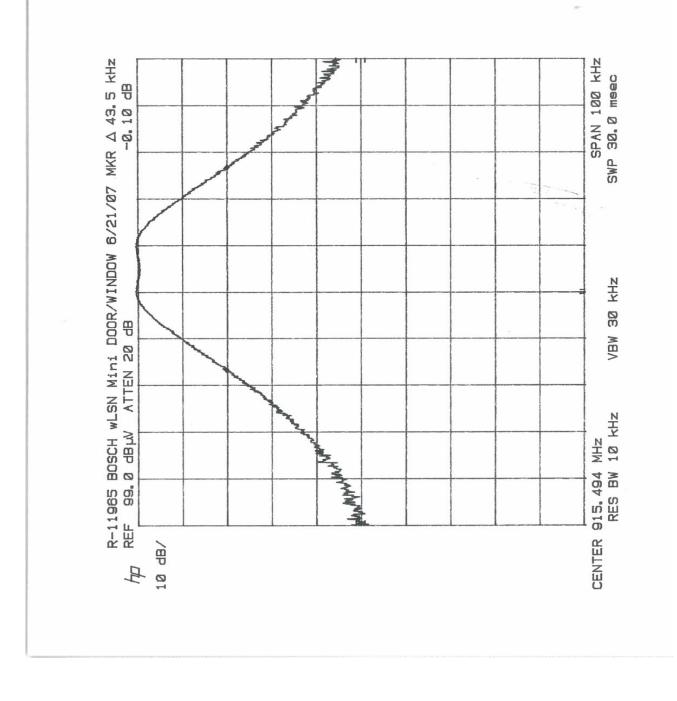
EN	Туре	Manufacturer	Description	Model No.	Cal Date	Due Date
067	Open Area Test Site	Retlif	3/10 Meter	RNY	9/12/2006	9/12/2009
128	Double Ridged Guide	Electro-Mechanics	1 GHz - 18 GHz	3105	3/27/2007	3/27/2008
133	Broadband Pre-Amplifier	Electro-Metrics	10 kHz - 1 GHz, 26dB	BPA-1000	6/27/2007	6/27/2008
141	Spectrum Analyzer	Hewlett Packard	100 Hz - 40 GHz	8566B	4/27/2007	4/27/2008
141A	Graphics Plotter	Hewlett Packard	N/A	7470A	3/12/2007	3/12/2008
206B	6.0 dB Attenuator	Texscan	0 - 1.0 GHz	FP-50 - 6 dB	6/27/2007	6/27/2008
512	Graphics Plotter	Hewlett Packard	N/A	7470A	10/18/2006	10/18/2007
523	Biconilog	Electro-Mechanics	26 - 2000 MHz	3142B	11/10/2006	11/10/2007
543	Preamplifier	Hewlett Packard	1.0 GHz - 26.5 GHz	8449B	9/9/2005	9/9/2007
574	AM/FM Signal Generator	Marconi Instru.	9 kHz - 2.4 GHz	2024	7/25/2006	7/25/2007
617	Interference Analyzer	Electro-Metrics	10 kHz - 1 GHz	EMC-30	6/13/2007	6/13/2008
1049	H.P. Filter	Microlab/FXR	1 GHz	HD-10N	9/22/2006	9/22/2007


FCC Part 15, Subpart C, 15.247 (a)(1) Carrier Frequency Separation and Number of Hopping Frequency 902 – 928 MHz Band Test Data

 FCC Part 15, Subpart C, 15.247(a) (1)Hopping Channel Carrier Separation, 902 to 928 MHz Band
 Note: Hopping channel carrier frequency meets the required minimum separation of 25 kHz (Measured carrier separation =99.3kHz)
 FCC ID:T3XBMC1-M82Y

Bosch Security System.				
wLSN Mini Door / Window Contact				
ISW-BMC1-M82Y				
	Tech: R.S.	Sheet 1 of 2		
	wL	wLSN Mini Door / Win ISW-BMC1-M82Y Tech: R.S.		

Retlif Testing Laboratories, Report R-11965-5, Bosch Security Systems, FCC ID: T3XBMC1-M82Y Page 10 of 49

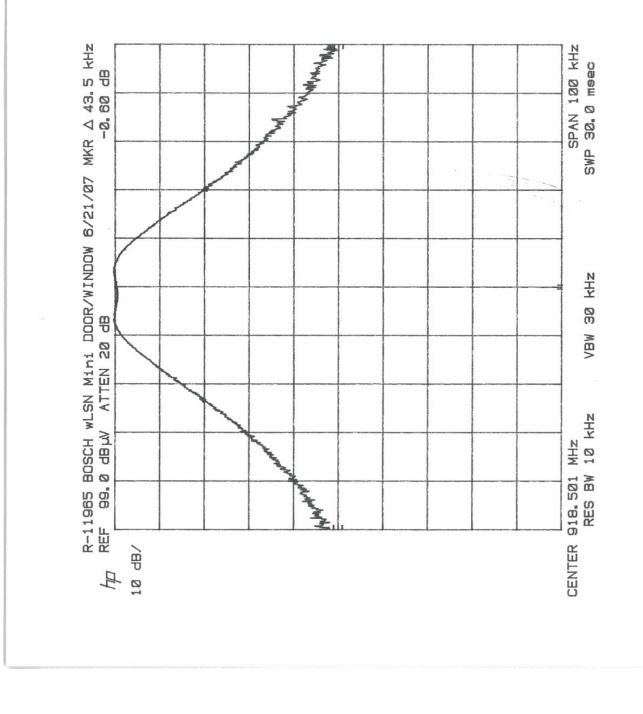

FCC Part 15, Subpart C, 15.247(a) (1) Number of Hopping Frequency, 902 to 928 MHz Band

Note: EUT uses 59 hopping frequencies which meets the 50 minimum hopping frequencies required by the 20dB bandwidth if less than 250 kHz(measured BW = 43.8 kHz).

FCC ID:T3XBMC1-M82Y

Customer	Bos	Bosch Security System.					
Test Sample	wL	wLSN Mini Door / Window Contact					
Model Number	ISV	V-BMC1-M82Y					
Date: 7-09-2007		Tech: R.S.	Sheet 2 of 2				
		<u> </u>	1 0 11005				

Retlif Testing Laboratories, Report R-11965-5, Bosch Security Systems, FCC ID: T3XBMC1-M82Y Page 11 of 49 FCC Part 15, Subpart C, 15.247 (a)(1) Occupied Bandwidth, 902 - 928 MHz Test Data

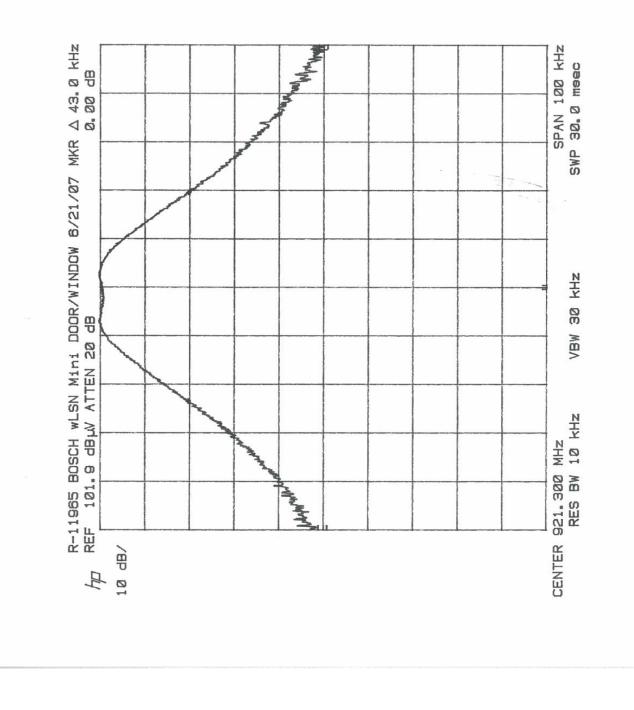

FCC Part 15, Subpart C, 15.247(a) (1) Occupied Bandwidth, 902 to 928 MHz Band

Note: The maximum 20 dB bandwidth of the hopping channel is less then 250 kHz. 20dB bandwidth measured at 43.5 kHz

Note: EUT transmitting on channel 00 at 915.5 MHz. **FCC ID:**T3XBMC1-M82Y

Customer	В	osch Security System.				
Test Sample	ple wLSN Mini Door / Windo					
Model Number	15	SW-BMC1-M82Y				
Date: 6-21-2007		Tech: R.S. Sheet 1 of 3				
D = (I + I + I)		Laborate Da				

Retlif Testing Laboratories, Report R-11965-5, Bosch Security Systems, FCC ID: T3XBMC1-M82Y Page 13 of 49


FCC Part 15, Subpart C, 15.247(a) (1) Occupied Bandwidth, 902 to 928 MHz Band

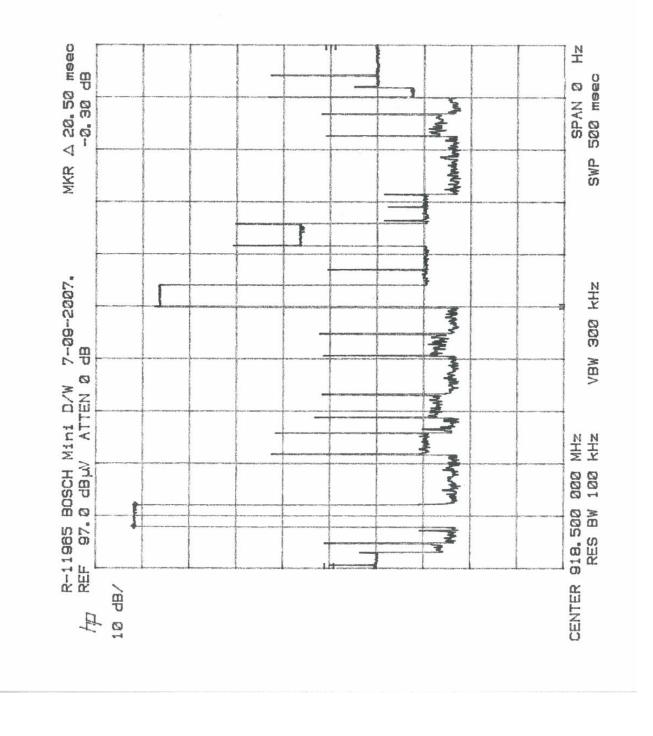
Note: The maximum 20 dB bandwidth of the hopping channel is less then 250 kHz. 20dB bandwidth measured at 43.5 kHz

