

# FCC 47 CFR PART 15 SUBPART E INDUSTRY CANADA RSS-247 ISSUE 2 February 2017

# **CERTIFICATION TEST REPORT**

For

Product: Video Conferencing Endpoint

MODEL No.: VC200

FCC ID: T2C-VC200

IC: 10741A-VC200

Trade Mark: Yealink

REPORT NO.: ES180426021W01

**ISSUE DATE: May 11, 2018** 

Prepared for

YEALINK(XIAMEN) NETWORK TECHNOLOGY CO., LTD.

309, 3th Floor, No.16, Yun Ding North Road, Huli District, Xiamen City, Fujian, P.R. China

Prepared by

# EMTEK(SHENZHEN) CO., LTD.

Bldg 69, Majialong Industry Zone, Nanshan District, Shenzhen, Guangdong, China TEL: 86-755-26954280 FAX: 86-755-26954282



# **1 TEST RESULT CERTIFICATION**

| Applicant:           | YEALINK(XIAMEN) NETWORK TECHNOLOGY CO.,LTD.<br>309, 3th Floor, No.16, Yun Ding North Road, Huli District, Xiamen City, Fujian,<br>P.R. China  |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| Manufacturer:        | YEALINK(XIAMEN) NETWORK TECHNOLOGY CO., LTD.<br>309, 3th Floor, No.16, Yun Ding North Road, Huli District, Xiamen City, Fujian,<br>P.R. China |
| Product Description: | Video Conferencing Endpoint                                                                                                                   |
| Model Number:        | VC200                                                                                                                                         |
| Trade Mark:          | Yealink                                                                                                                                       |
| File Number:         | ES180426021W01                                                                                                                                |

Measurement Procedure Used:

| APPLICABLE STANDARDS                                                                                                               |      |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------|------|--|--|--|--|
| STANDARD TEST RESULT                                                                                                               |      |  |  |  |  |
| FCC 47 CFR Part 2, Subpart J<br>FCC 47 CFR Part 15, Subpart E<br>IC RSS-GEN, Issue 4, Nov 2014<br>IC RSS-247 Issue 2 February 2017 | PASS |  |  |  |  |

The above equipment was tested by EMTEK(SHENZHEN) CO., LTD. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10 (2013) and the energy emitted by the sample EUT tested as described in this report is in compliance with the requirements of FCC Rules Part 2, Part 15.247, IC RSS-247 Issue 2 and IC RSS-GEN, Issue 4

The test results of this report relate only to the tested sample identified in this report

| Date of Test :                | March 15, 2018 to May 07, 2018 |
|-------------------------------|--------------------------------|
| Prepared by:                  | Yaping Shen                    |
|                               | Yaping Shen/Editor             |
| Reviewer:                     | Scur Ci ut SHENZHEN 8          |
|                               | Sevin Li /Supervisor           |
|                               | RSTING*                        |
| Approve & Authorized Signer : | Lisa Wang/Manager              |
|                               |                                |



# TABLE OF CONTENTS

| <ul> <li>2 EUT TECHNICAL DESCRIPTION</li> <li>3 SUMMARY OF TEST RESULT</li> <li>4 TEST METHODOLOGY</li> <li>4.1 GENERAL DESCRIPTION OF APPLIED STANDARDS</li> <li>4.2 MEASUREMENT EQUIPMENT USED</li> <li>4.3 DESCRIPTION OF TEST MODES</li> <li>5 FACILITIES AND ACCREDITATIONS</li> </ul> |          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 4TEST METHODOLOGY4.1GENERAL DESCRIPTION OF APPLIED STANDARDS4.2MEASUREMENT EQUIPMENT USED4.3DESCRIPTION OF TEST MODES                                                                                                                                                                       | 4        |
| <ul> <li>4.1 GENERAL DESCRIPTION OF APPLIED STANDARDS</li> <li>4.2 MEASUREMENT EQUIPMENT USED</li> <li>4.3 DESCRIPTION OF TEST MODES</li> </ul>                                                                                                                                             | 5        |
| <ul><li>4.2 MEASUREMENT EQUIPMENT USED</li><li>4.3 DESCRIPTION OF TEST MODES</li></ul>                                                                                                                                                                                                      | 6        |
| 4.3 DESCRIPTION OF TEST MODES                                                                                                                                                                                                                                                               |          |
| 5 FACILITIES AND ACCREDITATIONS                                                                                                                                                                                                                                                             |          |
|                                                                                                                                                                                                                                                                                             | 10       |
| <ul><li>5.1 FACILITIES</li><li>5.2 LABORATORY ACCREDITATIONS AND LISTINGS</li></ul>                                                                                                                                                                                                         |          |
| 6 TEST SYSTEM UNCERTAINTY                                                                                                                                                                                                                                                                   | 11       |
| 7 SETUP OF EQUIPMENT UNDER TEST                                                                                                                                                                                                                                                             | 12       |
| <ul> <li>7.1 RADIO FREQUENCY TEST SETUP</li> <li>7.2 RADIO FREQUENCY TEST SETUP</li> <li>7.3 CONDUCTED EMISSION TEST SETUP</li> </ul>                                                                                                                                                       | 12       |
| <ul><li>7.4 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM</li><li>7.5 SUPPORT EQUIPMENT</li></ul>                                                                                                                                                                                              |          |
| 8 TEST REQUIREMENTS                                                                                                                                                                                                                                                                         |          |
| <ul> <li>8.1 BANDWIDTH MEASUREMENT</li></ul>                                                                                                                                                                                                                                                | 41<br>45 |
| <ul> <li>8.4 FREQUENCY STABILITY</li> <li>8.5 UNDESIRABLE RADIATED SPURIOUS EMISSION</li> <li>8.6 POWER LINE CONDUCTED EMISSIONS</li></ul>                                                                                                                                                  | 66<br>89 |



# 2 EUT TECHNICAL DESCRIPTION

| Characteristics                    | Description                                                                                                                                                                                                                                                               |                                                                                                                                                                   |                         |                    |  |  |  |
|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------|--|--|--|
| IEEE 802.11 WLAN<br>Mode Supported | <ul> <li>802.11a(20MHz channel bandwidth)</li> <li>802.11n(20MHz channel bandwidth)</li> <li>802.11n(40MHz channel bandwidth)</li> <li>802.11ac(20MHz channel bandwidth)</li> <li>802.11ac(40MHz channel bandwidth)</li> <li>802.11ac(80MHz channel bandwidth)</li> </ul> |                                                                                                                                                                   |                         |                    |  |  |  |
| Data Rate                          | 802.11n(HT2<br>802.11n(HT4<br>802.11ac(HT                                                                                                                                                                                                                                 | 802.11 a:6,9,12,18,24,36,48,54Mbps;<br>802.11n(HT20)/ac(HT20): MCS0-MCS7;<br>802.11n(HT40): MCS0-MCS7;<br>802.11ac(HT40):MCS0-MCS9;<br>802.11ac(VHT80):MCS0-MCS9; |                         |                    |  |  |  |
| Modulation                         |                                                                                                                                                                                                                                                                           | BPSK/QPSK/16QAM/64QAM f<br>BPSK/QPSK/16QAM/64QAM/2                                                                                                                |                         |                    |  |  |  |
|                                    | WIFI 5G<br>Band                                                                                                                                                                                                                                                           | Mode                                                                                                                                                              | Frequency<br>Range(MHz) | Number of channels |  |  |  |
|                                    |                                                                                                                                                                                                                                                                           | 802.11a/n(HT20)/ac(VHT20)                                                                                                                                         | 5180-5240               | 4                  |  |  |  |
| Operating Frequency                | UNII<br>Band I                                                                                                                                                                                                                                                            | 802.11n(HT40)/ac(VHT40)                                                                                                                                           | 5190-5230               | 2                  |  |  |  |
| Range                              |                                                                                                                                                                                                                                                                           | 802.11 ac(VHT80)                                                                                                                                                  | 5210                    | 1                  |  |  |  |
|                                    |                                                                                                                                                                                                                                                                           | 802.11a/n(HT20)/ac(VHT20)                                                                                                                                         | 5745-5825               | 5                  |  |  |  |
|                                    | UNII<br>Band III                                                                                                                                                                                                                                                          | 802.11n(HT40)/ac(VHT40)                                                                                                                                           | 5755-5795               | 2                  |  |  |  |
|                                    |                                                                                                                                                                                                                                                                           | 802.11 ac(VHT80)                                                                                                                                                  | 5775                    | 1                  |  |  |  |
| Transmit Power Max                 |                                                                                                                                                                                                                                                                           | or UNII Band I<br>or UNII Band III                                                                                                                                |                         |                    |  |  |  |
| Antenna Type                       | PCB antenna                                                                                                                                                                                                                                                               | a                                                                                                                                                                 |                         |                    |  |  |  |
| Smart system                       | ⊠siso                                                                                                                                                                                                                                                                     |                                                                                                                                                                   |                         |                    |  |  |  |
| Antenna Gain                       | 3.42 dBi                                                                                                                                                                                                                                                                  |                                                                                                                                                                   |                         |                    |  |  |  |
| Power supply                       | S.42 ubi       ☑DC 54V from POE       POE Rating:       Model: YLPOE30       Input: 100-240~ 50/60Hz 1.0A       Output: DC 54V 0.56A                                                                                                                                      |                                                                                                                                                                   |                         |                    |  |  |  |

Note: for more details, please refer to the User's manual of the EUT.



# **3 SUMMARY OF TEST RESULT**

| FCC Part Clause                                                                                                                                                                                                                                                                  | Test Parameter                 | Verdict | Remark |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------|--------|--|--|--|
| 15.407 (a)<br>15.407 (e)<br>RSS-247§6.2<br>RSS-Gen                                                                                                                                                                                                                               | 99% , 6dB and 26dB Bandwidth   | PASS    |        |  |  |  |
| 15.407 (a)<br>RSS-247§6.2                                                                                                                                                                                                                                                        | Maximum Conducted Output Power | PASS    |        |  |  |  |
| 15.407 (a)<br>RSS-247§6.2                                                                                                                                                                                                                                                        | Peak Power Spectral Density    | PASS    |        |  |  |  |
| 5.205, 15.209,<br>15.407 (b),<br>RSS-Gen,<br>RSS-247§6.2                                                                                                                                                                                                                         | Radiated Spurious Emission     | PASS    |        |  |  |  |
| 15.407(g)                                                                                                                                                                                                                                                                        | Frequency Stability            | PASS    |        |  |  |  |
| 15.407 (b)(6)<br>15.207<br>RSS-Gen [8.8]                                                                                                                                                                                                                                         | Power Line Conducted Emission  | PASS    |        |  |  |  |
| 15.407(a)<br>15.203 Antenna Application PASS                                                                                                                                                                                                                                     |                                |         |        |  |  |  |
| NOTE1: N/A (Not Applicable)<br>NOTE2: According to FCC OET KDB 789033 D2 General UNII Test Procedures New Rules v01r02, In<br>addition, the radiated test is also performed to ensure the emissions emanating from the device cabinet<br>also comply with the applicable limits. |                                |         |        |  |  |  |

### RELATED SUBMITTAL(S) / GRANT(S):

This submittal(s) (test report) is intended for FCC ID: T2C-VC200 filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

This submittal(s) (test report) is intended for IC: 10741A-VC200 filing to comply with IC RSS-247 Issue 2 and IC RSS-GEN, Issue 4



# 4 TEST METHODOLOGY

## 4.1 GENERAL DESCRIPTION OF APPLIED STANDARDS

According to its specifications, the EUT must comply with the requirements of the following standards: FCC 47 CFR Part 2, Subpart J FCC 47 CFR Part 15, Subpart E FCC KDB 789033 D2 General UNII Test Procedures New Rules v01r04 FCC KDB 662911 D01 Multiple Transmitter Output v02r01 FCC KDB 662911 D02 MIMO With Cross Polarized Antenna V01 IC RSS-Gen, ISSUE 4 IC RSS-247, ISSUE 2 February 2017

### 4.2 MEASUREMENT EQUIPMENT USED

4.2.1 Conducted Emission Test Equipment

| EQUIPMENT<br>TYPE  | MFR             | MODEL<br>NUMBER | SERIAL<br>NUMBER | LAST<br>CAL. | DUE CAL.     |
|--------------------|-----------------|-----------------|------------------|--------------|--------------|
| Test Receiver      | Rohde & Schwarz | ESCI            | 26115-010-0027   | May 20, 2017 | May 19, 2018 |
| L.I.S.N.           | Rohde & Schwarz | ENV216          | 101161           | May 20, 2017 | May 19, 2018 |
| 50Ω Coaxial Switch | Anritsu         | MP59B           | 6100175589       | May 21, 2017 | May 20, 2018 |
| Voltage Probe      | Rohde & Schwarz | ESH2-Z3         | 100122           | May 21, 2017 | May 20, 2018 |
| Pulse Limiter      | Rohde & Schwarz | ESH3-Z2         | 100006           | May 20, 2017 | May 19, 2018 |
| I.S.N              | Teseq GmbH      | ISN T800        | 30327            | May 21, 2017 | May 20, 2018 |

### 4.2.2 Radiated Emission Test Equipment

| EQUIPMENT<br>TYPE | MFR             | MODEL<br>NUMBER | SERIAL<br>NUMBER | LAST CAL.    | DUE CAL.     |
|-------------------|-----------------|-----------------|------------------|--------------|--------------|
| EMI Test Receiver | Rohde & Schwarz | ESU             | 1302.6005.26     | May 21, 2017 | May 20, 2018 |
| Pre-Amplifier     | HP              | 8447F           | 2944A07999       | May 20, 2017 | May 19, 2018 |
| Bilog Antenna     | Schwarzbeck     | VULB9163        | 142              | May 20, 2017 | May 19, 2018 |
| Loop Antenna      | ARA             | PLA-1030/B      | 1029             | May 20, 2017 | May 19, 2018 |
| Horn Antenna      | Schwarzbeck     | BBHA 9170       | BBHA9170399      | May 21, 2017 | May 20, 2018 |
| Horn Antenna      | Schwarzbeck     | BBHA 9120       | D143             | May 20, 2017 | May 19, 2018 |
| Cable             | Schwarzbeck     | AK9513          | ACRX1            | May 21, 2017 | May 20, 2018 |
| Cable             | Rosenberger     | N/A             | FP2RX2           | May 21, 2017 | May 20, 2018 |
| Cable             | Schwarzbeck     | AK9513          | CRPX1            | May 21, 2017 | May 20, 2018 |
| Cable             | Schwarzbeck     | AK9513          | CRRX2            | May 21, 2017 | May 20, 2018 |

4.2.3 Radio Frequency Test Equipment

| EQUIPMENT         | MFR     | MODEL   | SERIAL     | LAST CAL.    | DUE CAL.     |
|-------------------|---------|---------|------------|--------------|--------------|
| TYPE              |         | NUMBER  | NUMBER     | LAST CAL.    |              |
| Spectrum Analyzer | Agilent | E4407B  | 88156318   | May 21, 2017 | May 20, 2018 |
| Signal Analyzer   | Agilent | N9010A  | My53470879 | May 21, 2017 | May 20, 2018 |
| Power Meter       | Anritsu | ML2495A | 0824006    | May 21, 2017 | May 20, 2018 |
| Power sensor      | Anritsu | MA2411B | 0738172    | May 21, 2017 | May 20, 2018 |

**Remark:** Each piece of equipment is scheduled for calibration once a year.



### 4.3 DESCRIPTION OF TEST MODES

The EUT has been tested under its typical operating condition.

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (⊠802.11a: 6 Mbps; ⊠802.11n (HT20): MCS0; ⊠802.11n (HT20): MCS7; ⊠802.11n (HT40): MCS0; ⊠802.11n (HT40): MCS7; ⊠802.11ac (HT20): MCS0; ⊠802.11ac (HT20): MCS7; ⊠ 802.11ac (HT40): MCS0; ⊠802.11ac (HT40): MCS9; ⊠802.11ac (HT80): MCS0; ⊠802.11ac (HT80): MCS9;) were used for all test.

Pre-defined engineering program for regulatory testing used to control the EUT for staying in continuous transmitting and receiving mode is programmed.



