Technical Information

	Applicant	Manufacturer		
Name:	Bosch Security Systems	Name:	Bosch Security Systems Inc. China Factory	
Address:	130 Perinton Parkway	Address:	Mei Chi Industrial Area, Blk B	
City, State, Zip:	Fairport, New York 14450	City, State, Z	p: Qian Shan Zhuhai, Guangdong 51907,	
			China	

Test Specifications: FCC Part 15, Subpart C Paragraph 15.247, 15.245, FCC Part 15, Subpart

B Paragraph 15

Industry Canada RSS-210 Issue 7 Annex 7, 8, and RSS-Gen Issue 2

Test Procedure: ANSI C63.4: 2003

Test Sample Description

Test Sample: wLSN Dual Motion Detector

Brandname: Bosch

Model Number: ISW-BDL1-W11PGY

FCC ID: T3XBDL1-W11PGY

Type: Frequency Hoping Spread Spectrum Transceiver and Field Disturbances Sensor

Power Requirements: Six (6) 1.5 volts AA Alkaline Batteries

Frequency of Operation: 902 MHz to 928 MHz / 10.513 GHz

Tests Performed

FCC	Industry Canada	Test Method
15.247(a)(1)	RSS-210 Annex 8 A8.1(2)	Carrier Frequency Separation / Number of
13.247 (a)(1)	133-210 Allilex 6 A6.1(2)	hopping frequencies
15.247(a)(1)	RSS-210 Annex 8 A8.1(2)	20 dB Bandwidth
15.247(a)(1)(i)	RSS-210 Annex 8 A8.1(3)	Occupancy Time
15.247(b)(2)	RSS-210 Annex 8 A8.4(1)	Output Power
15.247 (d)	RSS-210 Annex 8 A8.5	Transmitter Spurious Radiated Emissions,
15.247 (u)	NGG-210 Allilex 6 A6.5	Restricted Bands / Band edge Measurements
15.207(a)	RSS-Gen Paragraph 7.2.2	Conducted Emissions
15.109(a)	RSS-Gen Paragraph 4.8	Receiver Spurious Radiated Emissions
15.35	RSS-GEN Paragraph 4.5	Duty Cycle Determination
15.245 (b)	RSS-210 Annex 7	Radiated Emissions, Fundamental
15.245 (b)(1)	RSS-210 Annex 7 Note 1	Radiated Emissions, Harmonics
15.245 (b)(3)	RSS-210 Annex 7 Note 3	Radiated Emissions, Band Edges
15.245 (b)(3)	RSS-210 Annex 7 Note 3	Radiated Emissions, Spurious Emissions

TESTS RESULTS

DETERMINATION OF FIELD STRENGTH LIMITS

- 15.203: The intentional radiator is designed to ensure that no antenna other than that furnished by the applicant can be used with the device. The antenna is permanently soldered in place to the PCB.
- 15.204: The antenna used is not commercially available. It is a custom designed circularly polarized Omni-directional antenna with 1dBi gain.
- 15.247(a)(1): The frequency hopping system has hopping channel carrier frequencies separated by 100 kHz, which is less than the 20 dB bandwidth of the hopping channel.
- 15.247(a)(1)(i):The frequency hopping system operated in the 902-928 MHz band and uses 59 frequencies. The maximum 20 dB bandwidth of the hopping channel is less then 250 kHz, Measured 43.5 kHz. The average time of occupancy on any frequency is 0.022 seconds within a 20 second period.
- 15.247(b)(3): The device operates in the 902-928 MHz band. The maximum peak output power measured to be 72 mWatts and did not exceed 1 watt.
- 15.247(b)(3): The system operating under the provisions of this section is operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines. The maximum Output Power was measured to be 72 mWatts.
- 15.247 (d): In any 100 kHz bandwidth outside the frequency band in which the Spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator is at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. All emissions, which fell within the restricted bands specified in 15.205(a), were measured and found to be in compliance with the limits specified in 15.209(a).
- 15.109 (a): The field strength of spurious radiated emissions generated by the receiver did not exceed the class B limits specified.
- 15.245 (a) The device is an intentional radiator used as a field disturbance sensor.
- 15.245 (b) The device operates within the 10.500 to 10.550 GHz frequency band. The field strength of the fundamental emission did not exceed 2500 millivolts per meter, average.
- 15.245 (b)(1) The device does not produce harmonic emissions below 17.7 GHz.
- 15.245 (b)(1)(i) The device is intended to be used only within buildings and the field strength of harmonic emissions did not exceed 25.0 millivolts per meter.
- 15.245 (b)(2) All radiated emissions measurements were extrapolated to the specified 3 meter test distance.
- 15.245 (b)(3) The emissions radiated outside of the specified frequency band of 10.500 to 10.550 GHz did not exceed the general radiated emission limits of 15.209.
- 15.245 (b)(4) The requirements of 15.35 for averaging pulsed emissions and limiting peak emissions were met.

15.247(a): Description of pseudorandom hopping sequence -

The following describes the hopping sequence used by the "Hub" or central point in the network for Beacon announcements as well as the hopping sequence used by the individual points for sending status updates to the Hub.

Frequency Announcements (Beacon) Hopping

- Using 59 frequencies channels (all system frequencies)
- Frequency channels are numbered from 0 to 58 (for 59 overall channels)
- Frequency 0 and 1 are adjacent, etc.

The Beacon hop pattern is generated uniquely for each system as follows:

```
We start with a set of groups

Group 0 = \{0,1,2,3,...,9\}

Group 1 = \{10,11,..., 19\}

Group 2 = \{20,21,..., 29\}

Group 3 = \{30,31,..., 39\}

Group 4 = \{40,41,..., 49\}

Group 5 = \{50,..., 58\} Note one less than others!
```

We randomly shuffle the elements within each group

Example:

```
Shuffled G0 = { 2 5 4 1 7 6 3 8 0 9 }

Shuffled G1 = { 19 18 12 15 14 10 17 16 11 13 }

Shuffled G2 = { 26 21 24 22 29 25 28 23 20 27 }

Shuffled G3 = { 38 33 31 39 32 30 36 34 37 35 }

Shuffled G4 = { 47 45 49 48 42 43 46 41 40 44 }

Shuffled G5 = { 51 58 56 57 52 55 50 53 54 }
```

Then we pick from one of 60 group permutations that keep the groups as least 2 apart so the frequencies in the hop pattern will be as least 5 channels apart (this translates into 500 KHz apart with our system):

```
Example: using the following group order: \{G1, G5, G3, G0, G2, G4\}
Shuffled G1 = \{19 18 12 15 14 10 17 16 11 13\}
Shuffled G5 = \{51 58 56 57 52 55 50 53 54 XX\}
Shuffled G3 = \{38 33 31 39 32 30 36 34 37 35\}
Shuffled G0 = \{25 4 1 7 6 3 8 0 9\}
Shuffled G2 = \{26 21 24 22 29 25 28 23 20 27\}
Shuffled G4 = \{47 45 49 48 42 43 46 41 40 44\}
```

We read the elements by columns to form the overall hop pattern {19,51,38,2,26,47, 18,58,33,5,21,45, 12,56,31,4,24,49, ...

Each base station uses a value generated from its unique serial number to seed the random number generator used in the above operations.

A Node wishing to join a network will pick one of the original groups at random and sample frequencies until it hears a Beacon. The Beacon will contain timing information and the seed so the Node can also calculate the hopping pattern being used and synchronize in time with the Base Station.

Network Operations Application Slot hopping

- Using 59 frequencies channels (all system frequencies)
- Frequency channels are numbered from 0 to 58 (for 59 overall channels)
- Frequency 0 and 1 are adjacent, etc.

The App Slot hop pattern is generated uniquely for each system as follows:

We use 8 groups of size 7 and keep 00, 22, 44 on the side:

```
Group 0 = \{01,02,03,04,05,06,07\} 7 elements
```

Group $1 = \{08,09,10,11,12,13,14\}$ 7 elements

Group $2 = \{ 15, 16, 17, 18, 19, 20, 21 \} 7$ elements

Group $3 = \{ 23,24,25,26,27,28,29 \} 7$ elements

Group 4 = { 30,31,32,33,34,35,36 } 7 elements

Group $5 = \{37,38,39,40,41,42,43\}$ 7 elements

Group $6 = \{45,46,47,48,49,50,51\}$ 7 elements

Group 7 = { 52,53,54,55,56,57,58 } 7 elements

We randomly shuffle the elements within each group.

Example:

- Group $0 = \{ 03, 05, 02, 04, 07, 01, 06 \} 00$
- Group 3 = { 29, 25, 27, 24, 26, 28, 23 } 22
- Group 6 = { 50, 46, 48, 51, 49, 45, 48 } 44
- Group 1 = { 11, 14, 10, 08, 13, 09, 12 }
- Group 4 = { 30, 33, 35, 31, 34, 36, 32 }
- Group 7 = { 58, 52, 55, 54, 53, 57, 56 }
- Group 2 = { 20, 16, 17, 21, 19, 18, 22 }
- Group 5 = { 40, 43, 39, 42, 41, 37, 38 }

Now we read the pattern column by column and add the extras at the end:

• 03,29,50,11,30,58,20,40,05,25,46,14,33,52,16,42,02,...,22,38,00,22,44

The app slot hop pattern uses all system 59 frequencies:

- Every frame (every second) we move in the pattern a total of 12 hops
- We finish the whole pattern in almost 5 seconds (5x12=60)
- Every 5 seconds the pattern shifts by one to the left!

This approach ensures that more than one application slot (of the same type) is used in a second or from second to second, the frequencies used are at least 500 KHz apart. As well, all frequencies are utilized equally when the network is very busy.

15.247(a): Equal hopping Frequency Use

A beacon is transmitted only once on each frequency, every 20 seconds Beacon is transmitted for 118.3 ms under maximum communication load in the Security system, each frequency is used by a maximum of 4 application slots in every 20 second interval.

The duration of different application slots are:

Alarm = 31.1 ms

Back channel = 155.4 ms

Supervision = 28.6 ms

Maximum usage occurs when alarm, back channel and 2 supervision slots are used (243.7 ms) each frequency is used for a maximum of 362 ms (including Beacon)

15.247(a): Receiver Input Bandwidth

The receiver deviation is controlled by a register setting in the RFIC, the deviation setting is 30 KHz and the Tx deviation is ±4.95 KHz.

15.247(a): System Receiver Hopping Capability

Upon power up the nodes will listen for beacons from the base station device. Once a beacon is heard the device uses information in the beacon message to compute the base stations hopping pattern and current system time. The nodes will then hop in synchronization with the base station, periodically receiving beacon messages in order to maintain synchronization.

15.247(g): Frequency Hopping Description

The system consisting of the base station and the nodes meets the requirements of a true frequency hopping system in the following ways:

- 1. At power up the nodes synchronize to the base station hop pattern and continually hop in sync with the base station at the system hopping rate.
- 2. All devices in the system are changing frequency at the system hopping rate even when there is no data being transmitted, this allows all devices to distribute there transmissions equally over all of the frequencies whether the data is short period bursts or continuous.
- 15.247(h): Frequency Coordination

All nodes in a system synchronize to and follow the same hopping pattern as the base station that they are synchronized to. Base stations from different systems independently generate their hopping pattern using only a random generator that uses that base stations serial number as the initial seed value. There is no coordination of hopping between nodes in the same system or base stations in different systems for the purpose of unfairly occupying the available spectrum.

Spectrum Analyzer Desensitization Considerations

Due to the nature of the emissions being measured, care was taken to ensure that the resolution bandwidth of the spectrum analyzer was adequate to provide accurate measurements. FCC specified bandwidths of 100 kHz and 1 MHz were utilized below and above 1 GHz, respectively.

General Notes

- 1. All readings were taken utilizing a peak and/or Average detector function at a test distance of 3 meters.
- 2. All measurements were made with fully charged batteries installed in the unit.
- 3. The frequency range was scanned from 30 MHz to 10.0 GHz. All emissions not reported were more than 20dB below the specified limit.
- 4. The device has no provisions for external accessories.
- 5. The unit tunes over the frequency range of: 915.5 to 921.5 MHz
 The unit was tested at the following frequencies: 915.5 MHz, 918.5 MHz & 921.3 MHz.
- 6. The Receiver was tested per "ANSI STANDARD C63.4-2003 12.1.1.2. The receiver was programmed for normal receiver mode. A CW signal was transmitted to stabilize the local oscillator.

15.31 (a)(b)	All measurements were made in accordance with ANSI C63.4:2003.
15.31 (c)	The device does not use swept frequency techniques.
15.31 (d)	All testing was performed on Retlif Testing Laboratories Ronkonkoma, NY test site which has been listed with the FCC.
15.31 (f)(1)	Where testing was performed at distances other than the specified test distance, the obtained readings were extrapolated to the specified test distance using an inverse linear-distance extrapolation factor (20dB / decade) for measurements between 30 MHz and 40 GHz.
15.31 (f)(5)	The device was rotated 360° in order to maximize the radiated emissions. The maximum field strength observed has been reported.
15.31 (g)	All consumer accessible controls were adjusted in order to maximize emissions (MW Range Control).
15.31 (m)	The device operates at a single frequency of 10.513 GHz.
15.31 (o)	All emissions within 20 dB of the specified limits have been reported unless otherwise stated.
15.33 (a)(2)	The device operates above 10 and below 30 GHz at a frequency of 10.513 GHz. Therefore radiated emissions measurements were made from 30 MHZ to 52.625 GHz, the fifth harmonic.

DUTY CYCLE

Drive pulses are applied to Q99 via Q1 and are 17 μ Sec on time within a period of 1.6 mSec . This yields a duty cycle of 1%, 17 μ Sec divided by 1.6 mSec. This duty cycle was applied to the obtained peak readings in order to determine the average value of the emissions.

TEST DISTANCES

In order to obtain adequate system sensitivity at the harmonic frequencies of interest, it was necessary to perform certain measurements at a distance less than 3 meters. Care was taken to ensure that all measurements were taken in the far field region. The antenna was determined to be in the far field IFF:

 $d \ge 2 D^2/\lambda$

Where: d = Test Distance

D = Largest Antenna Length

 λ = Wavelength at the Frequency of Interest

Solving for d yields the minimum test distances shown in the table below. Also shown is the actual test distance utilized.

Frequency	Minimum Test Distance	Actual Test Distance
GHz	Meters	Meters
10.525	2.7	3
21.050	1.5	2
31.575	1.0	1
42.100	0.5	1
52.625	0.7	1

SPECTRUM ANALYZER DESENSITIZATION CONSIDERATIONS

Due to the nature of the emissions being measured, care was taken to ensure that the resolution bandwidth of the spectrum analyzer was adequate to provide accurate peak field strength measurements. The following formula was utilized:

minimum bandwidth = $1/\{\text{minimum pulse width (in seconds)} \times 1.5\} = Hz$ = $1/\{0.000017 \times 1.5\} = 39.2 \text{ kHz}$

Setting the above equal to zero and utilizing the 17.0 microsecond pulse width yields a minimum required bandwidth of 39.2 kHz. The 1 MHz bandwidth specified in ANSI C63.4 was utilized for all fundamental and harmonic measurements.

Modifications:

Radio Frequency cans were added to the Radio Frequency portion of the PCB and a software change was utilized to lower the RF IC power output.

Certification and Signatures

We certify that this report is a true representation of the results obtained from the tests of the equipment stated. We further certify that the measurements shown in this report were made in accordance with the procedures indicated and vouch for the qualifications of all Retlif Testing Laboratories personnel taking them.

Donald C. Lerner EMC Test Engineer

Nicholas Dragotta

EMC Laboratory Supervisor

Non-Warranty Provision

The testing services have been performed, findings obtained and reports prepared in accordance with generally accepted laboratory principles and practices. This warranty is in lieu of all others, either expressed or implied.

Non-Endorsement

This test report contains only findings and results arrived at after employing the specific test procedures and standards listed herein. It is not intended to constitute a recommendation, endorsement or certification of the product or material tested. This test report must not be used by the client to claim product endorsement by NVLAP or any agency of the U.S. Government.

