

FCC Part 15.247 RSS-247, ISSUE 3, August 2023 RSS-GEN, ISSUE 5, February 2021 Amendment 2 TEST REPORT

For

YEALINK(XIAMEN) NETWORK TECHNOLOGY CO.,LTD.

No.666 Hu'an Rd, Huli District Xiamen City, Fujian, P.R. China

FCC ID: T2C-T44 IC: 10741A-T44W

Report Type:
Original Report

Product Type:
Ultra-elegant Gigabit IP Phone

Report Producer: Coco Lin

Report Number: RXZ231115070RF01

Report Date: 2023-12-28

Reviewed By: Andy Shih

Prepared By: Bay Area Compliance Laboratories Corp.
(New Taipei Laboratory)
70, Lane 169, Sec. 2, Datong Road, Xizhi Dist.,
New Taipei City 22183, Taiwan, R.O.C.
Tel: +886 (2) 2647 6898
Fax: +886 (2) 2647 6895

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

Page 1 of 86

www.bacl.com.tw

Revision History

Revision	No.	Report Number	Issue Date	Description	Author/ Revised by
0.0	RXZ231115070	RXZ231115070RF01	2023-12-28	Original Report	Coco Lin

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 2 of 86

TABLE OF CONTENTS

1.	Gei	neral Information	5
	1.1.	Product Description for Equipment under Test (EUT)	5
	1.2.	Objective	
	1.3.	Test Methodology	
	1.4.	Statement	
	1.5.	Measurement Uncertainty	
	1.6.	Environmental Conditions.	7
	1.7.	Test Facility	7
2.	Sys	tem Test Configuration	
	2.1.	Description of Test Configuration.	Q
	2.1.	Equipment Modifications	
	2.3.	EUT Exercise Software	
	2.4.	Support Equipment List and Details	
	2.5.	External Cable List and Details.	
	2.6.	Test Mode	
	2.7.	Block Diagram of Test Setup	
3.	Sur	nmary of Test Results	
•	Sui		10
4.	Tes	t Equipment List and Details	14
5.	FC	C §15.247(i), §1.1307(b)(3), §2.1091 - RF Exposure	15
	5.1.	Applicable Standard	
	5.2.	RF Exposure Evaluation Result	
6	RS	S-102 §4 – EXPOSURE LIMIT	17
	6.1	Applicable Standard	17
	6.2	RF Exposure Evaluation Result	
7	FC	C §15.203 & RSS-Gen §6.8– Antenna Requirements	19
		Applicable Standard	
	7.1 7.2	Applicable Standard	
8.	FC	C §15.207(a) & RSS-Gen §8.8– AC Line Conducted Emissions	20
	8.1.	Applicable Standard	20
	8.2.	EUT Setup	
	8.3.	EMI Test Receiver Setup	
	8.4.	Test Procedure	
	8.5.	Corrected Factor & Margin Calculation	
	8.6.	Test Results	22
9.	FC	C §15.209, §15.205 , §15.247(d) & RSS-247 §5.5, RSS-GEN §8.9, §8.10 –	
Sp	ouriou	ıs Emissions	23
-	9.1.	Applicable Standard	22
	9.1. 9.2.	EUT Setup	25
	9.2. 9.3.	EMI Test Receiver & Spectrum Analyzer Setup	
	9.3. 9.4.	Test Procedure	
	9. 4 . 9.5.	Corrected Factor & Margin Calculation	
	9.5. 9.6.	Test Results	
		C §15.247(a)(1) & RSS-247 §5.1(b), RSS-GEN §6.7– Emission Bandwidth	
	10.1.	Applicable Standard	
	10.2.	Test Procedure	41

Bay Area	Compliance Laboratories Corp. (New Taipei Laboratory)	No.: RXZ231115070RF01
10.3	Test Pecults	42
11. FC	C §15.247(a)(1) & RSS-247 §5.1(b)— Channel Separatio	n Test 52
11.1.	Applicable Standard	52
11.2.	Test Procedure	52
11.3.	Test Results	53
10.3. Test Results	pancy (Dwell Time) 59	
12.1.	Applicable Standard	59
12.2.		
12.3.	Test Results	60
13. FC	C §15.247(a)(1)(iii) & RSS-247 §5.1(d) – Quantity of ho	pping channel Test 75
13.1.	Applicable Standard	75
13.2.		
13.3.	Test Results	75
14. FC	C §15.247(b)(1) & RSS-247 §5.4 (b)- Maximum Output	t Power78
14.1.	Applicable Standard	78
14.2.		
14.3.		
15. FC	C §15.247(d) & RSS-247 §5.5–100 kHz Bandwidth of F	Frequency Band Edge. 79
15.1.	Applicable Standard	79
15.2.	* *	
15.3.	Test Results	80

