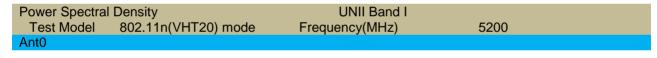
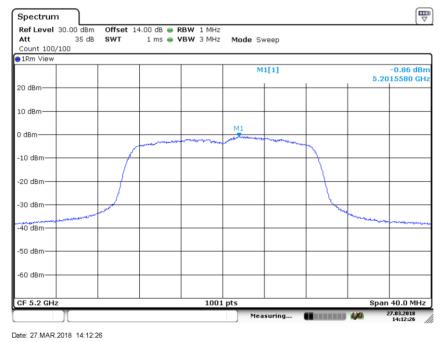


Date: 27.MAR.2018 14:09:31

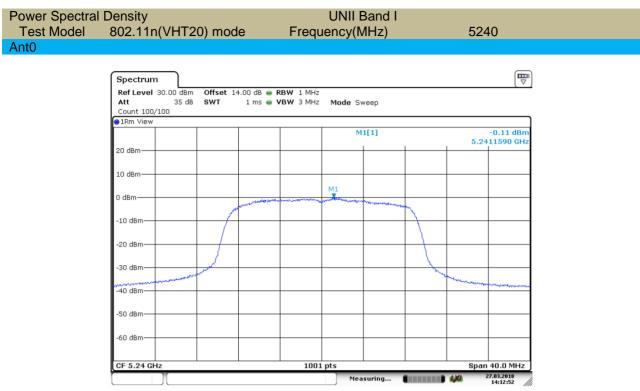


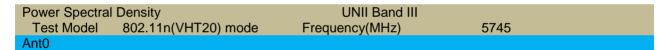
Date: 27.MAR.2018 14:11:29

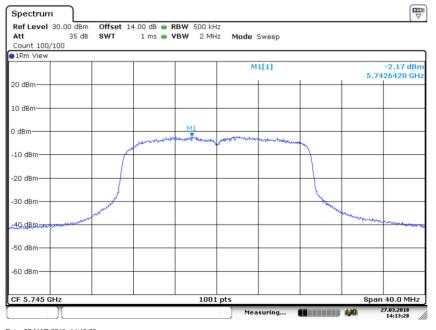

CF 5.18 GHz

-20 dBm -30 dBm -40 dBm -50 dBm

1001 pts

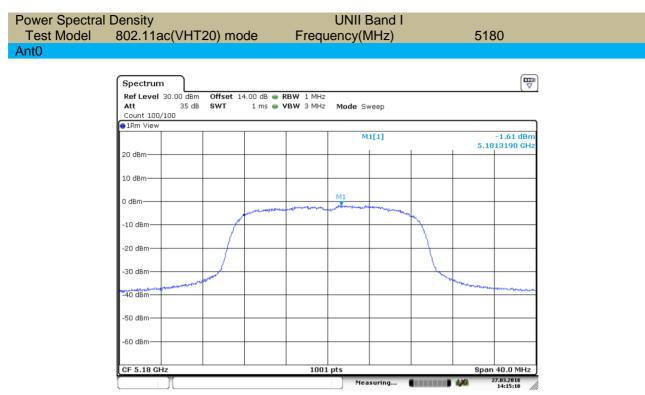

Measuring...

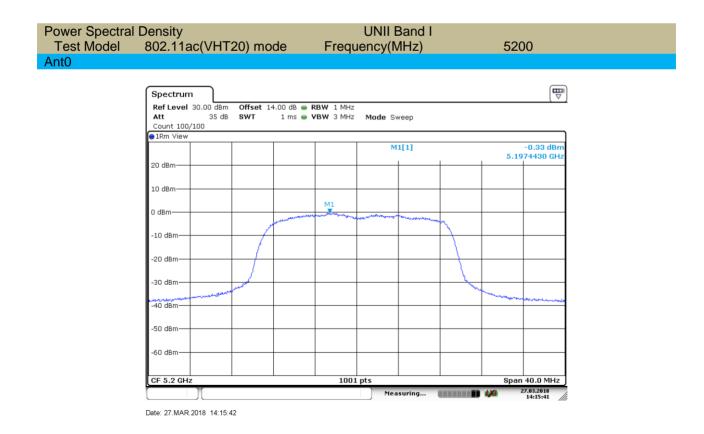

Span 40.0 MHz

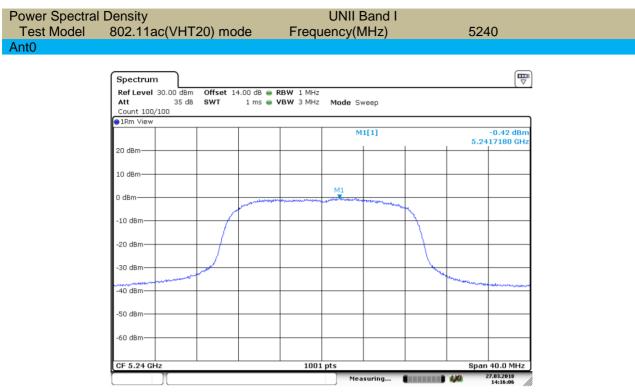

27.03.2018 14:11:29

Date: 27.MAR.2018 14:12:52

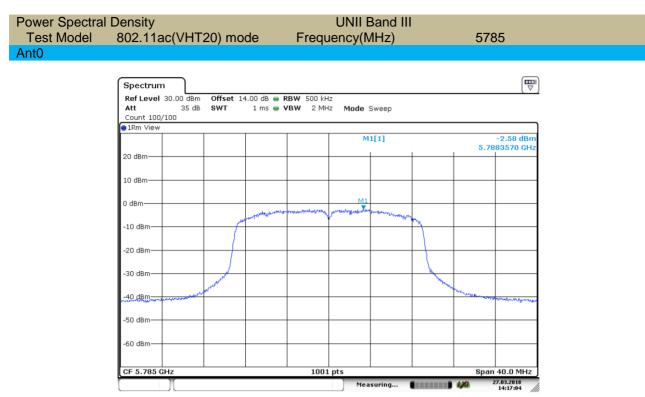
Date: 27.MAR.2018 14:13:28


Power Spectral De	nsity	UNII Band III		
Test Model 80	02.11n(VHT20) mode	Frequency(MHz)	5785	
Ant0				

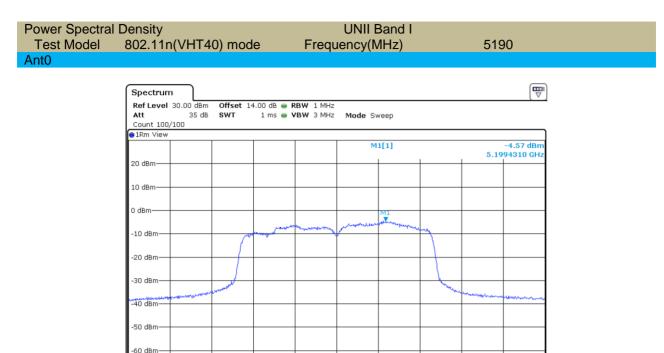

Power S	pectral Density		UNII Band III	l
Test M	odel 802.11n(\	/HT20) mode	Frequency(MHz)	5825
Ant0				




Date: 27.MAR.2018 14:15:10



Date: 27.MAR.2018 14:16:05



Date: 27.MAR.2018 14:17:05

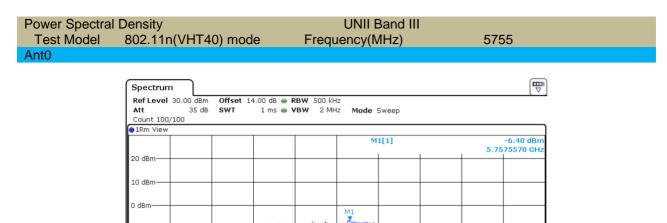
Date: 27.MAR.2018 14:18:16

1001 pts

Measuring...