Note: EUT transmitting on channel 30 at 918.5 MHz. **FCC ID:**T3XBMC1-M82Y

Bos	Bosch Security System.				
wL	wLSN Mini Door / Window Contact				
ISV	V-BMC1-M82Y				
	Tech: R.S.	Sheet 2 of 3			
	wL	wLSN Mini Door / Win ISW-BMC1-M82Y			

Retlif Testing Laboratories, Report R-11965-5, Bosch Security Systems, FCC ID: T3XBMC1-M82Y Page 14 of 49

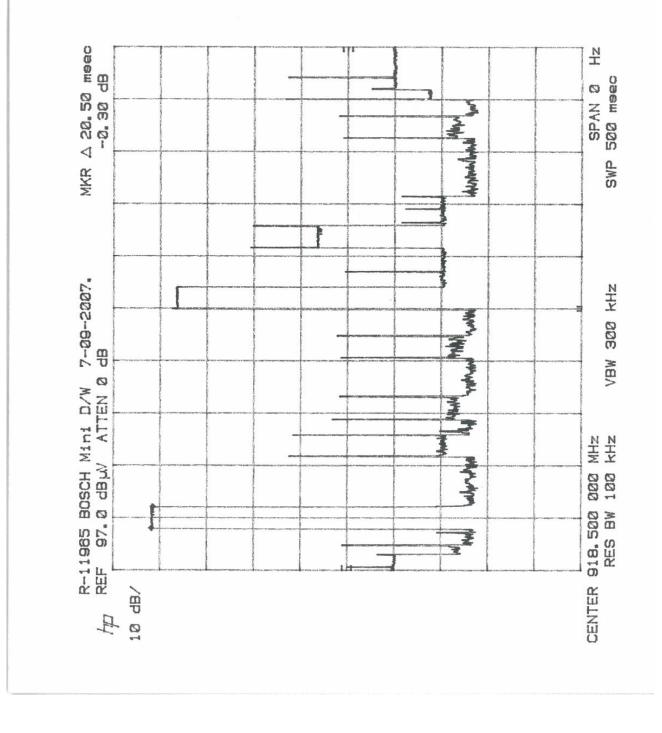
FCC Part 15, Subpart C, 15.247(a) (1) Occupied Bandwidth, 902 to 928 MHz Band


Note: The maximum 20 dB bandwidth of the hopping channel is less then 250 kHz. 20dB bandwidth measured at 43.0 kHz

Note: EUT transmitting on channel 58 at 921.3 MHz. **FCC ID:**T3XBMC1-M82Y

Customer	Bos	Bosch Security System.			
Test Sample	wL	wLSN Mini Door / Window Contact			
Model Number	ISV	V-BMC1-M82Y			
Date: 6-20-2007		Tech: R.S.	Sheet 3 of 3		

Retlif Testing Laboratories, Report R-11965-5, Bosch Security Systems, FCC ID: T3XBMC1-M82Y Page 15 of 49

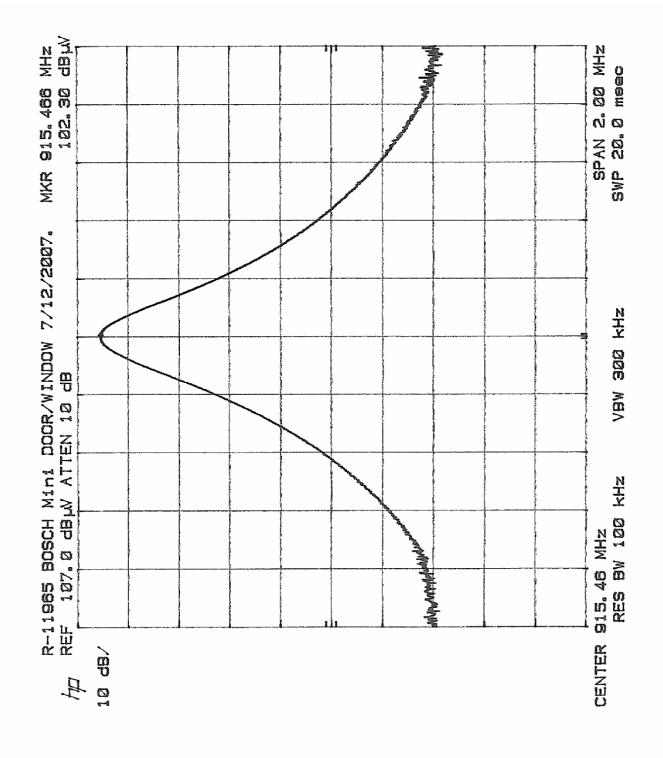

FCC Part 15, Subpart C, 15.247 (a)(1)(i) Occupancy Time 902 - 928 MHz Test Data

FCC Part 15, Subpart C, 15.247(a)(1)(i) Occupancy Time, 902 to 928 MHz Band Note: The measured occupancy time does not exceed the 0.4 seconds (Measured time =20.5mSec.) FCC ID:T3XBMC1-M82Y

Customer	Bo	sch Security System.				
Test Sample	wL	wLSN Mini Door / Window Contact				
Model Number	ISV	ISW-BMC1-M82Y				
Date: 7-09-2007		Tech: R.S.	Sheet 1 of 1			

Retlif Testing Laboratories, Report R-11965-5, Bosch Security Systems, FCC ID: T3XBMC1-M82Y Page 17 of 49 FCC Part 15, Subpart C, 15.247 (a)(1)(i) Duty Cycle 902 - 928 MHz Test Data

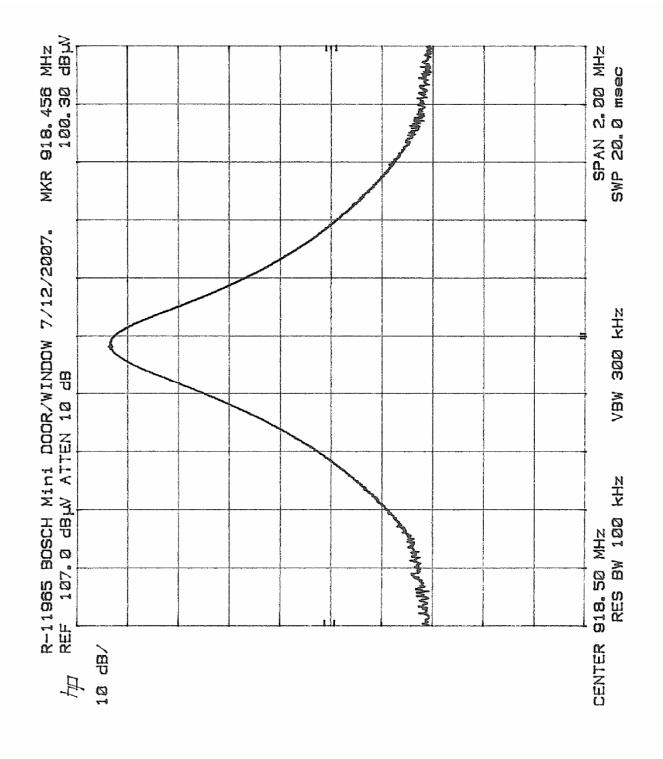
Test Method: FCC Part 15.35, Duty Cycle Determination.


Notes: Duty cycle = (20.5 mSec / 100) = 0.205 = 20.5%= 20 log 0.205 = -13.7 dBFCC ID:T3XBMC1-M82Y

Customer	Bos	Bosch Security System.						
Test Sample	wL	wLSN Mini Door / Window Contact						
Model Number	ISV	V-BMC1-M82Y						
Date: 7-09-2007		Tech: R.S.	Sheet 1 of 1					

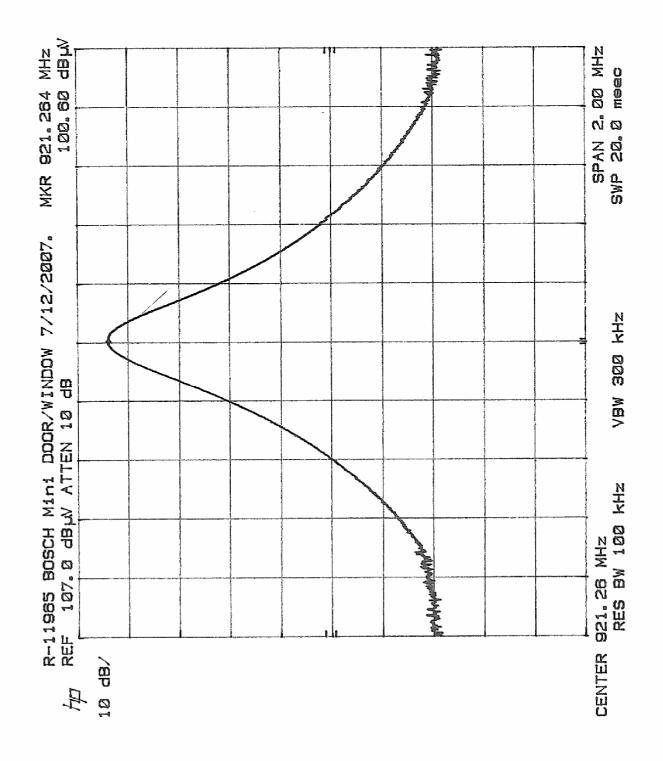
Retlif Testing Laboratories, Report R-11965-5, Bosch Security Systems, FCC ID: T3XBMC1-M82Y Page 19 of 49 FCC Part 15, Subpart C Radiated Emissions, Fundamental Power Output Paragraph 15.247(b) (2) Test Data