Equipment List

FCC Part 15, Subpart C, 15.247 (a)(1) Number of Hopping Frequency and Carrier Separation

EN	Туре	Manufacturer	Description	Model No.	Cal Date	Due Date
067	Open Area Test Site	Retlif	3/10 Meter	RNY	9/12/2006	9/12/2009
141	Spectrum Analyzer	Hewlett Packard	100 Hz - 40 GHz	8566B	4/27/2007	4/27/2008
141B	Quasi-Peak Adaptor	Hewlett Packard	100 Hz - 1 GHz	85650A	4/27/2007	4/27/2008
512	Graphics Plotter	Hewlett Packard	N/A	7470A	10/18/2006	10/18/2007

FCC Part 15, Subpart C, Paragraph 15.247(a)(1) Occupied Bandwidth

EN	Туре	Manufacturer	Description	Model No.	Cal Date	Due Date
067	Open Area Test Site	Retlif	3/10 Meter	RNY	9/12/2006	9/12/2009
141	Spectrum Analyzer	Hewlett Packard	100 Hz - 40 GHz	8566B	4/27/2007	4/27/2008
141B	Quasi-Peak Adaptor	Hewlett Packard	100 Hz - 1 GHz	85650A	4/27/2007	4/27/2008
512	Graphics Plotter	Hewlett Packard	N/A	7470A	10/18/2006	10/18/2007

FCC Part 15, Subpart C, 15.247(a)(1)(i), Occupancy Time

EN	Туре	Manufacturer	Description	Model No.	Cal Date	Due Date
067	Open Area Test Site	Retlif	3/10 Meter	RNY	9/12/2006	9/12/2009
141	Spectrum Analyzer	Hewlett Packard	100 Hz - 40 GHz	8566B	4/27/2007	4/27/2008
141B	Quasi-Peak Adaptor	Hewlett Packard	100 Hz - 1 GHz	85650A	4/27/2007	4/27/2008
512	Graphics Plotter	Hewlett Packard	N/A	7470A	10/18/2006	10/18/2007

FCC Part 15, Subpart C, Radiated Emissions, Fundamental Power Output

EN	Туре	Manufacturer	Description	Model No.	Cal Date	Due Date
067	Open Area Test Site	Retlif	3/10 Meter	RNY	9/12/2006	9/12/2009
133	Broadband Pre-Amplifier	Electro-Metrics	10 kHz - 1 GHz, 26dB	BPA-1000	6/27/2007	6/27/2008
141	Spectrum Analyzer	Hewlett Packard	100 Hz - 40 GHz	8566B	4/27/2007	4/27/2008
141B	Quasi-Peak Adaptor	Hewlett Packard	100 Hz - 1 GHz	85650A	4/27/2007	4/27/2008
206B	6.0 dB Attenuator	Texscan	0 - 1.0 GHz	FP-50 - 6 dB	6/27/2007	6/27/2008
512	Graphics Plotter	Hewlett Packard	N/A	7470A	10/18/2006	10/18/2007
617	Interference Analyzer	Electro-Metrics	10 kHz - 1 GHz	EMC-30	3/30/2007	3/30/2008
767	Biconilog	EMCO	26 - 2000 MHz	3142B	10/12/2006	10/12/2007

FCC Part 15, Subpart C, 15.247(d) Band Edge Measurements, 902 to 928 MHz Band

EN	Туре	Manufacturer	Description	Model No.	Cal Date	Due Date
067	Open Area Test Site	Retlif	3/10 Meter	RNY	9/12/2006	9/12/2009
141	Spectrum Analyzer	Hewlett Packard	100 Hz - 40 GHz	8566B	4/27/2007	4/27/2008
141B	Quasi-Peak Adaptor	Hewlett Packard	100 Hz - 1 GHz	85650A	4/27/2007	4/27/2008
512	Graphics Plotter	Hewlett Packard	N/A	7470A	10/18/2006	10/18/2007

FCC Part 15 Subpart C, Radiated Harmonic Emissions

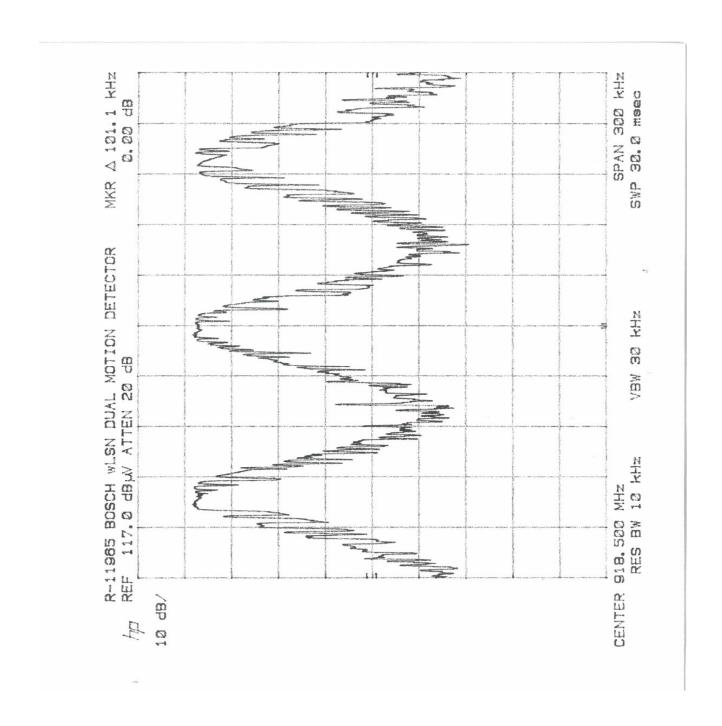
EN	Туре	Manufacturer	Description	Model No.	Cal Date	Due Date
032F	H.P. Filter	Microlab/FXR	2 GHz	HD-20N	9/22/2006	9/22/2007
032H	H.P. Filter	Microlab/FXR	4 GHz	HD-40N	2/20/2007	2/20/2008
032J	H.P. Filter	Microlab/FXR	6 GHz	HD-60N	3/13/2007	3/13/2008
067	Open Area Test Site	Retlif	3/10 Meter	RNY	9/12/2006	9/12/2009
1049	H.P. Filter	Microlab/FXR	1 GHz	HD-10N	9/22/2006	9/22/2007
128	Double Ridged Guide	Electro-Mechanics	1 GHz - 18 GHz	3105	3/27/2007	3/27/2008
133	Broadband Pre-Amplifier	Electro-Metrics	10 kHz - 1 GHz, 26dB	BPA-1000	6/27/2007	6/27/2008
141	Spectrum Analyzer	Hewlett Packard	100 Hz - 40 GHz	8566B	4/27/2007	4/27/2008
141A	Graphics Plotter	Hewlett Packard	N/A	7470A	3/12/2007	3/12/2008
206B	6.0 dB Attenuator	Texscan	0 - 1.0 GHz	FP-50 - 6 dB	6/27/2007	6/27/2008
379F	H.P. Filter	Microlab/FXR	500 MHz	HA-05N	9/22/2006	9/22/2007
543	Preamplifier	Hewlett Packard	1.0 GHz - 26.5 GHz	8449B	9/9/2005	9/21/2007
767	Biconilog	EMCO	26 - 2000 MHz	3142B	10/12/2006	10/12/2007

FCC Part 15 Subpart C, Transmitter Spurious Radiated Emissions

EN	Туре	Manufacturer	Description	Model No.	Cal Date	Due Date
032F	H.P. Filter	Microlab/FXR	2 GHz	HD-20N	9/22/2006	9/22/2007
032H	H.P. Filter	Microlab/FXR	4 GHz	HD-40N	2/20/2007	2/20/2008
032J	H.P. Filter	Microlab/FXR	6 GHz	HD-60N	3/13/2007	3/13/2008
067	Open Area Test Site	Retlif	3/10 Meter	RNY	9/12/2006	9/12/2009
1049	H.P. Filter	Microlab/FXR	1 GHz	HD-10N	9/22/2006	9/22/2007
128	Double Ridged Guide	Electro-Mechanics	1 GHz - 18 GHz	3105	3/27/2007	3/27/2008
133	Broadband Pre-Amplifier	Electro-Metrics	10 kHz - 1 GHz, 26dB	BPA-1000	6/27/2007	6/27/2008
141	Spectrum Analyzer	Hewlett Packard	100 Hz - 40 GHz	8566B	4/27/2007	4/27/2008
141A	Graphics Plotter	Hewlett Packard	N/A	7470A	3/12/2007	3/12/2008
206B	6.0 dB Attenuator	Texscan	0 - 1.0 GHz	FP-50 - 6 dB	6/27/2007	6/27/2008
379F	H.P. Filter	Microlab/FXR	500 MHz	HA-05N	9/22/2006	9/22/2007
543	Preamplifier	Hewlett Packard	1.0 GHz - 26.5 GHz	8449B	9/9/2005	9/21/2007
762	AM/FM Signal Generator	Marconi Instru.	10 kHz - 1.2 GHz	2023	7/24/2007	7/24/2008
767	Biconilog	EMCO	26 - 2000 MHz	3142B	10/12/2006	10/12/2007
826	10 DB Atten. (50 ohm)	Narda	DC - 10 GHz, 1W	774-10	5/21/2007	5/21/2008

FCC Part 15 Subpart B, Class B, Radiated Emissions, 30 MHz to 5 GHz

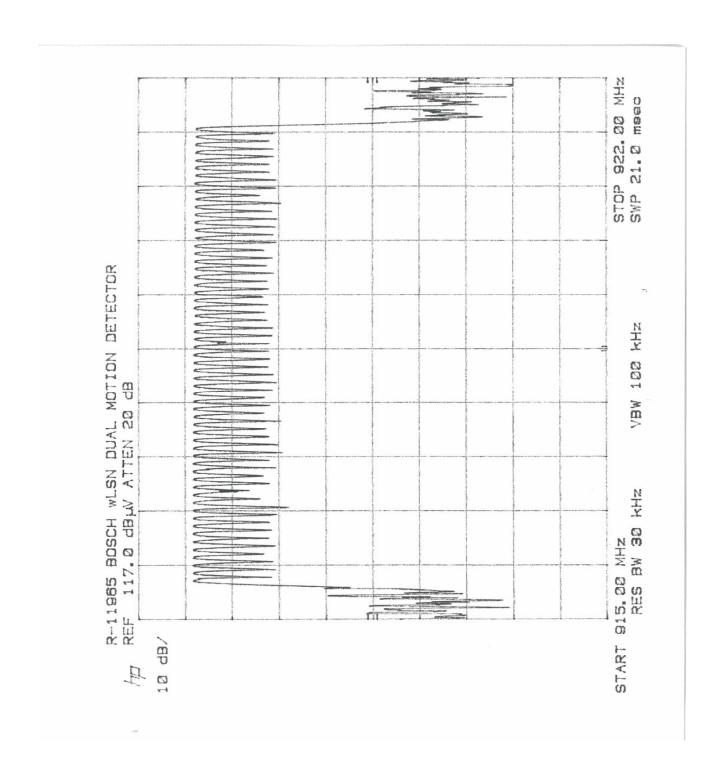
EN	Туре	Manufacturer	Description	Model No.	Cal Date	Due Date
067	Open Area Test Site	Retlif	3/10 Meter	RNY	9/12/2006	9/12/2009
128	Double Ridged Guide	Electro-Mechanics	1 GHz - 18 GHz	3105	3/27/2007	3/27/2008
133	Broadband Pre-Amplifier	Electro-Metrics	10 kHz - 1 GHz, 26dB	BPA-1000	6/27/2007	6/27/2008
141	Spectrum Analyzer	Hewlett Packard	100 Hz - 40 GHz	8566B	4/27/2007	4/27/2008
141A	Graphics Plotter	Hewlett Packard	N/A	7470A	3/12/2007	3/12/2008
206B	6.0 dB Attenuator	Texscan	0 - 1.0 GHz	FP-50 - 6 dB	6/27/2007	6/27/2008
512	Graphics Plotter	Hewlett Packard	N/A	7470A	10/18/2006	10/18/2007
523	Biconilog	Electro-Mechanics	26 - 2000 MHz	3142B	11/10/2006	11/10/2007
543	Preamplifier	Hewlett Packard	1.0 GHz - 26.5 GHz	8449B	9/9/2005	9/21/2007
574	AM/FM Signal Generator	Marconi Instru.	9 kHz - 2.4 GHz	2024	7/25/2006	7/25/2007
617	Interference Analyzer	Electro-Metrics	10 kHz - 1 GHz	EMC-30	6/13/2007	6/13/2008
1049	H.P. Filter	Microlab/FXR	1 GHz	HD-10N	9/22/2006	9/22/2007


FCC Part 15.35, Duty Cycle Determination

EN	Туре	Manufacturer	Description	Model No.	Cal Date	Due Date
067	Open Area Test Site	Retlif	3/10 Meter	RNY	9/12/2006	9/12/2009
141	Spectrum Analyzer	Hewlett Packard	100 Hz - 40 GHz	8566B	4/27/2007	4/27/2008
141B	Quasi-Peak Adaptor	Hewlett Packard	100 Hz - 1 GHz	85650A	4/27/2007	4/27/2008
512	Graphics Plotter	Hewlett Packard	N/A	7470A	10/18/2006	10/18/2007

FCC 15.245 Compliance Testing

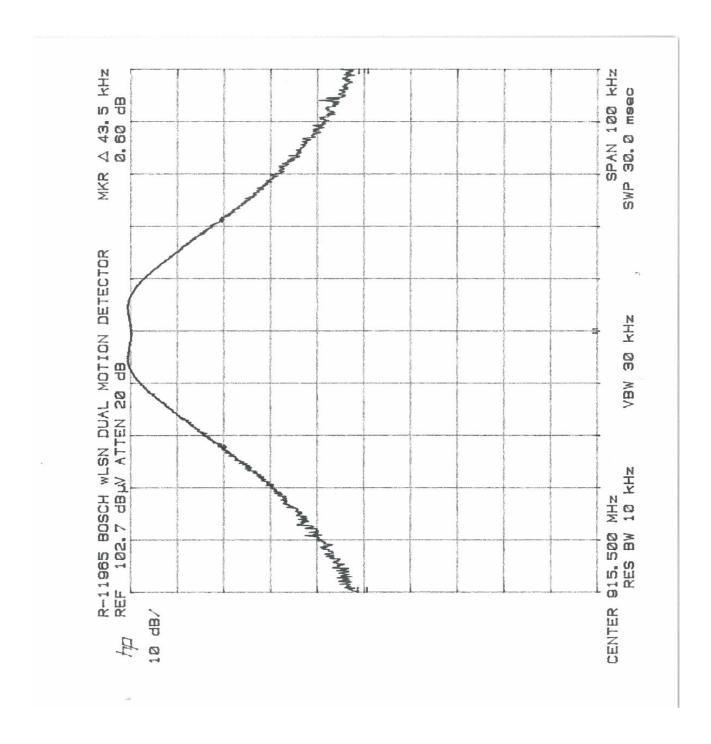
EN	Туре	Manufacturer	Description	Model No.	Cal Date	Due Date
066	High Gain Horn Antenna	Microlab/FXR	8.2 GHz - 12.4 GHz	X638A	8/30/2007	8/30/2008
067	Open Area Test Site	Retlif	3/10 Meter	RNY	9/12/2006	9/12/2009
1086	Oscilloscope	Tektronix	DC - 500MHz	TDS3052B	3/7/2007	3/7/2008
128C	Double Ridge Guide	Eaton Corporation	1 GHz - 18 GHz	96001	8/24/2007	8/24/2008
129F	High Gain Horn Antenna	Microlab/FXR	18 GHz - 26.5 GHz	K638A	8/30/2007	8/30/2008
129G	High Gain Horn Antenna	Microlab/FXR	26.5 GHz - 40 GHz	U638A	8/30/2007	8/30/2008
133	Broadband Pre-Amplifier	Electro-Metrics	10 kHz - 1 GHz, 26dB	BPA-1000	6/27/2007	6/27/2008
141	Spectrum Analyzer	Hewlett Packard	100 Hz - 40 GHz	8566B	4/27/2007	4/27/2008
141B	Quasi-Peak Adaptor	Hewlett Packard	100 Hz - 1 GHz	85650A	4/27/2007	4/27/2008
206B	6.0 dB Attenuator	Texscan	0 - 1.0 GHz	FP-50 - 6 dB	6/27/2007	6/27/2008
4003	Double Ridge Guide	Tensor	1 GHz - 18 GHz	4015	3/27/2007	3/27/2008
420	Amplifier	Hewlett Packard	2.0 GHz - 18 GHz	11975A	11/14/2006	11/14/2007
421	Harmonic Mixer	Hewlett Packard	18 GHz - 26.5 GHz	11970K	10/3/2006	10/3/2009
421A	Harmonic Mixer	Hewlett Packard	26.5 GHz - 40 GHz	11970A	10/3/2006	10/3/2009
421B	Harmonic Mixer	Hewlett Packard	40 GHz - 60 GHz	11970U	10/3/2006	10/3/2009
422B	High Gain Horn	Millitech	40.0 - 60.0 GHz	SGH-19-RP000	10/3/2006	10/3/2009
512	Graphics Plotter	Hewlett Packard	N/A	7470A	10/19/2007	10/19/2008
543	Preamplifier	Hewlett Packard	1.0 GHz - 26.5 GHz	8449B	9/26/2007	9/26/2008
767	Biconilog	EMCO	26 - 2000 MHz	3142B	10/12/2006	10/31/2007