# Wifi 5G with UNII Band I

| Ch | nannel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) |
|----|--------|--------------------|---------|--------------------|---------|--------------------|
|    | 36     | 5180               | 44      | 5220               |         |                    |
|    | 40     | 5200               | 48      | 5240               |         |                    |

#### Frequency and Channel list for 802.11n(HT40)/ac(VHT40):

| Channel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) |
|---------|--------------------|---------|--------------------|---------|--------------------|
| 38      | 5190               |         |                    |         |                    |
| 46      | 5230               |         |                    |         |                    |

### Frequency and Channel list for 802.11ac(VHT80):

| Channel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) |
|---------|--------------------|---------|--------------------|---------|--------------------|
| 42      | 5210               |         |                    |         |                    |
|         |                    |         |                    |         |                    |

### Test Frequency and Channel for 802.11a/n(HT20)/ac(VHT20):

| Lowest Frequency |                    | Middle Frequency |                    | Highest Frequency |                    |
|------------------|--------------------|------------------|--------------------|-------------------|--------------------|
| Channel          | Frequency<br>(MHz) | Channel          | Frequency<br>(MHz) | Channel           | Frequency<br>(MHz) |
| 36               | 5180               | 40               | 5200               | 48                | 5240               |

#### Test Frequency and channel for 802.11n(VHT40)/ac(VHT40):

| Lowest Frequency |                    | Middle Frequency |                    | Highest Frequency |                    |
|------------------|--------------------|------------------|--------------------|-------------------|--------------------|
| Channel          | Frequency<br>(MHz) | Channel          | Frequency<br>(MHz) | Channel           | Frequency<br>(MHz) |
| 38               | 5190               | N/A              | N/A                | 46                | 5230               |

### Test Frequency and channel for 802.11ac(HT80):

| Lowest Frequency |                    | Middle Frequency |                    | Highest Frequency |                    |
|------------------|--------------------|------------------|--------------------|-------------------|--------------------|
| Channel          | Frequency<br>(MHz) | Channel          | Frequency<br>(MHz) | Channel           | Frequency<br>(MHz) |
| 42               | 5210               | N/A              | N/A                | N/A               | N/A                |



### ☑ Wifi 5G with UNII Band III

Frequency and Channel list for 802.11a/n(HT20)/ac(VHT20):

| Channel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) |
|---------|--------------------|---------|--------------------|---------|--------------------|
| 149     | 5745               | 157     | 5785               | 165     | 5825               |
| 153     | 5765               | 161     | 5805               |         |                    |

Frequency and Channel list for 802.11n(HT40)/ac(VHT40):

| Channel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) |
|---------|--------------------|---------|--------------------|---------|--------------------|
| 151     | 5755               |         |                    |         |                    |
| 159     | 5795               |         |                    |         |                    |

### Frequency and Channel list for 802.11ac(VHT80):

| Channel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) |
|---------|--------------------|---------|--------------------|---------|--------------------|
| 155     | 5775               |         |                    |         |                    |

### Test Frequency and Channel for 802.11a/n(HT20)/ac(VHT20):

| Lowest Frequency |                    | Middle Frequency |                    | Highest Frequency |                    |
|------------------|--------------------|------------------|--------------------|-------------------|--------------------|
| Channel          | Frequency<br>(MHz) | Channel          | Frequency<br>(MHz) | Channel           | Frequency<br>(MHz) |
| 149              | 5745               | 157              | 5785               | 165               | 5825               |

### Test Frequency and channel for 802.11n(HT40)/ac(VHT40):

| Lowest Frequency |                    | Middle Frequency |                    | Highest Frequency |                    |
|------------------|--------------------|------------------|--------------------|-------------------|--------------------|
| Channel          | Frequency<br>(MHz) | Channel          | Frequency<br>(MHz) | Channel           | Frequency<br>(MHz) |
| 151              | 5755               | N/A              | N/A                | 159               | 5795               |

### Test Frequency and channel for 802.11ac(VHT80):

| Lowest Frequency |                    | Middle Frequency |                    | Highest Frequency |                    |
|------------------|--------------------|------------------|--------------------|-------------------|--------------------|
| Channel          | Frequency<br>(MHz) | Channel          | Frequency<br>(MHz) | Channel           | Frequency<br>(MHz) |
| 155              | 5775               |                  |                    |                   |                    |



# 5 FACILITIES AND ACCREDITATIONS 5.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

Bldg 69, Majialong Industry Zone District, Nanshan District, Shenzhen, China The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

### **5.2 LABORATORY ACCREDITATIONS AND LISTINGS**

| Site Description              |                                                                                                                                                                                                                                                                                 |
|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EMC Lab.                      | <ul> <li>Accredited by CNAS,2016.10.24<br/>The certificate is valid until 2022.10.28<br/>The Laboratory has been assessed and proved to be in compliance with<br/>CNAS-CL01:2006 (identical to ISO/IEC 17025:2005)<br/>The Certificate Registration Number is L2291.</li> </ul> |
|                               | Accredited by TUV Rheinland Shenzhen 2016.5.19<br>The Laboratory has been assessed according to the requirements<br>ISO/IEC 17025.                                                                                                                                              |
|                               | Accredited by FCC, August 03, 2017<br>Designation Number: CN1204<br>Test Firm Registration Number: 882943<br>Accredited by A2LA, July 31, 2017<br>The Certificate Registration Number is 4321.01.                                                                               |
|                               | Accredited by Industry Canada, November 29, 2012<br>The Certificate Registration Number is 4480A.                                                                                                                                                                               |
| Name of Firm<br>Site Location | <ul> <li>EMTEK(SHENZHEN) CO., LTD.</li> <li>Bldg 69, Majialong Industry Zone,<br/>Nanshan District, Shenzhen, Guangdong, China</li> </ul>                                                                                                                                       |



# 6 TEST SYSTEM UNCERTAINTY

The following measurement uncertainty levels have been estimated for tests performed on the apparatus:

| Parameter                      | Uncertainty |
|--------------------------------|-------------|
| Radio Frequency                | ±1x10^-5    |
| Maximum Peak Output Power Test | ±1.0dB      |
| Conducted Emissions Test       | ±2.0dB      |
| Radiated Emission Test         | ±2.0dB      |
| Power Density                  | ±2.0dB      |
| Occupied Bandwidth Test        | ±1.0dB      |
| Band Edge Test                 | ±3dB        |
| All emission, radiated         | ±3dB        |
| Antenna Port Emission          | ±3dB        |
| Temperature                    | ±0.5°C      |
| Humidity                       | ±3%         |

Measurement Uncertainty for a level of Confidence of 95%



# 7 SETUP OF EQUIPMENT UNDER TEST

## 7.1 RADIO FREQUENCY TEST SETUP

The WLAN component's antenna ports(s) of the EUT are connected to the measurement instrument per an appropriate attenuator. The EUT is controlled by PC/software to emit the specified signals for the purpose of measurements.

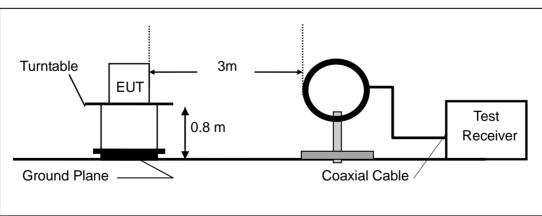


## 7.2 RADIO FREQUENCY TEST SETUP

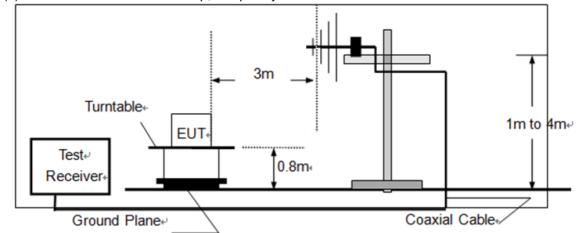
The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10. The test distance is 3m.The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

### Below 30MHz:

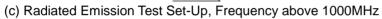
The EUT is placed on a turntable 0.8 meters above the ground in the chamber, 3 meter away from the antenna (loop antenna). The Antenna should be positioned with its plane vertical at the specified distance from the EUT and rotated about its vertical axis for maximum response at each azimuth about the EUT. The center of the loop shall be 1 m above the ground. For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT.

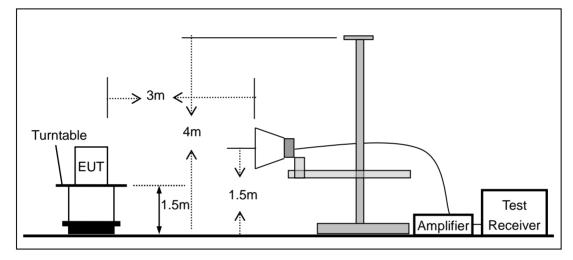

### Above 30MHz:

The EUT is placed on a turntable 0.8 meters above the ground in the chamber, 3 meter away from the antenna. The maximal emission value is acquired by adjusting the antenna height, polarisation and turntable azimuth. Normally, the height range of antenna is 1 m to 4 m, the azimuth range of turntable is 0° to 360°, and the receive antenna has two polarizations Vertical (V) and Horizontal (H).


#### Above 1GHz:

(Note: the FCC's permission to use 1.5m as an alternative per TCBC Conf call of Dec. 2, 2014.) The EUT is placed on a turntable 1.5 meters above the ground in the chamber, 3 meter away from the antenna. The maximal emission value is acquired by adjusting the antenna height, polarisation and turntable azimuth. Normally, the height range of antenna is 1 m to 4 m, the azimuth range of turntable is 0° to 360°, and the receive antenna has two polarizations Vertical (V) and Horizontal (H).


### (a) Radiated Emission Test Set-Up, Frequency Below 30MHz



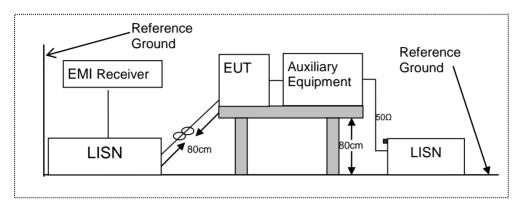





(b) Radiated Emission Test Set-Up, Frequency Below 1000MHz

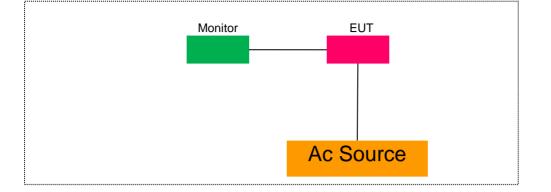







### 7.3 CONDUCTED EMISSION TEST SETUP

The mains cable of the EUT (maybe per AC/DC Adapter) must be connected to LISN. The LISN shall be placed 0.8 m from the boundary of EUT and bonded to a ground reference plane for LISN mounted on top of the ground reference plane. This distance is between the closest points of the LISN and the EUT. All other units of the EUT and associated equipment shall be at least 0.8m from the LISN.


Ground connections, where required for safety purposes, shall be connected to the reference ground point of the LISN and, where not otherwise provided or specified by the manufacturer, shall be of same length as the mains cable and run parallel to the mains connection at a separation distance of not more than 0.1 m.

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.





### 7.4 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM



### 7.5 SUPPORT EQUIPMENT

| Item | Equipment   | Mfr/Brand | Model/Type No. | Series No       | Note |
|------|-------------|-----------|----------------|-----------------|------|
| 1.   | LCD Monitor | Lenovo    | 9227-AE6       | 4M0293084302824 | N/A  |

### Notes:

2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

<sup>1.</sup> All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.



# 8 TEST REQUIREMENTS

### 8.1 BANDWIDTH MEASUREMENT

### 8.1.1 Applicable Standard

According to FCC Part 15.407(a)(1) for UNII Band I According to FCC Part 15.407(a)(2) for UNII Band II-A and UNII Band II-C According to FCC Part 15.407(a)(3) for UNII Band III According to FCC Part 15.407(e) for UNII Band III According to 789033 D02 Section II(C) According to 789033 D02 Section II(D)

#### 8.1.2 Conformance Limit

No limit requirement. The minimum 6 dB emission bandwidth of at least 500 KHz for the UNII Band III.

#### 8.1.3 Test Configuration

Test according to clause 6.1 radio frequency test setup

#### 8.1.4 Test Procedure

Connect the antenna port(s) to the spectrum analyzer input. Using the spectrum analyzer Channel Bandwidth mode, configure the spectrum analyzer as shown below

The following procedure shall be used for measuring (26 dB) power bandwidth:

Center Frequency: test Frequency

Set RBW = approximately 1% of the emission bandwidth.

Set the VBW > RBW.

Detector = Peak.

Trace mode = max hold.

X dB Bandwidth: 26 dB

Measure the maximum width of the emission that is 26 dB down from the maximum of the emission.

Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.

■ Minimum Emission Bandwidth for the UNII Band III

Center Frequency: test Frequency

Set RBW = 100 kHz

Set VBW  $\geq$  3  $\cdot$  RBW

Detector = Peak

Trace mode = max hold

Sweep = auto couple

X dB Bandwidth: 6 dB

Note: The automatic bandwidth measurement capability of a spectrum analyzer or EMI receiver may be employed if it implements the functionality described above.

■ The following procedure shall be used for measuring (99 %) power bandwidth:

Set center frequency to the nominal EUT channel center frequency.

Set span = 1.5 times to 5.0 times the OBW.

Set RBW = 1% to 5% of the OBW

Set VBW  $\geq$  3  $\cdot$  RBW

Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.

Use the 99 % power bandwidth function of the instrument (if available).

If the instrument does not have a 99 % power bandwidth function, the trace data points are recovered and directly summed in power units. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5 % of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5 % of the total is reached; that frequency is recorded as the upper frequency. The 99% occupied bandwidth is the difference between these two frequencies.



### 8.1.5 Test Results

| Temperature<br>Humidity : | e: 28°C<br>65 % |             | ☑ 802.11<br>Test Dat<br>Test By: | :e : | March 2<br>King Ko | 27, 2018<br>ong |       |         |
|---------------------------|-----------------|-------------|----------------------------------|------|--------------------|-----------------|-------|---------|
| Band                      | Channel         | Channel     | 26dB                             | EBW  | 99%                | OBW             | Limit | Vardiat |
|                           | Number          | Freq. (MHz) | Ant0                             | Ant1 | Ant0               | Ant1            | (MHz) | Verdict |
|                           | CH36            | 5180        | 22.178                           |      | 16.384             |                 | N/A   | N/A     |
| UNII<br>Band I            | CH40            | 5200        | 21.339                           |      | 16.384             |                 | N/A   | N/A     |
| Danu i                    | CH48            | 5240        | 20.899                           |      | 16.384             |                 | N/A   | N/A     |
| UNII                      | CH149           | 5745        | 20.939                           |      | 16.384             |                 | N/A   | N/A     |
| Band III                  | CH157           | 5785        | 20.819                           |      | 16.384             |                 | N/A   | N/A     |
| Danu III                  | CH165           | 5825        | 21.019                           |      | 16.384             |                 | N/A   | N/A     |
| N/A (Not Ap               | e: 28°C         |             | 802.11n(H<br>Test Dat            | e :  | March 2            | 27, 2018        |       |         |
| Humidity :                | 65 %            |             | Test By:                         |      | King Ko            | ong             |       |         |
| Band                      | Channel         | Channel     | 26dB                             | EBW  | 99%                | OBW             | Limit | Vardiat |
|                           | Number          | Freq. (MHz) | Ant0                             | Ant1 | Ant0               | Ant1            | (MHz) | Verdict |
| UNII                      | CH36            | 5180        | 21.698                           |      | 17.463             |                 | N/A   | N/A     |
| Band I                    | CH40            | 5200        | 22.338                           |      | 17.423             |                 | N/A   | N/A     |
| Danu I                    | CH48            | 5240        | 22.018                           |      | 17.463             |                 | N/A   | N/A     |
| UNII                      | CH149           | 5745        | 22.098                           |      | 17.463             |                 | N/A   | N/A     |
| Band III                  | CH157           | 5785        | 21.339                           |      | 17.463             |                 | N/A   | N/A     |
| Danu III                  | CH165           | 5825        | 21.179                           |      | 17.463             |                 | N/A   | N/A     |
|                           |                 |             |                                  |      |                    |                 |       |         |
| Note:<br>N/A (Not Ap      | plicable)       |             |                                  |      |                    |                 |       |         |

| Temperature<br>Humidity : | : 28°C<br>65 %    |                        | Test Dat<br>Test By: | e:          |             | 27, 2018<br>ong |                |         |
|---------------------------|-------------------|------------------------|----------------------|-------------|-------------|-----------------|----------------|---------|
| Band                      | Channel<br>Number | Channel<br>Freg. (MHz) | 26dB<br>Ant0         | EBW<br>Ant1 | 99%<br>Ant0 | OBW<br>Ant1     | Limit<br>(MHz) | Verdict |
|                           | CH36              | 5180                   | 21.459               |             | 17.502      |                 | N/A            | N/A     |
| UNII                      | CH40              | 5200                   | 21.299               |             | 17.463      |                 | N/A            | N/A     |
| Band I                    | CH48              | 5240                   | 21.658               |             | 17.463      |                 | N/A            | N/A     |
|                           | CH149             | 5745                   | 21.059               |             | 17.463      |                 | N/A            | N/A     |
| UNII<br>Band III          | CH157             | 5785                   | 21.179               |             | 17.423      |                 | N/A            | N/A     |
| Dariu III                 | CH165             | 5825                   | 21.459               |             | 17.502      |                 | N/A            | N/A     |
| Note:<br>N/A (Not Ap      | plicable)         |                        |                      |             |             |                 |                |         |