Test Metho	d:	FCC P	art 15, Subpart (C Radiated Emiss	sions, Fundam	ental Power Ou	tput.				
Customer:		Bosch	Security System			Job No	R -11965-	5			
Test Sample	e:	wLSN	Mini Door / Wi	ndow Contact		Paragrap	h 15.247(b)	(2)			
Model No.:		ISW-B	MC1-M82Y			FCC ID	: T3XBMC				
Operating N	Mode:	Contin	uously transmitt	ing a 915.5 MHz	z, 918.4 MHz a	and 921.3 MHz	signal.				
Technician:		R. Soo	doo	-		Date	e: July 12, 2	2007.			
Notes:	Test Dista	nce: 3 N	Aeters	Temp :23.4°C	Humidity :5	9%					
	Detector:	Peak			2						
	Anten		EUT	Meter	Correction	Corrected	Converted	Converted	Peak		
Test Freq.	Pol./He		Orientation	Reading	Factor	Reading	Reading	Reading	Limit		
MHz	(V/H) / M	0	X / Y / Z	dBuV	dB	dBuV/m	V/m	milliWatts	Watts		
915.5	V / 1.		X	92.4	9.6	102.0	0.13	4.8	1.0		
/ / / / / /	V / 1.		Y	85.9	9.6	95.5	0.06	1.1			
	V / 1.		Z	98.6	9.6	108.2	0.26	19.8			
	H / 1.		X	94.3	9.6	103.9	0.16	7.4			
: 	H / 2.		Y	92.6	9.6	102.2	0.13	5.0			
915.5	H / 1.		Z	83.9	9.6	93.5	0.05	0.7			
710.0		0	2	0017	210	75.5	0.02	0.7			
918.4	V / 1.	4	X	91.3	9.6	100.9	0.11	3.7			
	V / 1.		Y	89.5	9.6	99.1	0.09	2.4			
	V / 1.		Z	100.4	9.6	110.0	0.32	30.0			
· · · · · · · · · · · · · · · · · · ·	H / 2.		X	93.0	9.6	102.6	0.13	5.5			
	H / 1.		Y	94.3	9.6	103.9	0.16	7.4			
918.4	H / 1.		Z	81.9	9.6	91.5	0.04	0.4			
		-				,					
921.3	V / 1.2		.2 X	90.7	9.6	100.3	0.10	3.2			
		V / 1.0			Y	86.2	9.6		0.06	1.1	
	V / 1.	0	Z	97.6	9.6	107.2	0.23	15.7			
	H / 1.		Х	92.8	9.6	102.4	0.13	5.2			
	H / 2.	3	Y	91.6	9.6	101.2	0.11	4.0			
921.3	H / 1.	3	Z	83.3	9.6	92.9	0.04	0.6	1.0		
									. <u></u>		
				indicated above.							
				d to convert the f	field strength in	n dB μ V into V/	m and V/m to	Watts respectiv	vely.		
			V/m-120) / 20)								
	Power = (V/m x 3	B)² / 30								


Page 1 of 1

FCC Part 15, Subpart C Radiated Emissions, Fundamental Power Output,Para.15.247(b)(2) Note: EUT transmitting on channel 00 at 915.5 MHz. FCC ID:T3XBMC1-M82Y

Customer	Bo	Bosch Security System.				
Test Sample	wL	wLSN Mini Door / Window Contact				
Model Number	ISV	W-BMC1-M82Y	_			
Date: July 12, 2007.		Tech: R.S.	Sheet 1 of 3			


Retlif Testing Laboratories, Report R-11965-5, Bosch Security Systems, FCC ID: T3XBMC1-M82Y Page 22 of 49

FCC Part 15, Subpart C Radiated Emissions, Fundamental Power Output,Para.15.247(b)(2) Note: EUT transmitting on channel 30 at 918.4 MHz. FCC ID:T3XBMC1-M82Y

Customer	Bo	Bosch Security System.				
Test Sample	wL	wLSN Mini Door / Window Contact				
Model Number	ISV	W-BMC1-M82Y	_			
Date: July 12, 2007.		Tech: R.S.	Sheet 2 of 3			

Retlif Testing Laboratories, Report R-11965-5, Bosch Security Systems, FCC ID: T3XBMC1-M82Y Page 23 of 49

FCC Part 15, Subpart C Radiated Emissions, Fundamental Power Output,Para.15.247(b)(2) Note: EUT transmitting on channel 58 at 921.3 MHz. FCC ID:T3XBMC1-M82Y

Customer	Bo	Bosch Security System.				
Test Sample	wL	wLSN Mini Door / Window Co				
Model Number	ISV	W-BMC1-M82Y				
Date: July 12, 200	7.	Tech: R.S.	Sheet 3 of 3			

Retlif Testing Laboratories, Report R-11965-5, Bosch Security Systems, FCC ID: T3XBMC1-M82Y Page 24 of 49 FCC Part 15 Subpart C, Transmitter Spurious Radiated Emissions, Paragraph 15.247(d) Test Data

Test	Metho	d:	FCC P	art 15 Subpar	t C, Spuriou	us Case Radi	ated Emi	ssions, Parag	raph 15.247(d)	
Cust	omer:			Bosch Security System. Job No.: R-11965-5							
Test	Sampl	e:	wLSN	wLSN Mini Door / Window Contact FCC ID.: T3XBMC1-M28Y							
Mode	el No.:		ISW-B	MC1-M82Y				Serial No.:	N/A		
Oper	ating M	/lode:	Continu	uously Transm	itting on cha	nnel 00, a 91	5.5 MHz s	signal.			
Tech	nician			R. Soodoo Date: August 15, 20							
Note	s:	Test I	Distance	: 3 Meters			Ten	np: 29.2°C	Humidity:	53%	
		Detec	tor: Peal	k							
		Ant	enna	EUT	Meter	Correction	Corr	ected	Converted	Pe	ak
Frequ	Jency	Pos	sition	Orientation	Readings	Factor	Rea	ading	Reading	Lin	nit
М	Hz	(V/H) /	Meters	Degrees	dBuV	dB	dB	uV/m	uV/m	uV	′/m
20	00									24.00	22.0
30	.00									3162	22.8
			Noo		boorwood o	t the energi	fied too	t distance			
			no ei	missions ol	oserved a	t the speci	fied tes	a distance		i	
										İ	
										!	
100	00.0									3162	22.8
		The fre		nge was scanned	from 30 MHz to	10 GHz					
				served from the E			limits.				
		Emissio	ons not rec	orded were more	than 20dB und	er the specified li	imit.				
		The lim	it used is 2	20dB less than the	e measured fun	damental frequer	ncy as speci	fied in paragraph	15.247(d)		

Page 1 of 3

Test Metho	d:	FCC P	art 15 Subpar	t C, Spuriou	us Case Radi	ated Emi	ssions, Pa	aragi	raph 15.247(c	l)	
Customer:			Bosch Security System. Job No.: R-11965-5								
Test Sampl	e:	wLSN	Mini Door / Wi	ndow Conta	ct		FCC	ID.:	T3XBMC1-N	128Y	
Model No.:		ISW-B	ISW-BMC1-M82Y Serial No.: N/A								
Operating I	Node:	Continu	uously Transm	itting on cha	nnel 30, a 918	8.4 MHz s	signal.				
Technician		R. Soo	doo				Da	ate:	August 15, 2	2007.	
Notes:	Test [Distance	: 3 Meters			Ten	np: 29.2°C		Humidity: 5	3%	
	Detec	tor: Peal	k				-		-		
Frequency		enna sition	EUT Orientation	Meter Readings	Correction Factor		ected ading	(Converted Reading		ak nit
MHz	(V/H) /	Meters	Degrees	dBµV	dB		μV/m		uV/m	u\	//m
)								
30.00										316	22.8
!											
		No	missions o	beerved	at the spec	ified to	et distan				
I			1115510115 0		at the spec		si uistai				
I											
I											
40000.0										0.10	
10000.0										316	22.8
	The fre	quencv rar	nge was scanned	from 30 MHz to	10 GHz.					1	
	The em	issions ob	served from the E	UT do not exce	ed the specified						
			corded were more				the state of the second		F 047(-1)		
	i ne lim	IT USED IS 2	is 20dB less than the measured fundamental frequency as specified in paragraph 15.247(d)								
Page 2 of											

Page 2 of 3

Test	Metho	d:	FCC P	art 15 Subpar	t C, Spuriou	us Case Radi	ated Emi	ssions, Parag	raph 15.247(d)	
Cust	omer:			Security Syste				Job No.:	R-11965-5		
Test	Sampl	e:		Mini Door / Wi		ct		FCC ID.:	T3XBMC1-	M28Y	
Mode	el No.:			MC1-M82Y				Serial No.:			
Oper	ating M	Node:	Continu	uously Transm	itting on cha	nnel 58, a 92	1.3 MHz s	signal.			
Tech	nician		R. Soo	doo		· · · · · · · · · · · · · · · · · · ·		Date:	August 15, 2	2007.	
Notes	s:	Test D	Distance	: 3 Meters			Ten	np: 29.2°C	Humidity:	53%	
		Detec	tor: Peal	k					-		
		Ant	enna	EUT	Meter	Correction	Corr	ected	Converted	Pe	ak
Frequency Pos		sition	Orientation	Readings	Factor	Rea	ading	Reading	Lir	nit	
M	Hz	(V/H) /	Meters	Degrees	dBµV	dB	dB	µV/m	uV/m	u∨	//m
30	.00									3162	22.8
											1
											1
			🕂 No	emissions	observed	l at the spe	cified t	est distanc	e		
											1
	ı 										
										<u> </u>	
100										2160	22.0
100	00.0									3162	22.0
		The fre	quency rar	nge was scanned	from 30 MHz to	0 10 GHz.	1	I			
		The em	nissions ob	served from the E	UT do not exce	ed the specified					
				corded were more				fied in paragraph	15 247(d)		
		i ne iim	nt used is 2	LOUD less than the	e measured tub	uamental frequer	icy as speci	neu in paragraph	15.247(U)		

Page 3 of 3

FCC Part 15 Subpart C, Radiated Emissions, Harmonics Paragraphs 15.247(d). EUT transmitting at the Fundamental signal of 915.5 MHz