1. General Information

1.1. Product Description for Equipment under Test (EUT)

A	YEALINK(XIAMEN) NETWORK TECHNOLOGY CO.,LTD.
Applicant	No.666 Hu'an Rd, Huli District Xiamen City, Fujian, P.R. China
Brand Name	Yealink
Product (Equipment) / PMN	Ultra-elegant Gigabit IP Phone
Main Model Name	SIP-T44W
HVIN	T44W
Frequency Range	2402~2480 MHz
M. 1-1-4' T1 '	BR Mode: GFSK
Modulation Technique	EDR Mode: π/4-DQPSK, 8DPSK
	BR(GFSK) Mode: 10.33 dBm
Peak Conducted Output Power	EDR(π/4-DQPSK) Mode: 10.85 dBm
	EDR(8DPSK) Mode: 10.88 dBm
	BR(GFSK) Mode: 1 Mbps
Transmit Data Rate	EDR(π/4-DQPSK) Mode: 2 Mbps
	EDR(8DPSK) Mode: 3 Mbps
Power Operation (Voltage Range)	 □ AC 120V/60Hz □ Adapter I/P: 100-240V 50/60Hz 0.5A, O/P: 5Vdc, 2.0A □ By AC Power Cord □ PoE: DC 48V
Received Date	2023/11/16
Date of Test	2023/12/01 ~ 2023/12/22

^{*}All measurement and test data in this report was gathered from production sample serial number: RXZ231115070-01 (Assigned by BACL, New Taipei Laboratory.).

1.2. Objective

This report is prepared on behalf of *YEALINK(XIAMEN) NETWORK TECHNOLOGY CO.,LTD.* in accordance with Part 2, Subpart J, Part 15, Subparts A and C of the Federal Communication Commission's rules and RSS-247, Issue 3, August 2023, RSS-Gen, Issue 5, February 2021 Amendment 2 of the Innovation, Science and Economic Development Canada.

No.: RXZ231115070RF01

1.3. Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices and KDB 558074 D01 15.247 Meas Guidance v05r02. And RSS-247, Issue 3, August 2023, RSS-Gen, Issue 5, February 2021 Amendment 2 of the Innovation, Science and Economic Development Canada.

1.4. Statement

Decision Rule: No, (The test results do not include MU judgment)

It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory).

Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. The determination of the test results does not require consideration of the uncertainty of the measurement, unless the assessment is required by customer agreement, regulation or standard document specification.

Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) is not responsible for the authenticity of the information provided by the applicant that affects the test results.

1.5. Measurement Uncertainty

Para	meter	Uncertainty	
AC Mains		±2.53 dB	
RF output power, conducte	d	±3.74 dB	
Occupied Bandwidth		±0.09 %	
Unwanted Emissions, cond	ucted	±1.13 dB	
	30MHz~1GHz	+/- 5.46 dB	
Emissions, radiated	1GHz~18 GHz	+/- 5.24 dB	
	18GHz~40 GHz	+/- 5.62 dB	
Temperature		±0.79 ℃	
Humidity		±0.44 %	

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

1.6. Environmental Conditions

Test Site Test Date		Temperature	Relative Humidity (%)	ATM Pressure (hPa)	Test Engineer
AC Line Conducted Emissions	2023/12/08	19.9	67	1010	Jing
Radiation Spurious Emissions	2023/12/01~2023/12/22	16.8~22.6	65~77	1010	Aaron
Conducted Spurious Emissions	2023/12/01	24.1	51	1010	Jing
Emission Bandwidth	2023/12/01~2023/12/05	24.1~25.1	51~57	1010	Jing
Channel Separation Test	2023/12/01	24.1	51	1010	Jing
Time of Occupancy	2023/12/01	24.1	51	1010	Jing
Quantity of hopping channel	2023/12/01~2023/12/04	24.1~24.4	51~56	1010	Jing
Maximum Output Power	2023/12/01	24.1	51	1010	Jing
100 kHz Bandwidth of Frequency Band Edge	2023/12/05	25.1	57	1010	Jing

1.7. Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) to collect test data is located on

70, Lane 169, Sec. 2, Datong Road, Xizhi Dist., New Taipei City 22183, Taiwan, R.O.C.

Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) is accredited to ISO 17025 by Taiwan Accreditation Foundation (TAF code: 3732) and the FCC designation No.TW3732 under the Mutual Recognition Agreement (MRA) in FCC Test.

The lab has been recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements, the CAB identifier: TW3732.