FCC Part 15, Subpart C, 15.247 (a)(1) Carrier Frequency Separation and Number of Hopping Frequency
902 – 928 MHz Band Test Data

FCC Part 15, Subpart C, 15.247(a) (1)Hopping Channel Carrier Separation, 902 to 928 MHz Band Note: Hopping channel carrier frequency meets the required minimum separation of 25 kHz

(Measured carrier separation =101.1kHz)

1 GO IB: 10/CBBE1 William					
Customer	Bosch Security System.				
Test Sample	wLSN Dual Motion Detector				
Model Number	ISW- BDL1-W11PGY				
Date: 6-8-2007	Tech: R.S.	Sheet 1 of 2			

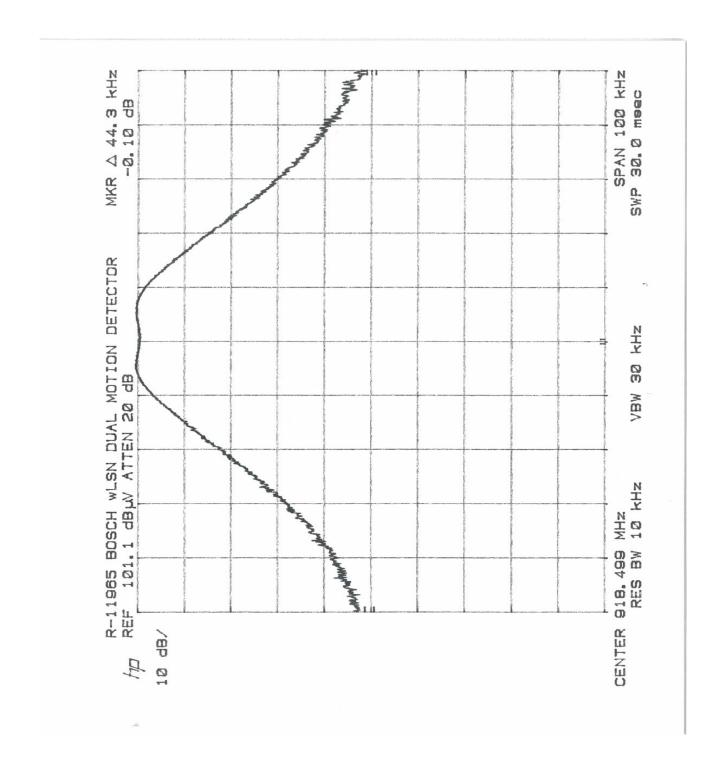


FCC Part 15, Subpart C, 15.247(a) (1) Number of Hopping Frequency, 902 to 928 MHz Band

Note: EUT uses 59 hopping frequencies which meets the 50 minimum hopping frequencies required by the 20dB bandwidth if less than 250 kHz(measured BW = 44.3 kHz).

Customer	Bosch Security System.			
Test Sample	wLSN Dual Motion Detector			
Model Number	ISV	V- BDL1-W11PGY		
Date: 6-8-2007		Tech: R.S.	Sheet 2 of 2	

FCC Part 15, Subpart C, 15.247 (a)(1) Occupied Bandwidth, 902 - 928 MHz
Test Data

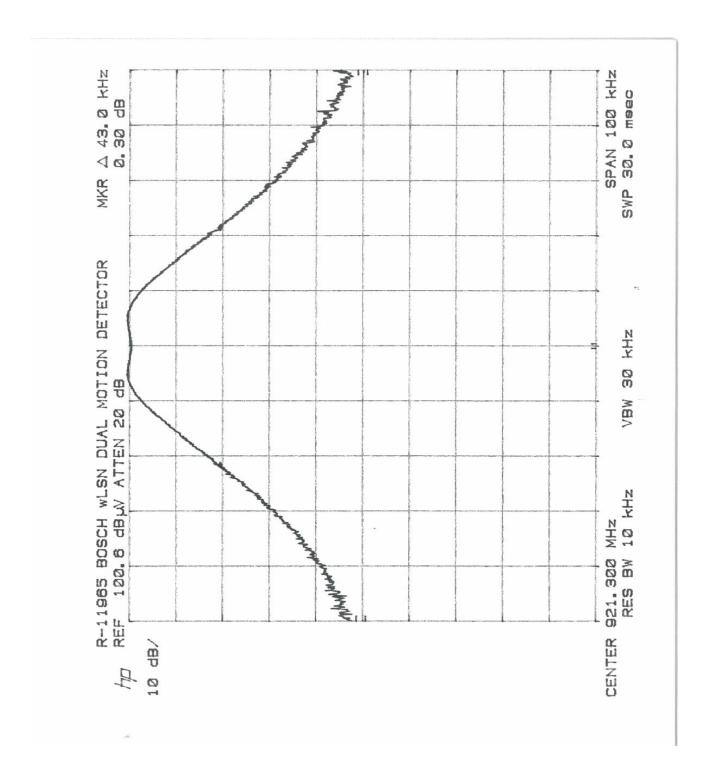

FCC Part 15, Subpart C, 15.247(a) (1) Occupied Bandwidth, 902 to 928 MHz Band

Note: The maximum 20 dB bandwidth of the hopping channel is less then 250 kHz. 20dB bandwidth

measured at 43.5 kHz

Note: EUT transmitting on channel 00 at 915.5 MHz.

Customer	Bosch Security System.				
Test Sample	wLSN Dual Motion Detector				
Model Number	ISW- BDL1-W11PGY				
Date: 6-7-2007	Tech: R.S.	Sheet 1 of 3			


FCC Part 15, Subpart C, 15.247(a) (1) Occupied Bandwidth, 902 to 928 MHz Band

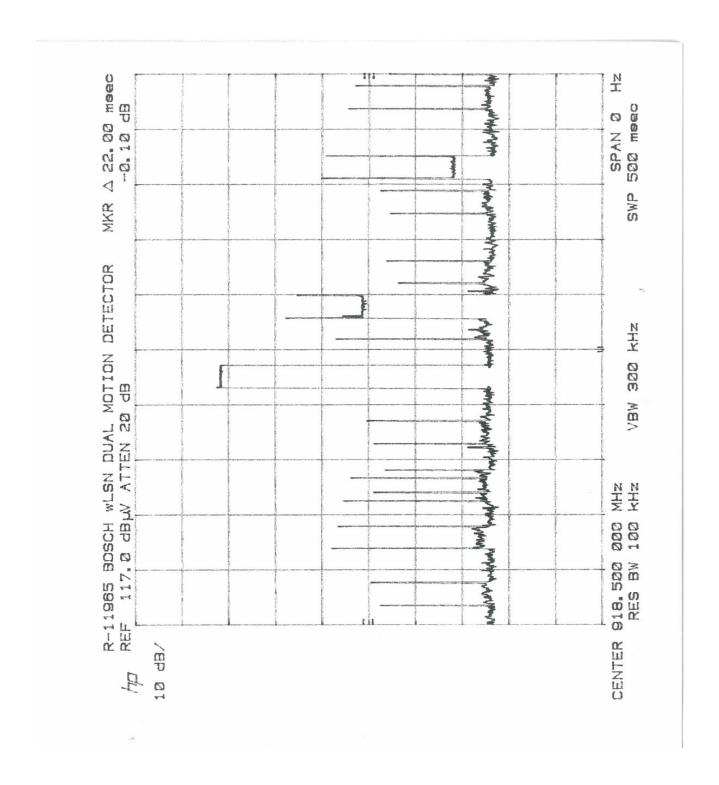
Note: The maximum 20 dB bandwidth of the hopping channel is less then 250 kHz. 20dB bandwidth

measured at 43.3 kHz

Note: EUT transmitting on channel 30 at 918.5 MHz.

Customer	Bosch Security System.			
Test Sample	wLSN Dual Motion Detector			
Model Number	ISW- BDL1-W11PGY			
Date: 6-7-2007	Tech: R.S.	Sheet 2 of 3		

FCC Part 15, Subpart C, 15.247(a) (1) Occupied Bandwidth, 902 to 928 MHz Band

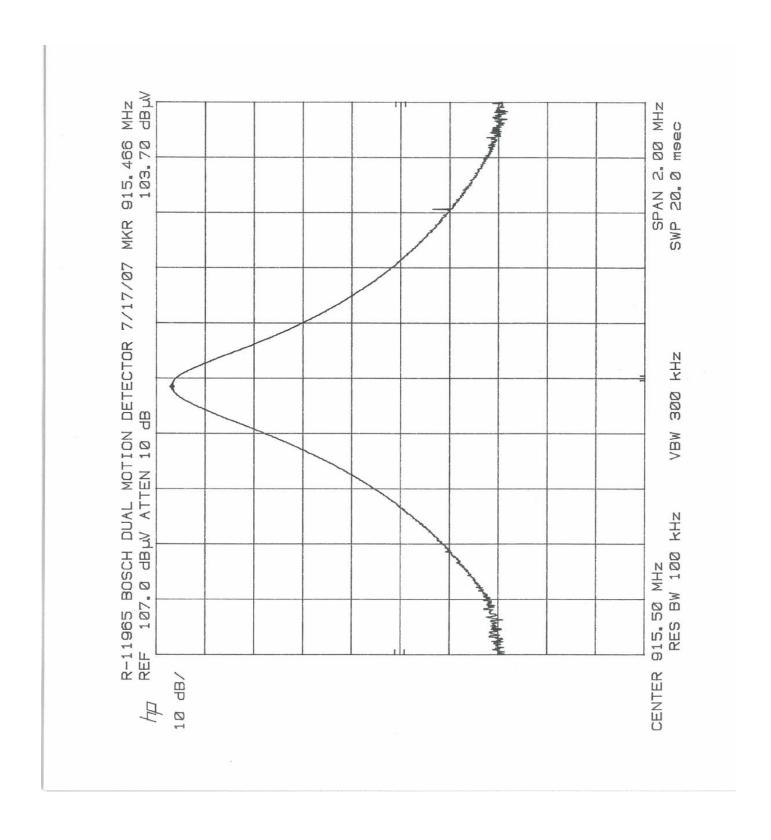

Note: The maximum 20 dB bandwidth of the hopping channel is less then 250 kHz. 20dB bandwidth

measured at 43.0 kHz

Note: EUT transmitting on channel 58 at 921.3 MHz.

Customer	Bosch Security System.				
Test Sample	wLSN Dual Motion Detector				
Model Number	mber ISW- BDL1-W11PGY				
Date: 6-7-2007	Tech: R.S.	Sheet 3 of 3			

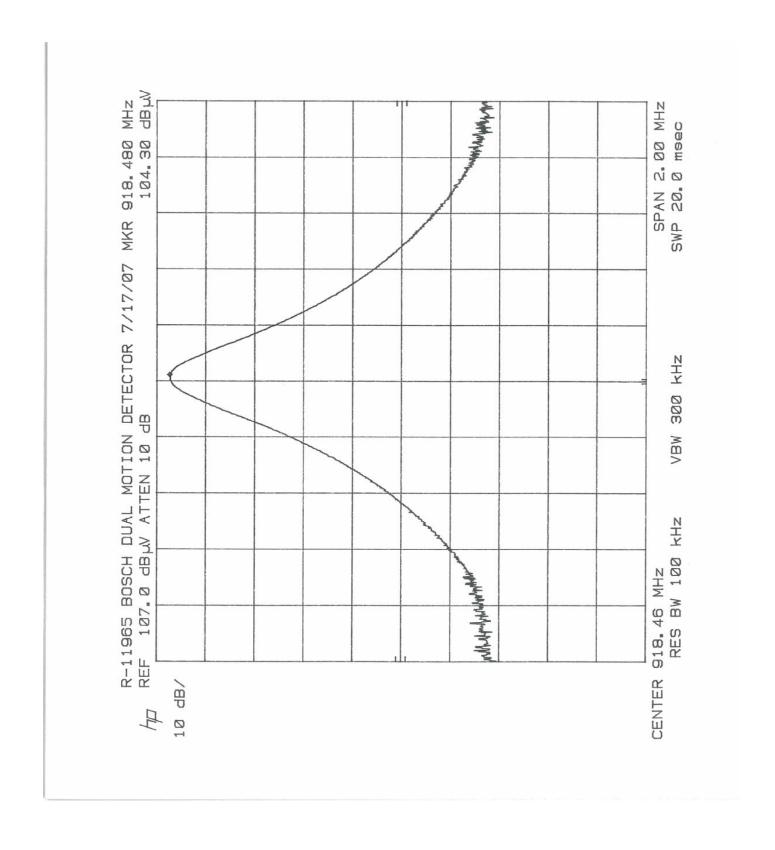
FCC Part 15, Subpart C, 15.247 (a)(1)(i) Occupancy Time 902 - 928 MHz Test Data


FCC Part 15, Subpart C, 15.247(a)(1)(i) Occupancy Time, 902 to 928 MHz Band Note: The measured occupancy time does not exceed the 0.4 seconds (Measured time =22.0mSec.) FCC ID: T3XBDL1-W11PGY

Customer	Bosch Security System.				
Test Sample	wLSN Dual Motion Detector				
Model Number	ISW- BDL1-W11PGY				
Date: 6-8-2007	Tech: R.S.	Sheet 1 of 1			

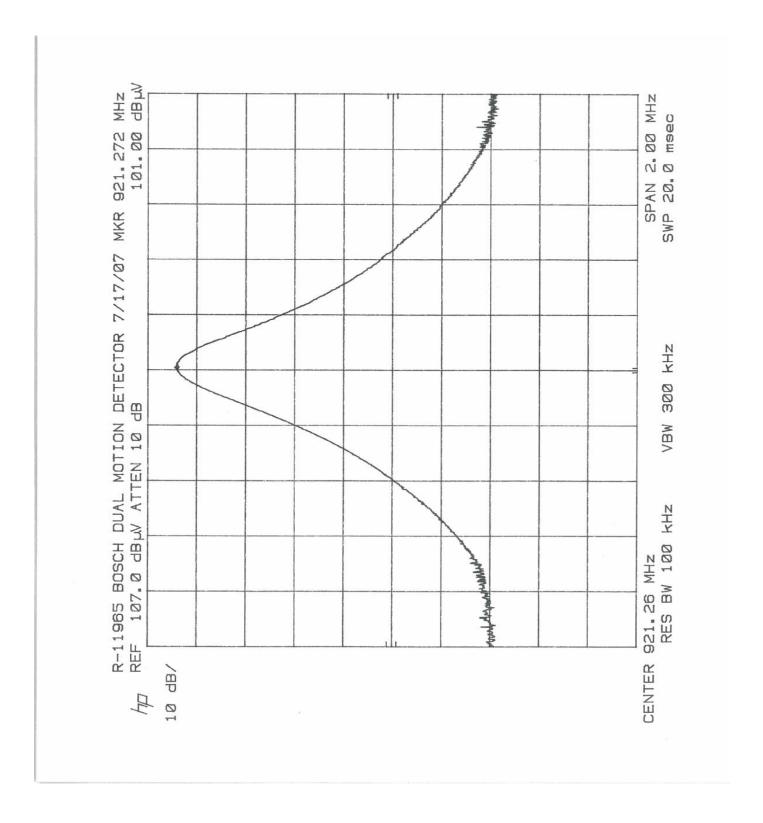
FCC Part 15, Subpart C Radiated Emissions, Fundamental Power Output Paragraph 15.247(b) (2) Test Data