Test Method	d:	FCC Pa	rt 15 Subpart C	, Radiated Em	issions, Harmo	onics Emission	S.				
Customer:			Security System			R-11965-5					
Test Sample			1ini Door / Wind								
Model No.:			IC1-M82Y	FCC ID:	T3XBMC1-M82	Y					
Operating N			Continuously transmitting a 915.5 MHz signal.								
Technician:		R. Soodoo Date: August 15, 2007.									
	Test Dista					Duto.	/ laguet 10, 2007	•			
			nless otherwise	specified							
	Anten		EUT	Meter	Correction	Corrected	Converted	Do	ak		
Test Freq.	Pol./He		Orientation	Reading	Factor	Reading	Reading		nit		
MHz (V/H)/		-	X/Y/Z	dBµV	dB	dBµV/m	uV/m		//m		
	· /										
1831.0	V / 1 V / 1		X Y	<u>54.3</u> 49.6	2.3 2.3	<u>56.6</u> 51.9	676.1	501	18.0		
	V/1		Z	61.9	2.3		393.6				
	U/1 H/1		<u> </u>	53.4	2.3	64.2	1621.8				
			X Y	53.4 58.2	2.3	55.7	609.5 1059.3				
1831.0	H/1 H/1		Y Z	<u> </u>	2.3	60.5		501	100		
1031.0	Π/1	.5	۷	40.0	2.3	50.3	327.3	501	10.0		
2746.5	V / 1	1	Х	51.0	5.2	56.2	645.7	500			
2740.5	V / 1		Y	55.1	5.2	60.3	1035.1	500	1		
<u> </u>	V / 1		Z	56.8	5.2	62.0	1258.9		 		
	H/1		<u> </u>	51.8	5.2	57.0	707.9		 		
	H/1		Y	54.5	5.2	59.7	966.1		 		
2746.5	H/2		Z	53.0	5.2	58.2	812.8	500	0.0		
2140.0	1172		2	00.0	0.2	50.2	012.0	000	/0.0		
3662.0	V / 1	.0	Х	47.1	10.0	57.1	716.1	500	0.0		
	V / 1		Ý	49.5	10.0	59.5	944.1				
	V / 1		Z	48.1	10.0	58.1	803.5				
	H/2		Х	47.3	10.0	57.3	732.8				
	H/1		Ŷ	47.8	10.0	57.8	776.2				
3662.0	H/2		Z	48.2	10.0	58.2	812.8	500	0.0		
4577.5	V / 2	.3	Х	46.6	13.6	60.2	1023.3	500	0.0		
	V / 1		Y	49.3	13.6	62.9	1396.4				
	V / 1		Z	49.2	13.6	62.8	1380.4				
i I	H/1	.9	Х	46.6	13.6	60.2	1023.3				
i I	H/1		Y	46.5	13.6	60.1	1011.6				
4577.5	H/1		Z	53.0	13.6	66.6	2138.0	500	0.0		
5493.0	V / 1	.6	Х	45.2	17.1	62.3	1303.2	501	18.0		
	V / 2	.0	Y	47.2	17.1	64.3	1640.6				
	V / 1	.0	Z	44.8	17.1	61.9	1244.5				
	H/1	.3	Х	46.0	17.1	63.1	1428.9				
	H/1	.4	Y	45.2	17.1	62.3	1303.2				
5493.0	H/1	.5	Z	48.6	17.1	65.7	1927.5	501	18.0		
	The frequ	iency ra	nge was scanne	ed from 30 MH	lz to 10.0 GHz.	All emissions	not recorded we	ere mor	e		
	than 20 d	B below	the specified li	mit. Emission	s from the EUT	do not excee	d the specified li	mits.			
	*= Noise	Floor M	easurements (m	ninimum sensi	tivity).						

Test Metho	d:	FCC Pa	rt 15 Subpart C	, Radiated Em	issions, Harmo	nics Emission	S.		
Customer:			Security System			R-11965-5			
Test Sampl	e:		1ini Door / Wind	L. L					
Model No.:		ISW-BM	1C1-M82Y		FCC ID:	T3XBMC1-M82	(
Operating N	Node:	Continu	ously transmittir	ng a 915.5 MH	z signal.				
Technician		R. Sooc		9		Date:	August 15, 2007	,	
Notes:	Test Dist							•	
			nless otherwise	specified					
	Ante		EUT	Meter	Correction	Corrected	Converted	Pe	ak
		leight	Orientation	Reading	Factor	Reading	Reading	-	nit
MHz (V/H)-			X / Y / Z	dBµV	dB	dBµV/m	uV/m	uV	
6408.5	V /		X	42.2	19.9	62.1	*1273.5	501	
	V /		Y	42.2	19.9	62.1	*1273.5	001	10.0
i	V /		Z	42.2	19.9	62.1	*1273.5		1
i	Η/		X	41.3	19.9	61.2	*1148.2		
	H/		Y	41.3	19.9	61.2	*1148.2		. <u> </u>
6408.5	Η/		Z	41.3	19.9	61.2	*1148.2	501	18.0
7324.0	V /	1.0	Х	43.0	21.3	64.3	*1640.6	500	0.0
	V /	1.0	Y	43.0	21.3	64.3	*1640.6		
	V /	1.0	Z	43.0	21.3	64.3	*1640.6		
	Η/	1.0	Х	43.0	21.3	64.3	*1640.6		
	Η/		Y	43.0	21.3	64.3	*1640.6		
7324.0	Η/	1.0	Z	43.0	21.3	64.3	*1640.6	500	0.0
8239.5	V /		X	42.5	23.6	66.1	*2018.4	500	0.0
I	V /		Y	42.5	23.6	66.1	*2018.4		
	V /		Z	42.5	23.6	66.1	*2018.4		
	Η/		X Y	42.7	23.6	63.6	*2065.4		
	H/		Y Z	42.7 42.7	23.6	63.6 63.6	*2065.4 *2065.4	500	
8239.5	Η/	1.0	۷.	42.7	23.6	03.0	2005.4	500	0.0
9155.0	V /	10	Х	42.1	25.5	67.6	*2398.8	500	0.0
	V /		Y	42.1	25.5	67.6	*2398.8	000	0.0
I	V /		Z	42.1	25.5	67.6	*2398.8		1
<u> </u>	H/		X	42.0	25.5	67.5	*2371.4		
I	H/		Y	42.0	25.5	67.5	*2371.4		<u> </u>
9155.0	Η/		Z	42.0	25.5	67.5	*2371.4	500	0.0
			v				not recorded we		e
						do not exceed	the specified lin	nits.	
	*=Noise	Floor Me	easurements (N	linimum syste	m sensitivity)				

Test Metho	d:	FCC	Part 15 Subpa	art C, Radiat	ed Emissions	, Harmonics	Emissions	s.			
Customer:			h Security Sys				R-119	65-5			
Test Sampl	e:		N Mini Door / V		tact						
Model No.:	-		BMC1-M82Y			F		ТЗХВ	MC1-M82Y		
Operating N	Node:		inuously transr	nitting a 915	.5 MHz signa			-			
Technician			podoo	U	0		Date: /	Augus	st 15, 2007.		
Notes:			3 Meters			Dutv C	ycle: 20.5%				
			age, unless oth	erwise spec	ified		vcle Corre		-13.8dB		
						Duty cycle					
Test Freq. Ante Pol./I			EUT Orientation	Average Reading	Correction Factor	Correction Factor	Correc Readi		Converted Reading	A۱ Lir	/g. nit
MHz (V/H)-	X / Y / Z	dBµV	dB	dB	dBµV/	/m	uV/m	uV	′/m
1831.0	V / 1	.6	Х	53.1	2.3	-13.8	41.6	6	120.2	501	1.8
	V / 1		Y	45.1	2.3	-13.8	33.6	6	47.9		
	V / 1		Z	57.7	2.3	-13.8	46.2	2	204.2		
	H/1		Х	51.8	2.3	-13.8	40.3		103.5		
	H/1		Y	50.8	2.3	-13.8	39.3		92.3		
1831.0	H/1	.5	Z	42.0	2.3	-13.8	30.5	5	33.5	501	1.8
2746.5	V / 1	1	Х	47.3	5.2	40.0	00.7	7	00.4	FO	0.0
2740.5	V/1 V/1		X Y	53.4	5.2	-13.8	38.7		86.1	50	0.0
I	V/1 V/1		Z	55.7	5.2	-13.8 -13.8	44.8		173.8 226.5		
	U / 1		<u> </u>	47.7	5.2	-13.8	39.1		<u> 226.5</u> 90.2		
	H/1		A Y	52.6	5.2	-13.8	44.0		90.2 158.5		
2746.5	H/2		Z	50.4	5.2	-13.8	44.0		123.0	50	0.0
2140.0	11/2	.0	۲	00.4	0.2	10.0	41.0)	125.0	50	0.0
3662.0	V / 1	.0	Х	39.0	10.0	-13.8	35.2	2	57.5	50	0.0
	V / 1		Ŷ	43.5	10.0	-13.8	39.7		96.6		
i	V / 1		Z	43.4	10.0	-13.8	39.6		95.5		
İ	H/2	.3	Х	40.1	10.0	-13.8	36.3	3	65.3		
	H/1	.0	Y	40.7	10.0	-13.8	36.9	9	70.0		
3662.0	H/2	.3	Z	42.2	10.0	-13.8	38.4	1	83.2	50	0.0
4577.5	V / 2		Х	40.0	13.6	-13.8	39.8	3	97.7	50	0.0
	V / 1		Y	45.1	13.6	-13.8	44.9		175.8		
	V / 1		Z	45.1	13.6	-13.8	44.9		175.8		<u> </u>
	H/1		X	41.3	13.6	-13.8	41.1		113.5		
	H/1		Y	40.4	13.6	-13.8	40.2		102.3		
4577.5	H/1	.4	Z	52.2	13.6	-13.8	52.0)	398.1	50	0.0
5493.0	V / 1	6	Х	37.7	17.1	-13.8	41.0	<u>۱</u>	112.2	501	1.8
J 1 33.0	V/1 V/2		A Y	40.3	17.1	-13.8	41.0		112.2	501	1.0
	V / 2 V / 1		Z	36.0	17.1	-13.8	39.3		92.3		<u> </u>
	H/1		X	37.6	17.1	-13.8	40.9		92.3 110.9		I
	H/1		Y	38.5	17.1	-13.8	40.8		123.0		I
5493.0	H/1		Z	44.7	17.1	-13.8	41.0		251.2	501	1.8
0.0010			range was sc								
			elow the specif								
			Measurements					V	-peemea min		
					- ,						

