FCC§ 15.319 (i) &2.1091 - RF RADIATION EXPOSURE

Limit

According to FCC §15.319(i) and §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm2)	Averaging Time (minute)					
Limits for General Population/Uncontrolled Exposure									
0.3-1.34	614	1.63	*(100)	30					
1.34-30	842/f	2.19/f	*(180/f\2\)	30					
30-300	27.5	0.073	0.2	30					
300-1500	/	/	f/1500	30					
1500-100,000	/	/	1.0	30					

Limits for Maximum Permissible Exposure (MPE) (§1.1310, §2.1091)

f = frequency in MHz

* = Plane-wave equivalent power density

MPE Calculation

Predication of MPE limit at a given distance

$$S = PG/4\pi R^2$$

Where: S = power density (in appropriate units, e.g. mW/cm²);

P = power input to the antenna (in appropriate units, e.g., mW);

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

 $R = \hat{d}$ istance to the center of radiation of the antenna (appropriate units, e.g., cm);

Frequency	Antenna Gain		Conducted Power		Evaluation	Power	MPE Limit
(MHz)	(dBi)	(numeric)	(dBm)	(mW)	Distance (cm)	Density (mW/cm ²)	(mW/cm ²)
1921.536	0	1.0	20.07	101.62	20	0.0202	1
1924.992	0	1.0	20.01	100.23	20	0.0199	1
1928.448	0	1.0	19.96	99.08	20	0.0197	1

Result: The device meets MPE limit at 20 cm distance.