Test Meth	od:	FCC F	Part 15, Subpart	t C Radiated I	Emissions, Fu	ndamental Po	wer Output.		
Customer	:	Bosch Security System.				Job No	c. R-11965	-13	
Test Samp	ole:	wLSN	Dual Motion De	etector		Paragrap	h 15.247(b)(2)	
Model No.			BDL1-W11PGY			FCC ID: T3XBDL1-W11PGY			
Operating					MHz. 918.4 MI	lz and 921.3 MHz signal.			
Technicia		R. So	•	J	,		Date: July 17, 2007.		
Notes:					,				
110100.	Detector		· motoro						
Test	Anten	na	EUT	Meter	Correction	Corrected	Converted	Converted	Peak
Freq.	Pol./He	eight	Orientation	Reading	Factor	Reading	Reading	Reading	Limit
MHz	(V/H) / N	leters	X/Y/Z	dBuV	dB	dBuV/m	V/m	milliWatts	Watts
915.5	V / 1		Х	95.5	9.6	105.1	0.18	9.7	1.0
	V / 1	.3	Y	99.2	9.6	108.8	0.28	22.8	
	V / 1	.2	Z	103.6	9.6	113.2	0.46	62.7	<u> </u>
	H/1	.7	Х	97.9	9.6	107.5	0.24	16.9	
	H/2	.1	Υ	96.7	9.6	106.3	0.21	12.8	
915.5	H/1	.7	Z	92.1	9.6	101.7	0.12	4.4	
					-				<u> </u>
918.4	V / 1	.2	Х	96.6	9.6	106.2	0.20	12.5	<u> </u>
Ī	V / 1		Y	97.1	9.6	106.7	0.22	14.0	<u> </u>
İ	V / 1	.0	Z	104.2	9.6	113.8	0.49	72.0	i i
i	H/2		X	99.0	9.6	108.6	0.27	21.7	i
i	H/2		Y	97.4	9.6	107.0	0.22	15.0	i
918.4	H/1		Z	88.9	9.6	98.5	0.08	2.1	<u> </u>
0.10.1	117.	.0		00.0	0.0	30.0	0.00		<u> </u>
921.3	V / 1	.3	Х	95.8	9.6	105.4	0.19	10.4	<u> </u>
1	V / 1		Y	97.6	9.6	107.2	0.23	15.7	i
i	V / 1	.0	Z	101.0	9.6	110.6	0.34	34.4	i
i	H/2		X	98.8	9.6	108.4	0.26	20.8	i
i	H/1		Y	97.7	9.6	107.3	0.23	16.1	i
921.3	H/1		Z	90.1	9.6	99.7	0.10	2.8	1.0
020					1	33.1	01.10		
					1				
					1				
	The FUT	meets	the required lim	nit indicated a	bove.	<u> </u>		1	
			ormulae were us			ath in dBuV ir	nto V/m and \	//m to Watts	
			uV/m-120) / 20)			<u> </u>	- ···· •··· •		
	Power = $(V/m \times 3)^2 / 30$								


Page 1 of 1

FCC Part 15, Subpart C Radiated Emissions, Fundamental Power Output, Para.15.247(b)(2)

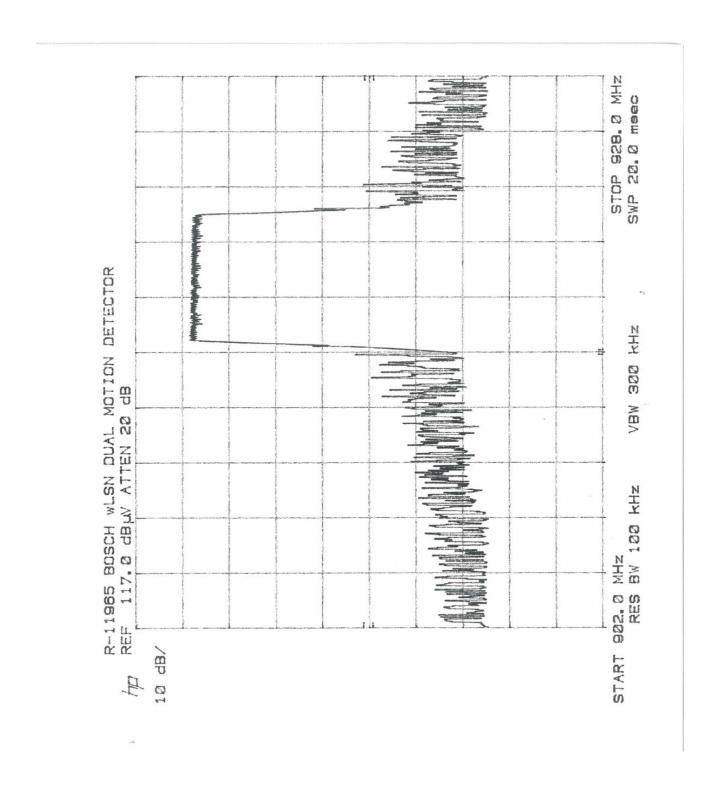
Note: EUT transmitting on channel 00 at 915.5 MHz.


Customer	Bosch Security System.			
Test Sample	wLSN Dual Motion Detector			
Model Number ISW- BDL1-W11PGY			Υ	
Date: July 17, 2007.		Tech: R.S.	Sheet 1 of 3	

FCC Part 15, Subpart C Radiated Emissions, Fundamental Power Output, Para.15.247(b)(2)

Note: EUT transmitting on channel 30 at 918.4 MHz.

Customer	Bosch Security System.			
Test Sample	wLSN Dual Motion Detector			
Model Number	Model Number ISW- BDL1-W11PGY			
Date: July 17, 2007.		Tech: R.S.	Sheet 2 of 3	



FCC Part 15, Subpart C Radiated Emissions, Fundamental Power Output, Para. 15.247(b)(2)

Note: EUT transmitting on channel 58 at 921.3 MHz.

Customer	Bosch Security System.			
Test Sample	wLSN Dual Motion Detector			
Model Number	nber ISW- BDL1-W11PGY			
Date: July 17, 20	07.	Tech: R.S.	Sheet 3 of 3	

FCC Part 15, Subpart C, 15.247(d) Band Edge Measurements 902 - 928 MHz Range Test Data

FCC Part 15, Subpart C,15.247(d) Band Edge Measurements, 902 to 928 MHz Band

Note: The EUT complies with the Band Edge Measurements.

Customer	Bos	sch Security System.					
Test Sample	wL	wLSN Dual Motion Detector					
Model Number I		V- BDL1-W11PGY					
Date: 6-08-2007		Tech: R.S. Sheet 1 of					

FCC Part 15 Subpart C, Radiated Emissions, Harmonics Paragraphs 15.247(d) EUT transmitting at the Fundamental signal of 915.5 MHz

Test Me	thod:	FCC Pa	FCC Part 15 Subpart C, Radiated Emissions, Harmonics Emissions.									
Custom	er:	Bosch S	Security System	•		Job No.	R-11965-13					
Test Sa	mple:	wLSN D	Dual Motion Dete	ector								
Model N	lo.:	ISW- BI	DL1-W11PGY			FCC ID:	T3XBDL1-W11F	'GY				
Operation	ng Mode:	Continu	ously transmittir	ng a 915.5 MH	lz signal.							
Technic	ian:	R. Sood	loo			Date:	September 09, 2	2007.				
Notes:	Test Di	stance: 3 N	Meters		<u>.</u>							
	Detecto	or: Peak, U	nless otherwise	specified								
Total For	An	tenna	EUT	Meter	Correction	Corrected	Converted	Peal	k			
Test Fre	eq. Pol.	/Height	Orientation	Reading	Factor	Reading	Reading	Limi	it			
MHz	(V/H)/Meters	X/Y/Z	dΒμV	dB	dBµV/m	uV/m	uV/n	n			
1831.0) V	/ 1.5	Х	66.4	2.3	68.7	2722.7	50118	3.0			
	V	/ 1.1	Y	71.1	2.3	73.4	4677.4					
	V	/ 1.4	Z	56.7	2.3	59.0	891.3					
	Н	/ 1.5	X	65.8	2.3	68.1	2541.0					
		/ 2.0	Y	55.1	2.3	57.4	741.3					
1831.0) H	/ 1.0	Z	61.0	2.3	63.3	1462.2	50118	3.0			
2746.5		/ 1.0	X	53.2	5.2	58.4	831.8	5000	.0			
		/ 1.0	Y	52.6	5.2	57.8	776.2	<u> </u>				
		/ 1.0	Z	51.8	5.2	57.0	707.9					
		/ 1.3	X	50.6	5.2	55.8	616.6					
0746.5		/ 1.7	Y Z	51.2	5.2	56.4	660.7	5000				
2746.5) H	/ 1.0	Z	50.4	5.2	55.6	602.6	5000	.0			
3662.0) //	/ 1.0	X	37.4	10.0	47.4	234.4	5000	Λ			
3002.0		/ 1.0 / 1.0	Y	38.1	10.0	48.1	254.1	3000	.0			
		/ 1.0	Z	38.7	10.0	48.7	272.3					
		/ 1.0	X	37.0	10.0	47.0	223.9					
<u> </u>		/ 1.0	Y	40.3	10.0	50.3	327.3					
3662.0		/ 1.0	Z	39.1	10.0	49.1	285.1	5000	.0			
4577.5	5 V	/ 1.3	Х	48.2	13.6	61.8	1230.3	5000	.0			
	V	/ 1.0	Y	47.6	13.6	61.2	1148.2					
	V	/ 1.0	Z	47.3	13.6	60.9	1109.2					
	Н	/ 1.3	X	46.3	13.6	59.9	988.6					
		/ 1.0	Y	55.0	13.6	68.6	2691.5					
4577.5	5 H	/ 1.7	Z	49.9	13.6	63.5	1496.2	5000	.0			
5493.0		/ 1.5	X	42.5	17.1	59.6	955.0	50118	3.0			
<u> </u>		/ 1.0	Y	41.6	17.1	58.7	861.0	 				
<u> </u>		/ 1.0	Z	37.9	17.1	55.0	562.3	<u> </u>				
		/ 1.2	X	38.2	17.1	55.3	582.1	 				
F402.0		/ 1.0	Y Z	43.9	17.1	61.0	1122.0	F0440	2 0			
5493.0		/ 1.0		38.2	17.1	55.3	582.1	50118				
							s not recorded we					
			tne specified il			uo not excee	ed the specified lin	iiiS.				
	- 1101	SC FIOUI IVI	casurements (II	minimum sensi	uvity <i>)</i> .							

Test Metho	d:	FCC Pa	rt 15 Subpart C	, Radiated Em	nissions, Harmo	nics Emissio	ns.				
Customer:		Bosch S	Security System			Job No.	R-11965-13				
Test Samp	le:	wLSN D	ual Motion Dete	ector							
Model No.:		ISW- BI	DL1-W11PGY			FCC ID:	T3XBDL1-W11F	PGY			
Operating	Mode:	Continu	ously transmittir	ng a 915.5 MH	lz signal.	•					
Technician		R. Sood	•			Date:	September 09, 2	2007.			
Notes:	Test Dis	tance: 3 N	/leters		- 1	- '	· · · · · · · · · · · · · · · · · · ·		-		
	Detector	: Peak, ur	nless otherwise	specified							
Test Freq.	Antenna Pol./Height		EUT Orientation	Meter Reading	Correction Factor	Corrected Reading	Converted Reading	Pe Lin	ak nit		
MHz		Meters	X/Y/Z	dBµV	dB	dBµV/m	uV/m	uV			
6408.5	· ,	1.5	X	38.1	19.9	58.0	794.3	501			
1		1.0	Y	37.9	19.9	57.8	776.2	001	10.0		
i	V /	10	Z	37.5	19.9	57.4	741.3	İ			
i	H /	1.3	Х	36.4	19.9	56.3	653.1	İ			
İ	H /	1.0	Y	38.6	19.9	58.5	841.4				
6408.5	H/	1.0	Z	37.7	19.9	57.6	758.6	501	18.0		
7324.0		1.6	X	36.9	21.3	58.2	812.8	500	0.0		
		1.0	Y	35.4	21.3	56.7	683.9				
		1.0	Z	39.3	21.3	60.6	1071.5				
		1.4	X	40.0	21.3	61.3	1161.4				
		1.2	Y	37.9	21.3	59.2	912.0				
7324.0	H /	1.0	Z	38.3	21.3	59.6	955.0	500	0.0		
0000 5	27.7	4.0		40.5	00.0	00.4	*0040.4	500			
8239.5		1.0	X	42.5	23.6	66.1	*2018.4	500	0.0		
		1.0	Z	42.5 42.5	23.6 23.6	66.1 66.1	*2018.4 *2018.4				
		1.0	X	42.5	23.6	63.6	*2065.4				
		1.0	Y	42.7	23.6	63.6	*2065.4		<u> </u>		
8239.5		1.0	Z	42.7	23.6	63.6	*2065.4	500	0.0		
0239.3	117	1.0		72.1	25.0	03.0	2005.4	300	0.0		
9155.0	V /	1.0	Х	42.1	25.5	67.6	*2398.8	500	0.0		
1		1.0	Y	42.1	25.5	67.6	*2398.8	1	<u> </u>		
i		1.0	Z	42.1	25.5	67.6	*2398.8				
İ		1.0	Х	42.0	25.5	67.5	*2371.4				
İ		1.0	Υ	42.0	25.5	67.5	*2371.4	İ			
9155.0	H /	1.0	Z	42.0	25.5	67.5	*2371.4	500	0.0		
	The fact	NIIO 20	ngo was seen	nd from 00 M		All omination	not recorded	ro ====			
							s not recorded we		<u>e </u>		
			•			uo not excee	ed the specified lin	iiiiS.			
	=ivoise	FIOOL IME	easurements (M	ıırılırılırın syste	ın sensitivity)						