Test Metho	od:	FCC	Part 15 Subpa	art C, Radiate	d Emissions,	Harmonics E	missions.		
Customer:			h Security Sys					965-5	
Test Samp	le:	wLS	N Mini Door / V	Vindow Conta	act	•	ľ		
Model No.:			BMC1-M82Y			FC	CID: T3XE	BMC1-M82Y	
Operating			inuously transr	nitting a 915	5 MHz signal				
Technician			podoo	intering a 510.			Date: Augu	st 15, 2007.	
Notes:			3 Meters			Duty Cyc		131 10, 2007.	
NOLES.				onvice checi	fied		le Correctior	. 12 0dD	
	Delector	. Avera	age, unless oth	ierwise speci				I IS.OUD	
Test Freq.	Anten Pol./He		EUT Orientation	Average Reading	Correction Factor	Duty cycle Correction Factor	Corrected Reading	Converted Reading	Avg. Limit
MHz	(V/H)-	X / Y / Z	dBµV	dB	dB	dBµV/m	uV/m	uV/m
6408.5	V / 1	.0	Х	31.6	19.9	-13.8	37.7	*76.7	5011.8
	V / 1		Y	31.6	19.9	-13.8	37.7	*76.7	
ĺ	V / 1	.0	Z	31.6	19.9	-13.8	37.7	*76.7	İ
i	H/1	.0	Х	32.2	19.9	-13.8	38.3	*82.2	
i	H/1		Y	32.2	19.9	-13.8	38.3	*82.2	
6408.5	H/1		Z	32.2	19.9	-13.8	38.3	*82.2	5011.8
7324.0	V / 1	.0	Х	31.9	21.3	-13.8	39.4	*93.3	500.0
	V / 1		Y	31.9	21.3	-13.8	39.4	*93.3	
I	V/1		Z	31.9	21.3	-13.8	39.4	*93.3	
I	H/1		Х	31.9	21.3	-13.8	39.4	*93.3	
I	H/1		Y	31.9	21.3	-13.8	39.4	*93.3	
7324.0	H/1		Z	31.9	21.3	-13.8	39.4	*93.3	500.0
8239.5	V / 1	.0	Х	33.2	23.6	-13.8	43.0	*141.3	500.0
	V / 1	.0	Y	33.2	23.6	-13.8	43.0	*141.3	
	V / 1		Z	33.2	23.6	-13.8	43.0	*141.3	
i	H/1	.0	Х	32.8	23.6	-13.8	42.6	*134.9	
i	H/1		Y	32.8	23.6	-13.8	42.6	*134.9	
8239.5	H / 1	.0	Z	32.8	23.6	-13.8	42.6	*134.9	500.0
9155.0	V / 1	.0	Х	33.1	25.5	-13.8	44.8	*173.8	500.0
	V / 1	.0	Y	33.1	25.5	-13.8	44.8	*173.8	
	V / 1	.0	Z	33.1	25.5	-13.8	44.8	*173.8	
	H/1	.0	Х	33.2	25.5	-13.8	44.9	*175.8	
ĺ	H/1	.0	Y	33.2	25.5	-13.8	44.9	*175.8	
9155.0	H/1		Z	33.2	25.5	-13.8	44.9	*175.8	500.0
	The free			oppod from (iopione net r		
			range was sc						
			elow the specif				DI EXCEED THE	specified limit	s.
	=INOISE	r100ľ	Measurements	s (iviinimum	system sensit	ivity)			

FCC Part 15 Subpart C, Radiated Emissions, Harmonics Paragraphs 15.247(d). EUT transmitting at the Fundamental signal of 918.4 MHz

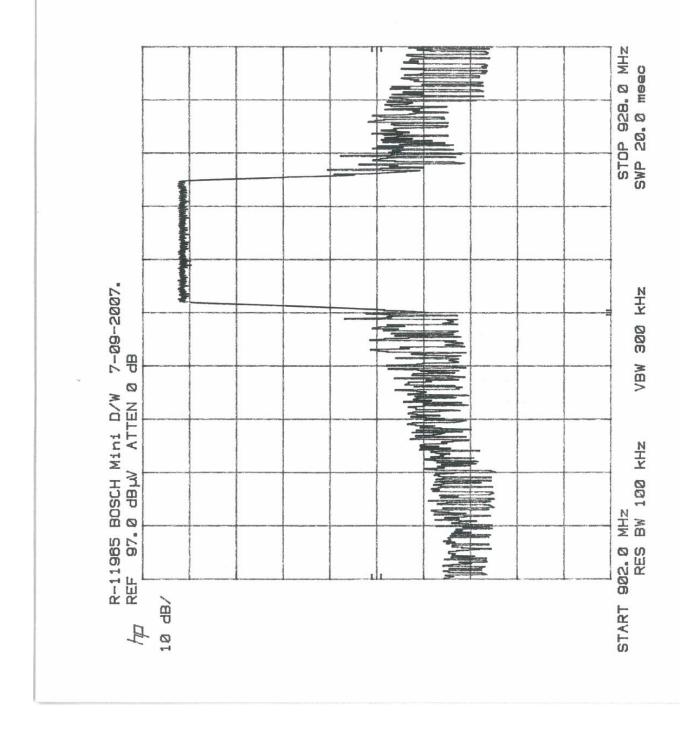
Test Method	d:	FCC Pa	rt 15 Subpart C	, Radiated Em	issions, Harmo	nics Emission	S.				
Customer:		Bosch S	Security System		Job No.	R-11965-5					
Test Sample	e:	wLSN M	1ini Door / Wind	ow Contact	·						
Model No.:		ISW-BM	IC1-M82Y	FCC ID:	T3XBMC1-M82	Y					
Operating N				ng a 918.4 MH	z signal.						
Technician:			Continuously transmitting a 918.4 MHz signal. R. Soodoo Date: August 15, 2007.								
	Test Dista					Dutoi		·			
			nless otherwise	specified							
	Anter		EUT	Meter	Correction	Corrected	Converted	Po	ak		
Test Freq.	Pol./He		Orientation	Reading	Factor	Reading	Reading		nit		
MHz (V/H)		-	X/Y/Z	dBµV	dB	dBµV/m	uV/m		/m		
1836.8	(v/1)//v V / 1		Χ/1/2	51.3	2.3	53.6	478.6	501			
1030.0	V / 1 V / 2		X Y	48.8	2.3	51.1	358.9	501	10.0		
I	V / 1		Z	61.7	2.3	64.0	1584.9				
	H/1		<u> </u>	51.3	2.3	53.6	478.6				
I	H/1		Y	58.5	2.3	60.8	1096.5				
1836.8	H/1		Z	45.5	2.3	47.8	245.5	501	18.0		
1000.0	11/1		<u>د</u>	-10.0	2.0	+1.0	2-10.0	001	.0.0		
2755.2	V / 1.0		Х	57.9	5.2	63.1	1428.9	500	0.0		
	V / 1.0		Y	54.1	5.2	59.3	922.6	000			
	V / 1		Z	57.3	5.2	62.5	1333.5				
I	H/1		X	53.2	5.2	58.4	831.8				
<u> </u>	H/1		Y	56.3	5.2	61.5	1188.5				
2755.2	H/1		Z	55.3	5.2	60.5	1059.3	500	0.0		
3673.6	V / 1	.0	Х	47.9	10.0	57.9	785.2	500	0.0		
	V / 1	.9	Y	48.9	10.0	58.9	881.0				
	V / 2	2.2	Z	49.0	10.0	59.0	891.3				
	H/2	2.3	Х	47.8	10.0	57.8	776.2				
	H/1	0.1	Y	47.7	10.0	57.7	767.4				
3673.6	H/2	2.2	Z	49.2	10.0	59.2	912.0	500	0.0		
4592.0	V / 1		X	45.1	13.6	58.7	861.0	500	0.0		
	V / 1		Y	46.3	13.6	59.9	988.6				
	V / 1		Z	44.1	13.6	57.7	767.4				
	H/1		X	44.1	13.6	57.7	767.4				
4500.0	H/1		Y	44.3	13.6	57.9	785.2				
4592.0	H / 1	1.0	Z	48.1	13.6	61.7	1216.2	500	0.0		
5510.4	V / 1	.0	Х	44.4	17.1	61.5	1188.5	501	18.0		
	V / 1		Y	45.3	17.1	62.4	1318.3				
	V / 1		Z	45.6	17.1	62.7	1364.6				
	H/1		X	44.7	17.1	61.8	1230.3				
	H/1		Y	44.0	17.1	61.1	1135.0				
5510.4	H/1		Z	44.9	17.1	62.0	1258.9	501	18.0		
							not recorded we				
							d the specified lin		-		
			easurements (m								

Test Metho	d:	FCC Pa	rt 15 Subpart C	, Radiated Em	issions, Harmo	nics Emissions	5.		
Customer:			Security System				R-11965-5		
Test Sampl	e:	WLSN N	/ini Door / Wind	ow Contact					
Model No.:		ISW-BM	IC1-M82Y		FCC ID:	T3XBMC1-M82	Y		
Operating I	Mode:	Continu	ously transmittir	ng a 918.4 MH	lz signal.				
Technician		R. Sood		5	<u> </u>	Date:	August 15, 2007		
Notes:	Test Dist						0 ,		
	Detector	: Peak. u	nless otherwise	specified					
	Ante	,	EUT	Meter	Correction	Corrected	Converted	Pea	ak
Test Freq.		leight	Orientation	Reading	Factor	Reading	Reading	Lin	
MHz	(V/H)-I	Veters	X/Y/Z	dBµV	dB	dBµV/m	uV/m	uV/	/m
6408.5	V/		X	42.2	19.9	62.1	*1273.5	5011	
	V /		Y	42.2	19.9	62.1	*1273.5		0.0
İ	V /		Z	42.2	19.9	62.1	*1273.5	i	
	Η/		Х	41.3	19.9	61.2	*1148.2	İİ	
	Η/	1.0	Y	41.3	19.9	61.2	*1148.2	İ	
6408.5	Η/		Z	41.3	19.9	61.2	*1148.2	5011	8.0
7324.0	V / 1.0		Х	43.0	21.3	64.3	*1640.6	500	0.0
	V / 1.0				21.3	64.3	*1640.6		
	V /		Z	43.0	21.3	64.3	*1640.6		
	Η/		Х	43.0	21.3	64.3	*1640.6		
	Η/		Y	43.0	21.3	64.3	*1640.6		
7324.0	Η/	1.0	Z	43.0	21.3	64.3	*1640.6	500	0.0
			X	10 5		00.4	*0040.4	500	<u> </u>
8239.5	V /		X	42.5	23.6	66.1	*2018.4	500	0.0
	V /		Y Z	42.5	23.6	66.1	*2018.4		
I	V / H /		X	42.5 42.7	23.6 23.6	66.1 63.6	*2018.4 *2065.4		
I	H/		A Y	42.7	23.6	63.6	*2065.4		
8239.5	H/		Z	42.7	23.6	63.6	*2065.4	500	0 0
0200.0	11/	1.0	۷.	42.1	23.0	03.0	2003.4	500	0.0
9155.0	V /	1.0	Х	42.1	25.5	67.6	*2398.8	500	0.0
	V /		Y	42.1	25.5	67.6	*2398.8		
		1.0	Z	42.1	25.5	67.6	*2398.8	1	
		1.0	X	42.0	25.5	67.5	*2371.4	1	
ĺ	Η/	1.0	Y	42.0	25.5	67.5	*2371.4	İ	
9155.0	Η/	1.0	Z	42.0	25.5	67.5	*2371.4	500	0.0
	The free			d from 20 ML			 		
		. ,	nge was scanne						5
			the specified lineasurements (Note: No				i the specified life	niits.	
			ะสอนเซเทยกเร (พ	minum syste	ni sensitivity)				