|             |           |             | 802.11n(⊢ | IT40) mod | le      |          |       |         |
|-------------|-----------|-------------|-----------|-----------|---------|----------|-------|---------|
| Temperature | : 28°C    |             | Test Dat  | :e :      |         | 27, 2018 |       |         |
| Humidity :  | 65 %      |             | Test By:  |           | King Ko | ong      |       |         |
| Band        | Channel   | Channel     | 26dB      | EBW       | 99%     | OBW      | Limit | Vordiot |
|             | Number    | Freq. (MHz) | Ant0      | Ant1      | Ant0    | Ant1     | (MHz) | Verdict |
| UNII        | CH38      | 5190        | 43.138    |           | 35.884  |          | N/A   | N/A     |
| Band I      | CH46      | 5230        | 42.517    | -         | 35.884  |          | N/A   | N/A     |
| UNII        | CH151     | 5755        | 42.198    | -         | 35.884  |          | N/A   | N/A     |
| Band III    | CH159     | 5795        | 41.239    |           | 35.884  |          | N/A   | N/A     |
| Note:       |           |             |           |           |         |          |       |         |
| N/A (Not Ap | plicable) |             |           |           |         |          |       |         |

| Temperature<br>Humidity : | : 28°C<br>65 % | 8 🛛         | ⊠ 802.11ac(VHT40) mode<br>Test Date : March 27, 2018<br>Test By: King Kong |      |        |      |       |         |  |
|---------------------------|----------------|-------------|----------------------------------------------------------------------------|------|--------|------|-------|---------|--|
| Band                      | Channel        | Channel     | 26dB                                                                       | EBW  | 99%    | OBW  | Limit | Verdict |  |
|                           | Number         | Freq. (MHz) | Ant0                                                                       | Ant1 | Ant0   | Ant1 | (MHz) | verdict |  |
| UNII                      | CH38           | 5190        | 43.716                                                                     |      | 35.804 |      | N/A   | N/A     |  |
| Band I                    | CH46           | 5230        | 41.479                                                                     |      | 35.804 |      | N/A   | N/A     |  |
| UNII                      | CH151          | 5755        | 41.798                                                                     |      | 35.804 |      | N/A   | N/A     |  |
| Band III                  | CH159          | 5795        | 41.638                                                                     |      | 35.804 |      | N/A   | N/A     |  |
| Note:<br>N/A (Not Ap      | plicable)      |             |                                                                            |      |        |      |       |         |  |

| Temperature<br>Humidity : | : 28°C<br>65 % | 8 🛛         | 02.11ac(V<br>Test Dat<br>Test By: | te:  |        | 27, 2018<br>ong |       |         |
|---------------------------|----------------|-------------|-----------------------------------|------|--------|-----------------|-------|---------|
| Band                      | Channel        | Channel     |                                   | EBW  | 99%    |                 | Limit | Verdict |
|                           | Number         | Freq. (MHz) | Ant0                              | Ant1 | Ant0   | Ant1            | (MHz) |         |
| UNII<br>Band I            | CH42           | 5210        | 85.990                            |      | 75.125 |                 | N/A   | N/A     |
| UNII<br>Band III          | CH155          | 5775        | 85.830                            |      | 75.125 |                 | N/A   | N/A     |
| Note:<br>N/A (Not Ap      | plicable)      |             |                                   |      |        |                 |       |         |



| Temperature<br>Humidity : | : 28°C<br>65 % |             | UNII Band III<br>Test Date :<br>Test By: | March 27, 2018<br>King Kong |       |         |
|---------------------------|----------------|-------------|------------------------------------------|-----------------------------|-------|---------|
| Operation Channel         |                | Channel     | 6dB                                      | EBW                         | Limit | Verdict |
| Mode                      | Number         | Freq. (MHz) | Ant0                                     | Ant1                        | (kHz) | verdict |
|                           | CH149          | 5745        | 15.504                                   |                             | 500   | PASS    |
| 802.11a                   | CH157          | 5785        | 15.744                                   |                             | 500   | PASS    |
|                           | CH165          | 5825        | 15.624                                   |                             | 500   | PASS    |
| 802.11n                   | CH149          | 5745        | 15.145                                   |                             | 500   | PASS    |
| (VHT20)                   | CH157          | 5785        | 15.145                                   |                             | 500   | PASS    |
| (11120)                   | CH165          | 5825        | 15.425                                   |                             | 500   | PASS    |
| 802.11ac                  | CH149          | 5745        | 15.145                                   |                             | 500   | PASS    |
| (VHT20)                   | CH157          | 5785        | 14.345                                   |                             | 500   | PASS    |
| (11120)                   | CH165          | 5825        | 15.664                                   |                             | 500   | PASS    |
| 802.11n                   | CH151          | 5755        | 35.085                                   |                             | 500   | PASS    |
| (VHT40)                   | CH159          | 5795        | 35.085                                   |                             | 500   | PASS    |
| 802.11ac                  | CH151          | 5755        | 35.085                                   |                             | 500   | PASS    |
| (VHT40)                   | CH159          | 5795        | 35.105                                   |                             | 500   | PASS    |
| 802.11ac<br>(VHT80)       | CH155          | 5775        | 75.120                                   |                             | 500   | PASS    |
| Note:<br>N/A (Not Ap      | plicable)      |             |                                          |                             |       |         |



| av  | width&99% Occ<br>802.11a                                                                                                                                                                                                                                                                                                                                                           | cupieu bandw                                                                                             |                                                         | JNII Band I<br>hcy(MHz)                                               |             | 5180                                                |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------------|-------------|-----------------------------------------------------|
|     | 002.11a                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                          | riequer                                                 |                                                                       |             | 5160                                                |
|     |                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                          |                                                         |                                                                       |             |                                                     |
|     | Spectrum                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                          |                                                         |                                                                       |             |                                                     |
|     | Ref Level 30.00 df                                                                                                                                                                                                                                                                                                                                                                 | Bm Offset 14.00 dB                                                                                       | <b>RBW</b> 300 kHz                                      |                                                                       |             | (                                                   |
|     | Att 35                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                          | • VBW 1 MHz                                             | Mode Sweep                                                            |             |                                                     |
|     | 1Pk Max                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                          |                                                         | D3[1]                                                                 |             | 0.34 d                                              |
|     | 20 dBm                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                          |                                                         |                                                                       |             | 22.1780 MH                                          |
|     | 10 dBm                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                          |                                                         | Occ Bw<br>M1[1]                                                       |             | 16.383616384 MH<br>4.07 dBr                         |
|     | 0 dBm                                                                                                                                                                                                                                                                                                                                                                              | Thomas                                                                                                   | mumm                                                    |                                                                       | <u>~</u> †2 | 5.1821580 GH                                        |
|     |                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                          |                                                         |                                                                       | 7           |                                                     |
|     | -10 dBm                                                                                                                                                                                                                                                                                                                                                                            | M2 J                                                                                                     |                                                         |                                                                       |             |                                                     |
|     | -20 dBm-D1 -21.93                                                                                                                                                                                                                                                                                                                                                                  | 30 dBm                                                                                                   |                                                         |                                                                       | White D3    |                                                     |
|     | r30.dBrbm manuel                                                                                                                                                                                                                                                                                                                                                                   | 10°°                                                                                                     |                                                         |                                                                       |             | - white and white                                   |
|     | -40 dBm                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                          |                                                         |                                                                       |             |                                                     |
|     | -50 dBm                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                          |                                                         |                                                                       |             |                                                     |
|     | -60 dBm                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                          |                                                         |                                                                       |             |                                                     |
|     | -oo ubiii                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                          |                                                         |                                                                       |             |                                                     |
|     | CF 5.18 GHz                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                          | 1001 pts                                                | ;                                                                     |             | Span 40.0 MHz                                       |
|     | Marker<br>                                                                                                                                                                                                                                                                                                                                                                         | X-value                                                                                                  | Y-value                                                 | Function                                                              | Fund        | tion Result                                         |
|     | M1 1<br>T1 1                                                                                                                                                                                                                                                                                                                                                                       | 5.182158 GHz<br>5.1718482 GHz                                                                            | 4.07 dBm<br>-3.25 dBm                                   | Occ Bw                                                                |             | 16.383616384 MHz                                    |
|     |                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                          |                                                         |                                                                       |             |                                                     |
|     | T2 1                                                                                                                                                                                                                                                                                                                                                                               | 5.1882318 GHz                                                                                            | -3.69 dBm                                               |                                                                       |             |                                                     |
|     |                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                          |                                                         |                                                                       |             |                                                     |
|     | T2 1<br>M2 1                                                                                                                                                                                                                                                                                                                                                                       | 5.1882318 GHz<br>5.169091 GHz                                                                            | -3.69 dBm<br>-22.15 dBm                                 | ) Measuring                                                           |             | 27.03.2018<br>13:17:34                              |
|     | T2 1<br>M2 1                                                                                                                                                                                                                                                                                                                                                                       | 5.1882318 GHz<br>5.169091 GHz<br>22.178 MHz                                                              | -3.69 dBm<br>-22.15 dBm                                 |                                                                       | ••••••      | 27.03.2018<br>13:17:34                              |
| dv  | T2         1           M2         1           D3         M2         1           Date:         27.MAR.2018         13:1                                                                                                                                                                                                                                                             | 5.1882318 GHz<br>5.169091 GHz<br>22.178 MHz<br>7:34                                                      | -3.69 dBm<br>-22.15 dBm<br>0.34 dB                      | Measuring                                                             |             | 27.03.2018<br>13:17:34                              |
| dv  | T2 1<br>M2 1<br>D3 M2 1<br>Date: 27.MAR 2018 13:1<br>width&99% Occ                                                                                                                                                                                                                                                                                                                 | 5.1882318 GHz<br>5.169091 GHz<br>22.178 MHz<br>7:34                                                      | -3.69 dBm<br>-22.15 dBm<br>0.34 dB                      | Measuring                                                             |             | 13:17:34                                            |
| ndv | T2         1           M2         1           D3         M2         1           Date:         27.MAR.2018         13:1                                                                                                                                                                                                                                                             | 5.1882318 GHz<br>5.169091 GHz<br>22.178 MHz<br>7:34                                                      | -3.69 dBm<br>-22.15 dBm<br>0.34 dB                      | Measuring                                                             |             | 27.03.2018<br>13:17:34<br>5200                      |
| ndv | T2 1<br>M2 1<br>D3 M2 1<br>Date: 27.MAR 2018 13:1<br>width&99% Occ                                                                                                                                                                                                                                                                                                                 | 5.1882318 GHz<br>5.169091 GHz<br>22.178 MHz<br>7:34                                                      | -3.69 dBm<br>-22.15 dBm<br>0.34 dB                      | Measuring                                                             |             | 13:17:34                                            |
| ndv | T2 1<br>M2 1<br>D3 M2 1<br>Date: 27.MAR.2018 13:1<br>width&99% Occ<br>802.11a                                                                                                                                                                                                                                                                                                      | 5.1882318 GHz<br>5.169091 GHz<br>22.178 MHz<br>7:34                                                      | -3.69 dBm<br>-22.15 dBm<br>0.34 dB                      | Measuring                                                             |             | 5200                                                |
| ndv | T2 1<br>M2 1<br>D3 M2 1<br>Date: 27.MAR.2018 13:1<br>width&99% Occ<br>802.11a<br>Spectrum<br>Ref Level 30.00 df                                                                                                                                                                                                                                                                    | 5,1882318 GHz<br>5,169091 GHz<br>22,178 MHz<br>7:34<br>Cupied Bandw                                      | -3.69 dBm<br>-22.15 dBm<br>0.34 dB<br>idth L<br>Frequer | Measuring<br>INII Band I<br>Incy(MHz)                                 |             | 13:17:34                                            |
| ndv | T2 1<br>M2 1<br>D3 M2 1<br>Date: 27.MAR.2018 13:1<br>width&99% Occ<br>802.11a<br>Spectrum<br>Ref Level 30.00 df<br>Att 35                                                                                                                                                                                                                                                          | 5,1882318 GHz<br>5,169091 GHz<br>22,178 MHz<br>7:34<br>Cupied Bandw                                      | -3.69 dBm<br>-22.15 dBm<br>0.34 dB                      | Measuring                                                             |             | 5200                                                |
| ndv | T2 1<br>M2 1<br>D3 M2 1<br>Date: 27.MAR.2018 13:1<br>width&99% Occ<br>802.11a<br>Spectrum<br>Ref Level 30.00 df                                                                                                                                                                                                                                                                    | 5,1882318 GHz<br>5,169091 GHz<br>22,178 MHz<br>7:34<br>Cupied Bandw                                      | -3.69 dBm<br>-22.15 dBm<br>0.34 dB<br>idth L<br>Frequer | Measuring<br>INII Band I<br>Incy(MHz)                                 |             | 5200<br>0.35 d                                      |
| ndv | T2 1<br>M2 1<br>D3 M2 1<br>Date: 27.MAR.2018 13:1<br>width&99% Occ<br>802.11a<br>Spectrum<br>Ref Level 30.00 df<br>Att 35                                                                                                                                                                                                                                                          | 5,1882318 GHz<br>5,169091 GHz<br>22,178 MHz<br>7:34<br>Cupied Bandw                                      | -3.69 dBm<br>-22.15 dBm<br>0.34 dB<br>idth L<br>Frequer | Measuring<br>JNII Band I<br>ncy(MHz)<br>Mode Sweep                    |             | 5200                                                |
| ndv | T2         1           M2         1           D3         M2           Date:         27.MAR.2018         13:1           width&99%         Occ           802.11a           Spectrum           Ref Level         30.00 di           Att         35           IPk Max                                                                                                                  | 5,1882318 GHz<br>5,169091 GHz<br>22,178 MHz<br>7:34<br>Cupied Bandw                                      | -3.69 dBm<br>-22.15 dBm<br>0.34 dB<br>idth L<br>Frequer | Measuring<br>INII Band I<br>Incy(MHz)<br>Mode Sweep                   |             | 0.35 d<br>21.3390 MH<br>16.383616384 MH<br>4.77 dBr |
| ndv | T2 1<br>M2 1<br>D3 M2 1<br>Date: 27.MAR.2018 13:1<br>width&99% Occ<br>802.11a<br>Spectrum<br>Ref Level 30.00 df<br>Att 35<br>1Pk Max<br>20 dBm                                                                                                                                                                                                                                     | 5,1882318 GHz<br>5,169091 GHz<br>22,178 MHz<br>7:34<br>Cupied Bandw                                      | -3.69 dBm<br>-22.15 dBm<br>0.34 dB<br>idth L<br>Frequer | Measuring<br>JNII Band I<br>ncy(MHz)<br>Mode Sweep<br>D3[1]<br>Occ Bw |             | 0.35 d<br>21.3390 MH<br>16.383616384 MH             |
| ndv | T2         1           M2         1           D3         M2         1           Date:         27.MAR.2018         13:1           width&99%         Occ         802.11a           Spectrum         Ref Level         30.00 db           Att         35         1Pk Max           10 dBm         10 dBm         10 dBm                                                               | 5,1882318 GHz<br>5,169091 GHz<br>22,178 MHz<br>7:34<br>Cupied Bandw                                      | -3.69 dBm<br>-22.15 dBm<br>0.34 dB<br>idth L<br>Frequer | Measuring<br>JNII Band I<br>ncy(MHz)<br>Mode Sweep<br>D3[1]<br>Occ Bw |             | 0.35 d<br>21.3390 MH<br>16.383616384 MH<br>4.77 dBr |
| ndv | T2         1           M2         1           D3         M2           Date: 27.MAR.2018         13:1           width&99%         Occ           802.11a         Spectrum           Ref Level         30.00 df           Att         35           1Pk Max         20 dBm           10 dBm         0 dBm           -10 dBm         -10 dBm                                            | 5.1892318 GHz<br>5.169091 GHz<br>22.178 MHz<br>7:34<br>cupied Bandw<br>Bm Offset 14.00 dB<br>dB SWT 1 ms | -3.69 dBm<br>-22.15 dBm<br>0.34 dB<br>idth L<br>Frequer | Measuring<br>JNII Band I<br>ncy(MHz)<br>Mode Sweep<br>D3[1]<br>Occ Bw |             | 0.35 d<br>21.3390 MH<br>16.383616384 MH<br>4.77 dBr |
| ndv | T2         1           M2         1           D3         M2           Date: 27.MAR.2018         13.1           width&99%         Occ           802.11a         Spectrum           Ref Level         30.00 dl           Att         35           1Pk Max         20 dBm           10 dBm         0 dBm           -10 dBm         -21 dBm                                            | 5.1882318 GHz<br>5.169091 GHz<br>22.178 MHz<br>7:34<br>cupied Bandw<br>Bm Offset 14.00 dB<br>8 SWT 1 ms  | -3.69 dBm<br>-22.15 dBm<br>0.34 dB<br>idth L<br>Frequer | Measuring<br>JNII Band I<br>ncy(MHz)<br>Mode Sweep<br>D3[1]<br>Occ Bw |             | 0.35 d<br>21.3390 MH<br>16.383616384 MH<br>4.77 dBr |
| ndv | T2         1           M2         1           Date:         27.MAR.2018         13:1           width&99% Occ         802.11a           Spectrum         Ref Level 30.00 df           Att         35           1Pk Max         20 dBm           10 dBm         0 dBm           -10 dBm         D1 -21.22           r30.dBm         20.40m                                           | 5.1882318 GHz<br>5.169091 GHz<br>22.178 MHz<br>7:34<br>cupied Bandw<br>Bm Offset 14.00 dB<br>8 SWT 1 ms  | -3.69 dBm<br>-22.15 dBm<br>0.34 dB<br>idth L<br>Frequer | Measuring<br>JNII Band I<br>ncy(MHz)<br>Mode Sweep<br>D3[1]<br>Occ Bw |             | 0.35 d<br>21.3390 MH<br>16.383616384 MH<br>4.77 dBr |
| ndv | T2         1           M2         1           D3         M2           Date: 27.MAR.2018         13.1           width&99%         Occ           802.11a         Spectrum           Ref Level         30.00 dl           Att         35           1Pk Max         20 dBm           10 dBm         0 dBm           -10 dBm         -21 dBm                                            | 5.1882318 GHz<br>5.169091 GHz<br>22.178 MHz<br>7:34<br>cupied Bandw<br>Bm Offset 14.00 dB<br>8 SWT 1 ms  | -3.69 dBm<br>-22.15 dBm<br>0.34 dB<br>idth L<br>Frequer | Measuring<br>JNII Band I<br>ncy(MHz)<br>Mode Sweep<br>D3[1]<br>Occ Bw |             | 0.35 d<br>21.3390 MH<br>16.383616384 MH<br>4.77 dBr |
| ıdv | T2         1           M2         1           Date:         27.MAR.2018         13:1           width&99% Occ         802.11a           Spectrum         Ref Level 30.00 df           Att         35           1Pk Max         20 dBm           10 dBm         0 dBm           -10 dBm         D1 -21.22           r30.dBm         20.40m                                           | 5.1882318 GHz<br>5.169091 GHz<br>22.178 MHz<br>7:34<br>cupied Bandw<br>Bm Offset 14.00 dB<br>8 SWT 1 ms  | -3.69 dBm<br>-22.15 dBm<br>0.34 dB<br>idth L<br>Frequer | Measuring<br>JNII Band I<br>ncy(MHz)<br>Mode Sweep<br>D3[1]<br>Occ Bw |             | 0.35 d<br>21.3390 MH<br>16.383616384 MH<br>4.77 dBr |
|     | T2         1           M2         1           D3         M2           Date:         27.MAR.2018         13:1           width&99%         Occe           802.11a           Spectrum         Ref Level 30.00 df           Att         35           IPk Max           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -10 dBm           -40 dBm | 5.1882318 GHz<br>5.169091 GHz<br>22.178 MHz<br>7:34<br>cupied Bandw<br>Bm Offset 14.00 dB<br>8 SWT 1 ms  | -3.69 dBm<br>-22.15 dBm<br>0.34 dB<br>idth L<br>Frequer | Measuring<br>JNII Band I<br>ncy(MHz)<br>Mode Sweep<br>D3[1]<br>Occ Bw |             | 0.35 d<br>21.3390 MH<br>16.383616384 MH<br>4.77 dBr |

