

MRT Technology (Suzhou) Co., Ltd Phone: +86-512-66308358 Web: www.mrt-cert.com Report No.: 1802RSU004-U2 Report Version: V01 Issue Date: 04-04-2018

# **MEASUREMENT REPORT**

FCC PART 15.407 / RSS-247 WLAN 802.11a/n/ac

| FCC ID:             | T2C-WF50                                              |
|---------------------|-------------------------------------------------------|
| IC:                 | 10741A-WF50                                           |
| APPLICANT:          | YEALINK(XIAMEN) NETWORK TECHNOLOGY<br>CO.,LTD         |
| Application Type:   | Certification                                         |
| Product:            | Wi-Fi USB Dongle                                      |
| Model No.:          | WF50                                                  |
| Brand Name:         | YEALINK                                               |
| FCC Classification: | Unlicensed National Information Infrastructure (UNII) |
| FCC Rule Part(s):   | Part 15.407                                           |
| IC Rule(s):         | RSS-247 Issue 2, RSS-GEN Issue 4                      |
| Test Procedure(s):  | ANSI C63.10-2013, KDB 789033 D02v02r01                |
| Test Date:          | December 26, 2017 ~ March 11, 2018                    |

Reviewed By : Surry Sur ( Sunny Sun ) Marlinchen : Approved By (Marlin Chen) TESTING LABORATORY CERTIFICATE #3628.01

The test results relate only to the samples tested.

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in KDB 789033 D02v02r01. Test results reported herein relate only to the item(s) tested.

The test report shall not be reproduced except in full without the written approval of MRT Technology (Suzhou) Co., Ltd.



# **Revision History**

| Report No.    | Version | Description    | Issue Date | Note  |
|---------------|---------|----------------|------------|-------|
| 1802RSU004-U2 | Rev. 01 | Initial Report | 04-04-2018 | Valid |
|               |         |                |            |       |



# CONTENTS

| Des | scriptio | n                                               | Page |
|-----|----------|-------------------------------------------------|------|
| 1.  | INTRO    | ODUCTION                                        | 6    |
|     | 1.1.     | Scope                                           | 6    |
|     | 1.2.     | MRT Test Location                               | 6    |
| 2.  | PROD     | DUCT INFORMATION                                | 7    |
|     | 2.1.     | Equipment Description                           | 7    |
|     | 2.2.     | Product Specification Subjective to this Report | 7    |
|     | 2.3.     | Operation Frequency / Channel list              | 7    |
|     | 2.4.     | Description of Available Antennas               | 8    |
|     | 2.5.     | Description of Antenna RF Port                  | 8    |
|     | 2.6.     | Test Mode                                       | 8    |
|     | 2.7.     | Test Configuration                              | 9    |
|     | 2.8.     | Test System Details                             | 9    |
|     | 2.9.     | Description of Test Software                    | 10   |
|     | 2.10.    | Device Capabilities                             | 11   |
|     | 2.11.    | Test Configuration                              | 12   |
|     | 2.12.    | EMI Suppression Device(s)/Modifications         | 12   |
|     | 2.13.    | Labeling Requirements                           | 12   |
| 3.  | DESC     | CRIPTION OF TEST                                | 13   |
|     | 3.1.     | Evaluation Procedure                            | 13   |
|     | 3.2.     | AC Line Conducted Emissions                     | 13   |
|     | 3.3.     | Radiated Emissions                              | 14   |
| 4.  | ANTE     | ENNA REQUIREMENTS                               | 15   |
| 5.  | TEST     | EQUIPMENT CALIBRATION DATE                      | 16   |
| 6.  | MEAS     | SUREMENT UNCERTAINTY                            | 17   |
| 7.  | TEST     | RESULT                                          | 18   |
|     | 7.1.     | Summary                                         | 18   |
|     | 7.2.     | 26dB Bandwidth Measurement                      | 20   |
|     | 7.2.1.   | Test Limit                                      | 20   |
|     | 7.2.2.   | Test Procedure used                             | 20   |
|     | 7.2.3.   | Test Setting                                    | 20   |
|     | 7.2.4.   | Test Setup                                      | 20   |
|     | 7.2.5.   | Test Result                                     | 21   |
|     | 7.3.     | 6dB Bandwidth Measurement                       | 28   |



| 7.3.1. | Test Limit                                | 28  |
|--------|-------------------------------------------|-----|
| 7.3.2. | Test Procedure used                       | 28  |
| 7.3.3. | Test Setting                              | 28  |
| 7.3.4. | Test Setup                                | 28  |
| 7.3.5. | Test Result                               | 29  |
| 7.4.   | Output Power Measurement                  | 34  |
| 7.4.1. | Test Limit                                | 34  |
| 7.4.2. | Test Procedure Used                       | 34  |
| 7.4.3. | Test Setting                              | 34  |
| 7.4.4. | Test Setup                                | 35  |
| 7.4.5. | Test Result                               | 35  |
| 7.5.   | Power Spectral Density Measurement        | 38  |
| 7.5.1. | Test Limit                                | 38  |
| 7.5.2. | Test Procedure Used                       | 38  |
| 7.5.3. | Test Setting                              | 38  |
| 7.5.4. | Test Setup                                | 39  |
| 7.5.5. | Test Result                               | 40  |
| 7.6.   | Frequency Stability Measurement           | 48  |
| 7.6.1. | Test Limit                                | 48  |
| 7.6.2. | Test Procedure Used                       | 48  |
| 7.6.3. | Test Setup                                | 49  |
| 7.6.4. | Test Result                               | 50  |
| 7.7.   | Radiated Spurious Emission Measurement    | 51  |
| 7.7.1. | Test Limit                                | 51  |
| 7.7.2. | Test Procedure Used                       | 51  |
| 7.7.3. | Test Setting                              | 51  |
| 7.7.4. | Test Setup                                | 53  |
| 7.7.5. | Test Result                               | 55  |
| 7.8.   | Radiated Restricted Band Edge Measurement | 85  |
| 7.8.1. | Test Limit                                | 85  |
| 7.8.2. | Test Result                               | 89  |
| 7.9.   | AC Conducted Emissions Measurement        | 135 |
| 7.9.1. | Test Limit                                | 135 |
| 7.9.2. | Test Setup                                | 135 |
| 7.9.3. | Test Result                               | 136 |
| CONC   | CLUSION                                   | 138 |

8.



# §2.1033 General Information

| Applicant:              | YEALINK(XIAMEN) NETWORK TECHNOLOGY CO.,LTD                        |  |  |  |  |
|-------------------------|-------------------------------------------------------------------|--|--|--|--|
| Applicant Address:      | 309, 3th Floor, No.16, Yun Ding North Road, Huli District, Xiamen |  |  |  |  |
|                         | City, Fujian, P.R. China                                          |  |  |  |  |
| Manufacturer:           | YEALINK(XIAMEN) NETWORK TECHNOLOGY CO.,LTD                        |  |  |  |  |
| Manufacturer Address:   | 309, 3th Floor, No.16, Yun Ding North Road, Huli District, Xiamen |  |  |  |  |
|                         | City, Fujian, P.R. China                                          |  |  |  |  |
| Test Site:              | MRT Technology (Suzhou) Co., Ltd                                  |  |  |  |  |
| Test Site Address:      | D8 Building, No.2 Tian'edang Rd., Wuzhong Economic Development    |  |  |  |  |
|                         | Zone, Suzhou, China                                               |  |  |  |  |
| FCC Registration No.:   | 893164                                                            |  |  |  |  |
| IC Registration No.:    | 11384A                                                            |  |  |  |  |
| Test Device Serial No.: | N/A Production Pre-Production Engineering                         |  |  |  |  |

# **Test Facility / Accreditations**

Measurements were performed at MRT Laboratory located in Tian'edang Rd., Suzhou, China.

- MRT facility is a FCC registered (MRT Reg. No. 893164) test facility with the site description report on file and has met all the requirements specified in Section 2.948 of the FCC Rules.
- MRT facility is an IC registered (MRT Reg. No. 11384A-1) test laboratory with the site description on file at Industry Canada.
- MRT facility is a VCCI registered (R-20025, G-20034, C-20020, T-20020) test laboratory with the site description on file at VCCI Council.
- MRT Lab is accredited to ISO 17025 by the American Association for Laboratory Accreditation (A2LA) under the American Association for Laboratory Accreditation Program (A2LA Cert. No. 3628.01) in EMC, Telecommunications and Radio testing for FCC, Industry Canada, EU and TELEC Rules.

| Nac                                                                                                             |                                                                                                                                                                                                                                                                          |
|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Accr                                                                                                            | edited Laboratory                                                                                                                                                                                                                                                        |
|                                                                                                                 | A2IA has accredited                                                                                                                                                                                                                                                      |
|                                                                                                                 | OLOGY (SUZHOU) CO., LTD.<br>Jiangsu, People's Republic of China                                                                                                                                                                                                          |
| to a local de la companya de la comp | or technical competence in the field of                                                                                                                                                                                                                                  |
|                                                                                                                 | Electrical Testing                                                                                                                                                                                                                                                       |
| General requirements for the competent<br>technical competence for a defined                                    | vidance with the recognized international Standard ISO/IEC 17025/2005<br>one of hering and calibration laboratories. This accreditation demonitra<br>discope and the operation of a babarolong quality management system<br>IO-EAC-IAF Communiqué dated & January 2009). |
|                                                                                                                 | Presented Pris 6° day of September 2016.                                                                                                                                                                                                                                 |



# 1. INTRODUCTION

# 1.1. Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Industry Canada Certification and Engineering Bureau.

# 1.2. MRT Test Location

The map below shows the location of the MRT LABORATORY, its proximity to the Taihu Lake. These measurement tests were conducted at the MRT Technology (Suzhou) Co., Ltd. Facility located at D8 Building, Youxin Industrial Park, No.2 Tian'edang Rd., Wuzhong Economic Development Zone, Suzhou, China. The detailed description of the measurement facility was found to be in compliance with the requirements of § 2.948 according to ANSI C63.4-2009 on September 30, 2013.