Test Method	d:	FCC	Part 15 Subpa	art C, Radiat	ed Emissions	, Harmonie	cs Emissio	ns.		
Customer:			h Security Sys				Job No.	R-119	965-5	
Test Sample	e:		N Mini Door / V		tact					
Model No.:		ISW-	BMC1-M82Y				FCC ID:	T3XB	MC1-M82Y	
Operating N	lode:	Conti	nuously transr	mitting a 918	3.4 MHz signa	l.				
Technician:		R. So	podoo				Date:	Augus	st 15, 2007.	
Notes:	Test Dist	ance:	3 Meters			Duty	Cycle:20.5	5%		
	Detector:	Avera	age, unless oth	nerwise spec	cified	•	Cycle Cor		-13.8dB	
	Anten		EUT		Correction	Duty cyc		ected	Converted	A. (a)
Test Freq.	Pol./He		Orientation	Average Reading	Factor	Correction Factor	DN Poo	ding	Reading	Avg. Limit
MHz	(V/H))-	X / Y / Z	dBµV	dB	dB	dBµ	V/m	UV/m	uV/m
1836.8	V/1.		Х	48.3	2.3	-13.8	36	6.8	69.2	5011.8
	V / 2.		Y	43.5	2.3	-13.8		2.0	39.8	
	V/1.		Z	53.6	2.3	-13.8		2.1	127.4	
	H/1.		Х	45.8	2.3	-13.8		1.3	51.9	
	H/1.		Y	52.8	2.3	-13.8		.3	116.1	
1836.8	H/1.	5	Z	33.9	2.3	-13.8	22	2.4	13.2	5011.8
2755.2	V / 1.	1	Х	57.1	5.2	-13.8	10	3.5	266.1	500.0
1	V/1.		Y	52.0	5.2	-13.8		3.4	147.9	500.0
	V / 1.		Z	55.8	5.2	-13.8		7.2	229.1	I
	H / 1.		<u> </u>	50.3	5.2	-13.8		.2	121.6	I
	H/1.		Y	54.5	5.2	-13.8		5.9	197.2	I
2755.2	H/1.		Z	52.6	5.2	-13.8		1.0	158.5	500.0
3673.6	V / 1.		Х	40.3	10.0	-13.8		ŝ.5	66.8	500.0
	V / 1.		Y	43.3	10.0	-13.8		9.5	94.4	
	V / 2.		Z	42.4	10.0	-13.8		3.6	85.1	
	H / 2.		Х	39.7	10.0	-13.8		5.9	62.4	
0070.0	H / 1.		Y	38.3	10.0	-13.8		1.5	53.1	
3673.6	H/2.	2	Z	43.4	10.0	-13.8	39	9.6	95.5	500.0
4592.0	V / 1.	8	Х	33.5	13.6	-13.8	33	3.3	46.2	500.0
	V / 1.		Y	39.4	13.6	-13.8).2	91.2	
	V / 1.		Z	31.3	13.6	-13.8	31		35.9	
	H/1.	5	Х	33.1	13.6	-13.8		2.9	44.2	
l	H/1.	0	Y	30.5	13.6	-13.8	30).3	32.7	
4592.0	H/1.	0	Z	41.4	13.6	-13.8		.2	114.8	500.0
5510.4	V / 1.	0	Х	33.2	17.1	-13.8	26	6.5	66.8	5011.8
	V / 1.		Y	37.8	17.1	-13.8	41		113.5	1
	V / 1.		Z	37.0	17.1	-13.8).4	104.7	
	H / 1.		<u> </u>	32.6	17.1	-13.8		5.9	62.4	
	H/1.		Y	33.1	17.1	-13.8		6.4	66.1	
5510.4	H/1.		Z	34.1	17.1	-13.8		7.4	74.1	5011.8
· · ·									corded were n	
									specified limits	
					system sens					

Customer: Test Sampl Model No.: Operating M Technician: Notes: Test Freq. MHz 6408.5	e: wL ISV Mode: Co : R. Test Distance	Erage, unless oth EUT Orientation X/Y/Z	Vindow Conta mitting a 918. nerwise speci Average Reading	4 MHz signal.	FC Duty Cyc Duty Cyc Duty cycle	Date: Augus	MC1-M82Y st 15, 2007.	
Test Sampl Model No.: Operating M Technician: Notes: Test Freq. MHz	e: wL ISV Mode: Co : R. Test Distance Detector: Ave Antenna Pol./Height (V/H)- V / 1.0	SN Mini Door / V V-BMC1-M82Y ntinuously transr Soodoo e: 3 Meters erage, unless oth EUT Orientation X / Y / Z	Vindow Conta mitting a 918. nerwise speci Average Reading	4 MHz signal. fied Correction	FC Duty Cyc Duty Cyc Duty cycle	C ID: T3XB Date: Augus le:20.5%	MC1-M82Y st 15, 2007.	
Model No.: Operating M Technician: Notes: Test Freq. MHz	ISV Mode: Co Co Test Distance Detector: Ave Antenna Pol./Height (V/H)- V / 1.0	V-BMC1-M82Y ntinuously transr Soodoo e: 3 Meters erage, unless oth EUT Orientation X / Y / Z	nitting a 918. herwise speci Average Reading	4 MHz signal. fied Correction	Duty Cyc	Date: Augus	st 15, 2007.	
Operating M Technician: Notes: Test Freq. MHz	Mode: Co Test Distance R. Detector: Ave Antenna Pol./Height (V/H)- V / 1.0	ntinuously transm Soodoo e: 3 Meters erage, unless oth EUT Orientation X/Y/Z	nerwise speci Average Reading	fied Correction	Duty Cyc	Date: Augus	st 15, 2007.	
Technician: Notes: Test Freq. MHz	R. Test Distance Detector: Ave Antenna Pol./Height (V/H)- V / 1.0	Soodoo e: 3 Meters erage, unless oth EUT Orientation X/Y/Z	nerwise speci Average Reading	fied Correction	Duty Cyc Duty Cyc Duty cycle	le:20.5%		
Notes: Test Freq. MHz	Test Distance Detector: Ave Antenna Pol./Height (V/H)- V / 1.0	e: 3 Meters erage, unless oth EUT Orientation X/Y/Z	Average Reading	Correction	Duty Cyc Duty Cyc Duty cycle	le:20.5%		
Test Freq. MHz	Detector: Ave Antenna Pol./Height (V/H)- V / 1.0	Erage, unless oth EUT Orientation X/Y/Z	Average Reading	Correction	Duty Cyc Duty cycle		-13.8dB	
MHz	Antenna Pol./Height (V/H)- V / 1.0	EUT Orientation X/Y/Z	Average Reading	Correction	Duty cycle	le Correction	: -13.80B	
MHz	Pol./Height (V/H)- V / 1.0	Orientation X / Y / Z	Reading				1	
	(V/H)- V / 1.0	X / Y / Z	<u> </u>		Correction	Corrected Reading	Converted Reading	Avg. Limit
	V / 1.0				Factor			
<u>6408.5</u> I			dBµV	dB	dB	dBµV/m	uV/m	uV/m
	V/10	X	31.6	19.9	-13.8	37.7	*76.7	5011.8
1		Y	31.6	19.9	-13.8	37.7	*76.7	
	V / 1.0	Z	31.6	19.9	-13.8	37.7	*76.7	
	H / 1.0	X	32.2	19.9	-13.8	38.3	*82.2	
	H / 1.0	Y	32.2	19.9	-13.8	38.3	*82.2	
6408.5	H / 1.0	Z	32.2	19.9	-13.8	38.3	*82.2	5011.8
7324.0	V / 1.0	Х	31.9	21.3	-13.8	39.4	*93.3	500.0
	V / 1.0	Y	31.9	21.3	-13.8	39.4	*93.3	
	V / 1.0	Z	31.9	21.3	-13.8	39.4	*93.3	
	H / 1.0	Х	31.9	21.3	-13.8	39.4	*93.3	
	H / 1.0	Y	31.9	21.3	-13.8	39.4	*93.3	
7324.0	H / 1.0	Z	31.9	21.3	-13.8	39.4	*93.3	500.0
8239.5	V / 1.0	X	33.2	23.6	-13.8	43.0	*141.3	500.0
	V / 1.0	Y	33.2	23.6	-13.8	43.0	*141.3	
	V / 1.0	Z	33.2	23.6	-13.8	43.0	*141.3	
	H / 1.0	X	32.8	23.6	-13.8	42.6	*134.9	
	H / 1.0	Y	32.8	23.6	-13.8	42.6	*134.9	
8239.5	H / 1.0	Z	32.8	23.6	-13.8	42.6	*134.9	500.0
9155.0	V / 1.0	X	33.1	25.5	-13.8	44.8	*173.8	500.0
	V / 1.0	Y	33.1	25.5	-13.8	44.8	*173.8	
	V / 1.0	Z	33.1	25.5	-13.8	44.8	*173.8	
	H / 1.0	Х	33.2	25.5	-13.8	44.9	*175.8	
	H / 1.0	Y	33.2	25.5	-13.8	44.9	*175.8	
9155.0	H / 1.0	Z	33.2	25.5	-13.8	44.9	*175.8	500.0
	Than 20 dB	cy range was sc below the specif or Measurement	ied limit. Em	issions from t	he EUT do no			