Test Metho	d:	FCC	Part 15 Subpa	rt C, Radiat	ed Emissions	, Harm	nonics E	missio	ns.			
Customer:			h Security Sys	•				b No.		965-13		
Test Sampl	e:		N Dual Motion						l .			
Model No.:			· BDL1-W11PG				FC	CC ID:	T3XB	DL1-W11PG	Y	
Operating N	Mode:		inuously transr		5.5 MHz signa	ıl.					<u> </u>	
Technician			oodoo					Date:	Septe	mber 09, 200	7.	
Notes:			3 Meters				Outy Cy			,		
1101001			age, unless oth	nerwise spec	ified					: -13.2dB		
				-			cycle				Δ.	
Test Freq.	Anten Pol./He		EUT Orientation	Average Reading	Correction Factor		ection		ected ding	Converted Reading		vg. mit
N / I I —							ctor					
MHz	(V/H	,	X/Y/Z	dBµV	dB		iB		V/m	uV/m		//m
1831.0	V / 1. V / 1.		X	64.5 68.1	2.3 2.3		3.2 3.2		3.6 7.2	478.6	50	11.8
<u> </u>	V / 1.		Z	50.1	2.3		3.2).2).2	724.4 91.2		<u> </u>
<u> </u>	H / 1.		X	64.0	2.3		3.2		3.2 3.1	451.9		<u> </u>
<u> </u>	H/2		Y	51.5	2.3		3.2).6	107.2		<u> </u>
1831.0	H / 1.		Z	53.3	2.3		3.2		2.4		501	<u>1</u> 11.8
1001.0	11/1	.0		55.5	2.0	- 1	J. <u>Z</u>	42	4	131.8	30	1.0
2746.5	V / 1.	.0	Х	51.8	5.2	-1	3.2	43	3.8	154.9	50	0.0
1	V / 1.		Y	50.9	5.2		3.2		2.9	139.6		<u> </u>
<u></u>	V / 1.		Z	50.7	5.2		3.2		2.7	136.5		<u> </u>
	H / 1.		Х	49.3	5.2		3.2		.3	116.1		<u> </u>
	H / 1.		Y	49.0	5.2		3.2		.0	112.2		<u>. </u>
2746.5	H / 1.		Z	47.9	5.2		3.2).9	98.9	50	0.0
3662.0	V / 1.	.0	Х	26.5	10.0	-1	3.2	23	3.3	14.6	50	0.0
1	V / 1.	.0	Y	32.1	10.0	-1	3.2	28	3.9	27.9		
I	V / 1.	.0	Z	32.8	10.0	-1	3.2	29	9.6	30.2		
	H / 1.	.0	X	28.2	10.0	-1	3.2	25	5.0	17.8		
	H / 1	.0	Y	32.2	10.0	-1	3.2	29	0.0	28.2		
3662.0	H / 1.	.0	Z	32.8	10.0	-1	3.2	29).6	30.2	50	0.0
			.,									
4577.5	V / 1.		X	46.2	13.6		3.2		6.6	213.8	50	0.0
	V / 1.		Y	44.6	13.6		3.2		5.0	177.8		<u> </u>
	V / 1.		Z	41.9	13.6		3.2		2.3	130.3		<u> </u>
<u> </u> 	H / 1.		X Y	44.3	13.6 13.6		3.2		1.7	171.8		<u> </u>
<u> </u> 4577.5	H / 1.		Z	51.0 45.1	13.6		3.2 3.2		.4	371.5	50	<u>l</u> 0.0
4011.0	П/ 1.	. 1	<u> </u>	40. I	13.0	-1	J.Z	45	5.5	188.4	50	0.0
5493.0	V / 1.	.5	Х	39.3	17.1	-1	3.2	4.3	3.2	144.5	501	11.8
	V / 1.		Y	34.5	17.1		3.2		3.4	83.2		
<u> </u>	V / 1.		Z	30.8	17.1		3.2		i.7	54.3		<u>.</u>
<u> </u>	H / 1		X	30.7	17.1		3.2		l.6	53.7		<u>. </u>
İ	H / 1		Y	39.9	17.1		3.2		3.8	154.9		i İ
5493.0	H / 1.		Z	31.4	17.1		3.2		5.3	58.2	50	1 11.8
			range was sc									
			elow the specif									
			Measurements									
			-	,	•	,						

Test Metho	d:	FCC	Part 15 Subpa	rt C, Radiate	d Emissions,	Harmonics E	missions.					
Customer:		Boso	h Security Sys	tem.		Jol	Job No. R-11965-13					
Test Sampl	e:	wLSI	N Dual Motion	Detector			_					
Model No.:		ISW-	BDL1-W11PG	SY		FC	C ID: T3XE	BDL1-W11PGY	′			
Operating N	/lode:	Cont	inuously transr	nitting a 915.	5 MHz signal.		•					
Technician		R. So	oodoo	•		ı	Date: Septe	ember 09, 200	7.			
Notes:	Test Dist	ance:	3 Meters			Duty Cyc	le: 22.0%					
	Detector	Avera	age, unless oth	erwise speci	fied	Duty Cyc	le Correction	ı: -13.2dB				
	Anten	na	EUT	Average	Correction	Duty cycle	Corrected	Converted	Avg			
Test Freq.	Pol./He		Orientation	Reading	Factor	Correction	Reading	Reading	Lim			
NALI			V / V / 7		dD.	Factor dB	_		\//			
MHz	(V/H	,	X/Y/Z	dΒμV	dB		dBµV/m	uV/m	uV/			
6408.5	V / 1. V / 1.		X	29.3 27.8	19.9 19.9	-13.2 -13.2	36.0 34.5	63.1 53.1	501	1.8		
l I	V / 1		Z	28.0	19.9	-13.2	34.5	54.3	<u> </u>			
l I	H / 1		X	24.9	19.9	-13.2	31.6	38.0	<u> </u>			
<u> </u>	H/1		Y	29.3	19.9	-13.2	36.0	63.1	<u>l</u>			
6408.5	H/1		Z	29.5	19.9	-13.2	36.2	64.6	501	1.8		
							55.2	0.110				
7324.0	V / 1.	.6	Х	27.8	21.3	-13.2	35.9	62.4	500	0.0		
	V / 1	.0	Υ	24.6	21.3	-13.2	32.7	43.2				
	V / 1	.0	Z	30.9	21.3	-13.2	39.0	89.1	j			
	H/1	.4	Х	30.2	21.3	-13.2	38.3	82.2				
	H/1	.2	Y	28.7	21.3	-13.2	36.8	69.2				
7324.0	H / 1	.0	Z	25.1	21.3	-13.2	33.2	45.7	500	0.0		
0000 5	V//4		V	20.0	00.0	40.0	40.0	*454.4				
8239.5	V / 1		X Y	33.2 33.2	23.6	-13.2	42.6	*151.4	500	.0		
	V / 1		Z	33.2	23.6 23.6	-13.2 -13.2	42.6 42.6	*151.4 *151.4	<u> </u>			
l	H / 1		X	32.8	23.6	-13.2	43.2	*144.5	<u> </u>			
<u> </u>	H / 1		Y	32.8	23.6	-13.2	43.2	*144.5				
8239.5	H / 1		Z	32.8	23.6	-13.2	43.2	*144.5	500	0		
0_00.0			_	<u> </u>								
9155.0	V / 1.	.0	Х	33.1	25.5	-13.2	45.4	*186.2	500	0.0		
	V / 1	.0	Y	33.1	25.5	-13.2	45.4	*186.2				
	V / 1.	.0	Z	33.1	25.5	-13.2	45.4	*186.2	ĺ			
	H/1	.0	X	33.2	25.5	-13.2	45.5	*188.4				
	H/1	.0	Y	33.2	25.5	-13.2	45.5	*188.4				
9155.0	H/1	.0	Z	33.2	25.5	-13.2	45.5	*188.4	500	.0		
	The free	illenc.	range was sc	anned from 3	1) GHz Allem	issions not r	corded were	more			
			elow the specif									
			Measurements				5/10000 1110	- Speemed mini	·			
	. 10100			- \	-,							

FCC Part 15 Subpart C, Radiated Emissions, Harmonics
Paragraphs 15.247(d)
EUT transmitting at the Fundamental signal of 918.4 MHz

Test Method:	FCC Pa	rt 15 Subpart C	, Radiated Em	issions, Harmo	nics Emissio	ns.				
Customer:	Bosch S	Bosch Security System. Job No. R-11965-13								
Test Sample:	wLSN E	Dual Motion Dete	ector	<u>.</u>						
Model No.:	ISW- BI	DL1-W11PGY			FCC ID:	T3XBDL1-W11F	PGY			
Operating Mode	: Continu	ously transmittii	ng a 918.4 MH	z signal.						
Technician:	D. Lerne	er, R. Soodoo	-		Date:	September 10 &	13, 2007.			
Notes: Test	Distance: 3 N	Meters		•						
Dete	<u> </u>	nless otherwise			T	T 2	T			
	Antenna Pol./Height	EUT Orientation	Meter Reading	Correction Factor	Corrected Reading	Converted Reading	Peak Limit			
`	//H)/Meters	X/Y/Z	dΒμV	dB	dBµV/m	uV/m	uV/m			
1836.8	V / 2.5	X	63.2	2.3	65.5	1883.6	50118.0			
	V / 1.0	Y	55.3	2.3	57.6	758.6				
	V / 1.0	Z	63.8	2.3	66.1	2018.4				
	H / 1.0	X	60.9	2.3	63.2	1445.4	 			
1000 5	H / 1.0	Y	56.5	2.3	58.8	871.0	—			
1836.8	H / 1.5	Z	61.8	2.3	64.1	1603.2	50118.0			
2755.2	V / 1.6	Х	44.0	5.2	49.2	288.4	5000.0			
1	V / 1.1	Y	55.0	5.2	60.2	1023.3				
i	V / 1.0	Z	54.1	5.2	59.3	922.6	i			
i	H / 1.3	Х	45.6	5.2	50.8	346.7	İ			
i	H / 1.0	Y	51.7	5.2	56.9	699.8	İ			
2755.2	H / 1.5	Z	54.0	5.2	59.2	912.0	5000.0			
3673.6	V / 1.4	X	37.4	10.0	47.4	234.4	5000.0			
	V / 1.0	Y	47.6	10.0	57.6	758.6				
i	V / 1.0	Z	47.7	10.0	57.7	767.4	i			
i	H / 1.8	Х	38.2	10.0	48.2	257.0	İ			
	H / 1.5	Υ	47.5	10.0	57.5	749.9				
3673.6	H / 1.4	Z	48.0	10.0	58.0	794.3	5000.0			
4592.0	V / 2.0	X	47.3	13.6	60.9	1109.2	5000.0			
	V / 1.0	Y	51.7	13.6	65.3	1840.8				
	V / 1.0	Z	53.5	13.6	67.1	2264.6	<u>L</u> i			
	H / 1.6	Х	44.7	13.6	58.3	822.2				
	H / 1.3	Y	52.2	13.6	65.8	1949.8				
4592.0	H / 1.0	Z	55.0	13.6	68.6	2691.5	5000.0			
5510.4	V / 1.7	X	41.5	17.1	58.6	851.1	50118.0			
	V / 1.0	Y	47.4	17.1	64.5	1678.8	I			
i	V / 1.0	Z	47.5	17.1	64.6	1698.2	i			
	H / 1.5	Х	37.7	17.1	54.8	549.5	<u> i </u>			
	H / 1.0	Y	47.8	17.1	64.9	1757.9				
5510.4	H / 1.0	Z	48.7	17.1	65.8	1949.8	50118.0			
The	frequency ra	nge was scann	ed from 30 MH	z to 10.0 GHz.	All emissions	s not recorded we	re more			
					do not excee	ed the specified lin	mits.			
*=	Noise Floor M	easurements (n	ninimum sensit	tivity).						

Test Method:	FCC Pa	rt 15 Subpart C	, Radiated Em	issions, Harmo	nics Emissio	ns.				
Customer:	Bosch S	Security System.			Job No.	R-11965-13				
Test Sample:	wLSN E	Dual Motion Dete	ector							
Model No.:	ISW- BI	DL1-W11PGY			FCC ID:	T3XBDL1-W11P	PGY			
Operating Mode:	Continu	ously transmittir	ng a 918.4 MH	lz signal.	•					
Technician:		er, R. Soodoo			Date:	September 10 &	13, 2007.			
Notes: Test Di	stance: 3 N			·	- '	•				
		nless otherwise	specified							
Δn	tenna	EUT	Meter	Correction	Corrected	Converted	Peak			
Test Freq. Pol.	/Height	Orientation	Reading	Factor	Reading	Reading	Limit			
MHz (V/H)	-Meters	X/Y/Z	dΒμV	dB	dBµV/m	uV/m	uV/m			
6428.8 V	/ 1.3	Х	46.3	19.9	66.2	*2041.7	50118.0			
V	/ 1.0	Y	46.3	19.9	66.2	*2041.7				
V	/ 1.0	Z	49.2	19.9	69.1	2851.0				
l H	/ 1.6	X	46.3	19.9	66.2	*2041.7				
H	/ 1.0	Y	46.3	19.9	66.2	*2041.7				
6428.8 H	/ 1.0	Z	46.3	19.9	66.2	*2041.7	50118.0			
	/ 1.0	X	46.3	21.3	67.6	*2398.8	5000.0			
	/ 1.0	Y	46.3	21.3	67.6	*2398.8	<u> </u>			
	/ 1.0	Z	46.3	21.3	67.6	*2398.8				
	/ 1.0	X	46.3	21.3	67.6	*2398.8				
	/ 1.0	Y	46.3	21.3	67.6	*2398.8				
7347.2 H	/ 1.0	Z	46.3	21.3	67.6	*2398.8	5000.0			
8265.6 V	/ 1.0	X	42.5	23.6	66.1	*2018.4	5000.0			
	/ 1.0 / 1.0	Y	42.5	23.6	66.1	*2018.4	3000.0			
	/ 1.0 / 1.0	Z	42.5	23.6	66.1	*2018.4	<u> </u>			
	/ 1.0 / 1.0	X	42.7	23.6	63.6	*2065.4	<u> </u>			
	/ 1.0 / 1.0	Y	42.7	23.6	63.6	*2065.4				
	/ 1.0 / 1.0	Z	42.7	23.6	63.6	*2065.4	5000.0			
0203.0	7 1.0		72.1	20.0	00.0	2005.4	3000.0			
9184.0 V	/ 1.0	Х	42.1	25.5	67.6	*2398.8	5000.0			
I V	/ 1.0	Y	42.1	25.5	67.6	*2398.8				
j V	/ 1.0	Z	42.1	25.5	67.6	*2398.8	İ			
	/ 1.0	Х	42.0	25.5	67.5	*2371.4	i			
	/ 1.0	Y	42.0	25.5	67.5	*2371.4	i			
9184.0 H	/ 1.0	Z	42.0	25.5	67.5	*2371.4	5000.0			
						-				
The fre	equency ra	nge was scanne	ed from 30 MH	z to 10.0 GHz.	All emissions	s not recorded we	re more			
						ed the specified lir				
		easurements (M								