1001 pts

Function

Occ Bw

Measuring...

Y-value 4.77 dBm -2.19 dBm -3.40 dBm -22.06 dBm 0.35 dB

Date: 27.MAR.2018 13:18:51

X-value 5.201558 GHz 5.1918482 GHz 5.2082318 GHz 5.189371 GHz 21.339 MHz

CF 5.2 GHz

 Marker

 Type
 Ref
 Trc

 M1
 1
 1

 T1
 1
 1

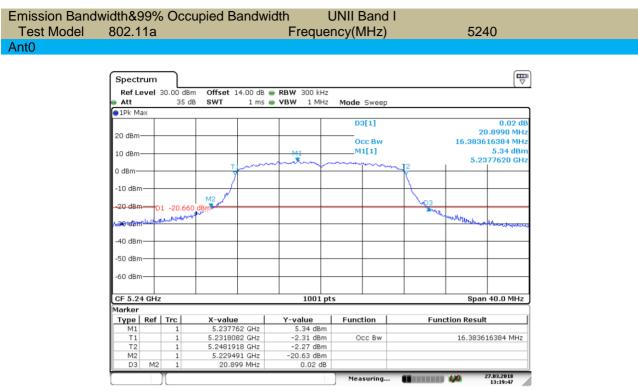
 T2
 1
 1

 M2
 1
 1

 D3
 M2
 1

Marker

Span 40.0 MHz


16.383616384 MHz

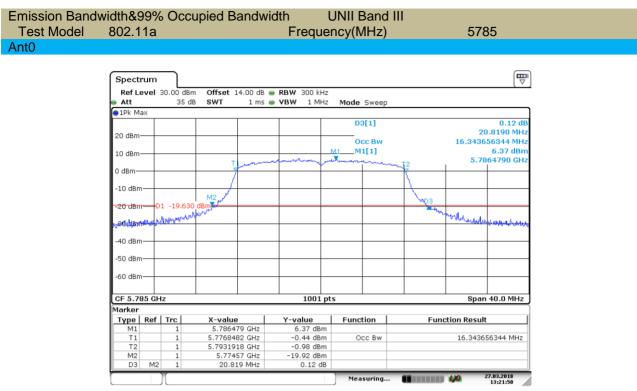
27.03.2018 13:18:51

Function Result

••••••






Date: 27.MAR.2018 13:19:47

| Emission Band | width&99% O | cupied Bandwidth UNII Band III |      |  |
|---------------|-------------|--------------------------------|------|--|
| Test Model    | 802.11a     | Frequency(MHz)                 | 5745 |  |
| Ant0          |             |                                |      |  |

| Ref L   | evel : | 30.00 dE | 3m Offset 14.00   | dB 🔵 R | <b>BW</b> 300 kHz |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |       |                     |            |
|---------|--------|----------|-------------------|--------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|---------------------|------------|
| Att     |        | 35       | dB SWT 1          | ms 🕳 V | BW 1 MHz          | Mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sweep |       |                     |            |
| 1Pk M   | ax     |          |                   |        |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |       |                     |            |
|         |        |          |                   |        |                   | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3[1]  |       |                     | 0.20 d     |
| 20 dBm  |        |          |                   |        |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |       |                     | 0.9390 MH  |
|         |        |          |                   |        |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | cc Bw |       | 16.3836             | 16384 MH   |
| 10 dBm  | _      |          |                   |        | M1                | M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1[1]  |       |                     | 6.96 dB    |
|         |        |          | T.                | m      | many              | and a stand and a stand of the | m     |       | 5.74                | F27220 GF  |
| 0 dBm–  |        |          | 1 X               |        |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | Ť     |                     |            |
| -10 dBn |        |          |                   |        |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | 1     |                     |            |
| -10 080 | '      |          | M2 🖉              |        |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | 202   |                     |            |
| -20 dBn |        | 1 -19.04 | 10 dBm            |        |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | V~,D3 |                     |            |
|         |        | . Hunder | M2 m <sup>4</sup> |        |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |       | and with the server |            |
| 30 dBn  | 10-4-  |          |                   |        |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |       |                     | - wardense |
|         |        |          |                   |        |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |       |                     |            |
| -40 dBn |        |          |                   |        |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |       |                     |            |
| -50 dBn | n      |          |                   |        |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |       |                     |            |
|         |        |          |                   |        |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |       |                     |            |
| -60 dBn | n      |          |                   |        |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |       |                     |            |
|         |        |          |                   |        |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |       |                     |            |
| CF 5.7  | 45 GH  | z        |                   |        | 1001 p            | ts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |       | Spar                | 40.0 MH    |
| 1arker  |        |          |                   |        |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |       |                     |            |
| Type    | Ref    | Trc      | X-value           | 1      | Y-value           | Func                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | tion  | Fun   | ction Resul         | t          |
| M1      |        | 1        | 5.742722 GH       | łz     | 6.96 dBm          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |       |                     |            |
| Τ1      |        | 1        | 5.7368482 GH      |        | 0.12 dBm          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | cc Bw |       | 16.3836             | 16384 MHz  |
| Т2      |        | 1        | 5.7532318 GH      |        | -0.99 dBm         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |       |                     |            |
| M2      |        | 1        | 5.73469 GH        |        | -18.94 dBm        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |       |                     |            |
| D3      | M2     | 1        | 20.939 MH         | 1Z     | 0.20 dB           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |       |                     |            |

Date: 27.MAR.2018 13:20:58



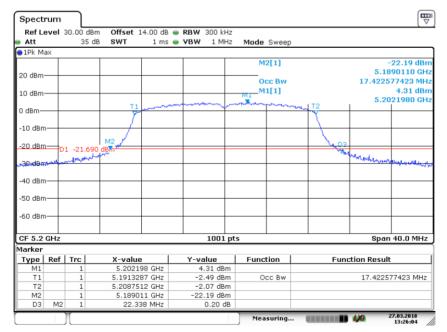


Date: 27.MAR.2018 13:21:49

| Emission Band | width&99% C | ccupied Bandwidth UNII Band III |      |  |
|---------------|-------------|---------------------------------|------|--|
| Test Model    | 802.11a     | Frequency(MHz)                  | 5825 |  |
| Ant0          |             |                                 |      |  |

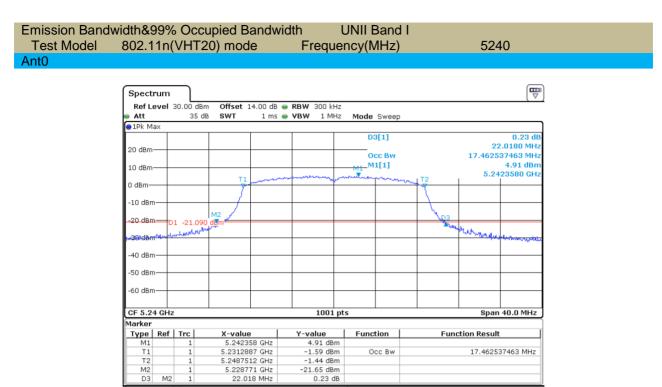
| Refl      | evel          | 30.00 dE | m Offset 1 | 4 00 dB   | • RBW 300 kH    | 7   |            |               |                |                   |
|-----------|---------------|----------|------------|-----------|-----------------|-----|------------|---------------|----------------|-------------------|
| Att       |               | 35       |            |           | <b>VBW</b> 1 MH |     | Mode Sweep |               |                |                   |
| 1Pk M     | ax            |          |            | 2         |                 | -   | Mode Sweep |               |                |                   |
|           | <u> </u>      |          |            |           |                 |     | M2[1]      |               |                | -20.84 dBr        |
|           |               |          |            |           |                 |     |            |               |                | 146100 GH         |
| 20 dBm    |               |          |            |           |                 |     | Occ Bw     |               | 16.383         | 616384 MH         |
| 10 dBm    |               |          |            |           | M1              |     | M1[1]      |               |                | 4.85 dBi          |
| 10 0011   |               |          |            |           | - markent       |     |            |               | 5.8            | 239610 GH         |
| 0 dBm-    |               |          | T          | - martine |                 |     | m          | ~~ <u>1</u> 2 |                | +                 |
|           |               |          | 1 1        |           |                 |     |            | Γ.            |                |                   |
| -10 dBn   | n             |          |            |           |                 |     |            | - <u>-</u>    |                |                   |
|           |               |          | M2 _       |           |                 |     |            | 2000          |                |                   |
| -20 dBn   | ° <b>—</b> †D | 1 -21.15 | 50 dBm     |           |                 |     |            | - Maria       |                |                   |
| the way   |               | Marting  | 50 dBm     |           |                 |     |            |               | Montraphiene . | alue i            |
| Hamberson | 10.4          |          |            |           |                 |     |            |               | 1              | Rend Aproduces of |
| -40 dBn   |               |          |            |           | _               |     |            |               |                |                   |
|           |               |          |            |           |                 |     |            |               |                |                   |
| -50 dBn   | n             |          |            |           | _               |     |            |               |                | -                 |
|           |               |          |            |           |                 |     |            |               |                |                   |
| -60 dBn   | n             |          |            |           |                 |     |            |               |                | -                 |
|           |               |          |            |           |                 |     |            |               |                |                   |
| CF 5.8    | 25 GH         | z        |            |           | 1001            | pts |            |               | Spa            | n 40.0 MHz        |
| /larker   |               |          |            |           |                 |     |            |               |                |                   |
| Type      | Ref           | Trc      | X-value    |           | Y-value         |     | Function   | Fun           | ction Resu     | lt                |
| M1        |               | 1        | 5.82396    |           | 4.85 dBn        |     |            |               |                |                   |
| Τ1        |               | 1        | 5.816808   |           | -2.40 dBn       |     | Occ Bw     |               | 16.3836        | 516384 MHz        |
| T2        |               | 1        | 5.83319:   |           | -2.19 dBr       |     |            |               |                |                   |
| M2        |               | 1        | 5.8146     |           | -20.84 dBn      |     |            |               |                |                   |
| D3        | M2            | 1        | 21.01      | 9 MHz     | -0.33 di        | 3   |            |               |                |                   |

Date: 27.MAR.2018 13:23:03






|    |    |   |               |            | Measuring |      | 27.03.2018<br>13:24:02 |
|----|----|---|---------------|------------|-----------|------|------------------------|
| D3 | M2 | 1 | 21.698 MHz    | 0.09 dB    |           |      |                        |
| M2 |    | 1 | 5.169291 GHz  | -22.68 dBm |           |      |                        |
| T2 |    | 1 | 5.1887912 GHz | -3.67 dBm  |           |      |                        |
| Τ1 |    | 1 | 5.1713287 GHz | -3.32 dBm  | Occ Bw    | 17.4 | 462537463 MHz          |
| M1 |    | 1 | 5.184436 GHz  | 3.31 dBm   |           |      |                        |


Date: 27.MAR.2018 13:24:02





Date: 27.MAR.2018 13:26:04

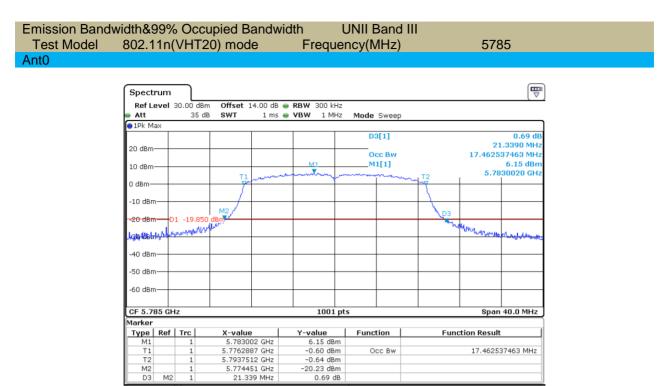




Date: 27.MAR.2018 13:27:06

M2 D3

| Emission Band | width&99% Occupied Band | width UNII Band III |      |  |
|---------------|-------------------------|---------------------|------|--|
| Test Model    | 802.11n(VHT20) mode     | Frequency(MHz)      | 5745 |  |
| AntO          |                         |                     |      |  |


Measuring...