FCC Part 15 Subpart C, Radiated Emissions, Harmonics Paragraphs 15.247(d). EUT transmitting at the Fundamental signal of 921.3 MHz


Test Metho	d:	FCC Pa	rt 15 Subpart C	, Radiated Em	issions, Harmo	nics Emissior	IS.		
Customer:			Security System				R-11965-5		
Test Sample			1ini Door / Wind			I			
Model No.:			1C1-M82Y			FCC ID:	T3XBMC1-M82	Y	
Operating N			ously transmittir	ng a 921.3 MH	z signal.				
Technician:		R. Sood		.9 ~ 0		Date:	August 15, 2007		
	Test Dista					Duto.	7 lagaet 10, 2001	•	
Notes.			nless otherwise	specified					
	Anter		EUT	Meter	Correction	Corrected	Converted	Do	ak
Test Freq.	Pol./He		Orientation	Reading	Factor	Reading	Reading		nit
MHz	(V/H)/N	-	X/Y/Z	dBµV	dB	dBµV/m	uV/m		//m
1842.6	V / 1		Χ/1/2	61.3	2.3	63.6	1513.6		//// 18.0
1042.0	V / 1		<u> </u>	53.0	2.3	55.3	582.1	501	10.0 I
I	V / 1		Z	70.5	2.3	72.8	4365.2		
	H/2		<u> </u>	59.1	2.3	61.4	1174.9	+	L
	H/1		<u> </u>	61.1	2.3	63.4	1479.1	+	l
1842.6	H/2		Z	49.0	2.3	51.3	367.3	501	18.0
	11/2		۷	-10.0	2.0	01.0	001.0	001	.0.0
2763.9	V / 1	.3	Х	56.2	5.2	61.4	1174.9	500	0.0
	V / 1		Y	55.3	5.2	60.5	1059.3		
	V / 1		Z	54.8	5.2	60.0	1000.0		
	H/2		X	52.4	5.2	57.6	758.6		l
	H/1		Y	54.3	5.2	59.5	944.1		
2763.9	H/1		Z	55.0	5.2	60.2	1023.3	500	0.0
3685.2	V / 1	.9	Х	48.7	10.0	58.7	861.0	500	0.0
	V / 2	2.3	Y	46.6	10.0	56.6	676.1		
	V / 1	.0	Z	46.8	10.0	56.8	691.8		
	H / 1	0.1	Х	46.7	10.0	56.7	683.9		
	H/1		Y	48.0	10.0	58.0	794.3		
3685.2	H/1	.9	Z	49.0	10.0	59.0	891.3	500	0.0
4606.5	V / 1		v	44.0	13.6	E0 E	941 4	500	0.0
-000.5	V / 1		X Y	<u>44.9</u> 43.8	13.6	58.5 57.4	841.4 741.3	500	0.0
	V / 1		Z	45.4	13.6	59.0	891.3	+	
I	H/1		X	44.2	13.6	59.0	776.2		L
I	H/1		× Y	44.2	13.6	58.1	803.5	+	l
4606.5	H/1		Z	47.4	13.6	61.0	1122.0	500	0.0
	, .				10.0	01.0	1122.0		
5527.8	V / 1	.6	Х	44.4	17.1	61.5	1188.5	501	18.0
	V / 1		Ý	46.2	17.1	63.3	1462.2		
	V / 1		Z	44.5	17.1	61.6	1202.3	1	
	H/1		X	44.7	17.1	61.8	1230.3		
	H/1		Ý	43.7	17.1	60.8	1096.5		
5527.8	H/1		Z	46.2	17.1	63.3	1462.2	501	18.0
			nge was scanne				not recorded we		
							d the specified lin		
			easurements (m						

Test Metho	d:	FCC Pa	rt 15 Subpart C	, Radiated Em	nissions, Harmo	nics Emissions	5.		
Customer:			Security System				R-11965-5		
Test Sampl	e:	wLSN M	/ini Door / Wind	ow Contact		•			
Model No.:		ISW-BM	IC1-M82Y			FCC ID:	T3XBMC1-M82	Y	
Operating I	Node:	Continu	ously transmittir	ng a 921.3 MH	Iz signal.				
Technician		R. Sood		0		Date:	August 15, 2007		
Notes:	Test Dist				I		0 ,		
	Detector:	: Peak. u	nless otherwise	specified					
	Ante		EUT	Meter	Correction	Corrected	Converted	Pe	ak
Test Freq.	Pol./F		Orientation	Reading	Factor	Reading	Reading	Lin	
MHz	(V/H)-N	Veters	X/Y/Z	dBµV	dB	dBµV/m	uV/m		/m
6408.5	V /		X	42.2	19.9	62.1	*1273.5	501	
	V /		Y	42.2	19.9	62.1	*1273.5		
İ	V /		Z	42.2	19.9	62.1	*1273.5	i	
İ	Η/	1.0	Х	41.3	19.9	61.2	*1148.2	i	
	Η/	1.0	Y	41.3	19.9	61.2	*1148.2		
6408.5	Η/		Z	41.3	19.9	61.2	*1148.2	501	18.0
7324.0	V /	1.0	Х	43.0	21.3	64.3	*1640.6	500	0.0
	V /	1.0	Y	43.0	21.3	64.3	*1640.6		
	V /		Z	43.0	21.3	64.3	*1640.6		
	Η/		Х	43.0	21.3	64.3	*1640.6		
	Η/		Y	43.0	21.3	64.3	*1640.6		
7324.0	Η/	1.0	Z	43.0	21.3	64.3	*1640.6	500	0.0
0000 5		4.0	X	40.5	00.0	00.4	*0040.4	500	0.0
8239.5	V /		X	42.5	23.6	66.1	*2018.4	500	0.0
	V /		Y Z	42.5	23.6	66.1	*2018.4		
	V / H /		X	42.5 42.7	23.6 23.6	66.1 63.6	*2018.4 *2065.4		
I	H/		A Y	42.7	23.6	63.6	*2065.4		
8239.5	H/		Z	42.7	23.6	63.6	*2065.4	500	0.0
0200.0	117	1.0	۲	72.1	20.0	00.0	2003.4	500	0.0
9155.0	V /	1.0	Х	42.1	25.5	67.6	*2398.8	500	0.0
	V /		Y	42.1	25.5	67.6	*2398.8		
	V /		Z	42.1	25.5	67.6	*2398.8		
; 	H/		Х	42.0	25.5	67.5	*2371.4		
ĺ	Η/	1.0	Y	42.0	25.5	67.5	*2371.4	İ	
9155.0	Η/	1.0	Z	42.0	25.5	67.5	*2371.4	500	0.0
								-	
	The free			d from 00 M					
			nge was scanne						e
			the specified line easurements (N				i me specified lil	mis.	
	=INOISE		ะสรมเยกเยกเร (IV	minum syste	m sensitivity)				

Test Metho	d:	FCC	Part 15 Subpa	art C, Radiat	ed Emissions	, Harmonics	Emission	s.			
Customer:			h Security Sys					R-119	965-5		
Test Sampl	e:		N Mini Door / V		tact	I					
Model No.:	-		BMC1-M82Y			F	CC ID:	ТЗХВ	MC1-M82Y		
Operating I	Node:	Cont	inuously transr	nitting a 921	.3 MHz signa						
Technician			ooboc	0			Date:	Augus	st 15, 2007.		
Notes:	Test Dist		3 Meters			Duty C	ycle:20.59		,		
	Detector	: Avera	age, unless oth	nerwise spec	ified		, ycle Corre		: -13.8dB		
						Duty cycle				۸.	
Test Freq.	Anten Pol./He		EUT Orientation	Average Reading	Correction Factor	Correction Factor	Correo Read		Converted Reading	Av Lir	
MHz	(V/H)-	X / Y / Z	dBµV	dB	dB	dBµV	//m	uV/m	uV	/m
1842.6	V / 1	.5	Х	59.8	2.3	-13.8	48.	3	260.0	501	1.8
	V / 1		Y	49.3	2.3	-13.8	37.8	8	77.6		
	V / 1		Z	66.5	2.3	-13.8	55.0	0	562.3		
	H/2		Х	57.6	2.3	-13.8	46.		201.8		
	H / 1		Y	55.9	2.3	-13.8	44.4		166.0		
1842.6	H/2	.7	Z	42.3	2.3	-13.8	30.8	8	34.7	501	1.8
2763.9	V / 1	2	Х	55.2	5.2	-13.8	46.0	6	213.8	50	2.0
2705.5	V/1 V/1		A Y	53.6	5.2	-13.8	46.		177.8	500	J.U
	V / 1		Z	52.7	5.2	-13.8	44.		160.3		
	H/2		X	49.1	5.2	-13.8	40.		105.9		
	H/1		Y	51.2	5.2	-13.8	42.0		134.9		
2763.9	H/1		Z	53.1	5.2	-13.8	44.		167.9	50	0.0
3685.2	V / 1		Х	43.7	10.0	-13.8	39.9	9	98.9	50	0.0
	V / 2	.3	Y	39.5	10.0	-13.8	35.	7	61.0		
	V / 1		Z	38.5	10.0	-13.8	34.	7	54.3		
	H / 1		Х	39.4	10.0	-13.8	35.0		60.3		
	H/1		Y	42.1	10.0	-13.8	38.3	3	82.2		
3685.2	H / 1	.9	Z	43.8	10.0	-13.8	40.0	0	100.0	50	0.0
4606.5	V / 1	0	Х	34.2	13.6	-13.8	34.0	0	50.1	50	20
1000.0	V / 1		Y	30.0	13.6	-13.8	29.8		30.9	- 50	5.0
	V / 1		Z	34.5	13.6	-13.8	34.3		51.9		
	H/1		X	33.4	13.6	-13.8	33.		45.7		
	H/1		Y	33.2	13.6	-13.8	33.0		44.7		
4606.5	H/1		Z	47.6	13.6	-13.8	47.4		234.4	50	0.0
5507.0	\//A	<u> </u>	N N	04.0	47.4	40.0	07	-	75.0	504	4.0
5527.8	V / 1		X	34.2	17.1	-13.8 -13.8	37.		75.0	501	1.8
	V / 1		Y 7	38.6	17.1	-13.8	41.9		124.5		
	V / 1 H / 1		Z X	<u>33.7</u> 32.9	17.1	-13.8	37.0		70.8		
	H/1		X Y	32.9	17.1 17.1	-13.8	36.2		64.6 46.2		
5527.8	H/1		ř Z	30.0	17.1	-13.8	41.0		46.2 112.2	501	1.8
0021.0			∠ ∕ range was sc								1.0
			elow the specif								
			Measurements								
	-110136		measurement		5y5tern 36115	itivity/					