# 2. PRODUCT INFORMATION

# 2.1. Equipment Description

| Product Name        | Wi-Fi USB Dongle |
|---------------------|------------------|
| Model No.           | WF50             |
| Wi-Fi Specification | 802.11a/b/g/n/ac |

# 2.2. Product Specification Subjective to this Report

| Frequency Range    | For 802.11a/n-HT20/ac-VHT20:       |
|--------------------|------------------------------------|
|                    | 5180~5240MHz, 5745~5825MHz         |
|                    | For 802.11n-HT40/ac-VHT40:         |
|                    | 5190~5230MHz, 5755~5795MHz         |
|                    | For 802.11ac-VHT80:                |
|                    | 5210MHz, 5775MHz                   |
| Type of Modulation | 802.11a/n/ac: OFDM                 |
| Data Rate:         | 802.11a: 6/9/12/18/24/36/48/54Mbps |
|                    | 802.11n: up to 150Mbps             |
|                    | 802.11ac: up to 433.3Mbps          |

Note: For other features of this EUT, test report will be issued separately.

# 2.3. Operation Frequency / Channel list

#### 802.11a/n-HT20/ac-VHT20

| Channel | Frequency | Channel | Frequency | Channel | Frequency |
|---------|-----------|---------|-----------|---------|-----------|
| 36      | 5180 MHz  | 40      | 5200 MHz  | 44      | 5220 MHz  |
| 48      | 5240 MHz  | 149     | 5745 MHz  | 153     | 5765 MHz  |
| 157     | 5785 MHz  | 161     | 5805 MHz  | 165     | 5825 MHz  |

#### 802.11n-HT40/ac-VHT40

| Channel | Frequency | Channel | Frequency | Channel | Frequency |
|---------|-----------|---------|-----------|---------|-----------|
| 38      | 5190 MHz  | 46      | 5230 MHz  | 54      | 5270 MHz  |
| 151     | 5755 MHz  | 159     | 5795 MHz  |         |           |

#### 802.11ac-VHT80

| Channel | Frequency | Channel | Frequency | Channel | Frequency |
|---------|-----------|---------|-----------|---------|-----------|
| 42      | 5210 MHz  | 155     | 5775 MHz  |         |           |

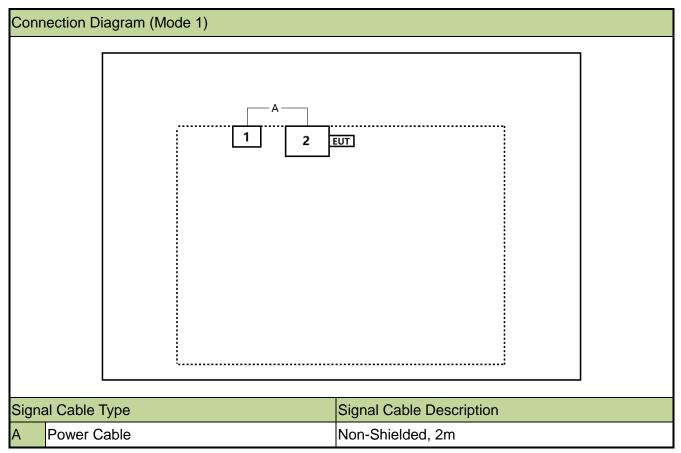


### 2.4. Description of Available Antennas

| Antenna Type | Frequency Band (MHz) | TX Paths | Max Peak Gain (dBi) |
|--------------|----------------------|----------|---------------------|
|              | 2400 ~ 2483.5        | 1        | 3                   |
| Built-in     | 5150 ~ 5850          | 1        | 3                   |

# 2.5. Description of Antenna RF Port

| Antenna RF Port |  |
|-----------------|--|
| 2.4G & 5G       |  |


# 2.6. Test Mode

| Test Mode | Mode 1: Transmit by 802.11a (6Mbps)       |
|-----------|-------------------------------------------|
|           | Mode 2: Transmit by 802.11n-HT20 (MCS0)   |
|           | Mode 3: Transmit by 802.11n-HT40 (MCS0)   |
|           | Mode 4: Transmit by 802.11ac-VHT20 (MCS0) |
|           | Mode 5: Transmit by 802.11ac-VHT40 (MCS0) |
|           | Mode 6: Transmit by 802.11ac-VHT80 (MCS0) |



# 2.7. Test Configuration

The EUT was tested per the guidance ANSI C63.10: 2013 was used to reference the appropriate EUT setup for radiated spurious emissions testing and AC line conducted testing.



# 2.8. Test System Details

The types for all equipments, plus descriptions of all cables used in the tested system (including inserted cards) are:

| Prod | uct      | Manufacturer | Model No.            | Serial No. | Power Cord       |
|------|----------|--------------|----------------------|------------|------------------|
| 1    | Adapter  | YEALINK      | OH-1015A0502000U2-BZ | N/A        | Non-Shielded, 2m |
| 2    | IP Phone | YEALINK      | SIP-T41S             | N/A        | Non-Shielded, 2m |



# 2.9. Description of Test Software

The test utility software used during testing was "QCARCT", and the version was "3.0.250.0".

| Test     | Channel | Frequency | Power     | Test Mode | Channel | Frequency | Power     |
|----------|---------|-----------|-----------|-----------|---------|-----------|-----------|
| Mode     | No.     | (MHz)     | Parameter |           | No.     | (MHz)     | Parameter |
|          |         |           | Value     |           |         |           | Value     |
|          | 36      | 5180      | 19.5      |           | 36      | 5180      | 19.5      |
|          | 44      | 5220      | 20.0      |           | 44      | 5220      | 20.0      |
| 802.11a  | 48      | 5240      | 20.0      | 802.11    | 48      | 5240      | 20.0      |
| 002.11a  | 149     | 5745      | 20.0      | n-HT20    | 149     | 5745      | 20.0      |
|          | 157     | 5785      | 20.0      |           | 157     | 5785      | 20.0      |
|          | 165     | 5825      | 20.0      |           | 165     | 5825      | 20.0      |
|          | 38      | 5190      | 16.5      |           | 36      | 5180      | 19.5      |
|          | 46      | 5230      | 20.0      |           | 44      | 5220      | 20.0      |
| 802.11   | 151     | 5755      | 20.0      | 802.11    | 48      | 5240      | 20.0      |
| n-HT40   | 159     | 5795      | 20.0      | ac-VHT20  | 149     | 5745      | 20.0      |
|          |         |           |           |           | 157     | 5785      | 20.0      |
|          |         |           |           |           | 165     | 5825      | 20.0      |
|          | 38      | 5190      | 16.0      |           | 42      | 5210      | 15.5      |
| 802.11   | 46      | 5230      | 20.0      | 802.11    | 155     | 5775      | 19.5      |
| ac-VHT40 | 151     | 5755      | 20.0      | ac-VHT80  |         |           |           |
|          | 159     | 5795      | 20.0      |           |         |           |           |



# 2.10. Device Capabilities

This device contains the following capabilities:

802.11a/b/g/n/ac Wi-Fi Device.

**Note:** 5GHz (UNII) operation is possible in 20MHz and 40MHz channel bandwidths. The maximum achievable duty cycles for all modes were determined based on measurements performed on a spectrum analyzer in zero-span mode with RBW = 8MHz, VBW = 50MHz.

The duty cycles are as follows:

| Test Mode      | Duty Cycle |
|----------------|------------|
| 802.11a        | 95.12 %    |
| 802.11n-HT20   | 93.86 %    |
| 802.11n-HT40   | 89.01 %    |
| 802.11ac-VHT20 | 95.08 %    |
| 802.11ac-VHT40 | 89.67 %    |
| 802.11ac-VHT80 | 84.26 %    |





| 802.11ac-VHT40 - T = 942.4 us                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 802.11ac-VHT80 - T = 460.0 us                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| M Aplent Spectrum Analyzer Swept SA<br>W Aplent Spectrum Analyzer Swept SA<br>Warker S ∆ 1.05133 ms<br>PNO: Feat → Trig: Free Run<br>Ficalic.two<br>Karker 20 dB<br>Select Marker<br>Select Marker                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Market Spectrum Adapter 5-Sept 5A         SERVE INT         ALION AUTO         12:59:15 PME6 13, 2016         Market           Market Or 3 & 545.5807 µs         FIND: Fast (=+-)         Trigs Free Run         Avg Type: RMS         Trace Part (=+-)         Market           Figure Low         Figure Low         Atten: 20 dB         Common Avg Type: RMS         Trace Part (=+-)         Select Market                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| to dBiddy Ref 28.00 dBm -0.43 dB -0.44 | Constraint         Ref 28.00 dBm         ΔMkr3 545.9 μs         3           Constraint         0.13 dB         0.13 dB         0.13 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Center 5.190000000 GHz         Span 0 Hz           Res BW 8 MHz         VBW 50 MHz*         Sweep 5.067 ms (2001 pb)           Writ word Fro Sci.         x         y         Function         F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Center 5.210000000 CHz         VEW 50 MHz*         Sweep 3.067 ms (2001 pt)         Off           KM N00F KS SLI         X         Y         Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1 Δ2 1 t (Δ) 942 4 μ (Δ) 0.05 dB<br>2 F 4 t C 2283 ms 83 dBm<br>ΔA 5 t (Δ) 1.051 ms (Δ) -0.43 dB<br>F 4 t 2.233 ms 6.83 dBm<br>5 F 4 t 2.233 ms 6.83 dBm<br>6 s 1 t 2.233 ms 6.83 dBm<br>6 s 1 t 2.233 ms 6.83 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 Δ2 1 1 (Δ) 4400 μ (Δ) 172 /B<br>2 F 1 1 (Δ) 4400 μ (Δ) 172 /B<br>Δ4 1 t (Δ) 458 μμ (Δ) 688 /Bm<br>5 F 1 t (Δ) 458 2 μμ (Δ) 073 /B<br>7 U 1 (Δ) 124 mb 6.88 /Bm<br>6 8 / 1 (Δ) 124 mb 6.88 /Bm<br>6 8 / 1 (Δ) 124 mb 6.88 /Bm<br>7 U 1 (Δ) 124 /Bm<br>7 U 1 (Δ) 124 mb 6.88 /Bm<br>7 U |
| More<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | More<br>10 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

# 2.11. Test Configuration

The device was tested per the guidance of KDB 789033 D02v02r01. ANSI C63.10-2013 was used to reference the appropriate EUT setup for radiated spurious emissions testing and AC line conducted testing.