• • • • • •

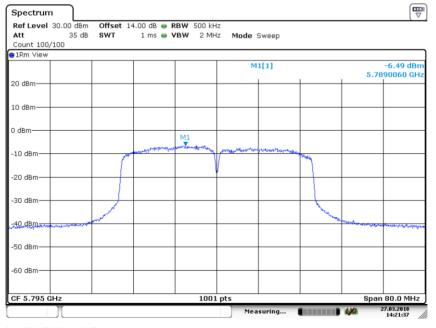
Date: 27.MAR.2018 14:19:56


CF 5.19 GHz

Span 80.0 MHz

27.03.2018 14:19:56

Date: 27.MAR.2018 14:21:11


CF 5.755 GHz

-10 dBm--20 dBm--30 dBm--40 dBm--50 dBm-

1001 pts

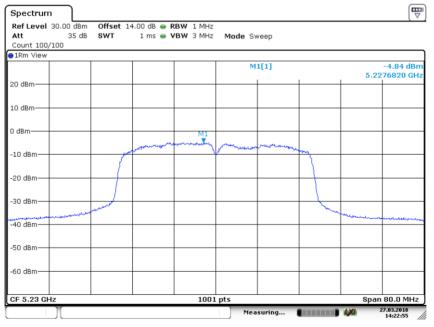
Measuring...

Date: 27.MAR.2018 14:21:37

Span 80.0 MHz

27.03.2018 14:21:12

 Power Spectral Density
 UNII Band I


 Test Model
 802.11ac(VHT40) mode
 Frequency(MHz)
 5190

 Ant0
 Frequency(MHz)
 5190

Date: 27.MAR.2018 14:22:30

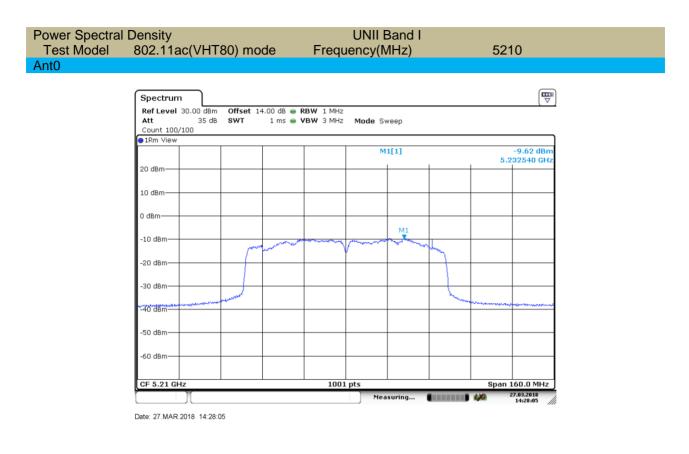
Power Spectral	Density	UNII Band I		
Test Model	802.11ac(VHT40) mode	Frequency(MHz)	5230	
Ant0				

Date: 27.MAR.2018 14:22:55

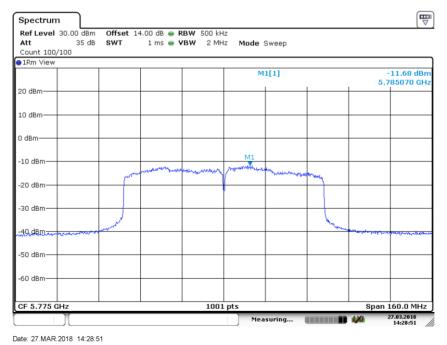
Power Spectral Density

UNII Band III

Test Model	802.11ac(VHT40) mode	Frequency(MHz)	5755
Ant0			


Date: 27.MAR.2018 14:23:38

Power Spectral	Density	UNII Band III		
Test Model	802.11ac(VHT40) mode	Frequency(MHz)	5795	
Ant0				



Date: 27.MAR.2018 14:24:09

TRF No.: FCC 15.407/A

8.4 FREQUENCY STABILITY

8.4.1 Applicable Standard

According to FCC Part 15.407(g) ANSI C63.10 Section 6.8

8.4.2 Conformance Limit

Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the users manual.

8.4.3 Test Configuration

Test according to clause 6.1 radio frequency test setup

8.4.4 Test Procedure

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously

Set RBW = 10 kHz.

Set the video bandwidth (VBW) =30 kHz.

Set Span= Entire absence of modulation emissions bandwidth

Set Detector = Peak.

Set Trace mode = max hold.

Set Sweep = auto couple.

Allow the trace to stabilize.

The test extreme voltage is to change the primary supply voltage from 85 to 115 percent of the nominal value.

Beginning at each temperature level specified in user manual, the frequency shall be measured within one minute after application of primary power to the transmitter and at intervals of no more than one minute thereafter until ten minutes have elapsed or until sufficient measurements are obtained to indicate clearly that the frequency has stabilized within the applicable tolerance, whichever time period is greater. During each test, the ambient temperature shall not be allowed to rise more than 10° centigrade above the respective beginning ambient temperature level

Measure and record the results in the test report.

8.4.5 Test Results

The modes 802.11a/n/ac has been tested and the worst result recorded as below: The modes 802.11a/n/ac has been tested and the worst result recorded as below: The modes 802.11a/n/ac has been tested and the worst result recorded as below:

All mode and channels have been test, and the worst result have been recorded in the report.

	20°C 65 %	5180 Test Date : Test By:	March 27, 201 King Kong	8
Voltage(V)	Temp(°C)	Test Frequency (MHz)	Max. Deviation (KHz)	Verdict
	-20	5180.0281	5.42	Pass
	-10	5180.0281	5.42	Pass
	0	5180.0281	5.42	Pass
Vnom	10	5180.0281	5.42	Pass
VIIOIII	20	5180.0281	5.42	Pass
	30	5180.0281	5.42	Pass
	40	5180.0281	5.42	Pass
	50	5180.0281	5.42	Pass
85% Vnom	20	5180.0281	5.42	Pass

802.11n20		5180	
Temperature :		Test Date :	March 27, 2018
Humidity :	65 %	Test By:	King Kong

Voltage(V)	Temp(°C)	Test Frequency (MHz)	Max. Deviation (KHz)	Verdict
	-20	5180.0159	3.07	Pass
	-10	5180.0159	3.07	Pass
	0	5180.0159	3.07	Pass
Vnom	10	5180.0159	3.07	Pass
VIIOIII	20	5180.0159	3.07	Pass
	30	5180.0159	3.07	Pass
	40	5180.0159	3.07	Pass
	50	5180.0159	3.07	Pass

802.11ac20		5180	
Temperature :		Test Date : March 27, 2018	
Humidity :	65 %	Test By: King Kong	

Voltage(V)	Temp(°C)	Test Frequency (MHz)	Max. Deviation (KHz)	Verdict
	-20	5180.0198	3.82	Pass
	-10	5180.0198	3.82	Pass
	0	5180.0198	3.82	Pass
Vnom	10	5180.0198	3.82	Pass
VIIOIII	20	5180.0198	3.82	Pass
	30	5180.0198	3.82	Pass
	40	5180.0198	3.82	Pass
	50	5180.0198	3.82	Pass

remperature .	 65 %	5190 Test Date : Test By:	May04, 2017 King Kong	
Voltage(V)	Temp(°C)	Test Frequency (MHz)	Max. Deviation (KHz)	Verdict
	-20	5190.0840	16.18	Pass
	-10	5190.0840	16.18	Pass
	0	5190.0840	16.18	Pass
Vnom	10	5190.0840	16.18	Pass
VHOM	20	5190.0840	16.18	Pass
	30	5190.0840	16.18	Pass
	40	5190.0840	16.18	Pass
	50	5190.0840	16.18	Pass

802.11ac 40		5190	
Temperature :		Test Date :	March 27, 2018
Humidity :	65 %	Test By:	King Kong

Voltage(V)	Temp(°C)	Test Frequency (MHz)	Max. Deviation (KHz)	Verdict
	-20	5190.0881	16.97	Pass
	-10	5190.0881	16.97	Pass
	0	5190.0881	16.97	Pass
Vnom	10	5190.0881	16.97	Pass
VIIOIII	20	5190.0881	16.97	Pass
	30	5190.0881	16.97	Pass
	40	5190.0881	16.97	Pass
	50	5190.0881	16.97	Pass

802.11ac 80		5210	
Temperature :		Test Date :	March 27, 2018
Humidity :	65 %	Test By:	King Kong

Voltage(V)	Temp(°C)	Test Frequency (MHz)	Max. Deviation (KHz)	Verdict
	-20	5210.0879	16.87	Pass
	-10	5210.0879	16.87	Pass
	0	5210.0879	16.87	Pass
Vnom	10	5210.0879	16.87	Pass
VIIOIII	20	5210.0879	16.87	Pass
	30	5210.0879	16.87	Pass
	40	5210.0879	16.87	Pass
	50	5210.0879	16.87	Pass

8.5 UNDESIRABLE RADIATED SPURIOUS EMISSION

8.5.1 Applicable Standard

According to FCC Part 15.407 (b) According to 789033 D02 Section II(G)

8.5.2 Conformance Limit

For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

For transmitters operating in the 5.725-5.85 GHz band: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at 5 MHz above or below the band edge.