2. System Test Configuration

2.1. Description of Test Configuration

For BT mode, 79 channels are provided to testing:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	40	2442
1	2403		
2	2404	76	2478
3	2405	77	2479
		78	2480
39	2441	/	/

No.: RXZ231115070RF01

For BT Modes were tested with channel 0, 39 and 78.

2.2. Equipment Modifications

No modification was made to the EUT.

2.3. EUT Exercise Software

The test software was used "AuthenticTool_1.2.21.0".

The system was configured for testing in engineering mode, which was provided by manufacturer.

Test Frequency		2402MHz	2441MHz	2480MHz
	GFSK	Default	Default	Default
Power Level Setting	π/4-DQPSK	Default	Default	Default
	8DPSK	Default	Default	Default

2.4. Support Equipment List and Details

Support Equipment List and Setuns				
Description	Manufacturer	Model Number		
Adapter	Yealink	YLPS052000B1-US		
Adapter	Yealink	YLPS052000C1-US		
Adapter	Yealink	YLPS052000E1-US		
NB	DELL	E6410		
AP Router	NETGEAR	R7800		
Handset	Yealink	N/A		
Handset	Yealink	N/A		
USB Storage	Transcend	8GB		
USB Storage	Transcend	8GB		
POE Adapter	Cisco	SB-PWR-INJ2		

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

Page 8 of 86

2.5. External Cable List and Details

Description	Manufacturer	Model Number
RJ-45 Cable	BACL	8m
RJ-45 Cable	BACL	8m
RJ-11 Cable	BACL	0.5m
RJ-11 Cable	BACL	0.5m

2.6. Test Mode

Pre-scan

AC Line Conducted Emissions and Radiated Spurious Emissions

Mode 1: SIP-T44W + Adapter (YLPS052000E1-US)

Mode 2: SIP-T44W + Adapter (YLPS052000C1-US)

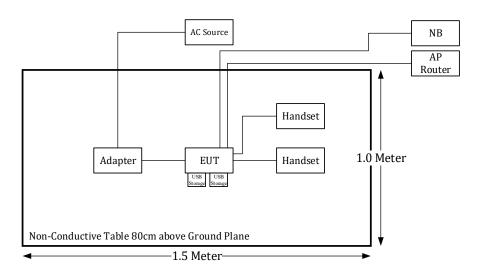
Mode 3: SIP-T44W + Adapter (YLPS052000B1-US)

Mode 4: SIP-T44W + PoE

Worst case is the SIP-T44W + Adapter (YLPS052000E1-US)

Mode 1: SIP-T44W + Adapter (YLPS052000E1-US) tested all measure item.

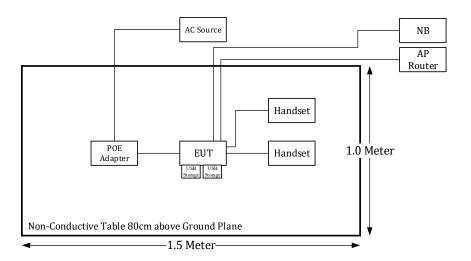
Mode 4: SIP-T44W + PoE test Below 1GHz Radiated Spurious Emissions and AC Line Conducted Emissions.


2.7. Block Diagram of Test Setup

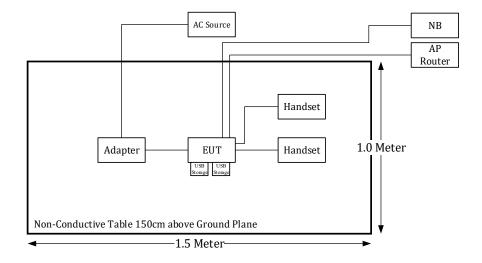
See test photographs attached in setup photos for the actual connections between EUT and support equipment.

Radiation:

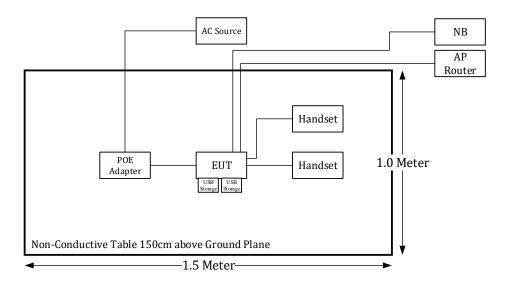
Below 1GHz:


Adapter Mode:

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

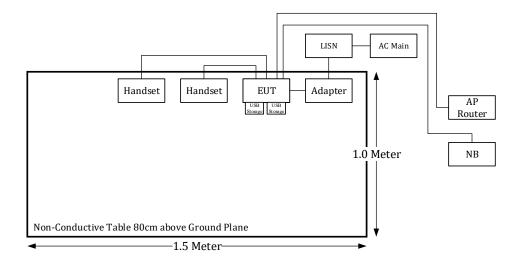

Page 9 of 86

PoE Mode:

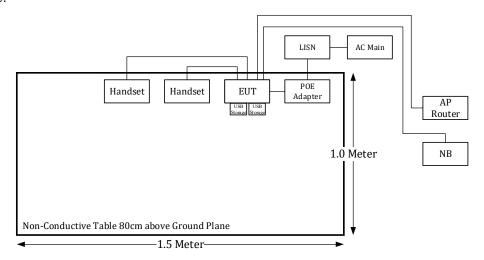


Above 1GHz:

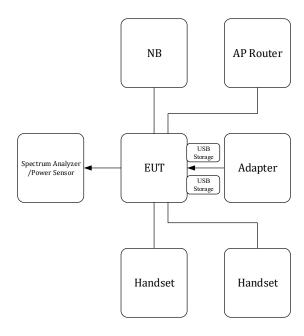
Adapter Mode:



PoE Mode:



Conduction:


Adapter Mode:

PoE Mode:

Conducted:

3. Summary of Test Results

Rules	Description of Test	Results	
FCC §15.247(i), §1.1307(b)(3), §2.1091	RF Exposure	Compliance	
RSS-102 §4	Exposure Limit	Compliance	
FCC §15.203 RSS-GEN §6.8	Antenna Requirement	Compliance	
FCC §15.207(a) RSS-GEN §8.8	AC Line Conducted Emissions	Compliance	
FCC §15.205, §15.209, §15.247(d) RSS-247 §5.5 RSS-GEN §8.9 RSS-GEN §8.10	Spurious Emissions	Compliance	
FCC §15.247(a)(1) RSS-247 §5.1 (b) RSS-GEN §6.7	Emission Bandwidth	Compliance	
FCC §15.247 (a)(1) RSS-247 §5.1 (b)	Channel Separation Test	Compliance	
FCC §15.247(a)(1)(iii) RSS-247 §5.1 (d)	Time of Occupancy (Dwell Time)	Compliance	
FCC §15.247(a)(1)(iii) RSS-247 §5.1 (d)	Quantity of hopping channel Test	Compliance	
FCC §15.247(b)(1) RSS-247 §5.1 (b)	Maximum Peak Output Power	Compliance	
FCC §15.247(d) RSS-247 §5.5	100 kHz Bandwidth of Frequency Band Edge	Compliance	

4. Test Equipment List and Details

4. Test Equipment List and Details					
Description	Manufacturer	Model	Serial	Calibration	Calibration
	A.C.	Line Conduction Roo	Number (CON A)	Date	Due Date
			·		
LISN	Rohde & Schwarz	ENV216	101612	2023/2/2	2024/2/1
EMI Test Receiver	Rohde & Schwarz	ESW8	100947	2023/5/22	2024/5/20
Pulse Limiter	Rohde & Schwarz	ESH3Z2	TXZEM104	2023/5/18	2024/5/16
RF Cable	EMEC	EM-CB5D	1	2023/6/6	2024/6/4
Software	AUDIX	E3	V9.150826k	N.C.R	N.C.R
		Radiation 3M Room	(966-A)		
Bilog Antenna with 6 dB Attenuator	SUNOL SCIENCES & MINI-CIRCUITS	JB6/UNAT-6+	A050115/1554 2_01	2023/2/2	2024/2/1
Horn Antenna	EMCO	SAS-571	1020	2023/5/18	2024/5/17
Horn Antenna	ETS-Lindgren	3116	62638	2023/8/25	2024/8/24
Preamplifier	Sonoma	310N	130602	2023/6/16	2024/6/15
Preamplifier	Channel	ERA-100M-18G- 01D1748	EC2300051	2023/04/01	2024/03/31
Microware Preamplifier	EM Electronics Corporation	EM18G40G	60656	2023/1/6	2024/1/5
Spectrum Analyzer	Rohde & Schwarz	FSV40	101435	2023/2/1	2024/1/31
EMI Test Receiver	Rohde & Schwarz	ESR3	102099	2023/6/16	2024/6/15
Micro flex Cable	UTIFLEX	UFB197C-1- 2362-70U-70U	225757-001	2023/1/24	2024/1/23
Coaxial Cable	COMMATE	PEWC	8Dr	2022/12/24	2023/12/23
Coaxial Cable	UTIFLEX	UFB311A-Q- 1440-300300	220490-006	2023/1/24	2024/1/23
Coaxial Cable	JUNFLON	J12J102248-00- B-5	AUG-07-15- 044	2022/12/24	2023/12/23
Cable	EMC	EMC105-SM- SM-10000	201003	2023/1/24	2024/1/23
Coaxial Cable	ROSNOL	K1K50-UP0264- K1K50-450CM	160309-1	2023/1/24	2024/1/23
Coaxial Cable	ROSNOL	K1K50-UP0264- K1K50-50CM	15120-1	2023/2/2	2024/2/1
Attenuator	MCL	BW-S10W5+	605	2023/1/18	2024/1/17
Band-stop filter	Woken	STI15-9831	STI15-9831-1	2023/10/20	2024/10/19
High-pass filter	XINGBOKEJI	XBLBQ-GTA54	200108-3-2	2023/10/20	2024/10/19
Software	AUDIX	E3	18621a	N.C.R	N.C.R
		Conducted Roo	om		
Spectrum Analyzer	Rohde & Schwarz	FSV40	101140	2023/2/10	2024/2/9
Cable	UTIFLEX	UFA210A	9435	2023/10/2	2024/9/30
Power Sensor	Boonton	RTP5006	11037	2023/5/23	2024/5/21
Attenuator	MCL	BW-S10W5+	1419	2023/2/1	2024/1/31