27.03.2018 13:27:06

|                | evel          | 30.00 dB               |                              | dB 👄 RBW 300 kHz | -          |                                          |                      |
|----------------|---------------|------------------------|------------------------------|------------------|------------|------------------------------------------|----------------------|
| Att            |               | 35 c                   | ib SWT 1                     | ms 👄 VBW 🛛 1 MHz | Mode Sweep |                                          |                      |
| ∋1Pk M         | lax           |                        |                              |                  |            |                                          |                      |
|                |               |                        |                              |                  | D3[1]      |                                          | 0.91 d               |
| 20 dBm         |               |                        |                              |                  |            |                                          | 22.0980 MH           |
|                |               |                        |                              |                  | Occ Bw     |                                          | 17.462537463 MH      |
| 10 dBm         |               |                        |                              |                  | M1M1[1]    |                                          | 6.25 dBr             |
|                |               |                        | T1                           | menning          | mumm       | T2                                       | 5.7469980 GH         |
| 0 dBm-         |               |                        | 1 7                          |                  |            | Ĩ                                        |                      |
| -10 dBr        | ~             |                        |                              |                  |            |                                          |                      |
| -10 UBI        | " <del></del> |                        | M2                           |                  |            | N. N |                      |
| -20 dBr        |               | 1 -19.75               | o do to                      |                  |            | W,D3                                     |                      |
| 20 001         | "             | 1 -19.75<br>Marillylun | JUN .                        |                  |            | ~                                        | mound                |
| 30/48#         | HP TOP W      | Marrie Marrie          |                              |                  |            |                                          | un mound and a decal |
|                |               |                        |                              |                  |            |                                          |                      |
| -40 dBr        | n             |                        |                              |                  |            |                                          |                      |
|                |               |                        |                              |                  |            |                                          |                      |
| -50 dBr        | n —           |                        |                              |                  |            |                                          |                      |
| -60 dBr        | _             |                        |                              |                  |            |                                          |                      |
| -00 ubi        |               |                        |                              |                  |            |                                          |                      |
|                |               |                        |                              |                  |            |                                          |                      |
| CF 5.7         |               | z                      |                              | 1001 p           | its        |                                          | Span 40.0 MHz        |
| Marker         |               |                        |                              |                  |            |                                          |                      |
| Туре           | Ref           | Trc                    | X-value                      | Y-value          | Function   | Fun                                      | ction Result         |
| M1             |               | 1                      | 5.746998 GH                  |                  |            |                                          | 17 400007400 MU-     |
|                |               | 1                      | 5.7362887 GH<br>5.7537512 GH |                  |            |                                          | 17.462537463 MHz     |
| T1             |               | -                      | 5.734051 GH                  |                  |            |                                          |                      |
| T1<br>T2<br>M2 |               | 1                      |                              |                  |            |                                          |                      |

Date: 27.MAR.2018 13:28:29



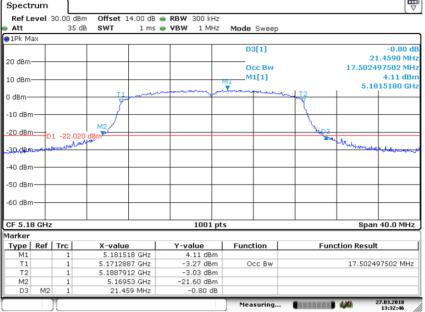


Date: 27.MAR.2018 13:29:23

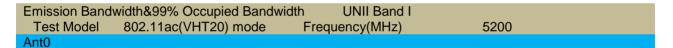
M2 M2 D3

| Emission Band | width&99% Occupied Bandw | vidth UNII Band III |      |  |
|---------------|--------------------------|---------------------|------|--|
| Test Model    | 802.11n(VHT20) mode      | Frequency(MHz)      | 5825 |  |
| Ant0          |                          |                     |      |  |

Measuring...


27.03.2018 13:29:23

| Ref L    | evel   | 30.00 d<br>35 |           | 00 dB 🥌<br>1 ms 🖷 | RBW 300 kHz |       | Cureen      |              |              |           |
|----------|--------|---------------|-----------|-------------------|-------------|-------|-------------|--------------|--------------|-----------|
| 1Pk M    | ax     | 33            | 05 311    | 1 1115            | YBW IMH2    | Moue  | Sweep       |              |              |           |
|          |        |               |           |                   |             | M     | 2[1]        |              |              | 20.36 dBr |
| 20 dBm   |        |               |           |                   |             |       |             |              | 5.81         | .44910 GH |
| 20 0011  |        |               |           |                   |             |       | c Bw        |              | 17.4625      | 37463 MH  |
| 10 dBm   | -+     |               |           |                   | M1          | M1    | l[1]        |              |              | 5.05 dBr  |
|          |        |               | T1        | m                 | - Terrer -  |       | - Martine - | - 1T2        | 5.82         | 21230 GH  |
| 0 dBm—   |        |               | 7         |                   | + r         |       |             | ~            | -            |           |
|          |        |               |           |                   |             |       |             |              |              |           |
| -10 dBn  | דרי    |               |           |                   |             |       |             |              |              |           |
| -20 dBn  |        |               | M2        |                   |             |       |             | <b>*</b> •03 |              |           |
|          | -      | 1 -20.9       | 50 dBm    |                   |             |       |             | A.           | A. 1.        |           |
| nap gev  | hannar | Jury nul      | ///       |                   | + +         |       |             |              | Munaner      | Monoren   |
|          |        |               |           |                   |             |       |             |              |              |           |
| -40 dBr  | +-י    |               |           |                   | +           |       |             |              |              |           |
| -50 dBri |        |               |           |                   |             |       |             |              |              |           |
| -50 UBI  |        |               |           |                   |             |       |             |              |              |           |
| -60 dBr  |        |               |           |                   |             |       |             |              |              |           |
|          |        |               |           |                   |             |       |             |              |              |           |
| CF 5.8   | 25 GH  | z             |           |                   | 1001 p      | its   |             |              | Span         | 40.0 MHz  |
| larker   |        |               |           |                   | •           |       |             |              |              |           |
| Type     | Ref    | Trc           | X-value   | 1                 | Y-value     | Funct | ion         | Fun          | ction Result |           |
| M1       |        | 1             | 5.822123  | GHz               | 5.05 dBm    |       |             |              |              |           |
| Τ1       |        | 1             | 5.8162887 |                   | -1.50 dBm   | 00    | C BW        |              | 17.4625      | 37463 MHz |
| Т2       |        | 1             | 5.8337512 |                   | -2.32 dBm   |       |             |              |              |           |
| M2       |        | 1             | 5.814491  |                   | -20.36 dBm  |       |             |              |              |           |
| D3       | M2     | 1             | 21.179    | MHz               | -0.65 dB    | 1     |             |              |              |           |


Date: 27.MAR.2018 13:30:41



| Emission Band | width&99% Occupied Bandwid | th UNII Band I |      |  |
|---------------|----------------------------|----------------|------|--|
| Test Model    | 802.11ac(VHT20) mode       | Frequency(MHz) | 5180 |  |
| Ant0          |                            |                |      |  |
|               |                            |                |      |  |
|               | Spectrum                   |                |      |  |



Date: 27.MAR.2018 13:32:45



| Ref L         | evel :       | 30.00 dB | m Offset 1 | .4.00 dB                                                                                                         | 😑 RBW 300 kH | Iz  |            |      |              |                       |
|---------------|--------------|----------|------------|------------------------------------------------------------------------------------------------------------------|--------------|-----|------------|------|--------------|-----------------------|
| Att           |              | 35 0     |            |                                                                                                                  | • VBW 1 MH   |     | Mode Sweep |      |              |                       |
| 1Pk M         | ах           |          |            |                                                                                                                  |              |     |            |      |              |                       |
|               |              |          |            |                                                                                                                  |              |     | D3[1]      |      |              | -0.11 d               |
| 20 dBm        |              |          |            |                                                                                                                  |              |     |            |      | 2            | 1.7380 MH             |
| 20 0011       |              |          |            |                                                                                                                  |              |     | Occ Bw     |      | 17.462       | 537463 MH             |
| 10 dBm        | -+           |          | _          |                                                                                                                  | M1           |     | M1[1]      |      |              | 4.04 dBi              |
| 20 0000       |              |          |            |                                                                                                                  | A Land       |     |            |      | 5.1          | 978420 GH             |
| 0 dBm—        | _            |          | T1         | and a start and a start and a start a st |              |     | mananan    | ~~T2 |              |                       |
|               |              |          |            |                                                                                                                  |              |     |            |      |              |                       |
| -10 dBn       | <u>ו</u> וי  |          |            |                                                                                                                  |              |     |            |      | -            |                       |
|               |              |          | M2         |                                                                                                                  |              |     |            | No.  |              |                       |
| -20 dBri      |              | 1 -21.96 | 0 dBm      |                                                                                                                  |              | _   |            | W.DG |              |                       |
| -36 dBb       |              | Mulph    | when a     |                                                                                                                  |              |     |            |      | un Multinger | and the second second |
| - and the put | 1000         |          |            |                                                                                                                  |              |     |            |      |              | appending appending   |
| -40 dBm       |              |          |            |                                                                                                                  |              |     |            |      |              |                       |
| 10 001        | ·            |          |            |                                                                                                                  |              |     |            |      |              |                       |
| -50 dBri      | 1            |          |            |                                                                                                                  |              |     |            |      |              |                       |
|               |              |          |            |                                                                                                                  |              |     |            |      |              |                       |
| -60 dBr       | י <b>−</b> ר |          |            |                                                                                                                  |              |     |            |      | +            |                       |
|               |              |          |            |                                                                                                                  |              |     |            |      |              |                       |
| CF 5.2        | GHz          |          | 1          |                                                                                                                  | 1001         | pts | 1          |      | Spar         | n 40.0 MHz            |
| 1arker        |              |          |            |                                                                                                                  |              | _   |            |      |              |                       |
| Type          | Ref          | Trc      | X-value    | e                                                                                                                | Y-value      |     | Function   | Fui  | nction Resul | t                     |
| M1            |              | 1        | 5.1978     | 42 GHz                                                                                                           | 4.04 dBr     | n   |            |      |              |                       |
| Τ1            |              | 1        | 5.19128    |                                                                                                                  | -3.04 dBr    |     | Occ Bw     |      | 17.4625      | 537463 MHz            |
| Т2            |              | 1        | 5.20875    |                                                                                                                  | -2.50 dBr    |     |            |      |              |                       |
| M2            |              | 1        | 5.1893     |                                                                                                                  | -22.07 dBr   |     |            |      |              |                       |
| D3            | M2           | 1        | 21.73      | 38 MHz                                                                                                           | -0.11 d      | в 🗌 |            |      |              |                       |

Date: 27.MAR.2018 13:33:33



| Emission Bandy | vidth&99%                        | % Occi     | pied B     | andwid | th               | UNII E  | Band I |             |      |                           |   |
|----------------|----------------------------------|------------|------------|--------|------------------|---------|--------|-------------|------|---------------------------|---|
|                |                                  |            |            |        |                  |         |        |             | E0/  |                           |   |
|                | 802.11a                          |            | 20) 110    | ue     | Fiequ            | iency(N | /ITZ)  |             | 524  | Ð                         |   |
| Ant0           |                                  |            |            |        |                  |         |        |             |      |                           |   |
|                |                                  |            |            |        |                  |         |        |             |      |                           |   |
|                |                                  | _          |            |        |                  |         |        |             |      |                           | ) |
|                | Spectrum                         |            |            |        |                  |         |        |             |      |                           | J |
|                |                                  | 30.00 dBm  |            |        | <b>RBW</b> 300 k |         |        |             |      |                           |   |
|                | Att                              | 35 dB      | SWT        | 1 ms 😑 | VBW 1 M          | Hz Mode | Sweep  |             |      |                           |   |
|                | ●1Pk Max                         |            |            |        |                  |         |        |             |      |                           |   |
|                |                                  |            |            |        |                  | Da      | 3[1]   |             | 21   | 0.16 dB<br>.2990 MHz      |   |
|                | 20 dBm                           |            |            |        |                  | 00      | cc Bw  |             |      | 37463 MHz                 |   |
|                | 10 dBm-                          |            |            |        | M1               | M       | 1[1]   |             |      | 5.78 dBm                  |   |
|                |                                  |            | т1         | man    | montin           | man     | mann   | 1 7 2       | 5.23 | 80020 GHz                 |   |
|                | 0 dBm                            |            | 7          |        |                  |         |        | Y           |      |                           |   |
|                | -10 dBm                          |            |            |        |                  |         |        |             |      |                           |   |
|                | 10 0.011                         |            | M2         |        |                  |         |        |             |      |                           |   |
|                | <del>-20 dBm</del><br>പ്രാഷങ്ങാം | D1 -20.220 | dBm        |        |                  |         |        | 403<br>•••• |      | an <del>n an an</del> tar |   |
|                | 150 HR HOLD                      | when when  | μ <b>r</b> |        |                  |         |        |             | many | Muchael                   |   |
|                | -36 6511                         |            |            |        |                  |         |        |             |      |                           |   |
|                | -40 dBm                          |            |            |        |                  |         |        |             |      |                           |   |
|                | -50 dBm                          |            |            |        |                  |         |        |             |      |                           |   |
|                | -30 dBill                        |            |            |        |                  |         |        |             |      |                           |   |
|                | -60 dBm                          |            |            |        |                  |         |        |             |      |                           |   |
|                |                                  |            |            |        |                  |         |        | 1           |      |                           | i |

1001 pts

Function

Occ Bw

Measuring...

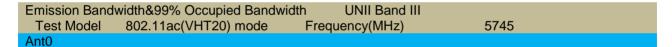
Y-value 5.78 dBm -1.66 dBm -2.32 dBm -20.58 dBm 0.16 dB

Date: 27.MAR.2018 13:35:00

X-value 5.238002 GHz 5.2312887 GHz 5.2487512 GHz 5.229331 GHz 21.299 MHz

CF 5.24 GHz Marker

> M2 D3 M2


 Marker

 Type
 Ref
 Trc

 M1
 1
 1

 T1
 1
 1

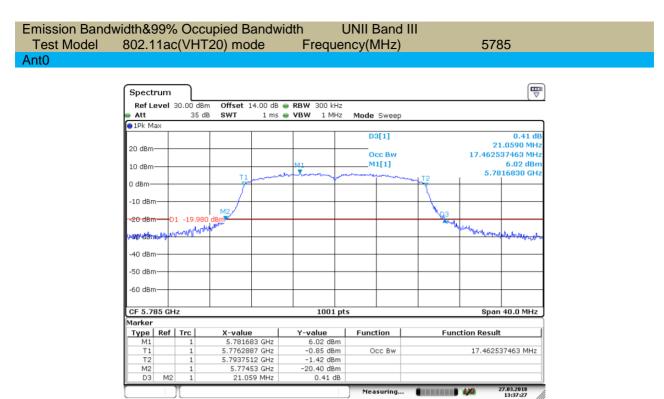
 T2
 1
 1



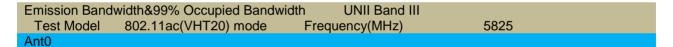
| Att     | evel .        | 30.00 di<br>35 |               | dB 👄 RBW 300 kHz<br>ns 👄 VBW 🛛 1 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |               |                            |
|---------|---------------|----------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------------|----------------------------|
| ∋1Pk M  | ах            |                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |               |                            |
|         |               |                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D3[1]                 |               | 0.65 di                    |
| 20 dBm  | $\rightarrow$ |                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |               | 21.6580 MH                 |
|         |               |                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Occ Bw                |               | 17.462537463 MH            |
| 10 dBm  | _             |                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M1_M1[1]              |               | 6.09 dBr                   |
|         |               |                | T1            | and the second s | and the second second | man T2        | 5.7473980 GH               |
| 0 dBm–  |               |                | 7             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | 7             |                            |
|         |               |                | 1             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | $\rightarrow$ |                            |
| -10 dBn | n — —         |                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |               |                            |
| -20 dBn |               | 1 10.0         | 10 dBm        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | M D3          |                            |
| -20 UBI |               | 1 -19.9        | Judy Marine   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |               | manuel                     |
| ad dan  | THIN AND      | n -19.9        | -             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |               | man marter with marked and |
| 00 000  |               |                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |               |                            |
| -40 dBn | n — —         |                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |               |                            |
|         |               |                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |               |                            |
| -50 dBn | n — —         |                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |               |                            |
|         |               |                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |               |                            |
| -60 dBn | n             |                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |               |                            |
|         |               |                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |               |                            |
| CF 5.7  | 45 GH         | lz             |               | 1001 p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ts                    |               | Span 40.0 MHz              |
| 1arker  |               |                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |               |                            |
| Туре    | Ref           | Trc            | X-value       | Y-value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Function              | Fund          | tion Result                |
| M1      |               | 1              | 5.747398 GHz  | 2 6.09 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |               |                            |
| Τ1      |               | 1              | 5.7362887 GHz |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Occ Bw                |               | 17.462537463 MHz           |
| Т2      |               | 1              | 5.7537512 GHz |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |               |                            |
| M2      |               | 1              | 5.73453 GHz   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |               |                            |
| D3      | M2            | 1              | 21.658 MHz    | 2 0.65 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |               |                            |