The emission measurements shall be performed using a minimum resolution bandwidth of 1 MHz. A lower resolution bandwidth may be employed near the band edge, when necessary, provided the measured energy is integrated to show the total power over 1 MHz.

Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in §15.209 The emissions from an intentional radiator shall not exceed the field strength levels specified in the following table 15.209(a):

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009-0.490	2400/F(KHz)	20 log (uV/m)	300
0.490-1.705	2400/F(KHz)	20 log (uV/m)	30
1.705-30	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

The provisions of §15.205 apply to intentional radiators operating under this section, 15.205 Restricted bands of operation

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
10.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2)
13.36-13.41			

Remark: 1. Emission level in dBuV/m=20 log (uV/m)

2. Measurement was performed at an antenna to the closed point of EUT distance of meters. 3. Only spurious frequency is permitted to locate within the Restricted Bands specified in provision of ξ 15.205, and the emissions located in restricted bands also comply with 15.209 limit.

8.5.3 Test Configuration

Test according to clause 6.2 radio frequency test setup

8.5.4 Test Procedure

Unwanted Emissions Measurements below 1000 MHz

Compliance shall be demonstrated using CISPR quasi-peak detection; however, peak detection is permitted as an alternative to quasi-peak detection.

The EUT was placed on a turn table which is 0.8m above ground plane.

And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.

Repeat above procedures until all frequency measured was complete.

We use software control the EUT, Let EUT hopping on and transmit with highest power, All the modes have been tested and the worst result was reported.

Use the following spectrum analyzer settings:

Set RBW=120kHz for f < 1 GHz(30MHz to 1GHz), 200Hz for f<150KHz(9KHz to 150KHz), 9KHz for <30MHz (150KHz to 30KHz).

Set the VBW > RBW.

Detector = Peak.

Trace mode = max hold.

Follow the guidelines in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization, etc. A pre-amp and a high pass filter are required for this test, in order to provide the measuring system with sufficient sensitivity. Allow the trace to stabilize. The peak reading of the emission, after being corrected by the antenna factor, cable loss, pre-amp gain, etc., is the peak field strength, which must comply with the limit specified in Section 15.35(b). Submit this data. Repeat above procedures until all frequency measured was complete.

Unwanted Maximum peak Emissions Measurements above 1000 MHz

Maximum emission levels are measured by setting the analyzer as follows:

RBW = 1 MHz.

VBW ≥ 3 MHz.

Detector = Peak.

Sweep time = auto.

Trace mode = max hold.

Allow sweeps to continue until the trace stabilizes. Note that if the transmission is not continuous, the time required for the trace to stabilize will increase by a factor of approximately 1/x, where x is the duty cycle. For example, at 50 percent duty cycle, the measurement time will increase by a factor of two relative to measurement time for continuous transmission.

Unwanted Average Emissions Measurements above 1000 MHz

Method VB (Averaging using reduced video bandwidth): Alternative method.

RBW = 1 MHz.

Video bandwidth. • If the EUT is configured to transmit with duty cycle \geq 98 percent, set VBW \leq RBW/100 (i.e., 10 kHz) but not less than 10 Hz.

• If the EUT duty cycle is < 98 percent, set VBW \geq 1/T, where T is defined in section II.B.1.a).

Video bandwidth mode or display mode • The instrument shall be set to ensure that video filtering is applied in the power domain. Typically, this requires setting the detector mode to RMS and setting the Average-VBW Type to Power (RMS).

• As an alternative, the analyzer may be set to linear detector mode. Ensure that video filtering is applied in linear voltage domain (rather than in a log or dB domain). Some analyzers require linear display mode in order to accomplish this. Others have a setting for Average-VBW Type, which can be set to "Voltage" regardless of the display mode.

Detector = Peak.

Sweep time = auto.

Trace mode = max hold.

Allow max hold to run for at least 50 traces if the transmitted signal is continuous or has at least 98 percent duty cycle. For lower duty cycles, increase the minimum number of traces by a factor of 1/x, where x is the duty cycle. For example, use at least 200 traces if the duty cycle is 25 percent. (If a specific emission is demonstrated to be continuous—i.e., 100 percent duty cycle—rather than turning on and off with the transmit cycle, at least 50 traces shall be averaged.)

■ Band edge measurements.

Unwanted band-edge emissions may be measured using either of the special band-edge measurement techniques (the marker-delta or integration methods) described below. Note that the marker-delta method is primarily a radiated measurement technique that requires the 99% occupied bandwidth edge to be within 2 MHz of the authorized band edge, whereas the integration method can be used in either a radiated or conducted measurement without any special requirement with regards to the displacement of the unwanted emission(s) relative to the authorized bandwidth.

Marker-Delta Method.

The marker-delta method, as described in ANSI C63.10, can be used to perform measurements of the radiated unwanted emissions level of emissions provided that the 99% occupied bandwidth of the fundamental is within 2 MHz of the authorized band-edge.

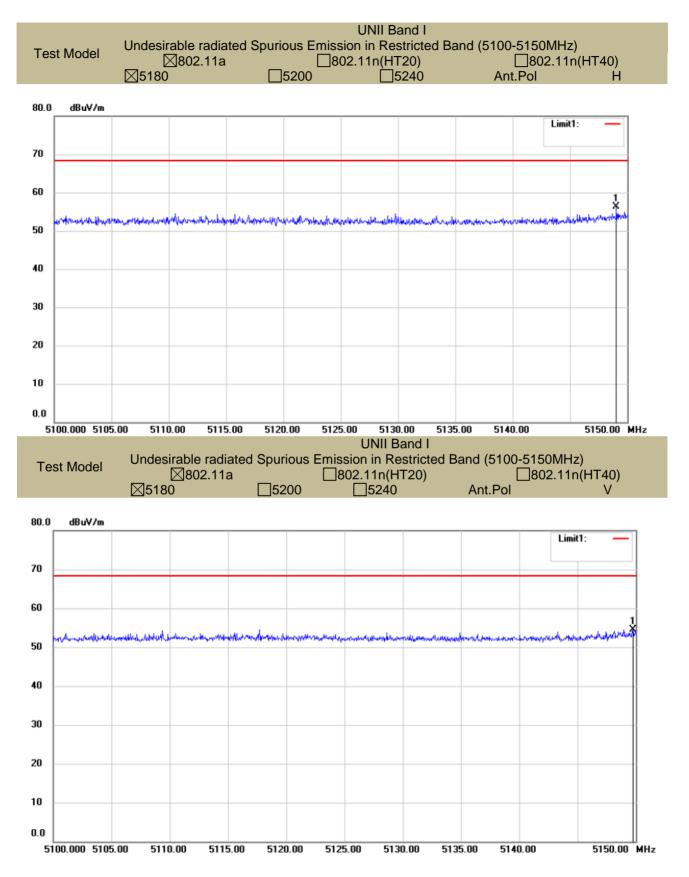
8.5.5 Test Results

■ ⊠For Undesirable radiated Spurious Emission in UNII Band I The modes 802.11a/n/ac has been tested and the worst result recorded as below:

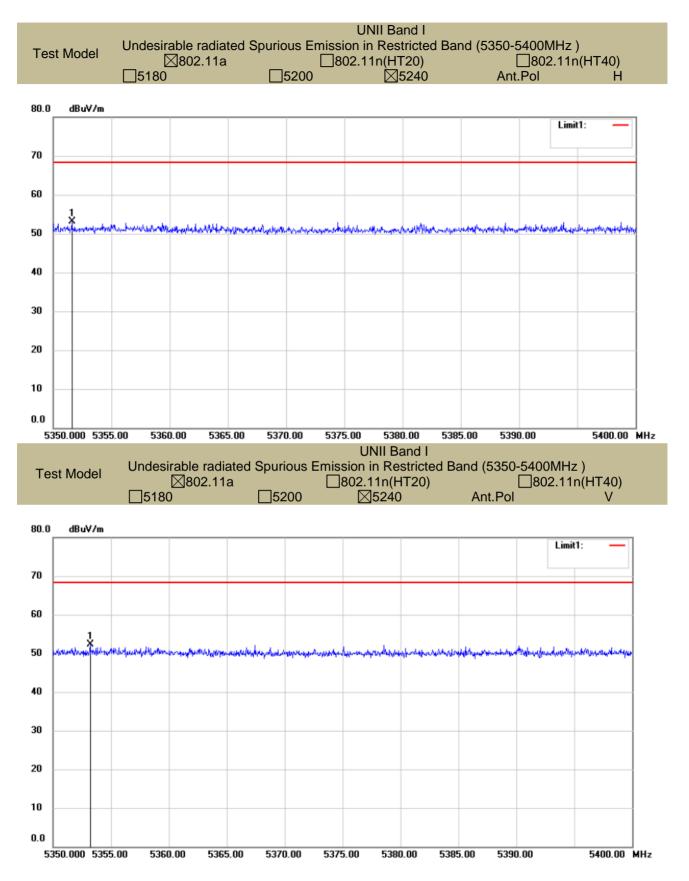
•

 Undesirable radiated Spurious Emission Above 1GHz (1GHz to 40GHz)
 Note: (1) The the amplitude of spurious emission in the 26.5GHz-40GHz that is attenuated by more than 20dB below the permissible limit has no need to be reported.

Temperature : Humidity : Test mode:	28°C 65 % 802.11ac	Test D Test B Frequ		April 18 King K 5180	8, 2018 ong	
Freq. (MHz)	Ant.Pol. H/V	Field Strength (dBuV/m)	E.I.R.P (dBm)		Limit (dBm)	Over(dB)
17133	V	51.24	-43.99		-27.00	-16.99
24596	V	49.70	-45.53		-27.00	-18.53
14720	Н	51.32	-43.91		-27.00	-16.91
26330	Н	51.15	-44.08		-27.00	-17.08
Temperature : Humidity : Test mode:	28°C 65 % 802.11ac	Test D Test B Frequ		April 18 King K 5220	8, 2018 ong	
Freq.	Ant.Pol.	Field Strength	E.I.R.P			
(MHz)	H/V	(dBuV/m)	(dBm)		Limit (dBm)	Over(dB)
16708	V	51.15	-44.08		-27.00	-17.08
24647	V	48.25	-46.98		-27.00	-19.98
13920	Н	50.52	-44.71		-27.00	-17.71
25862.5	Н	52.01	-43.22		-27.00	-16.22
Temperature : Humidity : Test mode:	28℃ 65 % 802.11ac	Test D Test B Frequ		April 18 King K 5240	8, 2018 ong	
Freq. (MHz)	Ant.Pol. H/V	Field Strength (dBuV/m)	E.I.R.P (dBm)		Limit (dBm)	Over(dB)
14362	V	50.63	-43.53		-27.00	-16.53
25777.5	V	51.52	-44.87		-27.00	-17.87
159774	Н	51.17	-43.92		-27.00	-16.92
25556	Н	51.67	-43.96		-27.00	-16.96


Undesirable radiated Undesirable radiated Spurious Emission in Band Edge lacksquare

Temperature : Humidity : Test mode:	28℃ 65 % 802.11a	Test Date Test By: Frequenc	King Ko		
Freq. (MHz)	Ant.Pol. H/V	Field Strength (RBW=100KHz) (dBuV/m)	E.I.R.P (dBm)	Limit (dBm)	Verdict
5149.75	V	54.57	-40.66	-27.00	Pass
5149.05	Н	56.38	-38.85	-27.00	Pass


Temperature : Humidity : Test mode:	28°C 65 % 802.11a	Test Date Test By: Frequenc	King Ko		
Freq. (MHz)	Ant.Pol. H/V	Field Strength (RBW=100KHz) (dBuV/m)	E.I.R.P (dBm)	Limit (dBm)	Verdict
5353.20	V	52.33	-42.90	-27.00	Pass
5351.60	Н	53.08	-42.15	-27.00	Pass

Note: (1) Emission Level= Reading Level+Probe Factor +Cable Loss. (2) EIRP[dBm] = E[dBμV/m] + 20 log(d[meters]) - 104.77 d is the measurement distance in 3 meters

For Undesirable radiated Spurious Emission in UNII Band III

All the modes 802.11a/n/ac has been tested and the worst result 802.11a recorded as below:

Undesirable radiated Spurious Emission Above 1GHz (1GHz to 40GHz) • Note: (1) The the amplitude of spurious emission in the 26.5GHz-40GHz that is attenuated by more than 20dB below the permissible limit has no need to be reported.

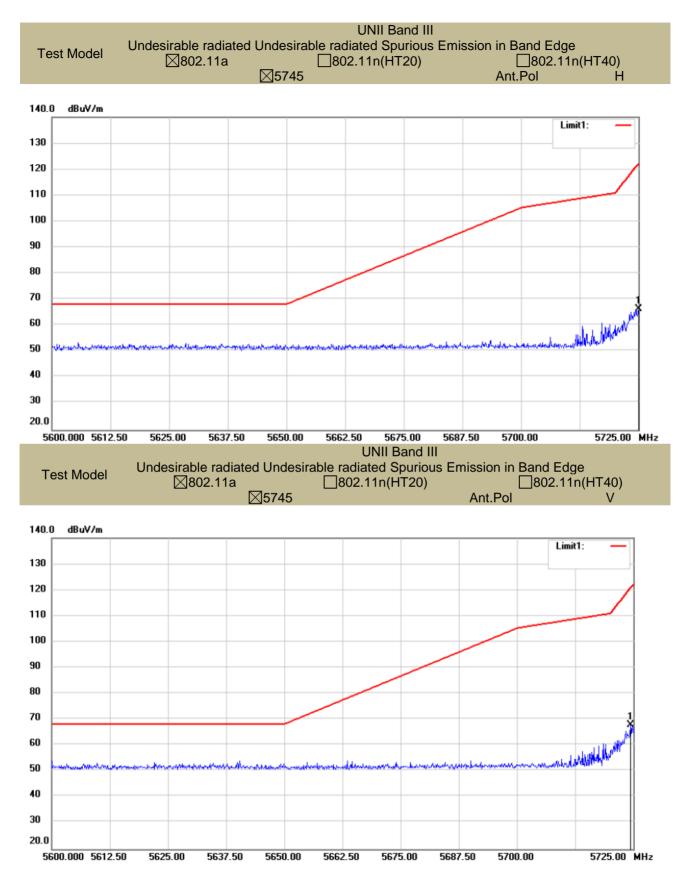
Temperature : Humidity : Test mode:	28°C 65 % 802.11a	Test D Test B Frequ		April 18, 2018 King Kong 5745	
Freq. (MHz)	Ant.Pol. H/V	Field Strength (dBuV/m)	E.I.R.P (dBm)	Limit (dBm)	Over(dB)
15178	V	51.31	-43.92	-27.00	-16.92
26364	V	50.22	-45.01	-27.00	-18.01
16419	Н	51.47	-43.76	-27.00	-16.76
25820	Н	49.20	-46.03	-27.00	-19.03