### 2.12. EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and/or no modifications were made during testing.

### 2.13. Labeling Requirements

#### Per 2.1074 & 15.19; Docket 95-19

The label shall be permanently affixed at a conspicuous location on the device; instruction manual or pamphlet supplied to the user and be readily visible to the purchaser at the time of purchase. However, when the device is so small wherein placement of the label with specified statement is not practical, only the FCC ID must be displayed on the device per Section 15.19(a)(5). Please see attachment for FCC ID label and label location.



# 3. DESCRIPTION OF TEST

### 3.1. Evaluation Procedure

The measurement procedures described in the American National Standard for Testing Unlicensed Wireless Devices (ANSI C63.10-2013), and the guidance provided in KDB 789033 D02v02r01 were used in the measurement.

Deviation from measurement procedure.....None

# 3.2. AC Line Conducted Emissions

The line-conducted facility is located inside an 8'x4'x4' shielded enclosure. A 1m x 2m wooden table 80cm high is placed 40cm away from the vertical wall and 80cm away from the sidewall of the shielded room. Two 10kHz-30MHz,  $50\Omega/50$ uH Line-Impedance Stabilization Networks (LISNs) are bonded to the shielded room floor. Power to the LISNs is filtered by external high-current high-insertion loss power line filters. These filters attenuate ambient signal noise from entering the measurement lines. These filters are also bonded to the shielded enclosure.

The EUT is powered from one LISN and the support equipment is powered from the second LISN. All interconnecting cables more than 1 meter were shortened to a 1 meter length by non-inductive bundling (serpentine fashion) and draped over the back edge of the test table. All cables were at least 40cm above the horizontal reference ground-plane. Power cables for support equipment were routed down to the second LISN while ensuring that that cables were not draped over the second LISN.

Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the receiver and exploratory measurements were made to determine the frequencies producing the maximum emission from the EUT. The receiver was scanned from 150kHz to 30MHz. The detector function was set to peak mode for exploratory measurements while the bandwidth of the analyzer was set to 9kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Each emission was also maximized by varying: power lines, the mode of operation or data exchange speed, or support equipment whichever determined the worst-case emission. Once the worst case emissions have been identified, the one EUT cable configuration/arrangement and mode of operation that produced these emissions are used for final measurements on the same test site. The analyzer is set to CISPR quasi-peak and average detectors with a 9kHz resolution bandwidth for final measurements.

An extension cord was used to connect to a single LISN which powered by EUT. The extension cord was calibrated with LISN, the impedance and insertion loss are compliance with the requirements as stated in ANSI C63.10-2013.



# 3.3. Radiated Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. For measurements above 1GHz absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections. For measurements below 1GHz, the absorbers are removed. A MF Model 210SS turntable is used for radiated measurement. It is a continuously rotatable, remote controlled, metallic turntable and 2 meters (6.56 ft.) in diameter. The turn table is flush with the raised floor of the chamber in order to maintain its function as a ground plane. An 80cm high PVC support structure is placed on top of the turntable. For all measurements, the spectrum was scanned through all EUT azimuths and from 1 to 4 meter receive antenna height using a broadband antenna from 30MHz up to the upper frequency shown in 15.33(b)(1) depending on the highest frequency generated or used in the device or on which the device operates or tunes. For frequencies above 1GHz, linearly polarized double ridge horn antennas were used. For frequencies below 30MHz, a calibrated loop antenna was used. When exploratory measurements were necessary, they were performed at 1 meter test distance inside the semi-anechoic chamber using broadband antennas, broadband amplifiers, and spectrum analyzers to determine the frequencies and modes producing the maximum emissions. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The test set-up for frequencies below 1GHz was placed on top of the 0.8 meter high, 1 x 1.5 meter table; and test set-up for frequencies 1-40GHz was placed on top of the 1.5 meter high, 1 x 1.5 meter table. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Appropriate precaution was taken to ensure that all emissions from the EUT were maximized and investigated. The system configuration, clock speed, mode of operation or video resolution, if applicable, turntable azimuth, and receive antenna height was noted for each frequency found.

Final measurements were made in the semi-anechoic chamber using calibrated, linearly polarized broadband and horn antennas. The test setup was configured to the setup that produced the worst case emissions. The spectrum analyzer was set to investigate all frequencies required for testing to compare the highest radiated disturbances with respect to the specified limits. The turntable containing the EUT was rotated through 360 degrees and the height of the receive antenna was varied 1 to 4 meters and stopped at the azimuth and height producing the maximum emission. Each emission was maximized by changing the orientation of the EUT through three orthogonal planes and changing the polarity of the receive antenna, whichever produced the worst-case emissions. According to 3dB Beam-Width of horn antenna, the horn antenna should be always directed to the EUT when rising height.



# 4. ANTENNA REQUIREMENTS

### Excerpt from §15.203 of the FCC Rules/Regulations:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

- The antenna of the Wi-Fi USB Dongle is permanently attached.
- There are no provisions for connection to an external antenna.

### **Conclusion:**

The unit complies with the requirement of §15.203.



# 5. TEST EQUIPMENT CALIBRATION DATE

#### Conducted Emissions - SR2

| Instrument                 | Manufacturer | Type No.    | Asset No.   | Cali. Interval | Cali. Due Date |
|----------------------------|--------------|-------------|-------------|----------------|----------------|
| EMI Test Receiver          | R&S          | ESR7        | MRTSUE06001 | 1 year         | 2018/08/18     |
| Two-Line V-Network         | R&S          | ENV216      | MRTSUE06002 | 1 year         | 2018/06/21     |
| Two-Line V-Network         | R&S          | ENV216      | MRTSUE06003 | 1 year         | 2018/06/21     |
| Thermohygrometer           | Testo        | 608-H1      | MRTSUE06404 | 1 year         | 2018/08/14     |
| Shielding Anechoic Chamber | Mikebang     | Chamber-SR2 | MRTSUE06215 | 1 year         | 2018/05/10     |

### Radiated Disturbance - AC1

| Instrument                 | Manufacturer | Type No.    | Asset No.   | Cali. Interval | Cali. Due Date |
|----------------------------|--------------|-------------|-------------|----------------|----------------|
| PXA Signal Analyzer        | Keysight     | 9030B       | MRTSUE06395 | 1 year         | 2018/09/13     |
| EMI Test Receiver          | R&S          | ESR7        | MRTSUE06001 | 1 year         | 2018/08/18     |
| Loop Antenna               | Schwarzbeck  | FMZB 1519   | MRTSUE06025 | 1 year         | 2018/11/20     |
| EXA Signal Analyzer        | Agilent      | N9020A      | MRTSUE06106 | 1 year         | 2018/04/25     |
| Microwave System Amplifier | Agilent      | 83017A      | MRTSUE06076 | 1 year         | 2018/11/17     |
| Bilog Period Antenna       | Schwarzbeck  | VULB 9168   | MRTSUE06172 | 1 year         | 2018/11/18     |
| Broad Band Horn Antenna    | Schwarzbeck  | BBHA9120D   | MRTSUE06023 | 1 year         | 2018/10/21     |
| Broad Band Horn Antenna    | Schwarzbeck  | BBHA 9170   | MRTSUE06024 | 1 year         | 2018/12/14     |
| Amplifier                  | Schwarzbeck  | BBV 9721    | MRTSUE06121 | 1 year         | 2018/06/14     |
| Thermohygrometer           | Testo        | 608-H1      | MRTSUE06403 | 1 year         | 2018/08/14     |
| Anechoic Chamber           | TDK          | Chamber-AC1 | MRTSUE06212 | 1 year         | 2018/05/10     |

### Conducted Test Equipment - TR3

| Instrument        | Manufacturer | Type No. | Asset No.   | Cali. Interval | Cali. Due Date |
|-------------------|--------------|----------|-------------|----------------|----------------|
| Spectrum Analyzer | Agilent      | N9020A   | MRTSUE06106 | 1 year         | 2018/04/25     |
| Power Meter       | Agilent      | U2021XA  | MRTSUE06030 | 1 year         | 2018/12/06     |
| Thermohygrometer  | Testo        | 608-H1   | MRTSUE06401 | 1 year         | 2018/08/14     |

| Software | Version | Function          |
|----------|---------|-------------------|
| e3       | V8.3.5  | EMI Test Software |