Date: 27.MAR.2018 13:36:32

Span 40.0 MHz


17.462537463 MHz

27.03.2018 13:35:01

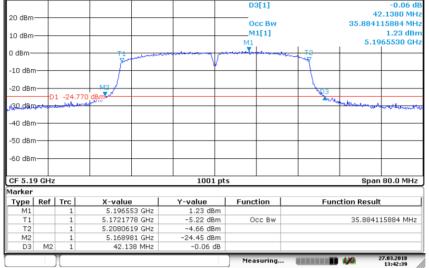

Function Result

**....** 





Date: 27.MAR.2018 13:37:26



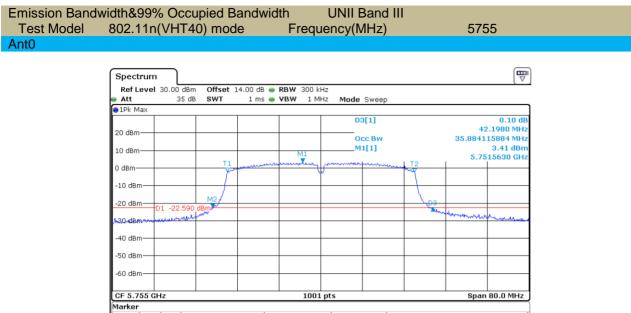

| Ref L               | evel :     | 30.00 dE   | m Offset 14.00 c | 18 👄 RBW 300 kHz |                                                                                                                  |              |                                     | <u> </u>   |
|---------------------|------------|------------|------------------|------------------|------------------------------------------------------------------------------------------------------------------|--------------|-------------------------------------|------------|
| Att                 |            | 35         | dB SWT 1 n       | ns 👄 VBW 1 MHz   | Mode Sweep                                                                                                       |              |                                     |            |
| ) 1Pk M             | ax         |            |                  |                  |                                                                                                                  |              |                                     |            |
| -                   |            |            |                  |                  | D3[1]                                                                                                            |              | -0.                                 | 04 dI      |
| 20 dBm·             |            |            |                  |                  |                                                                                                                  |              | 21.1790                             |            |
| 20 00.00            |            |            |                  |                  | Occ Bw                                                                                                           |              | 17.422577423                        | 3 MH       |
| 10 dBm·             | _          |            |                  | M1               | M1[1]                                                                                                            |              |                                     | ) dBr      |
|                     |            |            | T1               | man there a      | matro-long-upton                                                                                                 | - IT2        | 5.822882                            | 0 GH       |
| 0 dBm—              | -          |            |                  |                  | and the second | when we want |                                     |            |
|                     |            |            | 1                |                  |                                                                                                                  | - N          |                                     |            |
| -10 dBm             |            |            |                  |                  |                                                                                                                  |              |                                     |            |
| 00 d0-              |            |            | M2               |                  |                                                                                                                  | 103          |                                     |            |
| -211 080            | D          | 1 -21.40   | 0 dBm            |                  |                                                                                                                  | -L.,         |                                     |            |
| IRO dan             | mhlu       | uto Martin | 00 dBm           |                  |                                                                                                                  | -            | Mary Mary Mary and Mary Sele        |            |
| and the life series |            |            |                  |                  |                                                                                                                  |              | an V Well and the second street was | (J) - 4-14 |
| -40 dBrr            | η <u> </u> |            |                  |                  |                                                                                                                  |              |                                     |            |
|                     |            |            |                  |                  |                                                                                                                  |              |                                     |            |
| -50 dBm             |            |            |                  |                  |                                                                                                                  |              |                                     |            |
|                     |            |            |                  |                  |                                                                                                                  |              | 1                                   |            |
| -60 dBrr            | ר ו        |            |                  |                  |                                                                                                                  |              |                                     |            |
|                     |            |            |                  |                  |                                                                                                                  |              |                                     |            |
| CF 5.8:<br>1arker   | 25 GH      | z          |                  | 1001 p           | ts                                                                                                               |              | Span 40.0                           | MHZ        |
| Type                | Ref        | Trc        | X-value          | Y-value          | Function                                                                                                         | Eune         | tion Result                         |            |
| M1                  | Rei        | 1          | 5.822882 GHz     |                  | Function                                                                                                         | Func         | ation Result                        |            |
| T1                  |            | 1          | 5.8162887 GHz    |                  | Occ Bw                                                                                                           |              | 17.422577423                        | MH2        |
| T2                  |            | 1          | 5.8337113 GHz    |                  | 500 54                                                                                                           |              | 211122011420                        | 1-1716     |
| M2                  |            | 1          | 5.814491 GHz     |                  |                                                                                                                  |              |                                     |            |
| D3                  | M2         | 1          | 21.179 MHz       |                  |                                                                                                                  |              |                                     |            |

Date: 27.MAR.2018 13:38:14



| Emission Bandw | vidth&99% Occ       | upied Bandwic       | lth              | UNII Band I          |         |  |
|----------------|---------------------|---------------------|------------------|----------------------|---------|--|
| Test Model     | 802.11n(VHT4        | l0) mode            | Frequ            | iency(MHz)           | 5190    |  |
| Ant0           |                     |                     |                  |                      |         |  |
|                |                     |                     |                  |                      |         |  |
|                | Spectrum            |                     |                  |                      |         |  |
|                | Ref Level 30.00 dBr | n Offset 14.00 dB 👄 | <b>RBW</b> 300 k | Hz                   |         |  |
|                |                     | B SWT 1 ms 👄        | <b>VBW</b> 1 M   | Hz <b>Mode</b> Sweep |         |  |
|                | ●1Pk Max            |                     |                  |                      |         |  |
|                |                     |                     |                  | 0.0[1]               | ab oo a |  |




Date: 27.MAR.2018 13:42:38

| Emission Band | width&99% Occupied Bandw | vidth UNII Band I |      |  |
|---------------|--------------------------|-------------------|------|--|
| Test Model    | 802.11n(VHT40) mode      | Frequency(MHz)    | 5230 |  |
| AntO          |                          |                   |      |  |

| Ref L   | evel :         | 30.00 dB | m Offset 14.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | dB 👄 RBW 300 kH    | Z        |            | ``````````````````````````````````````    |
|---------|----------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------|------------|-------------------------------------------|
| Att     |                | 35 0     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ns 👄 VBW 1 MH      |          | )          |                                           |
| 1Pk M   | ax             |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |          |            |                                           |
|         |                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | D3[1]    |            | -0.10 d                                   |
| 20 dBm  |                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |          |            | 42.5170 MH                                |
|         |                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | Occ Bw   |            | 35.884115884 MH                           |
| 10 dBm  | _              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | M1[1]    |            | 1.52 dBr                                  |
|         |                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M1                 |          |            | 5.2233670 GH                              |
| 0 dBm—  |                |          | T1 Valleto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mas a further down |          | the T2     |                                           |
|         |                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - I P              |          |            |                                           |
| -10 dBn |                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |          |            |                                           |
| -20 dBr |                |          | M2 /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    |          | \\         |                                           |
| -20 001 | - D            | 1 -24.48 | 0 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |          | <b>V</b> 3 |                                           |
| -30.dBh |                | dom dane | where the second |                    |          | - ~~       | und and and and and and and and and and a |
|         |                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |          |            |                                           |
| -40 dBr | ι <del> </del> |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |          |            |                                           |
|         |                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |          |            |                                           |
| -50 dBr | ר ו            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |          |            |                                           |
| -60 dBr |                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |          |            |                                           |
| -00 001 | '              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |          |            |                                           |
| CF 5.2  | 3 GHz          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1001               | nts      |            | Span 80.0 MHz                             |
| larker  |                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1001               |          |            |                                           |
| Type    | Ref            | Trc      | X-value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Y-value            | Function | l Fun      | ction Result                              |
| M1      |                | 1        | 5.223367 GH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |          |            |                                           |
| Τ1      |                | 1        | 5.2120979 GH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | z -4.43 dBm        | n Occ Bw |            | 35.884115884 MHz                          |
| Т2      |                | 1        | 5.247982 GH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |          |            |                                           |
| M2      |                | 1        | 5.208182 GH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |          |            |                                           |
| D3      | M2             | 1        | 42.517 MH:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | z -0.10 dE         | 3        |            |                                           |

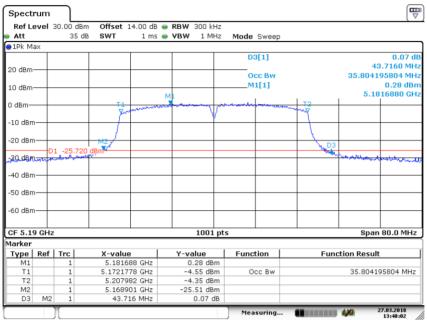
Date: 27.MAR.2018 13:44:54



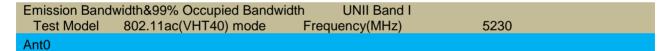


| Туре | Ref | Trc | X-value       | Y-value    | Function  | Function Result  |
|------|-----|-----|---------------|------------|-----------|------------------|
| M1   |     | 1   | 5.751563 GHz  | 3.41 dBm   |           |                  |
| T1   |     | 1   | 5.7370979 GHz | -2.22 dBm  | Occ Bw    | 35.884115884 MHz |
| T2   |     | 1   | 5.772982 GHz  | -2.54 dBm  |           |                  |
| M2   |     | 1   | 5.734301 GHz  | -22.63 dBm |           |                  |
| D3   | M2  | 1   | 42.198 MHz    | 0.10 dB    |           |                  |
|      |     | )[  |               |            | Measuring |                  |

Date: 27.MAR.2018 13:46:00


| Emission Band | lwidth&99% Occupied Bandv | width UNII Band III |      |  |
|---------------|---------------------------|---------------------|------|--|
| Test Model    | 802.11n(VHT40) mode       | Frequency(MHz)      | 5795 |  |
| AntO          |                           |                     |      |  |

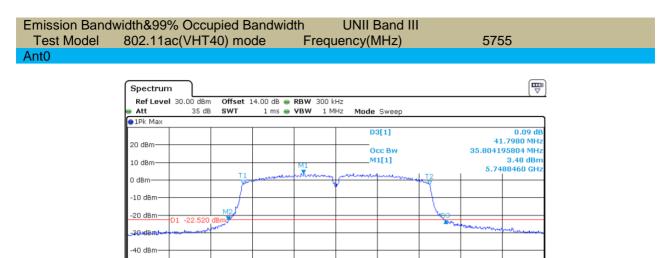
|                                                 | evel              | 30.00 dB |                    |                            | RBW 300 kHz                      |            |                   |                   |                   |
|-------------------------------------------------|-------------------|----------|--------------------|----------------------------|----------------------------------|------------|-------------------|-------------------|-------------------|
| Att                                             |                   | 35 d     | IB SWT             | 1 ms (                     | VBW 1 MHz                        | Mode Sweep |                   |                   |                   |
| ∋1Pk M                                          | ax                |          |                    |                            |                                  | 20143      |                   |                   | 0.00.0            |
|                                                 |                   |          |                    |                            |                                  | D3[1]      |                   | 41                | 0.63 d<br>2390 MH |
| 20 dBm                                          |                   |          | +                  |                            |                                  | Occ Bw     |                   | 35.80419          |                   |
|                                                 |                   |          |                    |                            |                                  | M1[1]      |                   | 00.00419          | 2.93 dBr          |
| 10 dBm                                          |                   |          |                    |                            | M1                               |            |                   | 5.792             | 29220 GH          |
| 0 dBm-                                          |                   |          | T1                 | man                        | monenty,                         | morene     | T2                |                   |                   |
| o abiii                                         |                   |          | I r                |                            | 1 Y                              |            | gung              |                   |                   |
| -10 dBn                                         | n                 |          | +                  |                            |                                  |            |                   |                   |                   |
|                                                 |                   |          | M2                 |                            |                                  |            |                   |                   |                   |
| -20 dBn                                         |                   | 1 -23.07 |                    |                            |                                  |            | - <del>\Q</del> 3 |                   |                   |
| 20 Jp-                                          |                   | L -20.07 | w www              |                            |                                  |            |                   | water and all and |                   |
| -20. dBp                                        | Real Property and |          |                    |                            |                                  |            |                   |                   | -00402            |
| -40 dBn                                         | n                 |          |                    |                            |                                  |            |                   |                   |                   |
|                                                 |                   |          |                    |                            |                                  |            |                   |                   |                   |
|                                                 |                   |          |                    |                            |                                  |            |                   |                   |                   |
| -50 dBn                                         | n                 |          |                    |                            |                                  |            |                   | + +               |                   |
|                                                 |                   |          |                    |                            |                                  |            |                   |                   |                   |
|                                                 |                   |          |                    |                            |                                  |            |                   |                   |                   |
| -60 dBn                                         | n                 |          |                    |                            |                                  |            |                   |                   |                   |
| -60 dBn<br>CF 5.7                               | n                 | Iz       |                    |                            | 1001 p                           | ts         |                   | Span (            | 80.0 MHz          |
| -60 dBn<br>CF 5.7                               | 95 GH             |          |                    |                            |                                  |            |                   |                   | BO.0 MHz          |
| -60 dBn<br>CF 5.7<br>1arker<br>Type             | 95 GH             | Trc      | X-value            |                            | Y-value                          | ts         | Fun               | Span s            | BO.O MHz          |
| -60 dBn<br>CF 5.7<br>1arker<br>Type<br>M1       | 95 GH             | Trc 1    | 5.79292            | 22 GHz                     | Y-value<br>2.93 dBm              | Function   | Fun               | ction Result      |                   |
| -60 dBn<br>CF 5.7<br>1arker<br>Type<br>M1<br>T1 | 95 GH             | 1<br>1   | 5.79292<br>5.77709 | 22 GHz<br>79 GHz           | Y-value<br>2.93 dBm<br>-2.45 dBm |            | Fun               |                   |                   |
|                                                 | 95 GH             | Trc 1    | 5.79292            | 22 GHz<br>79 GHz<br>21 GHz | Y-value<br>2.93 dBm              | Function   | Fun               | ction Result      |                   |


Date: 27.MAR.2018 13:47:01



| Emission Bandw | vidth&99% Occupied Bandwic | th UNII Band I |      |
|----------------|----------------------------|----------------|------|
| Test Model     | 802.11ac(VHT40) mode       | Frequency(MHz) | 5190 |
| Ant0           |                            |                |      |
|                |                            |                |      |




Date: 27.MAR.2018 13:48:02



| Ref L    | evel :     | 30.00 dB | m Offset 14. | 00 dB 🧉  | <b>RBW</b> 300 kH; | z      |           |              |                                                    |                |
|----------|------------|----------|--------------|----------|--------------------|--------|-----------|--------------|----------------------------------------------------|----------------|
| Att      |            | 35 (     |              |          | VBW 1 MH           | -      | de Sweep  |              |                                                    |                |
| 1Pk M    | ax         |          |              |          |                    |        | un enterp |              |                                                    |                |
|          |            |          |              |          |                    |        | D3[1]     |              |                                                    | -0.15 d        |
| 20 dBm   |            |          |              |          |                    |        |           |              | 4                                                  | 1.4790 MH      |
| 20 UBIII |            |          |              |          |                    |        | Occ Bw    |              | 35.884                                             | L15884 MH      |
| 10 dBm   |            |          |              |          |                    |        | _M1[1]    |              |                                                    | 2.30 dB        |
| 20 00111 |            |          |              |          |                    | M1     |           |              | 5.2                                                | 347150 GF      |
| ) dBm—   | _          |          | T1           | سانتحمين | annone ,           | munder |           | T2           |                                                    |                |
|          |            |          | Print        |          | 1 V                |        |           | - Part       |                                                    |                |
| -10 dBr  | n-+-       |          |              |          | ++                 |        |           | - <u>\</u>   |                                                    |                |
|          |            |          | Ma           |          |                    |        |           |              |                                                    |                |
| -20 dBri |            | 1 00 70  | 0 dBm        |          |                    |        |           | <u> 2</u> 23 |                                                    |                |
|          |            | n -23.70 |              |          |                    |        |           | - May        | honor half and |                |
| 30. dBo  | Record and |          |              |          |                    |        |           |              |                                                    | - and the work |
| -40 dBn  | <u> </u>   |          |              |          |                    |        |           |              |                                                    |                |
| 10 001   |            |          |              |          |                    |        |           |              |                                                    |                |
| -50 dBri | n——        |          |              |          |                    |        | _         |              |                                                    |                |
|          |            |          |              |          |                    |        |           |              |                                                    |                |
| -60 dBri | n-+-       |          |              |          | ++                 |        |           |              |                                                    |                |
|          |            |          |              |          |                    |        |           |              |                                                    |                |
| CF 5.2   | 3 GHz      |          |              |          | 1001 p             | ots    |           |              | Spa                                                | n 80.0 MHz     |
| 1arker   |            |          |              |          |                    |        |           |              |                                                    |                |
| Type     | Ref        | Trc      | X-value      | 1        | Y-value            | Fu     | nction    | Fun          | ction Resul                                        | t              |
| M1       |            | 1        | 5.234715     | GHz      | 2.30 dBm           | 1      |           |              |                                                    |                |
| Τ1       |            | 1        | 5.2120979    |          | -4.40 dBm          |        | Occ Bw    |              | 35.8841                                            | 15884 MHz      |
| Т2       |            | 1        | 5.247982     |          | -4.37 dBm          |        |           |              |                                                    |                |
| M2       |            | 1        | 5.209221     |          | -23.42 dBm         |        |           |              |                                                    |                |
| D3       | M2         | 1        | 41.479       | MHz      | -0.15 dB           |        |           |              |                                                    |                |

Date: 27.MAR.2018 13:49:45





| <b>Emission Band</b> | width&99% Occupied Bandw | vidth UNII Band III |      |  |
|----------------------|--------------------------|---------------------|------|--|
| Test Model           | 802.11ac(VHT40) mode     | Frequency(MHz)      | 5795 |  |
| AntO                 |                          |                     |      |  |

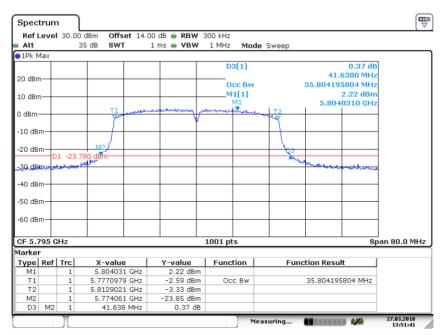
1001 pts

Function

Occ Bw

Measuring...