Temperature : Humidity : Test mode:	28°C 65 % 802.11a	Test D Test B Frequ		April 18, 2018 King Kong 5785	
Freq. (MHz)	Ant.Pol. H/V	Field Strength (dBuV/m)	E.I.R.P (dBm)	Limit (dBm)	Over(dB)
13801	V	51.55	-43.68	-27.00	-16.68
26245	V	50.77	-44.46	-27.00	-17.46
15773	Н	51.49	-43.74	-27.00	-16.74
26500	Н	49.05	-46.18	-27.00	-19.18

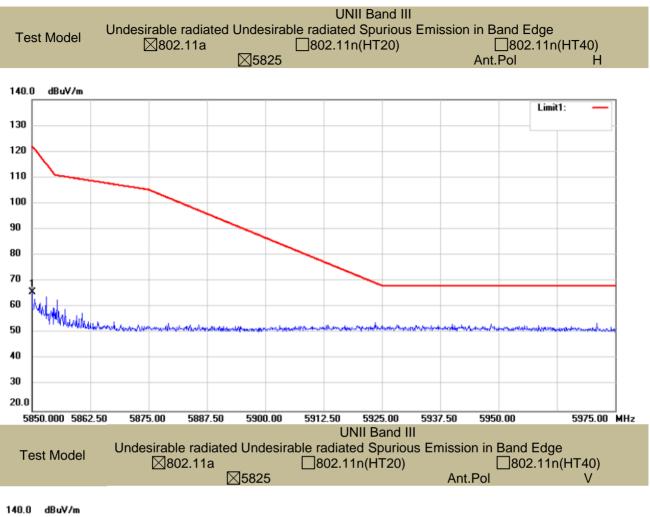
Temperature : Humidity : Test mode:	28°C 65 % 802.11a	Test D Test B Frequ		April 18, 2018 King Kong 5825	
Freq. (MHz)	Ant.Pol. H/V	Field Strength (dBuV/m)	E.I.R.P (dBm)	Limit (dBm)	Over(dB)
14328	V	50.93	-44.3	-27.00	-17.3
24902	V	49.83	-45.4	-27.00	-18.4
14260	Н	51.39	-43.84	-27.00	-16.84
24902	Н	49.83	-45.4	-27.00	-18.4

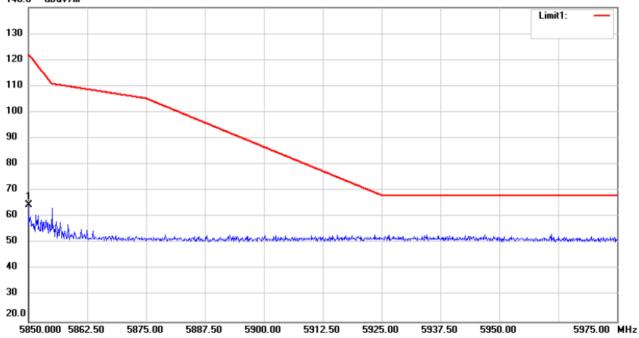
Note: (1) Emission Level= Reading Level+Probe Factor +Cable Loss.

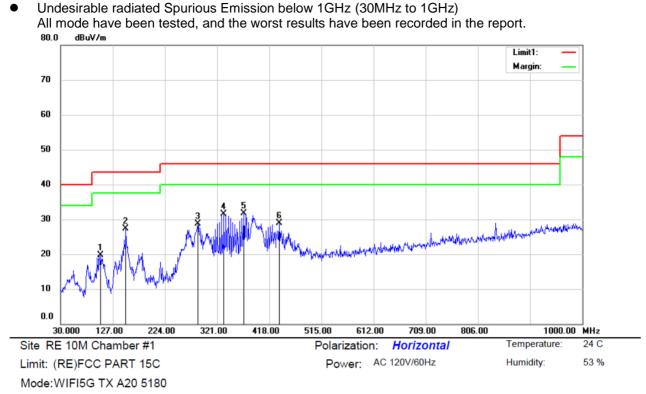
(2) EIRP[dBm] = E[dBµV/m] + 20 log(d[meters]) - 104.77 d is the measurement distance in 3 meters

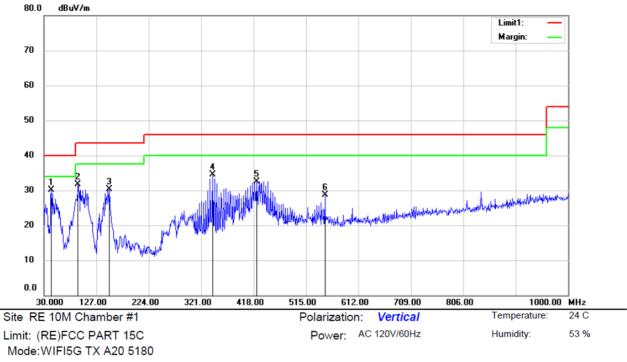

Undesirable radiated Spurious Emission in band edge lacksquare

Temperature : Humidity : Test mode:	28℃ 65 % 802.11a	Test Date Test By: Frequenc	King Ko		
Freq. (MHz)	Ant.Pol. H/V	Field Strength (RBW=100KHz) (dBuV/m)	E.I.R.P (dBm)	Limit (dBm)	Verdict
5724.375	V	67.82	-27.41	25.58	PASS
5725.000	Н	66.37	-28.86	27.00	PASS


Temperature : Humidity : Test mode:	28°C 65 % 802.11a	Test Date Test By: Frequenc	King Ko		
Freq. (MHz)	Ant.Pol. H/V	Field Strength (RBW=100KHz) (dBuV/m)	E.I.R.P (dBm)	Limit (dBm)	Verdict
5850.000	V	64.64	-30.59	27.00	PASS
5850.000	Н	65.77	-29.46	27.00	PASS

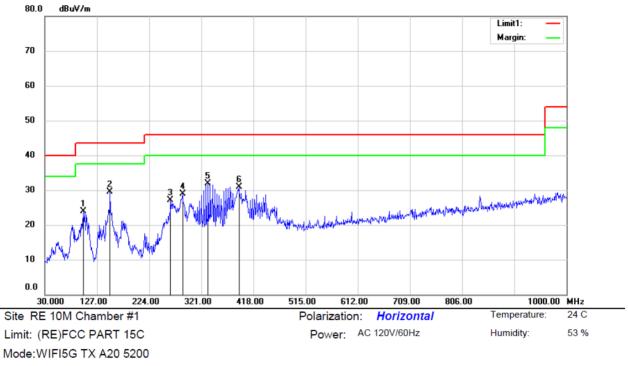

Note: (1) Emission Level= Reading Level+Probe Factor +Cable Loss. (2) EIRP[dBm] = E[dBμV/m] + 20 log(d[meters]) - 104.77 d is the measurement distance in 3 meters





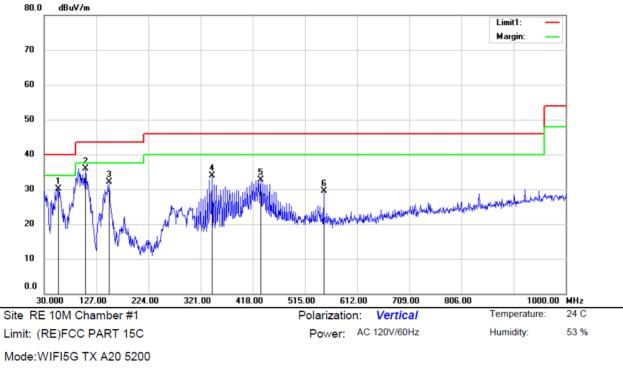

```
Note:
```

No.	Mk.	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		104.6900	35.32	-15.56	19.76	43.50	-23.74	QP			
2		151.2500	46.45	-19.07	27.38	43.50	-16.12	QP			
3		285.1100	41.47	-12.84	28.63	46.00	-17.37	QP			
4		333.6100	42.68	-11.17	31.51	46.00	-14.49	QP			
5	*	370.4700	42.26	-10.65	31.61	46.00	-14.39	QP			
6		436.4300	37.72	-8.81	28.91	46.00	-17.09	QP			