Test Metho	d:	FCC Part 15 Subpart C, Radiated Emissions, Harmonics Emissions.											
Customer:		Boso	h Security Sys	tem.			Job No.	R-119	R-11965-13				
Test Sampl	e:	wLSI	N Dual Motion	Detector									
Model No.:		ISW-	- BDL1-W11PG	SY.			FCC ID:	T3XB	DL1-W11PGY				
Operating I	Mode:	Cont	inuously transr	mitting a 918	8.4 MHz signa	l.							
Technician		D. Le	erner, R. Soodo	00			Date:	Septe	September 10 & 13, 2007.				
Notes:	Test Dist	ance:	3 Meters			Duty	Cycle: 22.		-				
			age, unless oth	nerwise spec	cified	•	Cycle Cor		: -13.2dB				
Test Freq.	Anten Pol./He	na	EUT Orientation	Average Reading	Correction Factor	Duty cyc Correction Factor	cle Corre	ected ding	Converted Reading	A\ Lir	/g. mit		
MHz	(V/H)-	X/Y/Z	dΒμV	dB	dB	dBµ	V/m	UV/m	uV	//m		
1836.8	V/2	.5	Х	58.0	2.3	-13.2	47	' .1	226.5	501	1.8		
	V / 1	.0	Υ	53.5	2.3	-13.2	42	2.6	134.9				
	V / 1	.0	Z	63.1	2.3	-13.2	52	2.2	407.4				
	H / 1		X	54.3	2.3	-13.2	43	3.4	147.9				
	H / 1		Y	54.5	2.3	-13.2	43	3.6	151.4				
1836.8	H/1	.5	Z	60.6	2.3	-13.2	49).7	305.5	501	1.8		
2755.2	V / 1	.6	X	42.6	5.2	-13.2	34	ł.6	53.7	50	0.0		
	V / 1	.1	Y	51.9	5.2	-13.2	43	3.9	156.7				
İ	V / 1	.0	Z	50.7	5.2	-13.2	42	2.7	136.5				
İ	H/1	.3	Х	44.3	5.2	-13.2	36	6.3	65.3				
İ	H / 1	.0	Y	46.1	5.2	-13.2	38	3.1	80.4				
2755.2	H / 1	.5	Z	54.0	5.2	-13.2	46	6.0	199.5	50	0.0		
0.000							10.0						
3673.6	V / 1		X	27.5	10.0	-13.2		1.3	16.4	50	0.0		
	V / 1		Y	34.5	10.0	-13.2		.3	36.7				
	V / 1		Z	36.0	10.0	-13.2		2.8	43.7				
<u> </u>	H / 1		X	32.3	10.0	-13.2		9.1	28.5		<u> </u>		
0070.0	H/1		Y	35.3	10.0	-13.2		2.1	40.3				
3673.6	H / 1	.4	Z	36.8	10.0	-13.2	33	3.6	47.9	50	0.0		
4592.0	V/2		X	46.4	13.6	-13.2		3.8	218.8	50	0.0		
	V / 1		Y	44.1	13.6	-13.2		ł.5	167.9				
<u> </u>	V / 1		Z	49.5	13.6	-13.2	-	9.9	312.6		<u> </u>		
<u> </u>	H/1		X	42.0	13.6	-13.2		2.4	131.8				
4500.0	H/1		Y	46.4	13.6	-13.2		<u>8.8</u>	218.8				
4592.0	H/1	.υ	Z	52.3	13.6	-13.2	52	2.7	431.5	50	0.0		
5510.4	V / 1	.7	Х	37.4	17.1	-13.2	41	.3	116.1	501	1.8		
	V / 1	.0	Υ	34.5	17.1	-13.2	38	3.4	83.2				
i	V / 1	.0	Z	36.7	17.1	-13.2	40).6	107.2				
i	H / 1	.5	Х	30.9	17.1	-13.2	34	l.8	55.0				
	H / 1	.0	Y	34.6	17.1	-13.2	38	3.5	84.1				
5510.4	H / 1		Z	39.4	17.1	-13.2		3.3	146.2		1.8		
	The free	quency	/ range was sc	anned from	30 MHz to 10	.0 GHz. A	ll emission	s not re	corded were n	nore			
	Than 20	dB be	elow the specif	ied limit. En	nissions from	the EUT o	lo not exce	ed the	specified limits	S			
	*=Noise	Floor	Measurements	s (Minimum	system sens	tivity)							

Test Metho	d:	FCC	Part 15 Subpa	rt C, Radiate	d Emissions,	Harmonics E	missions.				
Customer:		Boso	h Security Sys	tem.		Jo	b No. R-119	965-13			
Test Sampl	e:	wLS	N Dual Motion	Detector		•					
Model No.:		ISW-	BDL1-W11PG	SY.		FC	C ID: T3XB	DL1-W11PG	<u> </u>		
Operating N	Mode:	Cont	inuously transr	nitting a 918.	4 MHz signal.		•				
Technician			erner, R. Soodo				Date: Septe	mber 10 & 13	3, 2007.		
Notes:			3 Meters				de: 22.0%		,		
			Average, unless otherwise specified Duty Cycle Correction: -13.2dB								
				•		Duty cycle			Δ		
Test Freq.	Anter Pol./He		EUT Orientation	Average Reading	Correction Factor	Correction Factor	Corrected Reading	Converted Reading	Avg. Limit		
MHz	(V/H)-	X/Y/Z	dΒμV	dB	dB	dBµV/m	uV/m	uV/m		
6428.8	V / 1	.0	Х	35.7	19.9	-13.2	42.4	*131.8	5011.8		
	V / 1		Y	35.7	19.9	-13.2	42.4	*131.8			
	V / 1	.0	Z	36.0	19.9	-13.2	42.7	136.5			
	H / 1		X	35.7	19.9	-13.2	42.4	*131.8			
	H / 1	.0	Υ	35.7	19.9	-13.2	42.4	*131.8			
6428.8	H/1	.0	Z	35.7	19.9	-13.2	42.4	*131.8	5011.8		
7347.2	V / 1		X	35.7	21.3	-13.2	43.8	*154.9	500.0		
	V / 1		Y	35.7	21.3	-13.2	43.8	*154.9			
	V / 1		Z	35.7	21.3	-13.2	43.8	*154.9			
	H/1		X Y	35.7	21.3	-13.2 -13.2	43.8	*154.9			
7247.2	H / 1		Z	35.7	21.3	-13.2	43.8	*154.9	F00.0		
7347.2	H / 1	.0		35.7	21.3	-13.2	43.8	*154.9	500.0		
8265.6	V / 1	0	Х	35.7	23.6	-13.2	46.1	*201.8	500.0		
1	V / 1		Y	35.7	23.6	-13.2	46.1	*201.8	l		
i	V / 1		Z	35.7	23.6	-13.2	46.1	*201.8			
i	H / 1		Х	35.7	23.6	-13.2	46.1	*201.8			
i	H / 1		Y	35.7	23.6	-13.2	46.1	*201.8			
8265.6	H / 1	.0	Z	35.7	23.6	-13.2	46.1	*201.8	500.0		
9184.0	V / 1	.0	X	35.7	25.5	-13.2	48.0	*251.2	500.0		
	V / 1		Y	35.7	25.5	-13.2	48.0	*251.2			
	V / 1		Z	35.7	25.5	-13.2	48.0	*251.2			
<u> </u>	H/1		X	35.7	25.5	-13.2	48.0	*251.2			
0101.0	H/1		Y	35.7	25.5	-13.2	48.0	*251.2	500.0		
9184.0	H / 1	.0	Z	35.7	25.5	-13.2	48.0	*251.2	500.0		
	The free	quency	range was sc	anned from 3	0 MHz to 10.0	0 GHz. All en	nissions not re	corded were	more		
	Than 20 dB below the specified limit. Emissions from the EUT do not exceed the specified limits.										
			Measurements								
						•					

FCC Part 15 Subpart C, Radiated Emissions, Harmonics Paragraphs 15.247(d) EUT transmitting at the Fundamental signal of 921.3 MHz

Test Metho	d:	FCC Pa	rt 15 Subpart C	, Radiated Em	issions, Harr	nonics Emissio	ns.	
Customer:		Bosch S	Security System	<u>-</u>		Job No.	R-11965-13	
Test Sampl	e:	wLSN D	Dual Motion Dete	ector				
Model No.:		ISW- BI	DL1-W11PGY			FCC ID:	T3XBDL1-W11F	PGY
Operating I	Mode:	Continu	ously transmittir	ng a 921.3 MH	lz signal.			
Technician		R. Sood				Date:	September 13, 2	2007.
Notes:	Test Dis	tance: 3 N	Meters		1		,	
	Detector	: Peak, U	nless otherwise	specified				
	1	enna	EUT	Meter	Correction	Corrected	Converted	Peak
Test Freq.		Height	Orientation	Reading	Factor	Reading	Reading	Limit
MHz	(V/H)/	Meters	X/Y/Z	dΒμV	dB	dBµV/m	uV/m	uV/m
1842.6	_ `	1.0	Х	61.5	2.3	63.8	1548.8	50118.0
		1.0	Y	61.0	2.3	63.3	1462.2	
ĺ	V /	1.0	Z	63.0	2.3	65.3	1840.8	
	H /	1.0	X	60.8	2.3	63.1	1428.9	
		1.0	Y	67.1	2.3	69.4	2951.2	
1842.6	H /	1.7	Z	64.5	2.3	66.8	2187.8	50118.0
2763.9		1.0	X	52.2	5.2	57.4	741.3	5000.0
		1.2	Y	53.1	5.2	58.3	822.2	
		1.0	Z	49.1	5.2	54.3	518.8	
		1.0	X	48.1	5.2	53.3	462.4	
0700.0		2.0	Y	53.8	5.2	59.0	891.3	
2763.9	H/	1.0	Z	54.4	5.2	59.6	955.0	5000.0
3685.2	V /	1.0	X	46.1	10.0	56.1	638.3	5000.0
		1.8	Y	46.3	10.0	56.3	653.1	
i	V /	1.0	Z	47.4	10.0	57.4	741.3	
İ	H /	1.0	Х	46.0	10.0	56.0	631.0	
	H /	1.9	Υ	45.8	10.0	55.8	616.6	
3685.2	H /	1.0	Z	45.9	10.0	55.9	623.7	5000.0
1000 =								
4606.5		1.8	X	49.0	13.6	62.6	1349.0	5000.0
		1.0	Y	49.7	13.6	63.3	1462.2	
<u> </u>		1.0	Z	48.9	13.6	62.5	1333.5	
		1.6	X	48.5 51.6	13.6	62.1	1273.5	
4606.5		1.3	Z	52.3	13.6 13.6	65.2 65.9	1819.7 1972.4	5000.0
4000.0	117	1.0		52.5	13.0	00.9	1912.4	3000.0
5527.8	V /	1.6	X	46.0	17.1	63.1	1428.9	50118.0
1	ł	1.4	Y	44.8	17.1	61.9	1244.5	
		1.0	Z	45.8	17.1	62.9	1396.4	
İ		1.0	X	45.0	17.1	62.1	1273.5	i
İ	H /	1.5	Y	45.4	17.1	62.5	1333.5	i
5527.8	H /	1.0	Z	46.1	17.1	63.2	1445.4	50118.0
	The free	quency ra	nge was scanne	ed from 30 MH	Iz to 10.0 GH	Iz. All emission	s not recorded we	ere more
						JT do not exce	ed the specified li	mits.
	*= Noise	e Floor M	easurements (m	ninimum sensi	tivity).			
	<u></u>	<u> </u>						

Test Metho	d:	FCC Pa	rt 15 Subpart C	, Radiated Em	nissions, Harmo	nics Emissio	ns.	
Customer:		Bosch S	Security System.	•		Job No.	R-11965-13	
Test Sampl	le:	wLSN D	oual Motion Dete	ector				
Model No.:		ISW- BI	DL1-W11PGY			FCC ID:	T3XBDL1-W11F	PGY
Operating I	Mode:	Continu	ously transmittir	ng a 921.3 MH	lz signal.			
Technician		R. Sood	loo			Date:	September 13, 2	2007.
Notes:	Test Dis	tance: 3 N	Meters		•			
	Detector	: Peak, ui	nless otherwise	specified				
Test Freq.	Ante	enna Height	EUT Orientation	Meter Reading	Correction Factor	Corrected Reading	Converted Reading	Peak Limit
MHz	(V/H)-	Meters	X/Y/Z	dΒμV	dB	dBµV/m	uV/m	uV/m
6449.1	V /	1.0	Х	46.3	19.9	66.2	*2041.7	50118.0
	V /	1.0	Y	46.3	19.9	66.2	*2041.7	
	V /	1.0	Z	46.3	19.9	66.2	*2041.7	
	H/	1.0	X	46.3	19.9	66.2	*2041.7	
	H /	1.0	Y	47.3	19.9	67.2	2290.9	
6449.1	H /	1.0	Z	46.3	19.9	66.2	*2041.7	50118.0
7370.4	V /	1.0	X	46.3	21.3	67.6	*2398.8	5000.0
1070.4	1	1.0	Y	46.3	21.3	67.6	*2398.8	1
		1.0	Z	46.3	21.3	67.6	*2398.8	
1		1.0	X	46.3	21.3	67.6	*2398.8	
i	1	1.0	Y	46.3	21.3	67.6	*2398.8	
7370.4		1.0	Z	46.3	21.3	67.6	*2398.8	5000.0
0004.7		4.0		40.5	00.0	00.4	*0040.4	5000.0
8291.7	1	1.0	X	42.5 42.5	23.6 23.6	66.1 66.1	*2018.4 *2018.4	5000.0
		1.0	Y Z	42.5	23.6	66.1	*2018.4	
1		1.0	X	42.7	23.6	63.6	*2065.4	
1		1.0	Y	42.7	23.6	63.6	*2065.4	
8291.7		1.0	Z	42.7	23.6	63.6	*2065.4	5000.0
0201.7	117	1.0			20.0	00.0		0000.0
9213.0		1.0	Х	42.1	25.5	67.6	*2398.8	5000.0
	V /	1.0	Y	42.1	25.5	67.6	*2398.8	
		1.0	Z	42.1	25.5	67.6	*2398.8	
		1.0	X	42.0	25.5	67.5	*2371.4	
		1.0	Y	42.0	25.5	67.5	*2371.4	
9213.0	H /	1.0	Z	42.0	25.5	67.5	*2371.4	5000.0
	The fact	NIODO: 1 55	ngo was sees	ad from 20 MI		All omissis:	not recorded ····	ro more
							s not recorded we	
			asurements (M			uo not excee	ed the specified lin	11115.
	-110136	i iooi ivie	asurements (IV	minium syste	in schsilivity)			

Test Method	d:	FCC	Part 15 Subpa	rt C, Radiat	ed Emissions	, Harmonics E	missions.			
Customer:		Bosc	h Security Sys	tem.		Jo	b No. R-119	965-13		
Test Sample			N Dual Motion			•	1			
Model No.:			BDL1-W11PG			FC	C ID: T3XB	DL1-W11PG	/	
Operating N			inuously transr		.3 MHz signa		70 121 10/12		•	
Technician:			oodoo		<u> </u>		Date: Septe	mber 13, 200	7	
	Test Dista						cle: 22.0%		•	
			age, unless oth	nerwise spec	cified		cle Correction:	: -13.2dB		
			EUT	•		Duty cycle	cycle			
Test Freq.	Antenr Pol./Hei		Orientation	Average Reading	Correction Factor	Correction	Corrected Reading	Converted Reading		/g. mit
						Factor		_		
MHz	(V/H)		X/Y/Z	dΒμV	dB	dB	dBμV/m	uV/m		//m
1842.6	V / 1.0		X	59.7	2.3	-13.2	48.8	275.4	501	1.8
	V / 1.0		Y	59.3	2.3	-13.2	48.4	263.0		
<u> </u>	V / 1.0		Z	61.6	2.3	-13.2	50.7	342.8		<u> </u>
	H / 1.0		Х	55.9	2.3	-13.2	45.0	177.8		<u> </u>
1010.0	H / 1.0		Y	63.9	2.3	-13.2	53.0	446.7		
1842.6	H / 1.	/	Z	63.2	2.3	-13.2	52.3	412.1	501	1.8
2763.9	V / 1.0	0	Х	46.4	5.2	-13.2	38.4	83.2	50	0.0
I	V / 1.2		Y	50.1	5.2	-13.2	42.1	127.4	- 00	<u>0.0 </u>
	V / 1.0		Z	42.2	5.2	-13.2	34.2	51.3		l
l	H / 1.0		X	39.5	5.2	-13.2	31.5	37.6		
l	H / 1.0		Y	51.6	5.2	-13.2	43.6	151.4		
2763.9	H / 1.0		Z	52.1	5.2	-13.2	44.1	160.3	50	0.0
3685.2	V / 1.0		X	35.4	10.0	-13.2	32.2	40.7	50	0.0
	V / 1.8		Υ	34.7	10.0	-13.2	31.5	37.6		
	V / 1.0		Z	37.0	10.0	-13.2	33.8	49.0		
	H / 1.0		Х	33.0	10.0	-13.2	29.8	30.9		
	H / 1.9		Y	35.2	10.0	-13.2	32.0	39.8		
3685.2	H / 1.0	0	Z	32.5	10.0	-13.2	29.3	29.2	50	0.0
4606.5	V / 1.8	R	X	43.1	13.6	-13.2	43.5	149.6	50	0.0
I	V / 1.0		Y	43.7	13.6	-13.2	44.1	160.3		l I
	V / 1.0		Z	43.6	13.6	-13.2	44.0	158.5		<u> </u>
	H / 1.0		X	41.5	13.6	-13.2	41.9	124.5		<u> </u>
	H / 1.6		Y	47.7	13.6	-13.2	48.1	254.1		
4606.5	H / 1.3		Z	49.2	13.6	-13.2	49.6	302.0	50	0.0
5527.8	V / 1.6		X	35.7	17.1	-13.2	39.6	95.5	501	1.8
	V / 1.4		Y	32.3	17.1	-13.2	36.2	64.6		<u> </u>
	V / 1.0		Z	32.5	17.1	-13.2	36.4	66.1		<u> </u>
	H / 1.0		X	30.3	17.1	-13.2	34.2	51.3		<u> </u>
FE07.0	H / 1.		Y	33.0	17.1	-13.2	36.9	70.0		
5527.8	H / 1.0		Z	36.5	17.1	-13.2	40.4	104.7		1.8
			range was sc							
			elow the specif				ot exceed the	specified limit	IS.	
	=ivoise	rioor	Measurements	s (iviinimum	system sens	ilivily)				