^{*}Statement of Traceability: BACL Corp. attests that all of the calibrations on the equipment items listed above were traceable to the SI System of Units via the R.O.C. Center for Measurement Standards of the Electronics Testing Center, Taiwan (ETC) or to another internationally recognized National Metrology Institute (NMI), and were compliant with the current Taiwan Accreditation Foundation (TAF) requirements.

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

Page 14 of 86

5. FCC §15.247(i), §1.1307(b)(3), §2.1091 - RF Exposure

5.1. Applicable Standard

According to subpart 15.247(i) and subpart §2.1091, systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

For single RF sources (i.e., any single fixed RF source, mobile device, or portable device, as defined in paragraph (b)(2) of this section): A single RF source is exempt if:

- (A) The available maximum time-averaged power is no more than 1 mW, regardless of separation distance. This exemption may not be used in conjunction with other exemption criteria other than those in paragraph (b)(3)(ii)(A) of this section. Medical implant devices may only use this exemption and that in paragraph (b)(3)(ii)(A);
- (B) Or the available maximum time-averaged power or effective radiated power (ERP), whichever is greater, is less than or equal to the threshold Pth (mW) described in the following formula. This method shall only be used at separation distances (cm) from 0.5 centimeters to 40 centimeters and at frequencies from 0.3 GHz to 6 GHz (inclusive). Pth is given by:

$$P_{th} \ (\text{mW}) = \begin{cases} ERP_{20 \ cm} (d/20 \ \text{cm})^x & d \leq 20 \ \text{cm} \\ ERP_{20 \ cm} & 20 \ \text{cm} < d \leq 40 \ \text{cm} \end{cases}$$
 Where
$$x = -\log_{10} \left(\frac{60}{ERP_{20 \ cm} \sqrt{f}} \right) \ \text{and} \ f \ \text{is in GHz};$$
 and
$$1$$

$$ERP_{20 \ cm} \ (\text{mW}) = \begin{cases} 2040 f & 0.3 \ \text{GHz} \leq f < 1.5 \ \text{GHz} \\ 3060 & 1.5 \ \text{GHz} \leq f \leq 6 \ \text{GHz} \end{cases}$$

(C) Or using Table 1 and the minimum separation distance (R in meters) from the body of a nearby person for the frequency (f in MHz) at which the source operates, the ERP (watts) is no more than the calculated value prescribed for that frequency. For the exemption in Table 1 to apply, R must be at least $\lambda/2\pi$, where λ is the free-space operating wavelength in meters. If the ERP of a single RF source is not easily obtained, then the available maximum time-averaged power may be used in lieu of ERP if the physical dimensions of the radiating structure(s) do not exceed the electrical length of $\lambda/4$ or if the antenna gain is less than that of a half-wave dipole (1.64 linear value).

Table 1 to § 1.1307(b)(3)(i)(C) - Single RF Sources Subject to Routine Environmental Evaluation

RF Source frequency (MHz)	Threshold ERP (watts)
0.3-1.34	1,920 R ² .
1.34-30	3,450 R ² /f ² .
30-300	3.83 R ² .
300-1,500	0.0128 R ² f.
1,500-100,000	19.2R ² .