# 6. MEASUREMENT UNCERTAINTY

Where relevant, the following test uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k = 2.

| AC Conducted Emission Measurement - SR2                            |  |
|--------------------------------------------------------------------|--|
| Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)): |  |
| 150kHz~30MHz: 3.46dB                                               |  |
| Radiated Emission Measurement - AC1                                |  |
| Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)): |  |
| 9kHz ~ 1GHz: 4.18dB                                                |  |
| 1GHz ~ 25GHz: 4.76dB                                               |  |



# 7. TEST RESULT

# 7.1. Summary

| Company Name: | YEALINK(XIAMEN) NETWORK TECHNOLOGY CO., LTD |
|---------------|---------------------------------------------|
| FCC ID:       | T2C-WF50                                    |
| IC:           | 10741A-WF50                                 |

| FCC               | Test Description       | Test Limit                  | Test      | Test   | Reference   |
|-------------------|------------------------|-----------------------------|-----------|--------|-------------|
| Section(s)        |                        |                             | Condition | Result |             |
| 15.407(a)         | 26dB Bandwidth         | N/A                         |           | Pass   | Section 7.2 |
| 15.407(e)         | 6dB Bandwidth          | ≥ 500kHz                    |           | Pass   | Section 7.3 |
| 15.407(a)(1)(iv), | Maximum Conducted      | ≤ 23.98 dBm U-NII-1         |           | Pass   | Section 7.4 |
| (3), (4)          | Output Power           | ≤ 30 dBm U-NII-3            | Conducted | F 855  | Section 7.4 |
| 15.407(a)(1)(iv), | Peak Power Spectral    | Refer to Section 7.5        |           | Deee   | Section 7.5 |
| (3), (5)          | Density                | Refer to Section 7.5        |           | Pass   | Section 7.5 |
| 15.407(g)         | Frequency Stability    | N/A                         |           | Pass   | Section 7.6 |
| 15.407(b)(1),     | Undesirable            | Defer to continue 7.9       |           | Deee   |             |
| (4)(i)            | Emissions              | Refer to section 7.8        |           | Pass   |             |
| 15 205 15 200     | General Field Strength | Emissions in restricted     | Radiated  |        | Section     |
| 15.205, 15.209    | Limits (Restricted     | bands must meet the         | Raulaleu  | Pass   | 7.7 & 7.8   |
| 15.407(b)(5),     | Bands and Radiated     | radiated limits detailed in |           | Pass   |             |
| (6), (7)          | Emission Limits)       | 15.209                      |           |        |             |
|                   | AC Conducted           |                             | Line      |        |             |
| 15.207            | Emissions              | < FCC 15.207 limits         |           | Pass   | Section 7.9 |
|                   | 150kHz - 30MHz         |                             | Conducted |        |             |



| RSS                       | Test                                        | Test                        | Test              | Test   | Reference   |
|---------------------------|---------------------------------------------|-----------------------------|-------------------|--------|-------------|
| Section(s)                | Description                                 | Limit                       | Condition         | Result |             |
| RSS-247 §6.2              | 99% Bandwidth                               | N/A                         |                   | Pass   | Section 7.2 |
| RSS-247<br>§6.2.4         | 6dB Bandwidth                               | >500kHz                     |                   | Pass   | Section 7.3 |
| RSS-247<br>§6.2.1, §6.2.4 | Max Conducted Output<br>Power               | Refer to section 7.4        | Conducted         | Pass   | Section 7.4 |
| RSS-247<br>§6.2.1, §6.2.4 | Peak Power Spectral<br>Density              | Refer to section 7.5        |                   | Pass   | Section 7.5 |
| RSS-Gen<br>[8.11]         | Frequency Stability                         | N/A                         |                   | Pass   | Section 7.6 |
| RSS-247<br>§6.2.1, §6.2.4 | Out-of-Band Emissions                       | Refer to section 7.8        |                   | Pass   |             |
|                           | General Field Strength                      | Emissions in restricted     | Dedicted          |        | Section     |
| RSS-247                   | Limits (Restricted                          | bands must meet the         | Radiated          | Dees   | 7.7 & 7.8   |
| §6.2.1, §6.2.4            | Bands and Radiated                          | radiated limits detailed in |                   | Pass   |             |
|                           | Emission Limits)                            | RSS-Gen [8.9]               |                   |        |             |
| RSS-Gen [8.8]             | AC Conducted<br>Emissions<br>150kHz - 30MHz | ≤ RSS-Gen [8.8] Limit       | Line<br>Conducted | Pass   | Section 7.9 |

Notes:

 All channels, modes, and modulations/data rates were investigated among all UNII bands. For radiated emission test, every axis (X, Y, Z) was also verified. The test results shown in the following sections represent the worst case emissions.

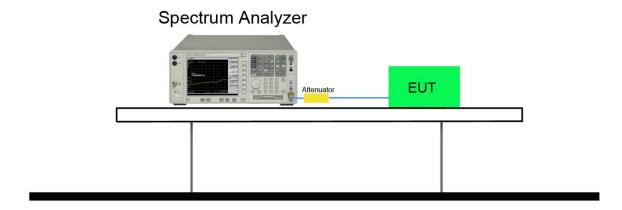
2) The analyzer plots shown in this section were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables and attenuators used as part of the system to connect the EUT to the analyzer at all frequencies of interest.



### 7.2. 26dB Bandwidth Measurement

### 7.2.1.Test Limit

N/A


### 7.2.2.Test Procedure used

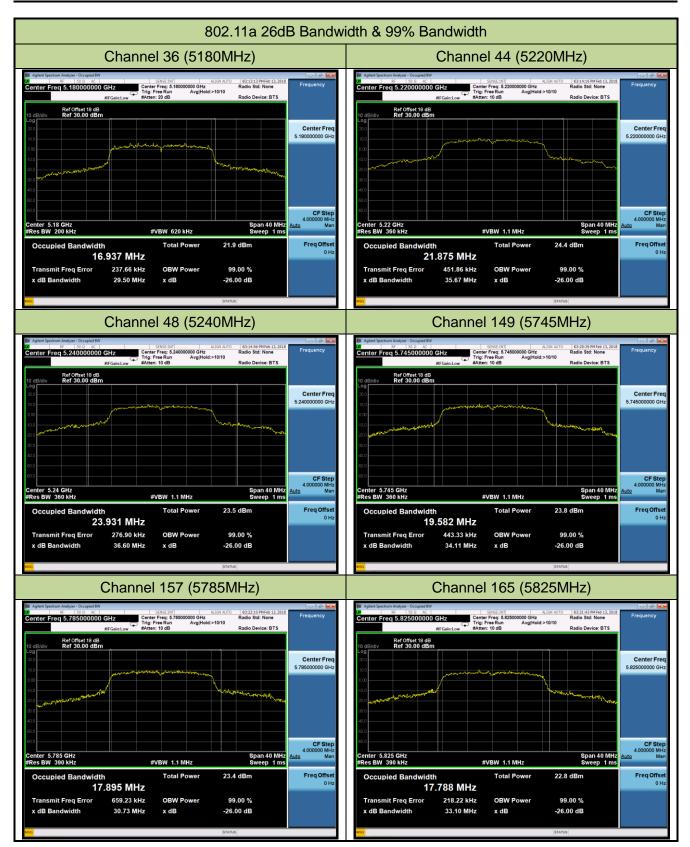
KDB 789033 D02v02r01 - Section C.1

### 7.2.3.Test Setting

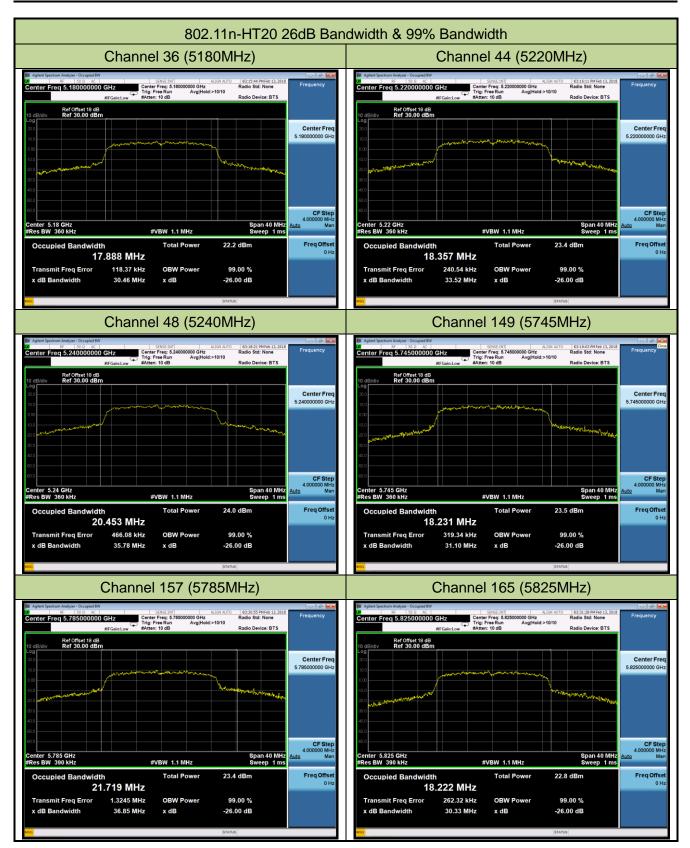
- The analyzers' automatic bandwidth measurement capability was used to perform the 26dB bandwidth measurement. The "X" dB bandwidth parameter was set to X = 26. The automatic bandwidth measurement function also has the capability of simultaneously measuring the 99% occupied bandwidth. The bandwidth measurement was not influenced by any intermediated power nulls in the fundamental emission.
- 2. RBW = approximately 1% of the emission bandwidth.
- 3. VBW  $\geq$  3 × RBW.
- 4. Detector = Peak.
- 5. Trace mode = max hold.