Y-value


3.48 dBm -2.22 dBm -2.59 dBm

-22.87 dBm

0.09 dB

X-value 5.748846 GHz 5.7371778 GHz 5.772982 GHz

5.734381 GHz 41.798 MHz



Date: 27.MAR.2018 13:51:41

-50 dBm -60 dBm CF 5.755 GHz

Marker

M1 T1 T2

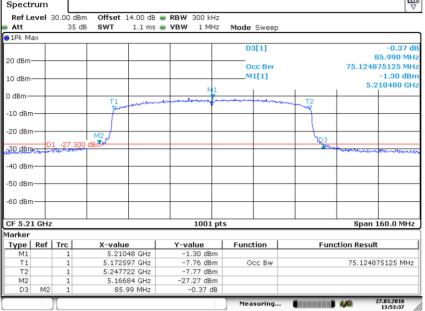
M2

D3 M2

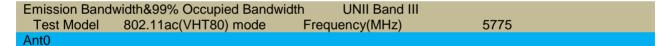
Type Ref Trc

Date: 27.MAR.2018 13:50:55

Span 80.0 MHz


35.804195804 MHz

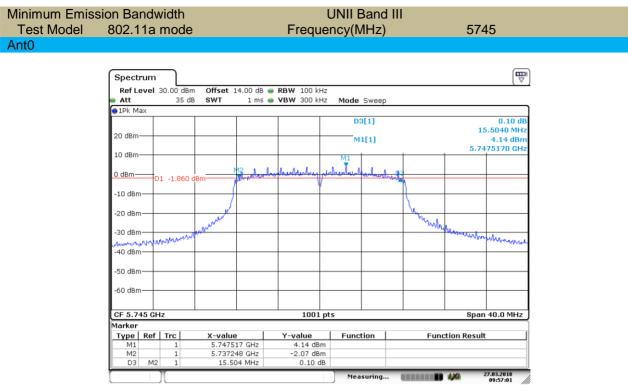
27.03.2018 13:50:56


Function Result

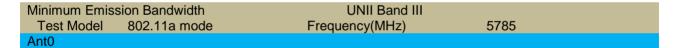


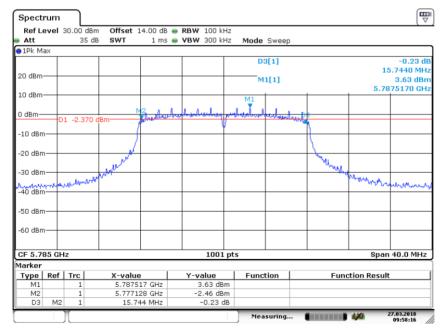
| Emission Band | width&99% Occupied Bandwid | dth UNII Band I |      |  |
|---------------|----------------------------|-----------------|------|--|
| Test Model    | 802.11ac(VHT80) mode       | Frequency(MHz)  | 5210 |  |
| Ant0          |                            |                 |      |  |
|               |                            |                 |      |  |
|               | Spectrum                   |                 |      |  |




Date: 27.MAR.2018 13:53:37

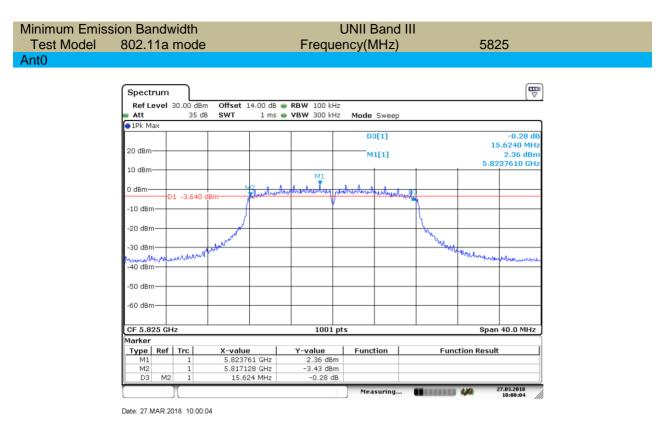



| Refli      | evel        | 30.00 dB    | m Offset | 4.00 dB                     | RBW 300 kH; | 7     |                            |              |       |            | ( )                      |
|------------|-------------|-------------|----------|-----------------------------|-------------|-------|----------------------------|--------------|-------|------------|--------------------------|
| Att        |             | 35 c        |          | 1.1 ms                      |             | _     | Sweep                      |              |       |            |                          |
| 1Pk M      | ax          |             |          |                             |             |       | F                          |              |       |            |                          |
|            |             |             |          |                             |             | D3    | [1]                        |              |       |            | -0.10 d                  |
| 20 dBm     |             |             |          |                             |             |       |                            |              |       |            | 85.830 MH                |
| 20 0011    |             |             |          |                             |             | Oc    | c Bw                       |              |       | 75.1248    | 875125 MH                |
| 10 dBm     | -+          |             |          |                             |             | M1    | [1]                        |              |       |            | 0.25 dB                  |
| 20 0000    |             |             |          |                             | M1          |       |                            |              |       | 5.         | 7 <mark>66050 G</mark> H |
| 0 dBm—     | _           |             | T1       | A. Jonated State            | manning     | water | harring and a state of the |              |       |            |                          |
|            |             |             | Sara     | mar had been a start of the | Ĩ I Y       | I     |                            | A manufactor |       |            |                          |
| -10 dBr    | +-י         |             | + +      |                             |             |       |                            |              |       |            |                          |
|            |             |             |          |                             |             |       |                            |              |       |            |                          |
| -20 dBri   |             |             | M2/      |                             |             |       |                            |              | LD3   |            |                          |
| -30 dBr    | D           | 1 -25.75    | 0 dBm    |                             |             |       |                            |              | March | Malaki     | ante-aliterer            |
| org, sinin | harter      | dis posto a |          |                             |             |       |                            |              |       |            | and so-almostate         |
| -40 dBr    | <u> </u>    |             |          |                             |             |       |                            |              |       |            |                          |
|            |             |             |          |                             |             |       |                            |              |       |            |                          |
| -50 dBri   | <u>ו</u>    |             |          |                             |             |       |                            |              |       |            |                          |
|            |             |             |          |                             |             |       |                            |              |       |            |                          |
| -60 dBr    | <u>ו</u> וי |             |          |                             |             |       |                            |              |       |            |                          |
|            |             |             |          |                             |             |       |                            |              |       |            |                          |
| CF 5.7     | 75 GH       | z           | •        |                             | 1001        | ots   |                            |              |       | Span       | 160.0 MHz                |
| 1arker     |             |             |          |                             |             |       |                            |              |       |            |                          |
| Type       | Ref         | Trc         | X-value  | .                           | Y-value     | Funct | ion                        |              | Func  | tion Resul | t                        |
| M1         |             | 1           |          | 05 GHz                      | 0.25 dBm    |       |                            |              |       |            |                          |
| Τ1         |             | 1           | 5.7374   |                             | -5.83 dBm   |       | c Bw                       |              |       | 75.1248    | 75125 MHz                |
| Т2         |             | 1           | 5.8125   |                             | -6.44 dBm   |       |                            |              |       |            |                          |
| M2         |             | 1           |          | 64 GHz                      | -25.94 dBm  |       |                            |              |       |            |                          |
| D3         | M2          | 1           | 85.1     | 33 MHz                      | -0.10 dB    | 5     |                            |              |       |            |                          |

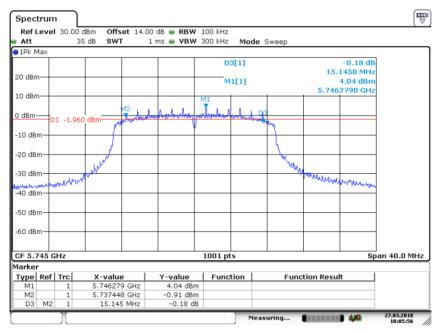

Date: 27.MAR.2018 13:54:24






Date: 27.MAR.2018 09:57:01

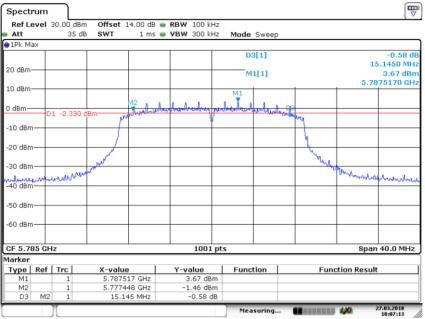




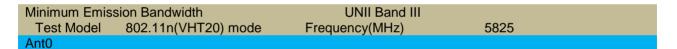

Date: 27.MAR.2018 09:58:16

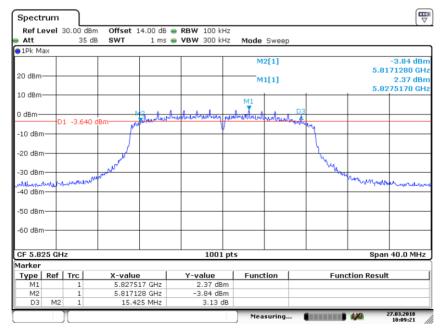





| Minimum Emis | sion Bandwidth      | UNII Band III  |      |  |
|--------------|---------------------|----------------|------|--|
| Test Model   | 802.11n(VHT20) mode | Frequency(MHz) | 5745 |  |
| AntO         |                     |                |      |  |

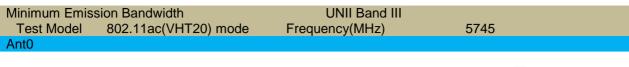


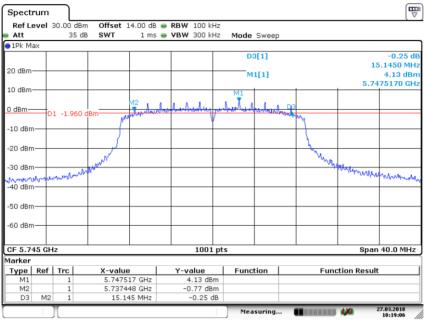

Date: 27.MAR.2018 10:05:57



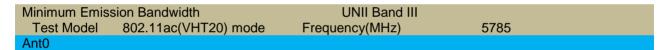

| Minimum Emis | sion Bandwidth      | UNII Band III  |      |  |
|--------------|---------------------|----------------|------|--|
| Test Model   | 802.11n(VHT20) mode | Frequency(MHz) | 5785 |  |
| Ant0         |                     |                |      |  |
|              |                     |                |      |  |

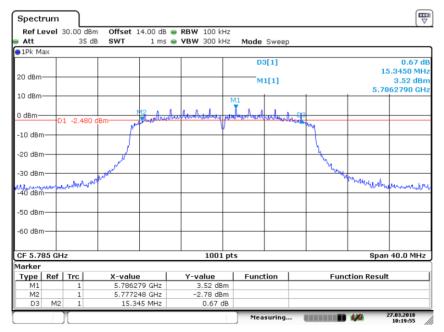



Date: 27.MAR.2018 10:07:13



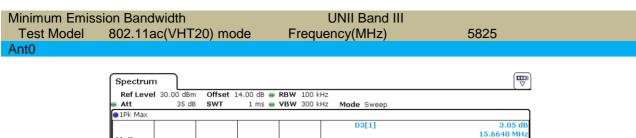


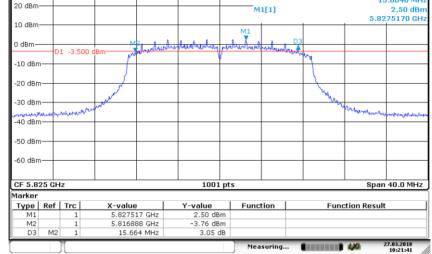


Date: 27.MAR.2018 10:09:21





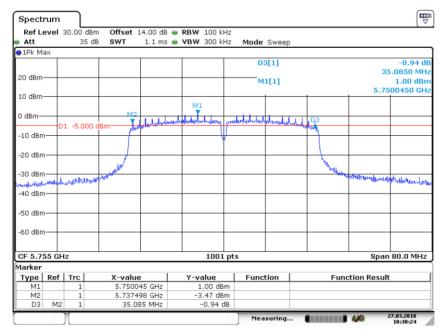




Date: 27.MAR.2018 10:19:06






Date: 27.MAR.2018 10:19:55



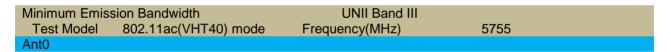


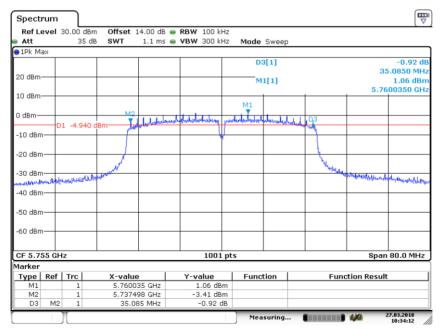



Date: 27.MAR.2018 10:21:41

| Minimum Emis | sion Bandwidth      | UNII Band III  |      |  |
|--------------|---------------------|----------------|------|--|
| Test Model   | 802.11n(VHT40) mode | Frequency(MHz) | 5755 |  |
| Ant0         |                     |                |      |  |



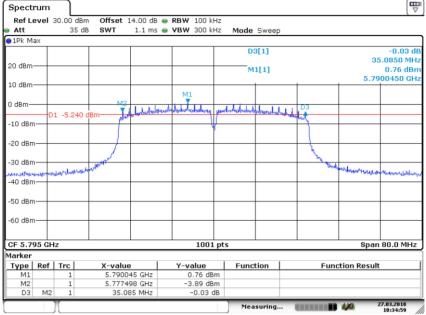

Date: 27.MAR.2018 10:30:25



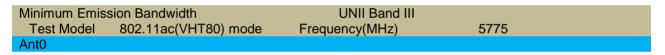

| Minimum Emis | sion Bandwidth      | UNII Band III  |      |  |
|--------------|---------------------|----------------|------|--|
| Test Model   | 802.11n(VHT40) mode | Frequency(MHz) | 5795 |  |
| Ant0         |                     |                |      |  |
|              |                     |                |      |  |
|              | Spectrum            |                |      |  |



Date: 27.MAR.2018 10:31:32







Date: 27.MAR.2018 10:34:11



| Minimum Emission Bandwidth |                      | UNII Band III  |        |  |
|----------------------------|----------------------|----------------|--------|--|
| Test Model                 | 802.11ac(VHT40) mode | Frequency(MHz) | 5795   |  |
| Ant0                       |                      |                |        |  |
|                            |                      |                |        |  |
|                            |                      |                | (IIII) |  |



Date: 27.MAR.2018 10:34:59



| Ref L    | evel 🔅   | 30.00 dBi     |              | .4.00 dB 🧉 | • RBW 100 k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ηz             |           |       |                       |                    |
|----------|----------|---------------|--------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------|-------|-----------------------|--------------------|
| Att      |          | 35 d          | B SWT        | 1.6 ms 🦷   | • <b>VBW</b> 300 ki                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Hz Mode        | Sweep     |       |                       |                    |
| ∋1Pk M   | эх       |               |              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |           |       |                       |                    |
|          |          |               |              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D              | 3[1]      |       |                       | -0.32 d            |
| 20 dBm   |          |               |              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |           |       |                       | 75.120 MH          |
| 20 00111 |          |               |              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | м              | 1[1]      |       |                       | -1.47 dBr          |
| 10 dBm   | _        |               |              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |           | +     | 5.                    | 758860 GH          |
|          |          |               |              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |           |       |                       |                    |
| 0 dBm—   | _        |               | M2           |            | M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |           |       |                       |                    |
|          |          |               | M2           | 1 Hilling  | allahand and a state of the second se | للللها الكالهم | Mondeller | D3    |                       |                    |
| -10 dBm  |          | 1 -7.510      | dBm III      |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | (ho       |       |                       |                    |
|          |          |               |              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |           |       |                       |                    |
| -20 dBrr |          |               | +            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |           |       |                       |                    |
|          |          |               |              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |           |       |                       |                    |
| -30 dBm  | -+-      |               | What we have |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |           | "When |                       |                    |
| Manufa   | philas M | were and when |              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |           |       | and the second second | apatrol marker and |
| -40 dBrr |          |               |              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |           |       |                       |                    |
|          |          |               |              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |           |       |                       |                    |
| -50 dBrr |          |               |              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |           |       |                       |                    |
| -60 dBrr |          |               |              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |           |       |                       |                    |
| -60 aBri |          |               |              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |           |       |                       |                    |
|          |          |               |              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |           |       |                       |                    |
| CF 5.7   | 75 GH    | z             |              |            | 1001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | pts            |           |       | Span                  | 160.0 MHz          |
| 1arker   |          |               |              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |           |       |                       |                    |
| Туре     | Ref      |               | X-value      |            | Y-value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Func           | tion 📃    | Fund  | ction Resul           | t                  |
| M1       |          | 1             | 5.7588       |            | -1.47 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |           |       |                       |                    |
| M2       |          | 1             | 5.737        |            | -6.66 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |           |       |                       |                    |
| D3       | M2       | 1             | /5.1         | .2 MHz     | -0.32 c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | IB             |           |       |                       |                    |

Date: 27.MAR.2018 10:38:29



# 8.2 MAXIMUM CONDUCTED OUTPUT POWER

## 8.2.1 Applicable Standard

According to FCC Part 15.407(a)(1) for UNII Band I According to FCC Part 15.407(a)(2) for UNII Band II-A and UNII Band II-C According to FCC Part 15.407(a)(3) for UNII Band III According to 789033 D02 Section II(E)

# 8.2.2 Conformance Limit

# ■ For the band 5.15-5.25 GHz for FCC

(a) (1) (i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

(a) (1) (ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(a) (1) (iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

(a) (1) (iv) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

### ■ For the band 5.725-5.85 GHz for FCC

(a) (3)For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

■ For the band 5.15-5.25 GHz for IC

The maximum e.i.r.p. shall not exceed 200 mW or 10 + 10 log10B, dBm, whichever power is less. B is the 99% emission bandwidth in megahertz.