Test Metho	od:	FCC	Part 15 Subpa	rt C, Radiate	d Emissions,	Harmonics I	Emissio	าร.			
Customer:			h Security Sys				b No.	R-119	965-5		
Test Sampl	le:		N Mini Door / V		act						
Model No.:			BMC1-M82Y			F	CC ID:	T3XB	MC1-M82Y		
Operating I			inuously transr	nitting a 921	3 MHz signal			10/18			
Technician			oodoo	intung a 521.	5 WI 12 Signal		Date:	Augus	st 15, 2007.		
			3 Meters			Duty Cy			51 15, 2007.		
Notes:					ti a al						
	Detector	: Aver	age, unless oth	ierwise speci	fied			ection:	: -13.8dB		
Test Freq.	Anten		EUT	Average	Correction	Duty cycle Correction		ected	Converted	Av	′g.
restrieg.	Pol./He	eight	Orientation	Reading	Factor	Factor	Rea	ding	Reading	Lir	nit
MHz	(V/H)-	X/Y/Z	dBµV	dB	dB	dBu	V/m	uV/m	uV/n	
6408.5	V/1	,	X	31.6	19.9	-13.8		7.7	*76.7	501	
	V / 1		Y	31.6	19.9	-13.8		 7.7	*76.7	001	1.0
	V / 1		Z	31.6	19.9	-13.8		 7.7	*76.7		
	H/1		X	32.2	19.9	-13.8		3.3	*82.2		
	H/1		Y	32.2	19.9	-13.8		3.3	*82.2		
6408.5	H/1		Z	32.2	19.9	-13.8		3.3	*82.2	501	1.8
0.0010		- •		<u></u>					02.2	001	
7324.0	V / 1	.0	Х	31.9	21.3	-13.8	39).4	*93.3	500	0.0
	V / 1		Y	31.9	21.3	-13.8).4	*93.3		
	V / 1		Z	31.9	21.3	-13.8).4	*93.3		
	H/1		Х	31.9	21.3	-13.8).4	*93.3		
	H/1		Y	31.9	21.3	-13.8).4	*93.3		
7324.0	H/1		Z	31.9	21.3	-13.8).4	*93.3	500	0.0
8239.5	V / 1	.0	Х	33.2	23.6	-13.8	43	3.0	*141.3	500	0.0
	V / 1	.0	Y	33.2	23.6	-13.8	43	3.0	*141.3		
	V / 1	.0	Z	33.2	23.6	-13.8	43	3.0	*141.3		
	H/1	.0	Х	32.8	23.6	-13.8	42	2.6	*134.9		
	H/1	.0	Y	32.8	23.6	-13.8	42	2.6	*134.9		
8239.5	H/1	.0	Z	32.8	23.6	-13.8	42	2.6	*134.9	500	0.0
9155.0	V / 1	.0	Х	33.1	25.5	-13.8	44	1.8	*173.8	500	0.0
	V / 1	.0	Y	33.1	25.5	-13.8	44	1.8	*173.8		
	V / 1		Z	33.1	25.5	-13.8		l.8	*173.8		
	H/1		Х	33.2	25.5	-13.8	44	1.9	*175.8		
	H/1		Y	33.2	25.5	-13.8		1.9	*175.8		
9155.0	H/1	.0	Z	33.2	25.5	-13.8	44	1.9	*175.8	500).0
	·						<u> </u>				
			/ range was sc								
			elow the specif				ot exce	ed the	specified limit	IS.	
	*=Noise	Floor	Measurements	s (Minimum :	system sensit	ivity)					

FCC Part 15, Subpart C, 15.247(d) Band Edge Measurements 902 - 928 MHz Range Test Data

FCC Part 15, Subpart C,15.247(d) Band Edge Measurements, 902 to 928 MHz Band Note: The EUT complies with the Band Edge Measurements. FCC ID:T3XBMC1-M82Y

Customer	Bo	Bosch Security System.					
Test Sample	wL	wLSN Mini Door / Window Contact					
Model Number	ISV	V-BMC1-M82Y					
Date: 7-09-2007		Tech: R.S.	Sheet 1 of 1				

Retlif Testing Laboratories, Report R-11965-5, Bosch Security Systems, FCC ID: T3XBMC1-M82Y Page 45 of 49 FCC Part 15, Subpart B, Class B, Radiated Emissions, 30 MHz to 5.0 GHz, Paragraph 15.109(a) Receiver Test Data

Test Metho	d:	FCC P	art 15, Subpa	rt B, Class I	B, Radiated E	Emission	s, 30 MHz	to 5.	0 GHz, Para:1	5.109(a)
Customer:		Bosch	Security Syste	em.			Job	No.:	R-11965-5	
Test Sampl	e:	wLSN I	Mini Door / Wi	ndow Contac	ct					
Model No.:		ISW-BI	MC1-M82Y				Serial	No.:	N/A	
Operating N	/lode:	EUT op	perating on cha	annel 00(91	5.5MHz), con	tinuously	receiving	a CW	signal.	
Technician		R.Sood	doo	, ,			D	ate:	August 15, 20	007.
Notes:	Test D	Distance	: 3 Meters				Temp: 29).2°C	Humidi	ty: 53%
	Detec	tor: Qua	asi-Peak Belov	v 1 GHz, Pea	ak above 1 Gl	Hz				•
	Ante	enna	EUT	Meter	Correction	Corr	ected		Converted	
Frequency		sition	Orientation	Readings	Factor		ading		Reading	Limit
MHz	(V/H) /	Meters	Degrees	dBuV	dB	dB	uV/m		uV/m	uV/m
			-							
30.0										100
88.0										100
88.0										150
216.0										150
216.0				ahaamiaa	l of the one		haat diat			200
			o emission	observed	at the spe	ecinea	lest dist	ance	,	
<u> </u>										
960.0										200
960.0										500
<u> </u>										
5000.0										500
0000.0	The free	quency rar	l nge was scanned	from 30 MHz to	5.0 GHz.	1		1		000
	The em	issions ob	served from the E	UT do not exce	ed the specified					
	Emissio	ons not rec	corded were more	than 20dB und	er the specified li	imit.				
5000.0	The em	issions ob	served from the E	UT do not exce	ed the specified					500

Test Metho	d:	FCC P	Part 15, Subpart B, Class B, Radiated Emissions, 30 MHz to 5.0 GHz, Para:15.109(
Customer:		Bosch	Security Syste	em.			Job	No.:	R-11965-5				
Test Sampl	e:	wLSN I	Mini Door / Wi	ndow Contac	ct								
Model No.:		ISW-BI	MC1-M82Y				Serial	No.:	N/A				
Operating N	/lode:	EUT op	perating on cha	annel 30(91	8.5MHz), con	tinuously	receiving	a CW	/ signal.				
Technician		R.Sood	doo	, , , , , , , , , , , , , , , , , , ,			D	ate:	August 15, 2	007.			
Notes:	Test D	Distance	: 3 Meters				Temp: 29).2°C	Humidi	ty: 53%			
	Detec	tor: Qua	asi-Peak Belov	v 1 GHz, Pea	ak above 1 Gl	Hz				•			
	Ante	enna	EUT	Meter	Correction	Corr	ected	(Converted				
Frequency		sition	Orientation	Readings	Factor		ading		Reading	Limit			
MHz	(V/H) /	Meters	Degrees	dBµV	dB	dB	µV/m		uV/m	uV/m			
30.0										100			
I													
88.0										100			
88.0										150			
<u> </u>													
216.0		No	emission o	bserved	at the spec	cified te	st dista	nce		150			
216.0						1				200			
I													
960.0										200			
960.0										500			
İ										İ			
I													
								<u> </u>					
5000.0	The free		nge was scanned	from 30 MUz to	50CH7					500			
			served from the E			limits.							
			corded were more										

Test Metho	d:	FCC P	Part 15, Subpart B, Class B, Radiated Emissions, 30 MHz to 5.0 GHz, Para:15.109(a)										
Customer:		Bosch	Security Syste	em.			Job I	No.:	R-11965-5				
Test Sampl	e:	wLSN I	Mini Door / Wi	ndow Conta	ct								
Model No.:		ISW-BI	MC1-M82Y				Serial I	No.:	N/A				
Operating N	/lode:	EUT op	perating on cha	annel 58(92	1.3MHz), con	tinuously	receiving	a CW	/ signal.				
Technician		R.Sood	doo				D	ate:	August 15, 20	007.			
Notes:	Test D	Distance	: 3 Meters				Temp: 29	.2°C	Humidi	ty: 53%	6		
	Detec	tor: Qua	asi-Peak Belov	v 1 GHz, Pea	ak above 1 Gl	Hz							
	Ant	enna	EUT	Meter	Correction	Corr	ected	(Converted				
Frequency		sition	Orientation	Readings	Factor		ading		Reading	Lin	nit		
MHz	(V/H) /	Meters	Degrees	dBµV	dB	dB	µV/m		uV/m	uV	/m		
30.0										10	0		
I													
88.0										10	0		
88.0										15			
I													
216.0										15	0		
216.0		No	o emission	observed	at the spe	cified to	est dista	ince		20			
I													
960.0										20	0		
960.0										 50			
											•		
I													
I													
5000.0	The fre			from 20 MUz to	50047					50	0		
			nge was scanned served from the E			limits.							
			corded were more										