#### 7.2.4.Test Setup

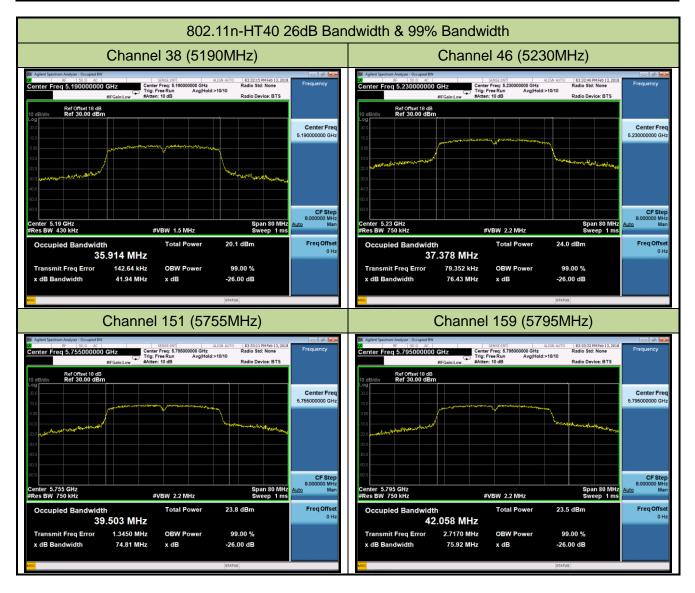




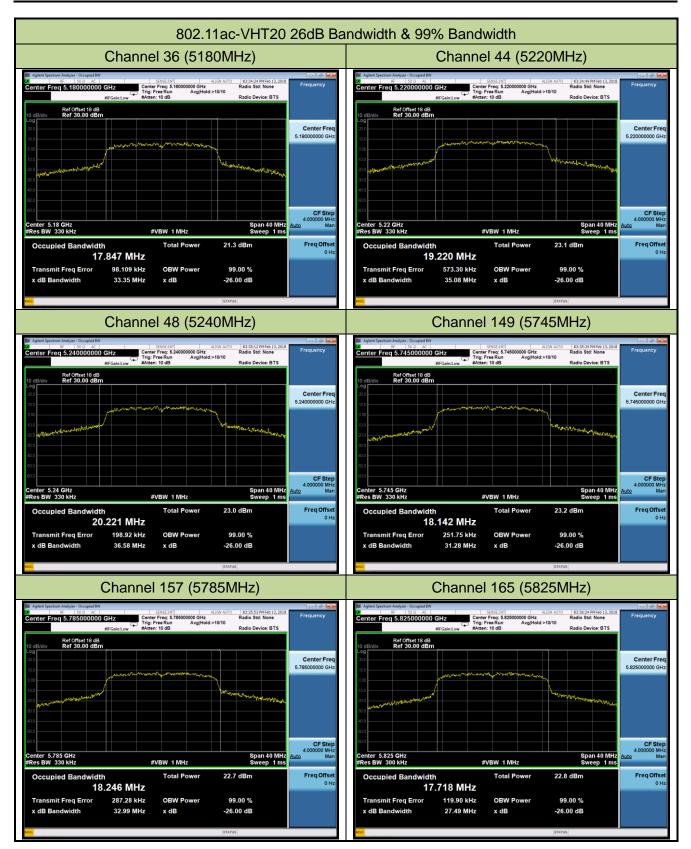

### 7.2.5.Test Result


| Product       | Wi-Fi USB Dongle | Temperature       | 22°C                    |
|---------------|------------------|-------------------|-------------------------|
| Test Engineer | Hunk Li          | Relative Humidity | 54%                     |
| Test Site     | TR3              | Test Date         | 2018/02/13 ~ 2018/03/11 |

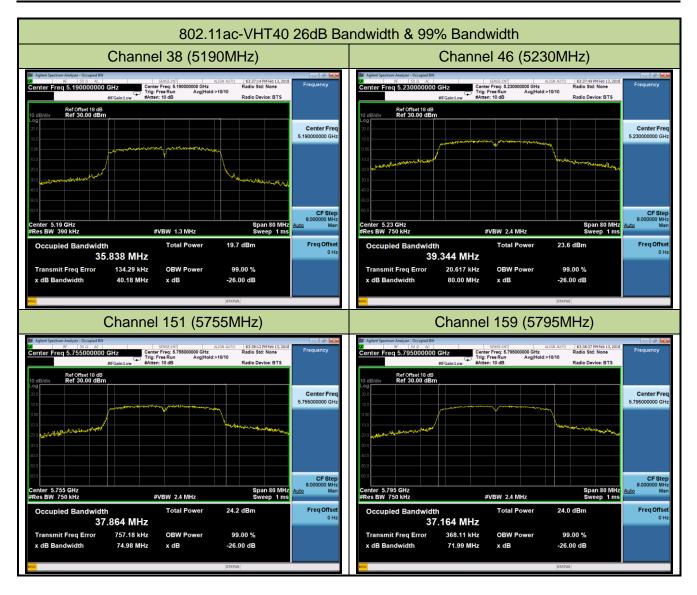
| Test Mode      | Data Rate | Channel No. | Frequency | 26dB Bandwidth |       | Result |
|----------------|-----------|-------------|-----------|----------------|-------|--------|
|                | (Mbps)    |             | (MHz)     | (MHz)          | (MHz) |        |
| 802.11a        | 6         | 36          | 5180      | 29.50          | 16.94 | Pass   |
| 802.11a        | 6         | 44          | 5220      | 35.67          | 21.88 | Pass   |
| 802.11a        | 6         | 48          | 5240      | 36.60          | 23.93 | Pass   |
| 802.11a        | 6         | 149         | 5745      | 34.11          | 19.58 | Pass   |
| 802.11a        | 6         | 157         | 5785      | 30.73          | 17.90 | Pass   |
| 802.11a        | 6         | 165         | 5825      | 33.10          | 17.79 | Pass   |
| 802.11n-HT20   | MCS0      | 36          | 5180      | 30.46          | 17.89 | Pass   |
| 802.11n-HT20   | MCS0      | 44          | 5220      | 33.52          | 18.36 | Pass   |
| 802.11n-HT20   | MCS0      | 48          | 5240      | 35.78          | 20.45 | Pass   |
| 802.11n-HT20   | MCS0      | 149         | 5745      | 31.10          | 18.23 | Pass   |
| 802.11n-HT20   | MCS0      | 157         | 5785      | 36.85          | 21.72 | Pass   |
| 802.11n-HT20   | MCS0      | 165         | 5825      | 30.33          | 18.22 | Pass   |
| 802.11n-HT40   | MCS0      | 38          | 5190      | 41.94          | 35.91 | Pass   |
| 802.11n-HT40   | MCS0      | 46          | 5230      | 76.43          | 37.38 | Pass   |
| 802.11n-HT40   | MCS0      | 151         | 5755      | 74.81          | 39.50 | Pass   |
| 802.11n-HT40   | MCS0      | 159         | 5795      | 75.92          | 42.06 | Pass   |
| 802.11ac-VHT20 | MCS0      | 36          | 5180      | 33.35          | 17.85 | Pass   |
| 802.11ac-VHT20 | MCS0      | 44          | 5220      | 35.08          | 19.22 | Pass   |
| 802.11ac-VHT20 | MCS0      | 48          | 5240      | 36.58          | 20.22 | Pass   |
| 802.11ac-VHT20 | MCS0      | 149         | 5745      | 31.28          | 18.14 | Pass   |
| 802.11ac-VHT20 | MCS0      | 157         | 5785      | 32.99          | 18.25 | Pass   |
| 802.11ac-VHT20 | MCS0      | 165         | 5825      | 27.49          | 17.72 | Pass   |
| 802.11ac-VHT40 | MCS0      | 38          | 5190      | 40.18          | 35.84 | Pass   |
| 802.11ac-VHT40 | MCS0      | 46          | 5230      | 80.00          | 39.34 | Pass   |
| 802.11ac-VHT40 | MCS0      | 151         | 5755      | 74.98          | 37.86 | Pass   |
| 802.11ac-VHT40 | MCS0      | 159         | 5795      | 71.99          | 37.16 | Pass   |
| 802.11ac-VHT80 | MCS0      | 42          | 5210      | 81.94          | 75.07 | Pass   |
| 802.11ac-VHT80 | MCS0      | 155         | 5775      | 141.7          | 78.23 | Pass   |



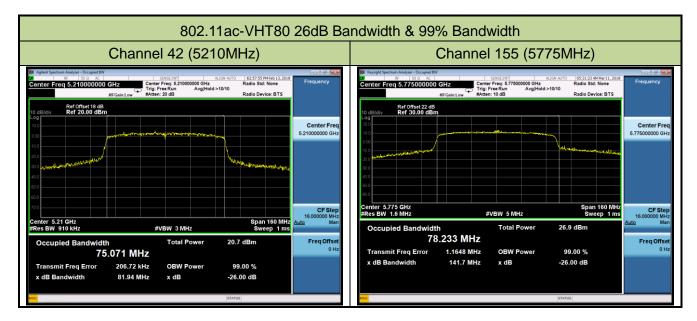














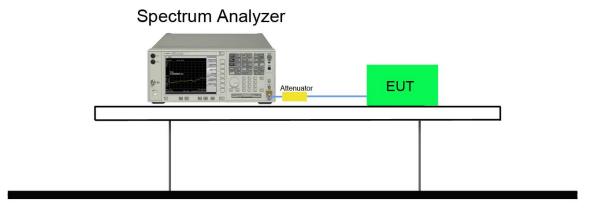





# 7.3. 6dB Bandwidth Measurement

### 7.3.1.Test Limit

The minimum 6dB bandwidth shall be at least 500 kHz.