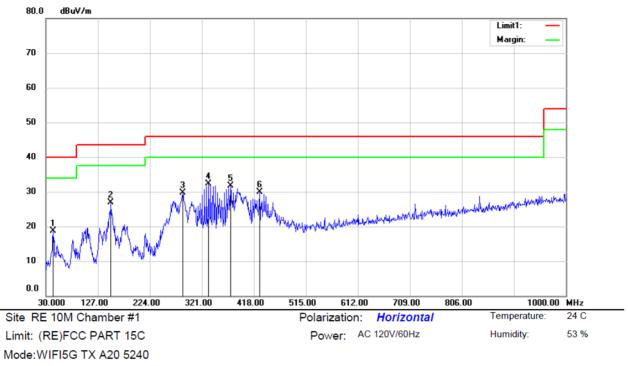

```
Note:
```

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	*	43.5800	44.32	-14.25	30.07	40.00	-9.93	QP			
2		93.0500	48.79	-17.06	31.73	43.50	-11.77	QP			
3		151.2500	49.39	-19.07	30.32	43.50	-13.18	QP			
4		342.3400	45.18	-10.72	34.46	46.00	-11.54	QP			
5		423.8200	41.43	-8.88	32.55	46.00	-13.45	QP			
6		549.9200	35.28	-6.66	28.62	46.00	-17.38	QP			



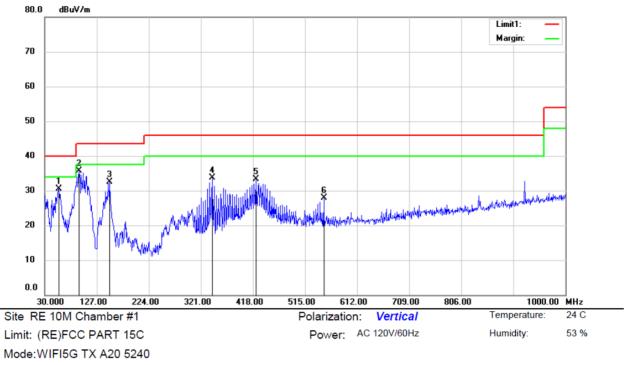

```
Note:
```

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		101.7800	39.64	-15.82	23.82	43.50	-19.68	QP			
2	*	151.2500	48.57	-19.07	29.50	43.50	-14.00	QP			
3		263.7700	40.38	-13.32	27.06	46.00	-18.94	QP			
4		286.0800	41.72	-12.79	28.93	46.00	-17.07	QP			
5		333.6100	43.17	-11.17	32.00	46.00	-14.00	QP			
6		390.8400	40.82	-9.87	30.95	46.00	-15.05	QP			



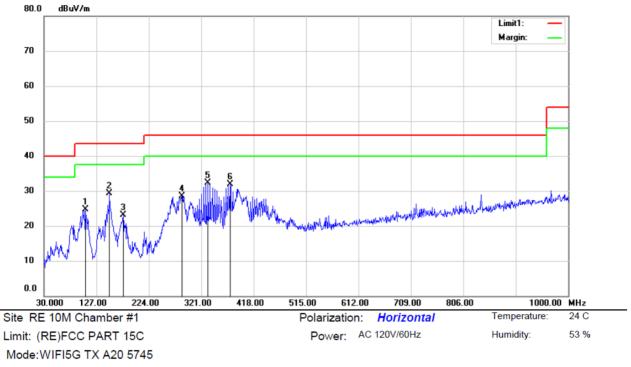

```
Note:
```

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		56.1900	44.89	-14.76	30.13	40.00	-9.87	QP			
2	*	106.6300	51.50	-15.54	35.96	43.50	-7.54	QP			
3		151.2500	51.21	-19.07	32.14	43.50	-11.36	QP			
4		342.3400	44.59	-10.72	33.87	46.00	-12.13	QP			
5		432.5500	41.54	-8.86	32.68	46.00	-13.32	QP			
6		549.9200	36.11	-6.66	29.45	46.00	-16.55	QP			



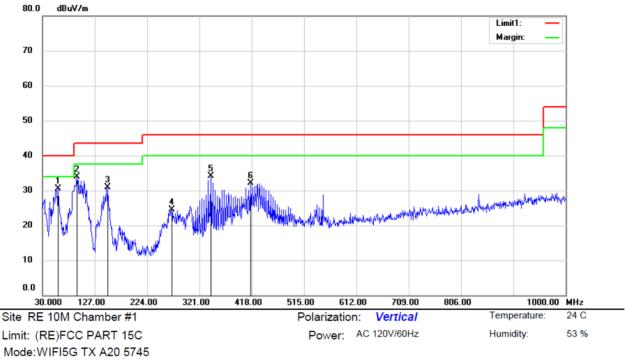

```
Note:
```

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		43.5800	32.97	-14.25	18.72	40.00	-21.28	QP			
2		151.2500	45.98	-19.07	26.91	43.50	-16.59	QP			
3	1	285.1100	42.60	-12.84	29.76	46.00	-16.24	QP			
4	* *	333.6100	43.57	-11.17	32.40	46.00	-13.60	QP			
5		374.3500	42.15	-10.37	31.78	46.00	-14.22	QP			
6	4	428.6700	38.72	-8.90	29.82	46.00	-16.18	QP			



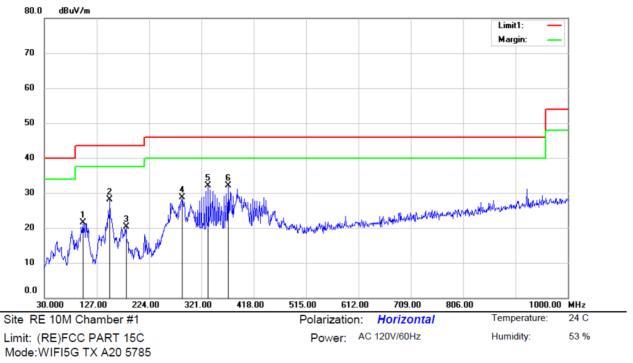

```
Note:
```

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		56.1900	45.26	-14.76	30.50	40.00	-9.50	QP			
2	*	94.0200	52.47	-16.84	35.63	43.50	-7.87	QP			
3		151.2500	51.51	-19.07	32.44	43.50	-11.06	QP			
4		342.3400	44.36	-10.72	33.64	46.00	-12.36	QP			
5		423.8200	42.10	-8.88	33.22	46.00	-12.78	QP			
6		549.9200	34.51	-6.66	27.85	46.00	-18.15	QP			



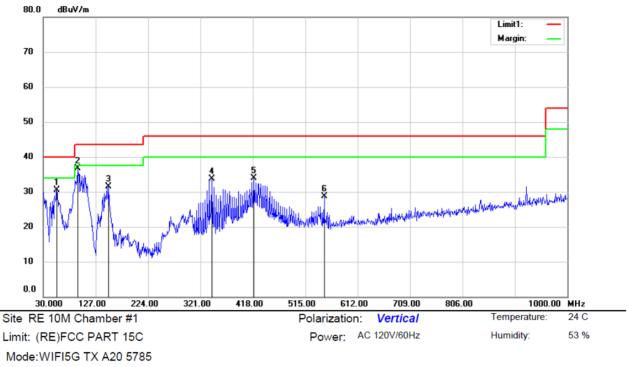

```
Note:
```

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		106.6300	40.22	-15.54	24.68	43.50	-18.82	QP			
2		151.2500	48.31	-19.07	29.24	43.50	-14.26	QP			
3		176.4700	40.75	-17.65	23.10	43.50	-20.40	QP			
4		285.1100	41.42	-12.84	28.58	46.00	-17.42	QP			
5	*	333.6100	43.41	-11.17	32.24	46.00	-13.76	QP			
6		374.3500	42.32	-10.37	31.95	46.00	-14.05	QP			