Test Metho	d:	FCC	Part 15 Subpa	rt C, Radiate	d Emissions,	Harmonics E	missions.			
Customer:		Boso	ch Security Sys	tem.		Jok	No. R-119	65-13		
Test Sampl	e:	wLS	N Dual Motion	Detector						
Model No.:		ISW-	- BDL1-W11PG	Ϋ́		FC	C ID: T3XB	DL1-W11PG\	<u>Y</u>	
Operating N	Mode:	Cont	inuously transr	nitting a 921.	3 MHz signal.					
Technician		R. S	oodoo	=:	-	1	Date: Septe	mber 13, 200	7.	
Notes:	Test Dist	tance:	3 Meters			Duty Cyc	le: 22.0%			
	Detector	: Aver	Average, unless otherwise specified Duty Cycle Correction: -13.2dB							
	Anten	no	EUT	Averege	Correction	Duty cycle	Corrected	Converted	Λνα	
Test Freq.	Pol./He		Orientation	Average Reading	Factor	Correction Factor	Reading	Reading	Avg. Limit	
MHz	(V/H)-	X/Y/Z	dΒμV	dB	dB	dBµV/m	uV/m	uV/m	
6449.1	V / 1	.0	Х	35.7	19.9	-13.2	42.4	*131.8	5011.8	
	V / 1	.0	Y	35.7	19.9	-13.2	42.4	*131.8		
	V / 1	.0	Z	35.7	19.9	-13.2	42.4	*131.8		
	H/1	.0	X	35.7	19.9	-13.2	42.4	*131.8		
	H / 1	.0	Y	36.0	19.9	-13.2	42.7	136.5		
6449.1	H/1	.0	Z	35.7	19.9	-13.2	42.4	*131.8	5011.8	
7370.4	V / 1		X	35.7	21.3	-13.2	43.8	*154.9	500.0	
<u> </u>	V / 1		Y	35.7	21.3	-13.2	43.8	*154.9		
	V/1		Z	35.7	21.3	-13.2	43.8	*154.9		
	H/1		X	35.7	21.3	-13.2 -13.2	43.8	*154.9		
7370.4	H / 1 H / 1		Z	35.7 35.7	21.3 21.3	-13.2	43.8 43.8	*154.9 *154.9	500.0	
7370.4	П/І	.0		33.1	21.3	-13.2	43.0	154.9	300.0	
8291.7	V / 1	0	Х	35.7	23.6	-13.2	46.1	*201.8	500.0	
1	V / 1		Y	35.7	23.6	-13.2	46.1	*201.8	1	
i	V / 1		Z	35.7	23.6	-13.2	46.1	*201.8		
i	H/1		Х	35.7	23.6	-13.2	46.1	*201.8	İ	
i	H/1		Y	35.7	23.6	-13.2	46.1	*201.8	i	
8291.7	H / 1	.0	Z	35.7	23.6	-13.2	46.1	*201.8	500.0	
9213.0	V / 1	<u> </u>	X	35.7	25.5	-13.2	48.0	*251.2	500.0	
92 15.0 I	V / 1		Y	35.7	25.5	-13.2	48.0	*251.2	1	
	V / 1		Z	35.7	25.5	-13.2	48.0	*251.2		
	H/1		X	35.7	25.5	-13.2	48.0	*251.2		
	H / 1		Y	35.7	25.5	-13.2	48.0	*251.2		
9213.0	H/1		Z	35.7	25.5	-13.2	48.0	*251.2	500.0	
	The free	ייים	/ range was sc	anned from 3	1 10 MHz to 10 (I GHz Allam	issions not re	corded were	more	
			elow the specif							
			Measurements				A CAUCCU LITE	opcomed min		
	1 10100	. 1001	oaoaromonta	- (minorii)	-,					

FCC Part 15 Subpart C, Spurious Case Radiated Emissions, Paragraph 15.247(d) Test Data

Test Metho	d:	FCC P	art 15 Subpar	t C, Spuriou	ıs Case Radi	ated Emi	ssions, Parag	raph 15.247(d)
Customer:			Security Syste	-			Job No.:		
Test Sample	le:		Dual Motion D					•	
Model No.:		ISW- B	DL1-W11PGY	,			FCC ID:	T3XBDL1-V	V11PGY
Operating I	Mode:	Continu	uously Transm	itting on cha	nnel 00. a 91	5.5 MHz s		•	
Technician		R. Soo		<u> </u>	,		Date:	September	13, 2007.
Notes:	Test [Distance:	3 Meters			Ten	np: 24.0°C	Humidity:	
	Detec	tor: Peal	k				•	,	
	Ant	enna	EUT	Meter	Correction	Corr	ected	Converted	Peak
Frequency	Pos	sition	Orientation	Readings	Factor	Rea	ading	Reading	Limit
MHz	MHz (V/H) / Meters Degrees dBuV dB dBuV/m uV		uV/m	uV/m					
30.00									45708.8
									<u> </u>
									<u> </u>
<u> </u>									
									İ
	ШГ	NI	••		11 '6'	. 144	1 1		
		No em	issions obs	served at	the specifi	ed test	distance		<u> </u>
<u> </u>									
<u> </u> 									
i									i
İ									İ
									
									+ +
									1 1
	1								+ +
									1 1
i									<u> </u>
10000.0									45708.8
			nge was scanned			limita			
			served from the E orded were more						
							fied in paragraph	15.247(d). No en	nission were
			estricted band.	-	, , ,		. • •	. ,	

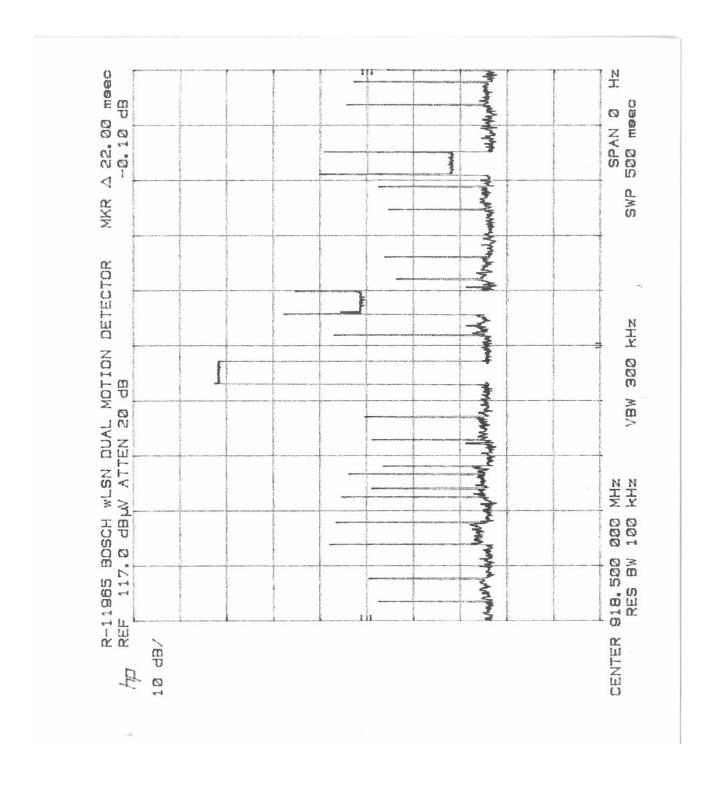
Page 1 of 3

Test Method	d:	FCC P	art 15 Subpar	t C, Spuriou	ıs Case Radi	ated Emi	issions, Parag	raph 15.247(d)
Customer:			Security Syste				Job No.:		
Test Sample	e:		Dual Motion D						
Model No.:		ISW- B	DL1-W11PGY	′			FCC ID:	T3XBDL1-V	V11PGY
Operating N	lode:	Continu	uously Transm	itting on cha	nnel 30, a 918	3.4 MHz s	signal.		
Technician:		R. Soo	doo	<u>-</u>			Date:	September	13, 2007.
Notes:	Test [Distance:	: 3 Meters			Ten	np: 24.0°C	Humidity:	36.0%
	Detec	tor: Peal	k						
		enna	EUT	Meter	Correction			Converted	Peak
Frequency	Pos	sition	Orientation	Readings	Factor		ading	Reading	Limit
MHz	(V/H) /	Meters	Degrees	dΒμV	dB	dB	μV/m	uV/m	uV/m
30.00									45708.8
									45700.0
								•	İ
<u> </u>									
<u> </u>									
		_							
		No e	missions o	bserved a	at the spec	ified te	st distance		
1									
									i
<u> </u>									
									<u> </u>
<u> </u>									
10000.0									45708.8
	Th. (f 00 MM - 1	10.011-				
			nge was scanned served from the E			limits.			
	Emissio	ons not rec	orded were more	than 20dB und	er the specified lin	mit.			
			20dB less than the estricted band.	e measured fund	damental frequen	cy as spec	ified in paragraph 1	15.247(d). No em	nission were

Page 2 of 3

Test Method: FCC Part 15 Subpart C, Spurious Case Radiated Emissions, Paragraph 15.247(d) Customer: Bosch Security System. Job No.: R-11965-13 Test Sample: wLSN Dual Motion Detector Model No.: ISW- BDL1-W11PGY FCC ID: T3XBDL1-W11PC Operating Mode: Continuously Transmitting on channel 58, a 921.3 MHz signal. Technician: R. Soodoo Date: September 13, 20 Notes: Test Distance: 3 Meters Temp: 24.0°C Humidity: 36.0% Detector: Peak	007.
Test Sample:wLSN Dual Motion DetectorModel No.:ISW- BDL1-W11PGYFCC ID:T3XBDL1-W11PCOperating Mode:Continuously Transmitting on channel 58, a 921.3 MHz signal.Technician:R. SoodooDate:September 13, 20Notes:Test Distance: 3 MetersTemp: 24.0°CHumidity: 36.0%Detector: Peak	007.
Model No.:ISW- BDL1-W11PGYFCC ID:T3XBDL1-W11PGOperating Mode:Continuously Transmitting on channel 58, a 921.3 MHz signal.Technician:R. SoodooDate:September 13, 20Notes:Test Distance: 3 MetersTemp: 24.0°CHumidity: 36.0%Detector: Peak	007.
Operating Mode: Continuously Transmitting on channel 58, a 921.3 MHz signal. Technician: R. Soodoo Date: September 13, 20 Notes: Test Distance: 3 Meters Temp: 24.0°C Humidity: 36.0% Detector: Peak	007.
Technician:R. SoodooDate:September 13, 20Notes:Test Distance: 3 MetersTemp: 24.0°CHumidity: 36.0%Detector: Peak)
Notes: Test Distance: 3 Meters Temp: 24.0°C Humidity: 36.0% Detector: Peak)
Detector: Peak	
Antenna EUT Meter Correction Corrected Converted P	'eak
	imit.
	ıV/m
30.00 45	708.8
	
	1
	+
	+
	
No emissions observed at the specified test distance	İ
	Ì
	<u> </u>
	<u> </u>
	
	
	
	†
	İ
	<u> </u>
	
	1
	1
10000.0 457	708.8
The frequency range was scanned from 30 MHz to 10 GHz.	
The emissions observed from the EUT do not exceed the specified limits.	
Emissions not recorded were more than 20dB under the specified limit. The limit used is 20dB less than the measured fundamental frequency as specified in paragraph 15.247(d). No emission vision is a specified in paragraph 15.247(d).	were
observed in the restricted band.	¥010

Page 3 of 3


FCC Part 15, Subpart B, Class B, Radiated Emissions, 30 MHz to 5.0 GHz,
Paragraph 15.109(a)
Receiver Test Data

Test N	Metho	d:	FCC P	art 15, Subpa	rt B, Class I	3, Radiated E	mission	s, 30 MHz to 5	.0 GHz, Para	a:15.109(a)
Custo	mer:			Security Syste		•		Job No.:	1	
Test S	Sample	e:		Dual Motion D					•	
Mode	l No.:		ISW- B	DL1-W11PGY	,			Serial No.:	N/A	
Opera	ating N	/lode:	EUT op	perating on cha	annel 00(915	5.5MHz), cont	inuously i	eceiving a CW	signal.	
	nician:		R.Sood	doo	,			Date:	Septembe	r 13, 2007
Notes	:			3 Meters				Temp:24.0°C	Humid	ity:36.0%
		Detec	tor: Qua	asi-Peak Belov	v 1 GHz, Pea	ak above 1 Gl	l z			
Frequ	ency		enna sition	EUT Orientation	Meter Readings	Correction Factor		ected ading	Converted Reading	Limit
MH	łz	(V/H) /	Meters	Degrees	dBuV	dB	dB	uV/m	uV/m	uV/m
	_									
30.	.0									100
<u>_</u>										
i										
88.										100
88.	.0									150
<u> </u>										
216	6.0									150
216	6.0		N	o omission	obsorvo	l at the end	ocified t	est distanc		200
			'\	o emission	ODSEIVE	at the spe	cilleu i	est distant		
<u> </u>										
960	0.0									200
960										500
!										
į										İ
	0.0									500
500	U.U	The fre	nuency rar	nge was scanned	from 30 MHz to	5 0 GHz				500
				served from the E			limits.			
				orded were more						

Test I	Vietho	d:	FCC P	art 15, Subpa	rt B, Class I	3, Radiated E	mission	s, 30 MHz to 5	.0 GHz, Para	:15.109(a)
Custo	mer:			Security Syste		•		Job No.:		
Test S	Sample	e:	wLSN I	Dual Motion D	etector					
Mode	l No.:		ISW- B	DL1-W11PGY	,			Serial No.:	N/A	
Opera	ating N	/lode:	EUT op	perating on cha	annel 30(918	3.5MHz), cont	inuously i	eceiving a CW	signal.	
Techr	nician:	1	R.Sood	doo	•	•		Date:	September	13, 2007.
Notes	S :			: 3 Meters asi-Peak Belov	v 1 GHz Pa	ak above 1 Gl	- 17	Temp:24.0°C	Humidit	y:13.0%
				EUT	Meter	Correction		ected	Converted	
Frequ		Pos	enna sition	Orientation	Readings	Factor	Rea	ading	Reading	Limit
MH	Ηz	(V/H) /	Meters	Degrees	dΒμV	dB	dB	μV/m	uV/m	uV/m
20	0									100
30	.0									100
İ										İ
88										100
88	.0									150
<u>_</u>										
216	6.0		─ No	emission of	bserved	at the spec	ified te	st distance		150
216	6.0									200
960	0 0									200
960										500
!										
<u> </u>										
<u> </u>										
i										
	0.0									<u> </u>
500	0.0	The fre	allonov ro-	nge was scanned	from 30 MU= +-	5 0 CH-				500
				served from the E			limits.			
·				corded were more						
	-									

Test	Metho	d:	FCC P	art 15, Subpa	rt B, Class I	3, Radiated E	mission	s, 30 MHz to 5	.0 GHz,	Para:15.109(a)
Custo	omer:			Security Syste		•		Job No.:		
Test	Sampl	e:		Dual Motion D					•	
Mode	l No.:		ISW- B	DL1-W11PGY	,			Serial No.:	N/A	
Opera	ating N	/lode:	EUT op	perating on cha	annel 58(921	I.3MHz), cont	inuously i	eceiving a CW	signal.	
	nician:		R.Sood	doo	•			Date:	Septer	mber 13, 2007
Notes	S:	Test D	Distance:	3 Meters				Temp:24.0°C	Hu	ımidity:36.0%
		Detec	tor: Qua	asi-Peak Belov	v 1 GHz, Pea	ak above 1 Gl	Ηz			
AntennaEUTMeterCorrectionCorrectedConvertedFrequencyPositionOrientationReadingsFactorReadingReading				ı ımıt						
MI	Ηz	(V/H) /	Meters	Degrees	dΒμV	dB	dB	μV/m	uV/m	uV/m
30	.0									100
88										100
88	.0									150
216	3.0					4.4	:6: 14			150
216	6.0		NO	emission	observed	at the spe	cified to	est distance	•	200
960	0.0									200
960										500
										İ
500	0.0									500
500	0.0	The fre	quency rar	nge was scanned	l from 30 MHz to	5.0 GHz.				500
				served from the E			limits.			
		Emissio	ons not rec	orded were more	than 20dB und	er the specified li	mit.			