#### 7.3.2.Test Procedure used

KDB 789033 D02v02r01 - Section C.2

#### 7.3.3.Test Setting

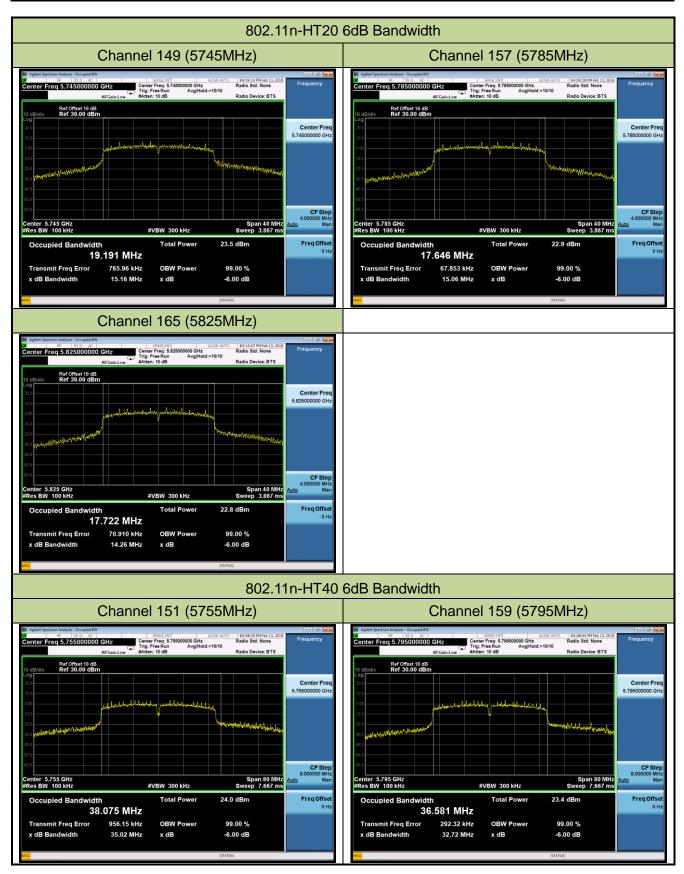
- 1. Set center frequency to the nominal EUT channel center frequency.
- 2. RBW = 100 kHz.
- 3. VBW  $\geq$  3 × RBW.
- 4. Detector = Peak.
- 5. Trace mode = max hold.
- 6. Sweep = auto couple.
- 7. Allow the trace to stabilize.
- 8. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

#### 7.3.4.Test Setup

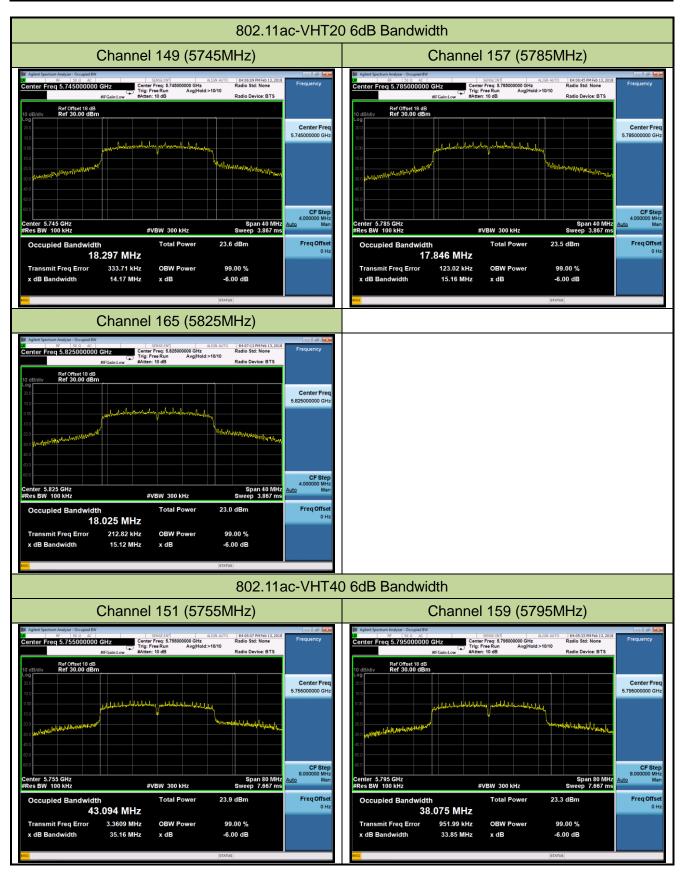




### 7.3.5.Test Result


| Product       | Wi-Fi USB Dongle | Temperature       | 23°C       |
|---------------|------------------|-------------------|------------|
| Test Engineer | Hunk Li          | Relative Humidity | 52%        |
| Test Site     | TR3              | Test Date         | 2018/02/13 |

| Test Mode      | Data Rate<br>(Mbps) | Channel No. | Frequency<br>(MHz) | 6dB Bandwidth<br>(MHz) | Limit<br>(MHz) | Result |
|----------------|---------------------|-------------|--------------------|------------------------|----------------|--------|
| 802.11a        | 6                   | 149         | 5745               | 15.11                  | ≥ 0.5          | Pass   |
| 802.11a        | 6                   | 157         | 5785               | 15.29                  | ≥ 0.5          | Pass   |
| 802.11a        | 6                   | 165         | 5825               | 14.49                  | ≥ 0.5          | Pass   |
| 802.11n-HT20   | MCS0                | 149         | 5745               | 15.16                  | ≥ 0.5          | Pass   |
| 802.11n-HT20   | MCS0                | 157         | 5785               | 15.06                  | ≥ 0.5          | Pass   |
| 802.11n-HT20   | MCS0                | 165         | 5825               | 14.26                  | ≥ 0.5          | Pass   |
| 802.11n-HT40   | MCS0                | 151         | 5755               | 35.02                  | ≥ 0.5          | Pass   |
| 802.11n-HT40   | MCS0                | 159         | 5795               | 32.72                  | ≥ 0.5          | Pass   |
| 802.11ac-VHT20 | MCS0                | 149         | 5745               | 14.17                  | ≥ 0.5          | Pass   |
| 802.11ac-VHT20 | MCS0                | 157         | 5785               | 15.16                  | ≥ 0.5          | Pass   |
| 802.11ac-VHT20 | MCS0                | 165         | 5825               | 15.12                  | ≥ 0.5          | Pass   |
| 802.11ac-VHT40 | MCS0                | 151         | 5755               | 35.16                  | ≥ 0.5          | Pass   |
| 802.11ac-VHT40 | MCS0                | 159         | 5795               | 33.85                  | ≥ 0.5          | Pass   |
| 802.11ac-VHT80 | MCS0                | 155         | 5775               | 72.65                  | ≥ 0.5          | Pass   |




|                                                                               |                                                                                                                 | 802.                                                                                | .11a 6dB Bandwidth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cł                                                                            | nannel 149 (574                                                                                                 | 15MHz)                                                                              | Channel 157 (5785MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Ref Offset 18 dB                                                              | Center Freq: 5.74500000 GHz<br>in:Low #Atten: 10 dB                                                             | LIGN AUTO 04:18:33 PM Feb 13, 2018<br>Radio Std: None<br>10/10<br>Radio Device: BTS | Aplier Spectrum Analyser - Occupied BW     BO 0 - Coccupied BW     Center Freq 5:785000000 GHz     Center Freq 5:785000000 GHz     Center Freq 5:785000000 GHz     Center Freq 5:785000000 GHz     Ref Offset 19 dB     Ref Offset 19 dB     10 dB/dW Ref Offset 19 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| •g                                                                            | and and a set of the second | - and Marine Marine and                                                             | Center Freq         Center Freq |
| enter 5.745 GHz<br>Res BW 100 kHz                                             | #VBW 300 kHz                                                                                                    | Span 40 MHz<br>Sweep 3.867 ms                                                       | CF Step<br>4.000000 MHz<br>Man<br>#Res BW 100 kHz<br>#VBW 300 kHz<br>Sweep 3.857 ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Transmit Freq Error 2                                                         | Total Power<br>67 MHz<br>204.49 kHz OBW Power<br>15.11 MHz x dB                                                 | 23.5 dBm<br>99.00 %<br>-6.00 dB                                                     | Freq Offset<br>0 Hz         Occupied Bandwidth         Total Power         23.1 dBm         Freq Offset<br>0 Hz           Transmit Freq Error         1.2324 MHz         OBW Power         99.00 %         1           x dB Bandwidth         15.29 MHz         x dB         -6.00 dB         -6.00 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Agilent Spectrum Analyzer - Occupied BW RF 58 0 AC enter Freq 5.825000000 GHz | Center Freq: 6500000 0Hz<br>Center Freq: 6500000 0Hz<br>anclow Staten: 10 dB                                    | LIGN AUTO 04:11:07 PM Feb 13, 2018<br>Radio Std: None                               | Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Ref Offset 18 dB<br>Ref 30.00 dBm                                             | and and a second and | 5.                                                                                  | Center Freq<br>5.82500000 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| )<br>)<br>)<br>)<br>)                                                         |                                                                                                                 | undelastic planane franskran india je navnj                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| enter 5.825 GHz<br>tes BW 100 kHz                                             | #VBW 300 kHz                                                                                                    | Span 40 MHz<br>Sweep 3.867 ms                                                       | CF Step<br>4 00000 MHz<br><u>uto</u> Man                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Occupied Bandwidth<br>18.19                                                   | Total Power<br>32 MHz                                                                                           | 22.5 dBm                                                                            | Freq Offset<br>0 Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Transmit Freq Error 5                                                         | 570.36 kHz OBW Power<br>14.49 MHz x dB                                                                          | 99.00 %<br>-6.00 dB                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| a                                                                             |                                                                                                                 | STATUS                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |