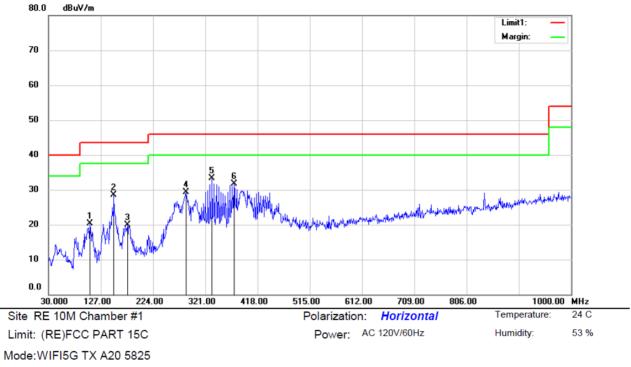



```
Note:
```

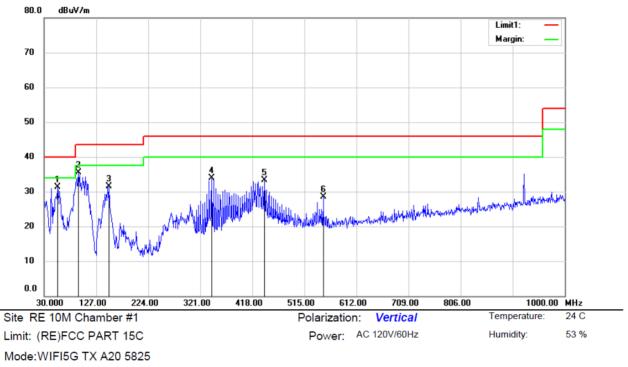
No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		59.1000	45.95	-15.53	30.42	40.00	-9.58	QP			
2	*	94.0200	50.81	-16.84	33.97	43.50	-9.53	QP			
3		151.2500	49.98	-19.07	30.91	43.50	-12.59	QP			
4		269.5900	37.89	-13.32	24.57	46.00	-21.43	QP			
5		342.3400	44.79	-10.72	34.07	46.00	-11.93	QP			
6		416.0600	41.17	-9.02	32.15	46.00	-13.85	QP			




```
Note:
```


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		101.7800	37.35	-15.82	21.53	43.50	-21.97	QP			
2		151.2500	47.17	-19.07	28.10	43.50	-15.40	QP			
3		181.3200	37.46	-17.11	20.35	43.50	-23.15	QP			
4		285.1100	41.48	-12.84	28.64	46.00	-17.36	QP			
5		333.6100	43.18	-11.17	32.01	46.00	-13.99	QP			
6	*	370.4700	42.75	-10.65	32.10	46.00	-13.90	QP			

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		55.2200	45.08	-14.50	30.58	40.00	-9.42	QP			
2	*	94.0200	53.48	-16.84	36.64	43.50	-6.86	QP			
3		151.2500	50.53	-19.07	31.46	43.50	-12.04	QP			
4		342.3400	44.49	-10.72	33.77	46.00	-12.23	QP			
5		419.9400	42.69	-8.85	33.84	46.00	-12.16	QP			
6		549.9200	35.30	-6.66	28.64	46.00	-17.36	QP			




```
Note:
```

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	1	06.6300	35.79	-15.54	20.25	43.50	-23.25	QP			
2	1	51.2500	47.48	-19.07	28.41	43.50	-15.09	QP			
3	1	76.4700	37.61	-17.65	19.96	43.50	-23.54	QP			
4	2	85.1100	42.11	-12.84	29.27	46.00	-16.73	QP			
5	* 3	33.6100	44.57	-11.17	33.40	46.00	-12.60	QP			
6	3	74.3500	42.07	-10.37	31.70	46.00	-14.30	QP			


```
Note:
```

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		55.2200	45.81	-14.50	31.31	40.00	-8.69	QP			
2	*	94.0200	52.31	-16.84	35.47	43.50	-8.03	QP			
3		151.2500	50.57	-19.07	31.50	43.50	-12.00	QP			
4		342.3400	44.60	-10.72	33.88	46.00	-12.12	QP			
5		440.3100	42.13	-8.76	33.37	46.00	-12.63	QP			
6		549.9200	35.18	-6.66	28.52	46.00	-17.48	QP			

8.6 POWER LINE CONDUCTED EMISSIONS

8.6.1 Applicable Standard

According to FCC Part 15.207(a)

8.6.2 Conformance Limit

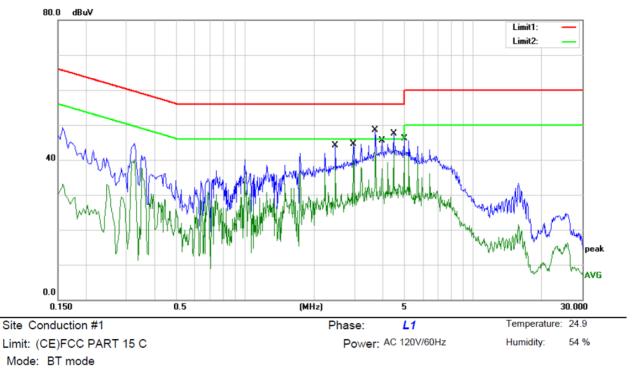
Frequency(MHz)	Quasi-peak	Average
0.15-0.5	66-56	56-46
0.5-5.0	56	46
5.0-30.0	60	50

Note: 1. The lower limit shall apply at the transition frequencies

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

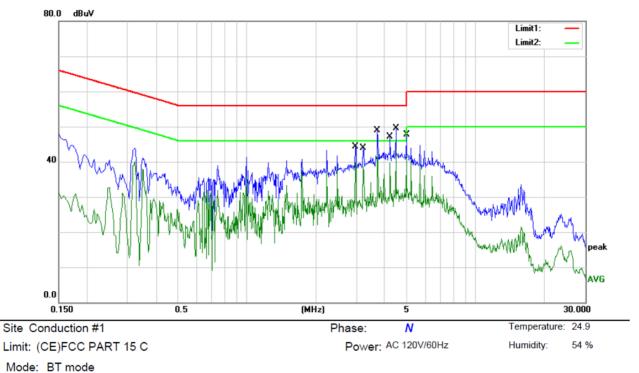
8.6.3 Test Configuration

Test according to clause 6.3 conducted emission test setup

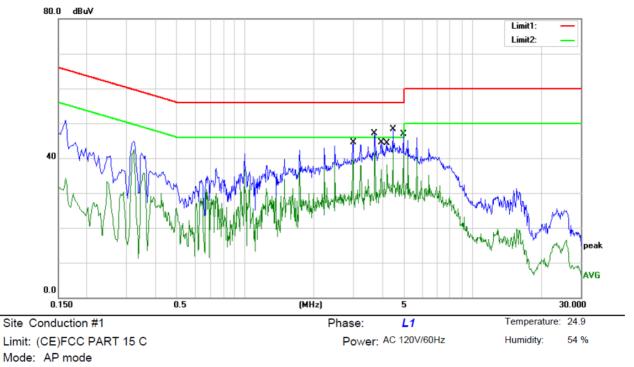

8.6.4 Test Procedure

The EUT was placed on a table which is 0.8m above ground plane. Maximum procedure was performed on the highest emissions to ensure EUT compliance. Repeat above procedures until all frequency measured were complete.