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

Page 15 of 86

For multiple RF sources: Multiple RF sources are exempt if:

in the case of fixed RF sources operating in the same time-averaging period, or of multiple mobile or portable RF sources within a device operating in the same time averaging period, if the sum of the fractional contributions to the applicable thresholds is less than or equal to 1 as indicated in the following equation:

$$\sum_{i=1}^{a} \frac{P_i}{P_{th,i}} + \sum_{j=1}^{b} \frac{ERP_j}{ERP_{th,j}} + \sum_{k=1}^{c} \frac{Evaluated_k}{Exposure\ Limit_k} \le 1$$

5.2. RF Exposure Evaluation Result

Project info

Band	Freq (MHz)	Tune-up Power (dBm)	Ant Gain (dBi)	Distances (mm)	Tune-up Power (mW)	ERP (dBm)	ERP (mW)
BT	2402-2480	11	4.94	200	12.59	13.79	23.93
WIFI 2.4GHz	2412-2462	19	4.94	200	79.43	21.79	151.01
WIFI 5GHz	5180-5825	16.5	3.43	200	44.67	17.78	59.98

§ 1.1307(b)(3)(i)(A) method is not applicable.

§ 1.1307(b)(3)(i)(C)

Band	Freq (MHz)	λ/2π (mm)	Distances applies	ERP Limit (mW)	Result Option C
BT	2402	19.88	applies	768.00	exempt
WIFI 2.4GHz	2412	19.8	apply	768.00	exempt
WIFI 5GHz	5180	9.22	apply	768.00	exempt

The minimum separation distance (R in meters) from the body of a nearby person for the frequency (f in MHz) at which the source operates

ERP (watts) is no more than the calculated value prescribed for that frequency

R must be at least $\lambda / 2\pi$

 λ is the free-space operating wavelength in meters

The BT and Wi-Fi can transmit simultaneously.

Simultaneous transmitting consideration (worst case):

The ratio= $ERP_{BT}/limit + ERP_{Wi-Fi}/limit=23.93/768+151.01/768=0.23 < 1.0$

So simultaneous exposure is compliant.

Result: The device compliant the MPE-Based Exemption at 20cm distances.

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

Page 16 of 86

6 RSS-102 §4 – EXPOSURE LIMIT

6.1 Applicable Standard

According to RSS-102 §4:

For the purpose of this standard, Industry Canada has adopted the SAR and RF field strength limits established in Health Canada's RF exposure guideline, Safety Code 6.

No.: RXZ231115070RF01

Table 4: RF Field Strength Limits for Devices Used by the General Public (Uncontrolled Environment)										
Frequency Range (MHz)	Electric Field (V/m rms)	Magnetic Field (A/m rms)	Power Density (W/m²)	Reference Period (minutes)						
0.003-10 ²¹	83	90	-	Instantaneous*						
0.1-10	-	0.73/ f	-	6**						
1.1-10	87/ ƒ ^{0.5}	-	-	6**						
10-20	27.46	0.0728	2	6						
20-48	58.07/ f ^{0.25}	0.1540/ f ^{0.25}	8.944/ f ^{0.5}	6						
48-300	22.06	0.05852	1.291	6						
300-6000	3.142 f ^{0.3417}	0.008335 f ^{0.3417}	0.02619 f ^{0.6834}	6						
6000-15000	61.4	0.163	10	6						
15000-150000	61.4	0.163	10	616000/ f ^{1.2}						
150000-300000	0.158 f ^{0.5}	4.21 x 10 ⁻⁴ f ^{0.5}	6.67 x 10 ⁻⁵ f	616000/f ^{1.2}						

Note: f is frequency in MHz.

Calculated Formulary:

 $S = PG/4 \pi R^2 = power density (in appropriate units, e.g. W/m^2);$

P = power input to the antenna (in appropriate units, e.g., W);

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain;

R = distance to the center of radiation of the antenna (appropriate units, e.g., m);

For simultaneously transmit system, the calculated power density should comply with:

$$\sum_{i} \frac{S_{i}}{S_{Limit,i}} \leq 1$$

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

Page 17 of 86

^{*} Based on nerve stimulation (NS).

^{**} Based on specific absorption rate (SAR).

6.2 RF Exposure Evaluation Result

Mode	Frequency Range	Ante	nna Gain		e-up ver	Distance s	Power Density	RF Exp. Limit	
	(MHz)	(dBi)	(numeric)	(dBm)	(W)	(mm)	(W/m^2)	(W/m^2)	
BT	2402-2480	4.94	3.119	11	0.013	200	0.0781	5.35	
WIFI 2.4GHz	2412-2462	4.94	3.119	19	0.079	200	0.4929	5.37	
WIFI 5GHz	5180-5825	3.43	2.203	16.5	0.045	200	0.1958	9.05	

The BT and Wi-Fi can transmit simultaneously.