FCC Part 15.35, Duty Cycle Determination Test Data

Test Method: FCC Part 15.35, Duty Cycle Determination.

Notes: Duty cycle = (22mSec / 100) = 0.22 = 22%

 $= 20 \log 0.22 = -13.2 dB$

FCC ID: T3XBDL1-W11PGY

Customer	Bosch Security System.				
Test Sample	wLSN Dual Motion Detector				
Model Number	ISW- BDL1-W11PGY				
Date: 6-8-2007	Tech: R.S.	Sheet 1 of 1			

FCC Part 15, Subpart C, 15.247, 10.513 GHz Field Disturbance Sensor **Test Data**

15.245 (b) Test Data Radiated Emissions, Fundamental

FCC ID:T3XBDL-W11PGY

APPLICANT: Bosch Security Systems TEST METHOD: Radiated Emissions, Fundamental SPECIFICATION: FCC Part 15, Section 15.245 (b)

PERFORMED BY: R. Soodoo DATE: October 18,2007.

Field Strength of Fundamental

Frequency	Antenna	EUT	Meter	Antenna	Corrected	Converted	Limit
GHz	Position	Orientation	Reading	Factor	Reading	Reading	at
	H/V	X / Y/ Z	dΒμV	+dB	dBμV/m	mV/m	3 Meters mV/m
10.513	H-1.1	X	81.9	5.5	87.4	23.4	2,500
	V-1.3	X	84.2	5.5	89.7	30.5	2,500
	H-1.1	Υ	80.8	5.5	86.3	20.7	2,500
	V-1.3	Υ	80.7	5.5	86.2	20.4	2,500
	H-1.1	Z	89.1	5.5	94.6	53.7	2,500
	V-1.3	Z	77.9	5.5	83.4	14.8	2,500

Detector Function: Peak Test Distance: 3 Meters Resolution Bandwidth: 1 MHz Video Bandwidth: 3 MHz

15.245 (b)(1), Test Data Radiated Emissions, Harmonics

FCC ID:T3XBDL-W11PGY

APPLICANT: Bosch Security Systems

TEST METHOD: Radiated Emissions, Harmonics SPECIFICATION: FCC Part 15, Section 15.245 (b)(1)

PERFORMED BY: R. Soodoo DATE: October 18,2007.

Field Strength of Harmonics - Peak

Frequency	Antenna	EUT	Meter	Correctio	Test	Corrected	Converted	Peak
	Position	Orientation	Reading	_ n	Distance	Reading	Reading	Limit
011	&	N / N / 7	ID 14	Factor	Correction	15.77		at
GHz	Distance	X / Y/ Z	dΒμV	٩D	dB	dBµV/m	uV/m	3 Meters
	H/V			dB				uV/m
21.026	H – 1.0	X	53.1	8.7	-3.5	58.3	*822.2	250000.
1	V – 1.0	X	53.1	8.7	-3.5	58.3	*822.2	
	H – 1.0	Y	53.1	8.7	-3.5	58.3	*822.2	
	V – 1.0	Y	53.1	8.7	-3.5	58.3	*822.2	
i	H – 1.0	Z	53.1	8.7	-3.5	58.3	*822.2	
21.026	V – 1.0	Z	53.1	8.7	-3.5	58.3	*822.2	250000
31.539	H – 1.0	Х	37.7	35.8	-9.5	64.0	*1584.9	250000
	V – 1.0	Х	37.7	35.8	-9.5	64.0	*1584.9	
İ	H – 1.0	Y	37.7	35.8	-9.5	64.0	*1584.9	
	V – 1.0	Y	37.7	35.8	-9.5	64.0	*1584.9	
	H – 1.0	Z	37.7	35.8	-9.5	64.0	*1584.9	
31.539	V – 1.0	Z	37.7	35.8	-9.5	64.0	*1584.9	250000
42.042	H – 1.0	X	39.0	39.9	-9.5	69.4	*2951.2	250000
	V – 1.0	X	39.0	39.9	-9.5	69.4	*2951.2	
	H – 1.0	Y	39.0	39.9	-9.5	69.4	*2951.2	
	V – 1.0	Υ	39.0	39.9	-9.5	69.4	*2951.2	
	H – 1.0	Z	39.0	39.9	-9.5	69.4	*2951.2	
42.042	V – 1.0	Z	39.0	39.9	-9.5	69.4	*2951.2	250000
52.555	H – 1.0	X	39.0	41.1	-9.5	70.6	*3388.4	250000
	V – 1.0	X	39.0	41.1	-9.5	70.6	*3388.4	
	H – 1.0	Y	39.0	41.1	-9.5	70.6	*3388.4	
	V – 1.0	Y	39.0	41.1	-9.5	70.6	*3388.4	
	H – 1.0	Z	39.0	41.1	-9.5	70.6	*3388.4	
52.555	V – 1.0	Z	39.0	41.1	-9.5	70.6	*3388.4	250000

^{*} Denotes Minimum Sensitivity of Measurement System.

Field Strength of Harmonics - Average

Frequency	Antenna	EUT	Peak	Duty	Average	Limit
	Position	Orientation	Reading	Cycle	Reading	at
						3 Meters
GHz	H/V	X / Y/ Z	uV/m	%	uV/m	uV/m
21.026	H – 1.0	X	822.2	1.0	8.2	25,000
	V – 1.0	X	822.2	1.0	8.2	
	H – 1.0	Υ	822.2	1.0	8.2	
	V – 1.0	Υ	822.2	1.0	8.2	
	H – 1.0	Z	822.2	1.0	8.2	
21.026	V – 1.0	Z	822.2	1.0	8.2	25,000
31.539	H – 1.0	Х	1584.9	1.0	15.9	25,000
	V – 1.0	Х	1584.9	1.0	15.9	İ
i	H – 1.0	Υ	1584.9	1.0	15.9	i
	V – 1.0	Y	1584.9	1.0	15.9	
	H – 1.0	Z	1584.9	1.0	15.9	İ
31.539	V – 1.0	Z	1584.9	1.0	15.9	25,000
					1010	
42.042	H – 1.0	Х	2951.2	1.0	29.5	25,000
	V – 1.0	Х	2951.2	1.0	29.5	
	H – 1.0	Y	2951.2	1.0	29.5	
	V – 1.0	Y	2951.2	1.0	29.5	
İ	H – 1.0	Z	2951.2	1.0	29.5	
42.042	V – 1.0	Z	2951.2	1.0	29.5	25,000
52.555	H – 1.0	Х	3388.4	1.0	33.9	25,000
	V – 1.0	X	3388.4	1.0	33.9	,
	H – 1.0	Y	3388.4	1.0	33.9	
	V – 1.0	Y	3388.4	1.0	33.9	
	H – 1.0	Z	3388.4	1.0	33.9	
52.555	V – 1.0	Z	3388.4	1.0	33.9	25,000
JZ.JJJ	v — 1.0		JJUU. T	J 1.0 L	55.9	20,000

Detector Function: Peak / Duty Cycle Applied to Obtain Average Levels

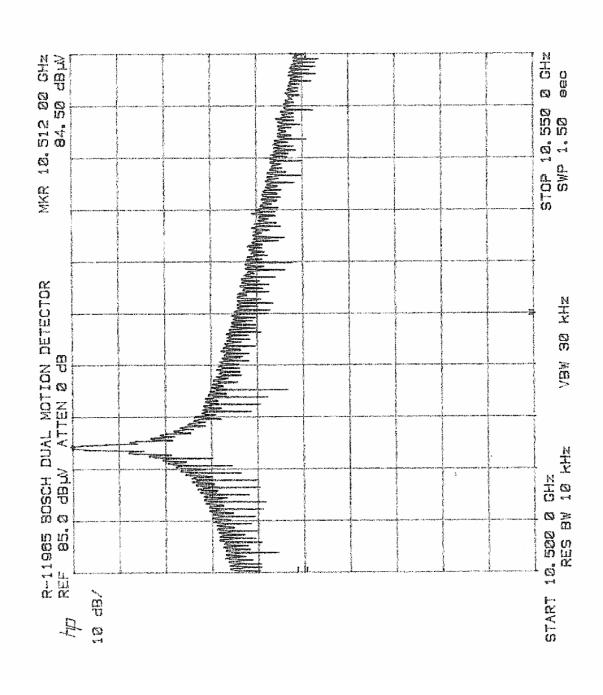
Test Distance: As Specified for each frequency

Resolution Bandwidth: 1 MHz
Video Bandwidth: 3 MHz

15.245 (b)(3), Test Data Radiated Emissions, Band Edges

FCC ID:T3XBDL-W11PGY

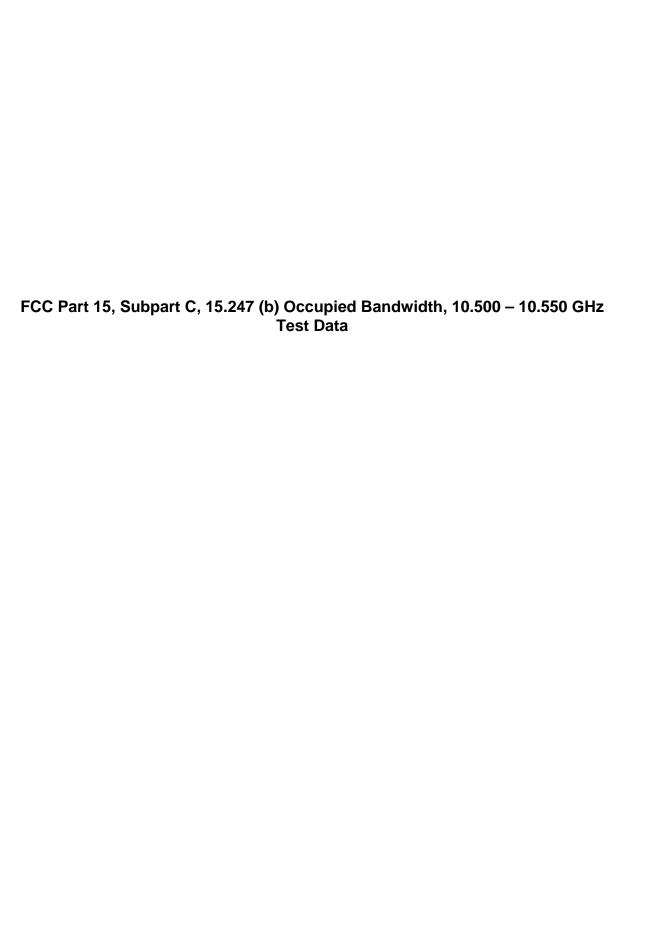
APPLICANT: Bosch Security Systems

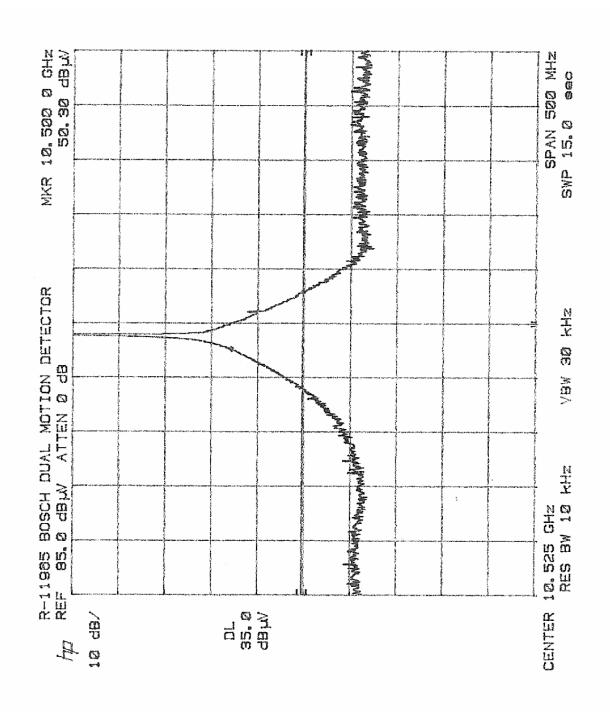

TEST METHOD: Radiated Emissions, Band Edges SPECIFICATION: FCC Part 15, Section 15.245 (b)(3)

PERFORMED BY: R. Soodoo

DATE: October 18,2007.

The emission at the Lower (10.5GHz) and Upper (10.55GHz) Band edge were attenuated by 50dB. See attached plot.


15.245 (b), Test Data Occupied Bandwidth FCC Part 15, Subpart C, 15.247 (b)(3) Band Edge, 10.500 – 10.550 GHz Test Data



FCC Part 15, Subpart C, 15.247(b) (3) Band Edge, 10.5 to 10.55 GHz Band Note: The fundamental frequency transmits within the specified band.

FCC ID:T3XBDL1-W11PGY

Customer	Bosch Security System.				
Test Sample	wLS	SN Dual Motion Detector			
Model Number	ISV	V- BDL1-W11PGY			
Date: 10-24-200	7	Tech: R.S	Sheet 1 of 2		

FCC Part 15, Subpart C, 15.247(b) Occupied Bandwidth, 10.5 to 10.55 GHz Band

Note: The emissions radiating outside the band are attenuated by >50dB

Note: * At this band edge frequency, the measured emission of 10.5 GHz = $38.4 \text{ dB}\mu\text{V}$.

(Limits = 54dBuV average)

FCC ID: T3XBDL1-W11PGY

Customer	Bosch Security System.				
Test Sample	wLSN Dual Motion Detector				
Model Number	ISW- BDL1-W11PGY				
Date: 10-24-2007	Tech: R.S	Sheet 2 of 2			

15.245 (b)(3), Test Data Radiated Emissions, Spurious

FCC ID:T3XBDL-W11PGY

APPLICANT: Bosch Security Systems

TEST METHOD: Spurious Emissions, 30 MHZ to 52.625 GHz

SPECIFICATION: FCC Part 15, Section 15.245 (b)(3)

PERFORMED BY: R. Soodoo DATE: October 18, 2007.

						1	
Frequency	Antenna	Meter	Antenna	Test	Corrected	Converted	Limit
	Distance	Reading	Factor	Distance	Reading	Reading	at
		3		Correction	3	33.5	3 Meters
GHz	Meters	dΒμV	+dB	-dB	dBµV/m	uV/m	uV/m
OFFE	IVICIOIS	αБμν	· ab	-GD	αυμν/ιιι	u v/III	u v/III
0.030	3	-					100 QP
0.088	3	-					100 / 150
0.216	3	_					150 / 200
0.210	3	_					130 / 200
0.960	3	-					200 / 500
1.0	3	-					500
1.0	1	-					5000 Pk
							500 Ave
52.625	1	-					5000 Pk
							500 Ave
				1		ļ	

The frequency range was scanned from 30 MHZ to 52.625 GHz. No spurious emissions were observed within 20 dB of the specified limit in the 30 MHZ to 40 GHz range. No spurious emissions were observed within 10 dB of the specified limit above 40 GHz.

For F < 1 GHz For F > 1 GHz

Resolution Bandwidth: 100 kHz 1 MHz Video Bandwidth: 300 kHz 3 MHz

Detector: Quasi-Peak Peak / Average