8.6.5 Test Results

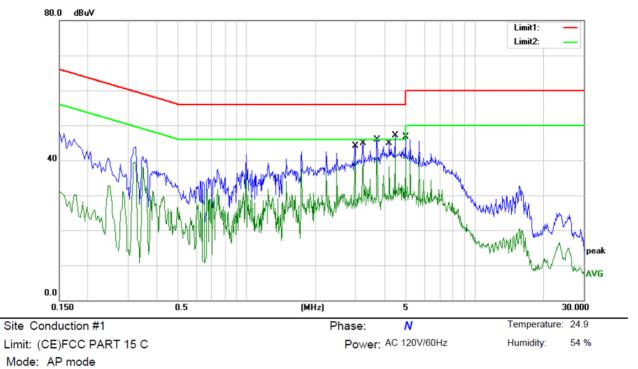

Pass

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	2.4820	34.26	9.80	44.06	56.00	-11.94	QP	
2	2.4820	28.30	9.80	38.10	46.00	-7.90	AVG	
3	2.9740	34.74	9.80	44.54	56.00	-11.46	QP	
4	2.9740	30.15	9.80	39.95	46.00	-6.05	AVG	
5	3.7180	38.75	9.80	48.55	56.00	-7.45	QP	
6	3.7180	32.47	9.80	42.27	46.00	-3.73	AVG	
7	3.9660	35.79	9.80	45.59	56.00	-10.41	QP	
8	3.9660	29.54	9.80	39.34	46.00	-6.66	AVG	
9	4.4620	37.67	9.80	47.47	56.00	-8.53	QP	
10 *	4.4620	33.47	9.80	43.27	46.00	-2.73	AVG	
11	4.9580	36.38	9.80	46.18	56.00	-9.82	QP	
12	4.9580	32.37	9.80	42.17	46.00	-3.83	AVG	



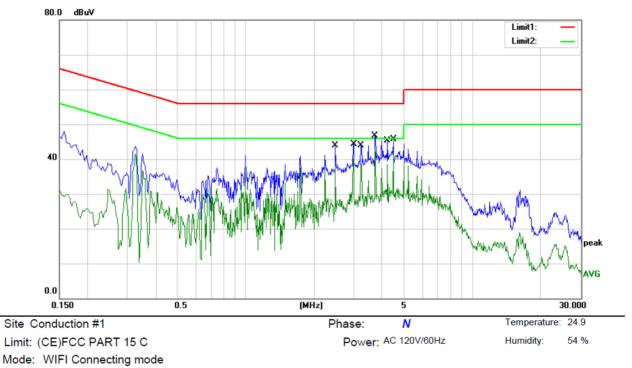

```
Note:
```

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	2.9740	34.47	9.80	44.27	56.00	-11.73	QP	
2	2.9740	29.92	9.80	39.72	46.00	-6.28	AVG	
3	3.2220	34.05	9.80	43.85	56.00	-12.15	QP	
4	3.2220	28.65	9.80	38.45	46.00	-7.55	AVG	
5	3.7180	39.20	9.80	49.00	56.00	-7.00	QP	
6	3.7180	32.39	9.80	42.19	46.00	-3.81	AVG	
7	4.2140	37.38	9.80	47.18	56.00	-8.82	QP	
8	4.2140	29.83	9.80	39.63	46.00	-6.37	AVG	
9	4.4620	39.67	9.80	49.47	56.00	-6.53	QP	
10 *	4.4620	33.96	9.80	43.76	46.00	-2.24	AVG	
11	4.9580	37.90	9.80	47.70	56.00	-8.30	QP	
12	4.9580	32.30	9.80	42.10	46.00	-3.90	AVG	




```
Note:
```

1	MHz 2.9780	dBuV	dB					
1	2 9780		uD	dBuV	dBuV	dB	Detector	Comment
	2.3700	34.71	9.80	44.51	56.00	-11.49	QP	
2	2.9780	29.83	9.80	39.63	46.00	-6.37	AVG	
3	3.7180	37.24	9.80	47.04	56.00	-8.96	QP	
4	3.7180	31.63	9.80	41.43	46.00	-4.57	AVG	
5	3.9700	34.70	9.80	44.50	56.00	-11.50	QP	
6	3.9700	26.88	9.80	36.68	46.00	-9.32	AVG	
7	4.2140	34.58	9.80	44.38	56.00	-11.62	QP	
8	4.2140	28.31	9.80	38.11	46.00	-7.89	AVG	
9	4.4620	38.51	9.80	48.31	56.00	-7.69	QP	
10 *	4.4620	33.31	9.80	43.11	46.00	-2.89	AVG	
11	4.9580	37.09	9.80	46.89	56.00	-9.11	QP	
12	4.9580	31.05	9.80	40.85	46.00	-5.15	AVG	


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		2.9780	34.28	9.80	44.08	56.00	-11.92	QP	
2		2.9780	30.00	9.80	39.80	46.00	-6.20	AVG	
3		3.2260	35.03	9.80	44.83	56.00	-11.17	QP	
4		3.2260	28.97	9.80	38.77	46.00	-7.23	AVG	
5		3.7220	36.13	9.80	45.93	56.00	-10.07	QP	
6		3.7220	30.98	9.80	40.78	46.00	-5.22	AVG	
7		4.2180	35.10	9.80	44.90	56.00	-11.10	QP	
8		4.2180	28.42	9.80	38.22	46.00	-7.78	AVG	
9		4.4620	37.37	9.80	47.17	56.00	-8.83	QP	
10	*	4.4620	32.45	9.80	42.25	46.00	-3.75	AVG	
11		4.9580	36.82	9.80	46.62	56.00	-9.38	QP	
12		4.9580	31.76	9.80	41.56	46.00	-4.44	AVG	

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	2.9740	34.14	9.80	43.94	56.00	-12.06	QP	
2	2.9740	29.87	9.80	39.67	46.00	-6.33	AVG	
3	3.2220	34.78	9.80	44.58	56.00	-11.42	QP	
4	3.2220	28.08	9.80	37.88	46.00	- 8.12	AVG	
5	3.7180	37.52	9.80	47.32	56.00	-8.68	QP	
6	3.7180	32.30	9.80	42.10	46.00	-3.90	AVG	
7	3.9660	35.69	9.80	45.49	56.00	-10.51	QP	
8	3.9660	27.90	9.80	37.70	46.00	-8.30	AVG	
9	4.2140	35.05	9.80	44.85	56.00	-11.15	QP	
10	4.2140	28.71	9.80	38.51	46.00	-7.49	AVG	
11	4.4620	38.63	9.80	48.43	56.00	-7.57	QP	
12 *	4.4620	32.66	9.80	42.46	46.00	-3.54	AVG	

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	2.4820	34.19	9.80	43.99	56.00	-12.01	QP	
2	2.4820	29.50	9.80	39.30	46.00	-6.70	AVG	
3	2.9780	34.43	9.80	44.23	56.00	-11.77	QP	
4	2.9780	30.36	9.80	40.16	46.00	-5.84	AVG	
5	3.2220	34.12	9.80	43.92	56.00	-12.08	QP	
6	3.2220	28.78	9.80	38.58	46.00	-7.42	AVG	
7	3.7180	36.96	9.80	46.76	56.00	-9.24	QP	
8	3.7180	32.87	9.80	42.67	46.00	-3.33	AVG	
9	4.2140	35.48	9.80	45.28	56.00	-10.72	QP	
10	4.2140	28.68	9.80	38.48	46.00	-7.52	AVG	
11	4.4620	36.00	9.80	45.80	56.00	-10.20	QP	
12 *	4.4620	32.93	9.80	42.73	46.00	-3.27	AVG	

8.7 ANTENNA APPLICATION

8.7.1 Antenna Requirement

Standard	Requirement
FCC CRF Part 15.203	An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.407 (a), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

For intentional device, according to RSS-Gen Issue 4 Section 8.3:

The applicant for equipment certification, as per RSP-100, must provide a list of all antenna types that may be used with the licence-exempt transmitter, indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna.

Licence-exempt transmitters that have received equipment certification may operate with different types of antennas. However, it is not permissible to exceed the maximum equivalent isotropically radiated power (e.i.r.p.) limits specified in the applicable standard (RSS) for licence-exempt apparatus.

RSS-247 Section 5.4

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

8.7.2 Result

PASS.

The EUT has a PCB antennas for WIFI 5G band, the antenna max gain is 3.42 dBi, Note:

- Antenna use a permanently attached antenna which is not replaceable.
 - Not using a standard antenna jack or electrical connector for antenna replacement
 - The antenna has to be professionally installed (please provide method of installation)

which in accordance to section 15.203, please refer to the internal photos.