Simultaneous transmitting consideration (worst case):

The ratio=MPE $_{BT}$ /limit + MPE $_{Wi\text{-}Fi}$ /limit=0.0781/5.35+0.4929/5.37=0.11 < 1.0

So simultaneous exposure is compliant.

Result: The device compliant the MPE-Based Exemption at 20cm distances.

7 FCC §15.203 & RSS-Gen §6.8- Antenna Requirements

7.1 Applicable Standard

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited.

No.: RXZ231115070RF01

According to RSS-Gen 6.8:

The applicant for equipment certification shall provide a list of all antenna types that may be used with the transmitter, where applicable (i.e. for transmitters with detachable antenna), indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna. The test report shall demonstrate the compliance of the transmitter with the limit for maximum equivalent isotropically radiated power (e.i.r.p.) specified in the applicable RSS, when the transmitter is equipped with any antenna type, selected from this list For expediting the testing, measurements may be performed using only the antenna with highest gain of each combination of transmitter and antenna type, with the transmitter output power set at the maximum level. However, the transmitter shall comply with the applicable requirements under all operational conditions and when in combination with any type of antenna from the list provided in the test report (and in the notice to be included in the user manual, provided below).

When measurements at the antenna port are used to determine the RF output power, the effective gain of the device's antenna shall be stated, based on a measurement or on data from the antenna's manufacturer.

The test report shall state the RF power, output power setting and spurious emission measurements with each antenna type that is used with the transmitter being tested.

For licence-exempt equipment with detachable antennas, the user manual shall also contain the following notice in a conspicuous location:

This radio transmitter [enter the device's ISED certification number] has been approved by Innovation, Science and Economic Development Canada to operate with the antenna types listed below, with the maximum permissible gain indicated. Antenna types not included in this list that have a gain greater than the maximum gain indicated for any type listed are strictly prohibited for use with this device.

Immediately following the above notice, the manufacturer shall provide a list of all antenna types which can be used with the transmitter, indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna type.

7.2 Antenna Information

Manufacturer	Model	Туре	Antenna Gain	Impedance
YEALINK(XIAMEN) NETWORK	T44WHOOKV11A	PCB Antenna	4.94 dBi	50Ω
TECHNOLOGY CO.,LTD.				

The antenna is permanently connected to the EUT.

Result: Compliance

8. FCC §15.207(a) & RSS-Gen §8.8– AC Line Conducted Emissions

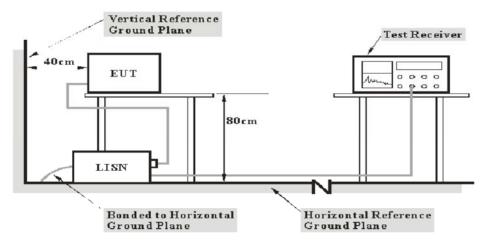
No.: RXZ231115070RF01

8.1. Applicable Standard

According to §15.207

For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequencies ranges.

According to RSS-GEN §8.8


Unless stated otherwise in the applicable RSS, for radio apparatus that are designed to be connected to the public utility AC power network, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the range 150 kHz to 30 MHz shall not exceed the limits in table 4, as measured using a 50 μ H / 50 Ω line impedance stabilization network. This requirement applies for the radio frequency voltage measured between each power line and the ground terminal of each AC power-line mains cable of the EUT.

For an EUT that connects to the AC power lines indirectly, through another device, the requirement for compliance with the limits in table 4 shall apply at the terminals of the AC power-line mains cable of a representative support device, while it provides power to the EUT. The lower limit applies at the boundary between the frequency ranges. The device used to power the EUT shall be representative of typical applications.

Frequency of Emission	Conducted Limit (dBuV)						
(MHz)	Quasi-Peak	Average					
0.15-0.5	66 to 56 Note 1	56 to 46 Note 1					
0.5-5	56	46					
5-30	60	50					

Note 1: Decreases with the logarithm of the frequency.

8.2. EUT Setup

No.: RXZ231115070RF01

Note: 1. Support units were connected to second LISN.
2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207 and RSS-GEN limits.

8.3. EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150kHz to 30MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations

Frequency Range	IF B/W
150kHz – 30MHz	9kHz

8.4. Test Procedure

During the conducted emission test, the adapter was connected to the outlet of the LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All data was recorded in the Quasi-peak and average detection mode.