|                                                                                                                                                                                                                                                                                                                                               | 802.11ac-VHT8                                                                                                          | 0 6dB Bandwidth |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------|
| Channel 155 (5775                                                                                                                                                                                                                                                                                                                             | iMHz)                                                                                                                  |                 |
| Appleid Spectrum Andriger - Occupied BW         ALSOI           BF         50 a. AC         Extension           Center Freq 5.775000000 GHz         Efficienclaw         Center Freq 5.775000000 GHz           BF 0 more 15 dB         #FGainclaw         AugiNoidx-101           Ref Offset 15 dB         Ref 30.00 dBm         Market 16 dB | Radio Std: None Frequency                                                                                              |                 |
|                                                                                                                                                                                                                                                                                                                                               | Center Freq<br>5.77500000 GHz                                                                                          |                 |
| Center 5.775 GHz<br>#Res BW 100 kHz #VBW 300 kHz<br>Occupied Bandwidth Total Power<br>92.074 MHz                                                                                                                                                                                                                                              | Span 160 MHz<br>Sweep 15.33 ms         CF Step<br>16 000000 MHz<br>Auto           25.0 dBm         Freq Offset<br>0 Hz |                 |
| Transmit Freq Error 378.30 kHz OBW Power<br>x dB Bandwidth 72.65 MHz x dB                                                                                                                                                                                                                                                                     | 99.00 %<br>-6.00 dB                                                                                                    |                 |



### 7.4. Output Power Measurement

### 7.4.1.Test Limit

### For FCC

For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi.

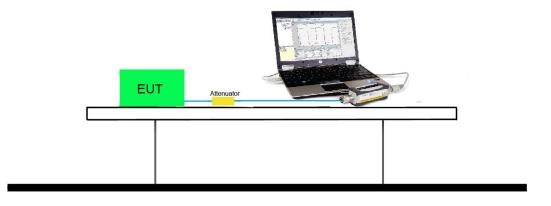
For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W (30dBm). If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

### For IC

For the band 5.15-5.25 GHz, the maximum e.i.r.p. shall not exceed 200 mW (23.01dBm) or  $10 + 10 \log_{10} B$ , dBm, whichever is less. B is the 99% emission bandwidth in MHz.

For the 5.725-5.85 GHz band, the maximum conducted output power shall not exceed 1 W. If transmitting antennas of directional gain greater than 6dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

### 7.4.2.Test Procedure Used


KDB 789033 D02v02r01 - Section E) 3) b) Method PM-G

### 7.4.3.Test Setting

Average power measurements were perform only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor. The power meter implemented triggering and gating capabilities which were set up such that power measurements were recorded only during the ON time of the transmitter. The trace was averaged over 100 traces to obtain the final measured average power.



# 7.4.4.Test Setup



### 7.4.5.Test Result

Power output test was verified over all data rates of each mode shown as below, and then choose the maximum power output (Gray Marker) for final test of each channel.

| Test Mode | Bandwidth | Channel | Frequency | Data Rate | Average Power |
|-----------|-----------|---------|-----------|-----------|---------------|
|           |           |         | (MHz)     | (Mbps)    | (dBm)         |
|           |           |         |           | 6         | 16.38         |
| 802.11a   | 20        | 36      | 5180      | 24        | 16.01         |
|           |           |         |           | 54        | 15.72         |
|           |           |         |           | MCS0      | 16.35         |
| 802.11n   | 20        | 36      | 5180      | MCS3      | 16.03         |
|           |           |         |           | MCS7      | 15.68         |
|           |           |         |           | MCS0      | 14.12         |
| 802.11n   | 40        | 38      | 5190      | MCS3      | 13.79         |
|           |           |         |           | MCS7      | 13.44         |
|           |           |         |           | MCS0      | 16.14         |
| 802.11ac  | 20        | 36      | 5180      | MCS4      | 15.77         |
|           |           |         |           | MCS8      | 15.37         |
|           |           |         |           | MCS0      | 13.72         |
| 802.11ac  | 40        | 38      | 5190      | MCS4      | 13.34         |
|           |           |         |           | MCS9      | 13.03         |
|           |           |         |           | MCS0      | 13.24         |
| 802.11ac  | 80        | 42      | 5210      | MCS4      | 12.86         |
|           |           |         |           | MCS9      | 12.47         |

# Output power at various data rates:



| Product       | Wi-Fi USB Dongle | Temperature       | 22°C       |
|---------------|------------------|-------------------|------------|
| Test Engineer | Hunk Li          | Relative Humidity | 54%        |
| Test Site     | TR3              | Test Date         | 2018/02/08 |

| Test Mode  | Data   | Channel | Freq. | Average | Average | EIRP  | EIRP  | Result |
|------------|--------|---------|-------|---------|---------|-------|-------|--------|
|            | Rate   | No.     | (MHz) | Power   | Power   | Power | Power |        |
|            | (Mbps) |         |       | (dBm)   | Limit   | (dBm) | Limit |        |
|            |        |         |       |         | (dBm)   |       | (dBm) |        |
| 11a        | 6      | 36      | 5180  | 16.38   | ≤ 23.98 | 19.38 | 22.29 | Pass   |
| 11a        | 6      | 44      | 5220  | 17.10   | ≤ 23.98 | 20.10 | 22.29 | Pass   |
| 11a        | 6      | 48      | 5240  | 16.78   | ≤ 23.98 | 19.78 | 22.29 | Pass   |
| 11a        | 6      | 149     | 5745  | 17.30   | ≤ 30.00 |       |       | Pass   |
| 11a        | 6      | 157     | 5785  | 16.71   | ≤ 30.00 |       |       | Pass   |
| 11a        | 6      | 165     | 5825  | 16.28   | ≤ 30.00 |       |       | Pass   |
| 11n-HT20   | MCS0   | 36      | 5180  | 16.35   | ≤ 23.98 | 19.35 | 22.53 | Pass   |
| 11n-HT20   | MCS0   | 44      | 5220  | 16.81   | ≤ 23.98 | 19.81 | 22.53 | Pass   |
| 11n-HT20   | MCS0   | 48      | 5240  | 16.47   | ≤ 23.98 | 19.47 | 22.53 | Pass   |
| 11n-HT20   | MCS0   | 149     | 5745  | 17.17   | ≤ 30.00 |       |       | Pass   |
| 11n-HT20   | MCS0   | 157     | 5785  | 16.72   | ≤ 30.00 |       |       | Pass   |
| 11n-HT20   | MCS0   | 165     | 5825  | 16.38   | ≤ 30.00 |       |       | Pass   |
| 11n-HT40   | MCS0   | 38      | 5190  | 14.12   | ≤ 23.98 | 17.12 | 23.01 | Pass   |
| 11n-HT40   | MCS0   | 46      | 5230  | 16.70   | ≤ 23.98 | 19.70 | 23.01 | Pass   |
| 11n-HT40   | MCS0   | 151     | 5755  | 17.13   | ≤ 30.00 |       |       | Pass   |
| 11n-HT40   | MCS0   | 159     | 5795  | 16.57   | ≤ 30.00 |       |       | Pass   |
| 11ac-VHT20 | MCS0   | 36      | 5180  | 16.14   | ≤ 23.98 | 19.14 | 22.52 | Pass   |
| 11ac-VHT20 | MCS0   | 44      | 5220  | 16.65   | ≤ 23.98 | 19.65 | 22.52 | Pass   |
| 11ac-VHT20 | MCS0   | 48      | 5240  | 16.42   | ≤ 23.98 | 19.42 | 22.52 | Pass   |
| 11ac-VHT20 | MCS0   | 149     | 5745  | 17.37   | ≤ 30.00 |       |       | Pass   |
| 11ac-VHT20 | MCS0   | 157     | 5785  | 16.61   | ≤ 30.00 |       |       | Pass   |
| 11ac-VHT20 | MCS0   | 165     | 5825  | 16.31   | ≤ 30.00 |       |       | Pass   |
| 11ac-VHT40 | MCS0   | 38      | 5190  | 13.72   | ≤ 23.98 | 16.72 | 23.01 | Pass   |
| 11ac-VHT40 | MCS0   | 46      | 5230  | 16.82   | ≤ 23.98 | 19.82 | 23.01 | Pass   |
| 11ac-VHT40 | MCS0   | 151     | 5755  | 17.35   | ≤ 30.00 |       |       | Pass   |
| 11ac-VHT40 | MCS0   | 159     | 5795  | 16.65   | ≤ 30.00 |       |       | Pass   |
| 11ac-VHT80 | MCS0   | 42      | 5210  | 13.24   | ≤ 23.98 | 16.24 | 23.01 | Pass   |
| 11ac-VHT80 | MCS0   | 155     | 5775  | 16.86   | ≤ 30.00 |       |       | Pass   |

Note 1: Max Conducted Output Power Limit Calculation as below:



Note 2: EIRP Power Limit Calculation as below:

For 5150-5250MHz

 $802.11a: 10 + 10 \log_{10} (16.94 MHz) = 22.29 dBm < 23.01 dBm;$ 

802.11n-HT20: 10 + 10 log<sub>10</sub> (17.89MHz) = 22.53dBm < 23.01dBm;

 $802.11n-HT40: 10 + 10 \log_{10} B > 23.01dBm;$ 

 $802.11ac-VHT20: 10 + 10 \log_{10} (17.85MHz) = 22.52dBm < 23.01dBm;$ 

802.11ac-VHT40: 10 + 10  $\log_{10} B > 23.01 dBm$ ;

802.11ac-VHT80:  $10 + 10 \log_{10} B > 23.01 dBm$ .