### ■ For the band 5.725-5.850GHz for IC

The maximum conducted output power shall not exceed 1 W. The power spectral density shall not exceed 30 dBm in any 500 kHz band.

If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point devices operating in this band may employ



transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed point-to-point operations exclude the use of point-to-multipointFootnote3 systems, omnidirectional applications and multiple collocated transmitters transmitting the same information.

# 8.2.3 Test Configuration

Test according to clause 6.1 radio frequency test setup

# 8.2.4 Test Procedure

The maximum average conducted output power can be measured using Method PM-G (Measurement using a gated RF average power meter):

Measurements may be performed using a wideband gated RF power meter provided that the gate parameters are adjusted such that the power is measured only when the EUT is transmitting at its maximum power control level. Since the measurement is made only during the ON time of the transmitter, no duty cycle correction factor is required.

- a. The Transmitter output (antenna port) was connected to the power meter.
- b. Turn on the EUT and power meter and then record the power value.
- c. Repeat above procedures on all channels needed to be tested.



# 8.2.5 Test Results

| Temperature<br>Humidity : | e : 28°C<br>65 %  |                        | ⊠ 802.11a mode<br>Test Date :<br>Test By: | March 27, 20<br>King Kong | )18           |                   |         |
|---------------------------|-------------------|------------------------|-------------------------------------------|---------------------------|---------------|-------------------|---------|
| Band                      | Channel<br>Number | Channel<br>Freq. (MHz) | Conducted Output<br>Power(dBm)            | FCC Limit<br>(dBm)        | EIRP<br>(dBm) | IC Limit<br>(dBm) | Verdict |
|                           | CH36              | 5180                   | 10.54                                     | 24                        | 13.96         | 23                | Pass    |
| UNII<br>Band I            | CH40              | 5200                   | 11.18                                     | 24                        | 14.60         | 23                | Pass    |
| Banu I                    | CH48              | 5240                   | 11.09                                     | 24                        | 14.51         | 23                | Pass    |
| UNII                      | CH149             | 5745                   | 13.68                                     | 30                        |               | 30                | Pass    |
| •••••                     | CH157             | 5785                   | 12.83                                     | 30                        |               | 30                | Pass    |
| Band III                  | CH165             | 5825                   | 11.68                                     | 30                        |               | 30                | Pass    |
| Note: The a               | intenna gain i    | s 3.42dBi.             |                                           |                           |               |                   |         |

| Temperature<br>Humidity : | : 28°C<br>65 %    |                        | 802.11n(HT20) mode<br>Test Date :<br>Test By: | March 27, 20<br>King Kong | )18           |                   |         |
|---------------------------|-------------------|------------------------|-----------------------------------------------|---------------------------|---------------|-------------------|---------|
| Band                      | Channel<br>Number | Channel<br>Freq. (MHz) | Conducted Output<br>Power(dBm)                | FCC Limit<br>(dBm)        | EIRP<br>(dBm) | IC Limit<br>(dBm) | Verdict |
| UNII                      | CH36              | 5180                   | 10.38                                         | 24                        | 13.80         | 23                | Pass    |
| Band I                    | CH40              | 5200                   | 11.00                                         | 24                        | 14.42         | 23                | Pass    |
| Danu i                    | CH48              | 5240                   | 10.91                                         | 24                        | 14.33         | 23                | Pass    |
| UNII                      | CH149             | 5745                   | 13.43                                         | 30                        |               | 30                | Pass    |
| Band III                  | CH157             | 5785                   | 12.47                                         | 30                        |               | 30                | Pass    |
| Band III                  | CH165             | 5825                   | 11.43                                         | 30                        |               | 30                | Pass    |
| Note: The a               | ntenna gain i     | is 3.42dBi.            |                                               |                           |               |                   |         |

| 🛛 802.11ac(VHT20) mode |      |             |                |  |  |
|------------------------|------|-------------|----------------|--|--|
| Temperature :          | 28°C | Test Date : | March 27, 2018 |  |  |
| Humidity :             | 65 % | Test By:    | King Kong      |  |  |

| Band        | Channel<br>Number                  | Channel<br>Freq. (MHz) | Conducted Output<br>Power(dBm) | FCC Limit<br>(dBm) | EIRP<br>(dBm) | IC Limit<br>(dBm) | Verdict |  |
|-------------|------------------------------------|------------------------|--------------------------------|--------------------|---------------|-------------------|---------|--|
| UNII        | CH36                               | 5180                   | 10.41                          | 24                 | 13.83         | 23                | Pass    |  |
| Band I      | CH40                               | 5200                   | 11.03                          | 24                 | 14.45         | 23                | Pass    |  |
| Danu i      | CH48                               | 5240                   | 10.88                          | 24                 | 14.30         | 23                | Pass    |  |
| UNII        | CH149                              | 5745                   | 13.36                          | 30                 |               | 30                | Pass    |  |
| Band III    | CH157                              | 5785                   | 12.47                          | 30                 |               | 30                | Pass    |  |
| Danu III    | CH165                              | 5825                   | 11.38                          | 30                 |               | 30                | Pass    |  |
| Note: The a | Note: The antenna gain is 3.42dBi. |                        |                                |                    |               |                   |         |  |



| Temperature<br>Humidity : | : 28°C<br>65 %    |                        | 802.11n(HT40) mode<br>Test Date :<br>Test By: | March 27, 20<br>King Kong | )18           |                   |         |
|---------------------------|-------------------|------------------------|-----------------------------------------------|---------------------------|---------------|-------------------|---------|
| Band                      | Channel<br>Number | Channel<br>Freq. (MHz) | Conducted Output<br>Power(dBm)                | FCC Limit<br>(dBm)        | EIRP<br>(dBm) | IC Limit<br>(dBm) | Verdict |
| UNII                      | CH38              | 5190                   | 10.42                                         | 24                        | 13.84         | 23                | Pass    |
| Band I                    | CH46              | 5230                   | 10.47                                         | 24                        | 13.89         | 23                | Pass    |
| UNII                      | CH151             | 5755                   | 13.15                                         | 30                        |               | 30                | Pass    |
| Band III                  | CH159             | 5795                   | 12.04                                         | 30                        |               | 30                | Pass    |
| Note: The a               | ntenna gain i     | s 3.42dBi.             |                                               |                           |               |                   |         |

| 🛛 802.11ac(VHT40) mode |      |             |                |  |  |
|------------------------|------|-------------|----------------|--|--|
| Temperature :          | 28°C | Test Date : | March 27, 2018 |  |  |
| Humidity :             | 65 % | Test By:    | King Kong      |  |  |

| Band        | Channel<br>Number                  | Channel<br>Freq. (MHz) | Conducted Output<br>Power(dBm) | FCC Limit<br>(dBm) | EIRP<br>(dBm) | IC Limit<br>(dBm) | Verdict |  |
|-------------|------------------------------------|------------------------|--------------------------------|--------------------|---------------|-------------------|---------|--|
| UNII        | CH38                               | 5190                   | 10.38                          | 24                 | 13.80         | 23                | Pass    |  |
| Band I      | CH46                               | 5230                   | 10.62                          | 24                 | 14.04         | 23                | Pass    |  |
| UNII        | CH151                              | 5755                   | 13.17                          | 30                 |               | 30                | Pass    |  |
| Band III    | CH159                              | 5795                   | 11.96                          | 30                 |               | 30                | Pass    |  |
| Note: The a | Note: The antenna gain is 3.42dBi. |                        |                                |                    |               |                   |         |  |

| ⊠ 802.11ac(VHT80) mode |      |             |                |  |  |
|------------------------|------|-------------|----------------|--|--|
| Temperature :          | 28°C | Test Date : | March 27, 2018 |  |  |
| Humidity :             | 65 % | Test By:    | King Kong      |  |  |

| Band                               | Channel<br>Number | Channel<br>Freq. (MHz) | Conducted Output<br>Power(dBm) | FCC Limit<br>(dBm) | EIRP<br>(dBm) | IC Limit<br>(dBm) | Verdict |
|------------------------------------|-------------------|------------------------|--------------------------------|--------------------|---------------|-------------------|---------|
| UNII<br>Band I                     | CH42              | 5210                   | 10.26                          | 24                 | 13.26         | 23                | Pass    |
| UNII<br>Band III                   | CH155             | 5775                   | 12.15                          | 30                 |               | 30                | Pass    |
| Note: The antenna gain is 3.42dBi. |                   |                        |                                |                    |               |                   |         |



# 8.3 MAXIMUM PEAK POWER DENSITY

# 8.3.1 Applicable Standard

According to FCC Part 15.407(a)(1) for UNII Band I According to FCC Part 15.407(a)(2) for UNII Band II-A and UNII Band II-C According to FCC Part 15.407(a)(3) for UNII Band III According to 789033 D02 Section II(F)

# 8.3.2 Conformance Limit

# ■ For the band 5.15-5.25 GHz,

(a) (1) (i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

(a) (1) (ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(a) (1) (iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

(a) (1) (iv) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

### For the 5.25-5.35 GHz and 5.47-5.725 GHz bands

(a) (2) the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

# ■ For the band 5.725-5.85 GHz

(a) (3)For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

### 8.3.3 Test Configuration

Test according to clause 6.1 radio frequency test setup

### 8.3.4 Test Procedure

Methods refer to FCC KDB 789033



1) Create an average power spectrum for the EUT operating mode being tested by following the instructions in section E)2) for measuring maximum conducted output power using a spectrum analyzer or EMI receiver: select the appropriate test method (SA-3, or alternatives to each) and apply it up to, but not including, the step labeled, "Compute power...".

2) Use the peak search function on the instrument to find the peak of the spectrum.

3) The result is the PPSD.

4) The above procedures make use of 500kHz resolution bandwidth to satisfy the 500kHz measurement bandwidth specified in the 15.407(a)(5). That rule section also permits use of resolution bandwidths less than 1 MHz "provided that the measured power is integrated to show the total power over the measurement bandwidth" (i.e., 1 MHz). If measurements are performed using a reduced resolution bandwidth and integrated over 500kHz bandwidth

Note: As a practical matter, it is recommended to use reduced RBW of 500 kHz for the sections 5.c) and 5.d) above, since RBW=500 kHz is available on nearly all spectrum analyzers.



# 8.3.5 Test Results

| Temperature<br>Humidity : | e : 28°C<br>65 %  |                        | 802.11a mode<br>Test By:          | King Kong          |         |  |
|---------------------------|-------------------|------------------------|-----------------------------------|--------------------|---------|--|
| Band                      | Channel<br>Number | Channel<br>Freq. (MHz) | Power Spectral<br>Density<br>Ant0 | Limit              | Verdict |  |
|                           | CH36              | 5180                   | -0.96                             | ≤11dBm/1MHz        | Pass    |  |
| UNII<br>Band I            | CH40              | 5200                   | -0.04                             | ≤11dBm/1MHz        | Pass    |  |
|                           | CH48              | 5240                   | -0.23                             | ≤11dBm/1MHz        | Pass    |  |
| UNII                      | CH149             | 5745                   | -1.15                             | ≤11dBm/500KHz      | Pass    |  |
| Band III                  | CH157             | 5785                   | -1.94 ≤30dBm/500I                 |                    | Pass    |  |
| Danu III                  | CH165             | 5825                   | -3.05                             | ≤30dBm/500KHz      | Pass    |  |
| Temperature<br>Humidity : | e : 28°C<br>65 %  |                        | 802.11n(VHT20) mo<br>Test By:     | de<br>King Kong    |         |  |
| Band                      | Channel<br>Number | Channel<br>Freq. (MHz) | Power Spectral<br>Density<br>Ant0 | Limit              | Verdict |  |
|                           | CH36              | 5180                   | -1.00                             | ≤11dBm/1MHz        | Pass    |  |
| UNII<br>Band I            | CH40              | 5200                   | -0.86                             | ≤11dBm/1MHz        | Pass    |  |
| Danu I                    | CH48              | 5240                   | -0.11                             | ≤11dBm/1MHz        | Pass    |  |
| UNII                      | CH149             | 5745                   | -2.17                             | ≤30dBm/500KHz      | Pass    |  |
| Band III                  | CH157             | 5785                   | -2.80                             | ≤30dBm/500KHz      | Pass    |  |
| Danu III                  | CH165             | 5825                   | -3.53                             | ≤30dBm/500KHz      | Pass    |  |
| Temperature<br>Humidity : | 65 %              |                        | 802.11ac(VHT20) mo<br>Test By:    | ode<br>King Kong   |         |  |
| Band                      | Channel<br>Number | Channel<br>Freq. (MHz) | Power Spectral<br>Density<br>Ant0 | Limit              | Verdict |  |
|                           | CH36              | 5180                   | -1.61                             | ≤11dBm/1MHz        | Pass    |  |
| UNII                      | CH40              | 5200                   | -0.33                             | ≤11dBm/1MHz        | Pass    |  |
| Band I                    | CH48              | 5240                   | -0.42                             | ≤11dBm/1MHz        | Pass    |  |
|                           | CH149             | 5745                   | -2.22                             | ≤30dBm/500KHz      | Pass    |  |
|                           | CH157             | 5785                   | -2.58                             | ≤30dBm/500KHz      | Pass    |  |
| Band III                  | CH165             | 5825                   | -3.59                             | ≤30dBm/500KHz      | Pass    |  |
| I                         |                   |                        |                                   |                    | ·       |  |
| Temperature<br>Humidity : | e : 28°C<br>65 %  |                        | 802.11n(VHT40) mo<br>Test By:     | de<br>King Kong    |         |  |
| Band                      | Channel<br>Number | Channel<br>Freq. (MHz) | Power Spectral<br>Density<br>Ant0 | Limit              | Verdict |  |
| UNII                      | CH38              | 5190                   | -4.57                             | ≤11dBm/1MHz        | Pass    |  |
| Band I                    | CH46              | 5230                   | -3.49                             | ≤11dBm/1MHz        | Pass    |  |
| LINIII                    | CU151             | 5755                   | 6 40                              | < 20 d Bm/500 k Hz | Docc    |  |

UNII

Band III

CH151

CH159

-6.40

-6.49

5755

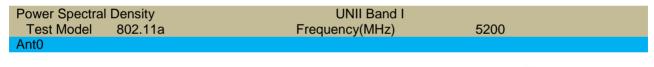
5795

Pass

Pass

≤30dBm/500KHz

≤30dBm/500KHz




| ∑<br>Temperature : 28°C<br>Humidity : 65 % |                   |                        | 02.11ac(VHT40) m<br>Test Date :<br>Test By: | ode<br>March 27, 2018<br>King Kong |         |
|--------------------------------------------|-------------------|------------------------|---------------------------------------------|------------------------------------|---------|
| Band                                       | Channel<br>Number | Channel<br>Freq. (MHz) | Power Spectral<br>Density                   | Limit                              | Verdict |
|                                            |                   |                        | Ant0                                        |                                    |         |
| UNII                                       | CH38              | 5190                   | -3.49                                       | ≤11dBm/1MHz                        | Pass    |
| Band I                                     | CH46              | 5230                   | -6.40                                       | ≤11dBm/1MHz                        | Pass    |
| UNII                                       | CH151             | 5755                   | -6.49                                       | ≤30dBm/500KHz                      | Pass    |
| Band III                                   | CH159             | 5795                   | -4.57                                       | ≤30dBm/500KHz                      | Pass    |

| Image: Sec |                   |                        |                                   |               |         |  |
|------------------------------------------------|-------------------|------------------------|-----------------------------------|---------------|---------|--|
| Band                                           | Channel<br>Number | Channel<br>Freq. (MHz) | Power Spectral<br>Density<br>Ant0 | Limit         | Verdict |  |
| UNII<br>Band I                                 | CH42              | 5210                   | -9.62                             | ≤11dBm/1MHz   | Pass    |  |
| UNII<br>Band III                               | CH155             | 5775                   | -11.68                            | ≤30dBm/500KHz | Pass    |  |













Power Spectral DensityUNII Band IIITest Model802.11aFrequency(MHz)5745Ant0



TRF No.: FCC 15.407/A