# 7.5. Power Spectral Density Measurement

### 7.5.1.Test Limit

### For FCC

For client devices in the 5.15-5.25 GHz band, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band.

For the band 5.725-5.85 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band.

If transmitting antennas of directional gain greater than 6dBi are used, the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

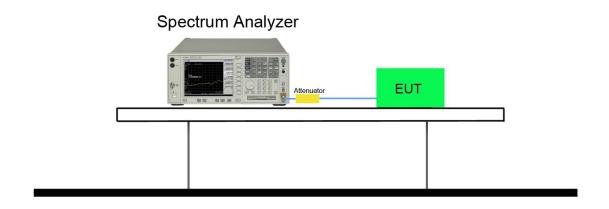
### For IC

For the band 5.15-5.25 GHz, the e.i.r.p. spectral density shall not exceed 10 dBm in any 1.0 MHz band.

For the 5.725-5.85 GHz band, the power spectral density shall not exceed 30 dBm in any 500 kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, the output power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

#### 7.5.2.Test Procedure Used

KDB 789033 D02v02r01 - Section F


### 7.5.3.Test Setting

- 1. Analyzer was set to the center frequency of the UNII channel under investigation
- 2. Span was set to encompass the entire 26dB OBW of the signal.
- 3. RBW = 1MHz, if measurement bandwidth of Maximum PSD is specified in 500 kHz,
- 4. RBW = 100 kHz
- 5. VBW = 3MHz
- 6. Number of sweep points  $\geq 2 \times (\text{span} / \text{RBW})$
- 7. Detector = power averaging (RMS)
- 8. Sweep time = auto
- 9. Trigger = free run
- 10. Use the peak search function on the instrument to find the peak of the spectrum and record its value.



- 11. Add 10\*log(1/x), where x is the duty cycle, to the measured power in order to compute the average power during the actual transmission times (because the measurement represents an average over both the on and off times of the transmission). For example, add 10\*log(1/0.25) = 6 dB if the duty cycle is 25 percent.
- 12. When the measurement bandwidth of Maximum PSD is specified in 500 kHz, add a constant factor 10\*log(500kHz/100kHz) = 6.99 dB to the measured result

### 7.5.4.Test Setup





### 7.5.5.Test Result

| Product       | Wi-Fi USB Dongle | Temperature       | 22°C                    |
|---------------|------------------|-------------------|-------------------------|
| Test Engineer | Hunk Li          | Relative Humidity | 54%                     |
| Test Site     | TR3              | Test Date         | 2018/02/13 ~ 2018/03/01 |

| Test Mode  | Data<br>Rate<br>(Mbps) | Channel<br>No. | Freq.<br>(MHz) | PSD<br>(dBm /<br>MHz) | Duty<br>Cycle<br>(%) | Final<br>PSD<br>(dBm /<br>MHz) | Limit<br>(dBm /<br>MHz) | EIRP<br>PSD<br>(dBm /<br>MHz) | EIRP<br>Limit<br>(dBm /<br>MHz) | Result |
|------------|------------------------|----------------|----------------|-----------------------|----------------------|--------------------------------|-------------------------|-------------------------------|---------------------------------|--------|
| 11a        | 6                      | 36             | 5180           | 5.12                  | 95.12                | 5.34                           | ≤ 11.00                 | 8.34                          | 10.00                           | Pass   |
| 11a        | 6                      | 44             | 5220           | 6.41                  | 95.12                | 6.63                           | ≤ 11.00                 | 9.63                          | 10.00                           | Pass   |
| 11a        | 6                      | 48             | 5240           | 6.13                  | 95.12                | 6.35                           | ≤ 11.00                 | 9.35                          | 10.00                           | Pass   |
| 11n-HT20   | MCS0                   | 36             | 5180           | 4.81                  | 93.86                | 5.09                           | ≤ 11.00                 | 8.09                          | 10.00                           | Pass   |
| 11n-HT20   | MCS0                   | 44             | 5220           | 6.29                  | 93.86                | 6.57                           | ≤ 11.00                 | 9.57                          | 10.00                           | Pass   |
| 11n-HT20   | MCS0                   | 48             | 5240           | 6.36                  | 93.86                | 6.64                           | ≤ 11.00                 | 9.64                          | 10.00                           | Pass   |
| 11n-HT40   | MCS0                   | 38             | 5190           | -0.17                 | 89.01                | 0.34                           | ≤ 11.00                 | 3.34                          | 10.00                           | Pass   |
| 11n-HT40   | MCS0                   | 46             | 5230           | 3.03                  | 89.01                | 3.54                           | ≤ 11.00                 | 6.54                          | 10.00                           | Pass   |
| 11ac-VHT20 | MCS0                   | 36             | 5180           | 4.64                  | 95.08                | 4.86                           | ≤ 11.00                 | 7.86                          | 10.00                           | Pass   |
| 11ac-VHT20 | MCS0                   | 44             | 5220           | 6.05                  | 95.08                | 6.27                           | ≤ 11.00                 | 9.27                          | 10.00                           | Pass   |
| 11ac-VHT20 | MCS0                   | 48             | 5240           | 5.59                  | 95.08                | 5.81                           | ≤ 11.00                 | 8.81                          | 10.00                           | Pass   |
| 11ac-VHT40 | MCS0                   | 38             | 5190           | -0.96                 | 89.67                | -0.49                          | ≤ 11.00                 | 2.51                          | 10.00                           | Pass   |
| 11ac-VHT40 | MCS0                   | 46             | 5230           | 2.98                  | 89.67                | 3.45                           | ≤ 11.00                 | 6.45                          | 10.00                           | Pass   |
| 11ac-VHT80 | MCS0                   | 42             | 5210           | -4.24                 | 84.26                | -3.50                          | ≤ 11.00                 | -0.50                         | 10.00                           | Pass   |

Note 1: When EUT duty cycle < 98%, Final PSD (dBm/MHz) = PSD (dBm/MHz) + 10\*log (1/Duty Cycle).

Note 2: EIRP PSD (dBm/MHz) = Final PSD (dBm/MHz) + Antenna Gain (dBi).



| Test Mode  | Data   | Channel | Freq. | PSD     | Duty  | Constant | Final PSD | Limit | Result |
|------------|--------|---------|-------|---------|-------|----------|-----------|-------|--------|
|            | Rate   | No.     | (MHz) | (dBm/   | Cycle | Factor   | (dBm/     | (dBm/ |        |
|            | (Mbps) |         |       | 100KHz) | (%)   |          | 500kHz)   | MHz)  |        |
| 11a        | 6      | 149     | 5745  | -2.11   | 95.12 | 6.99     | 5.10      | 30.00 | Pass   |
| 11a        | 6      | 157     | 5785  | -2.90   | 95.12 | 6.99     | 4.31      | 30.00 | Pass   |
| 11a        | 6      | 165     | 5825  | -3.19   | 95.12 | 6.99     | 4.02      | 30.00 | Pass   |
| 11n-HT20   | MCS0   | 149     | 5745  | -2.71   | 93.86 | 6.99     | 4.56      | 30.00 | Pass   |
| 11n-HT20   | MCS0   | 157     | 5785  | -3.27   | 93.86 | 6.99     | 4.00      | 30.00 | Pass   |
| 11n-HT20   | MCS0   | 165     | 5825  | -3.58   | 93.86 | 6.99     | 3.69      | 30.00 | Pass   |
| 11n-HT40   | MCS0   | 151     | 5755  | -5.87   | 89.01 | 6.99     | 1.63      | 30.00 | Pass   |
| 11n-HT40   | MCS0   | 159     | 5795  | -6.27   | 89.01 | 6.99     | 1.23      | 30.00 | Pass   |
| 11ac-VHT20 | MCS0   | 149     | 5745  | -2.43   | 95.08 | 6.99     | 4.78      | 30.00 | Pass   |
| 11ac-VHT20 | MCS0   | 157     | 5785  | -3.38   | 95.08 | 6.99     | 3.83      | 30.00 | Pass   |
| 11ac-VHT20 | MCS0   | 165     | 5825  | -3.35   | 95.08 | 6.99     | 3.86      | 30.00 | Pass   |
| 11ac-VHT40 | MCS0   | 151     | 5755  | -5.66   | 89.67 | 6.99     | 1.80      | 30.00 | Pass   |
| 11ac-VHT40 | MCS0   | 159     | 5795  | -6.41   | 89.67 | 6.99     | 1.05      | 30.00 | Pass   |
| 11ac-VHT80 | MCS0   | 155     | 5775  | -9.71   | 84.26 | 6.99     | -1.98     | 30.00 | Pass   |

Note: When EUT duty cycle < 98%, Final PSD (dBm/500kHz) = PSD (dBm/100kHz) + Constant Factor + 10\*log (1/Duty Cycle).