8.5. Corrected Factor & Margin Calculation

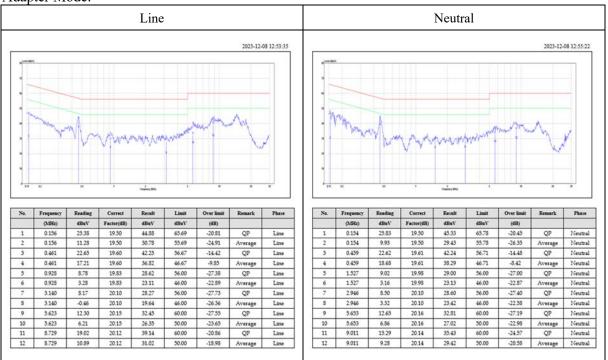
The factor is calculated by adding LISN/ISN VDF (Voltage Division Factor), Cable Loss and Transient Limiter Attenuation. The basic equation is as follows:

Factor = LISN VDF + Cable Loss + Transient Limiter Attenuation

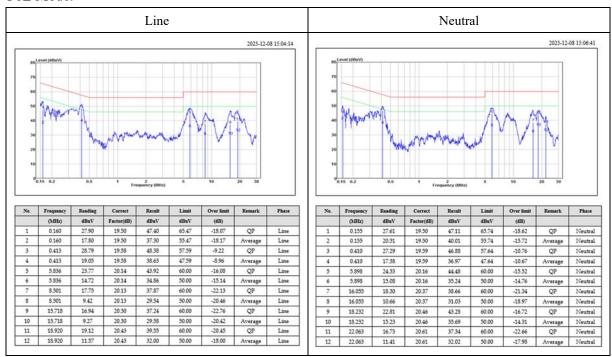
The "Over Limit" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an over limit of -7 dB means the emission is 7 dB below the limit. The equation for Over Limit calculation is as follows:

Over Limit = Level – Limit Line

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)


Page 21 of 86

8.6. Test Results


Test Mode: Transmitting

Main: AC120 V, 60 Hz (Worst case is BR(GFSK) mode High channel)

Adapter Mode:

PoE Mode:

Note:

Result = Read Level + Factor

 $Over\ Limit = Result - Limit\ Line$

Factor = (LISN, ISN, PLC or current probe) Factor + Cable Loss + Attenuator

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

Page 22 of 86

9. FCC §15.209, §15.205, §15.247(d) & RSS-247 §5.5, RSS-GEN §8.9, §8.10 – Spurious Emissions

No.: RXZ231115070RF01

9.1. Applicable Standard

As per FCC §15.35(d): Unless otherwise specified, on any frequency or frequencies above 1000 MHz, the radiated emission limits are based on the use of measurement instrumentation employing an average detector function. Unless otherwise specified, measurements above 1000 MHz shall be performed using a minimum resolution bandwidth of 1MHz.

As per RSS-Gen 8.10,

Restricted frequency bands, identified in table 7, are designated primarily for safety-of-life services (distress calling and certain aeronautical activities), certain satellite downlinks, radio astronomy and some government uses. Except where otherwise indicated, the following conditions related to the restricted frequency bands apply: (a)The transmit frequency, including fundamental components of modulation, of licence-exempt radio apparatus shall not fall within the restricted frequency bands listed in table 7 except for apparatus compliant with RSS-287, Emergency Position Indicating Radio Beacons (EPIRB), Emergency Locator Transmitters (ELT), Personal Locator Beacons (PLB), and Maritime Survivor Locator Devices (MSLD).

- (b)Unwanted emissions that fall into restricted frequency bands listed in table 7 shall comply with the limits specified in table 5 and table 6.
- (c)Unwanted emissions that do not fall within the restricted frequency bands listed in table 7 shall comply either with the limits specified in the applicable RSS or with those specified in table 5 and table 6.

As Per FCC §15.205(a) except as show in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	608 - 614	4. 5 – 5. 15
0.495 - 0.505	16.69475 – 16.69525	960 - 1240	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	1300 - 1427	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1435 – 1626.5	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1645.5 - 1646.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1660 - 1710	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1718.8 - 1722.2	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	2200 - 2300	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2310 - 2390	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2483.5 - 2500	15.35 - 16.2
8.362 - 8.366	156.52475 – 156.52525	2690 - 2900	17.7 - 21.4
8.37625 - 8.38675	156.7 – 156.9	3260 - 3267	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3.332 - 3.339	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3 3458 – 3 358	31.2 - 31.8
12.51975 – 12.52025	240 - 285	3.600 - 4.400	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4		Above 38.6
13.36 - 13.41	399.9 - 410		

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp.

(New Taipei Laboratory)

Page 23 of 86

As per FCC §15.209(a): Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (micro volts/meter)	Measurement Distance (meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100**	3
88 - 216	150**	3
216 - 960	200**	3
Above 960	500	3

^{**} Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

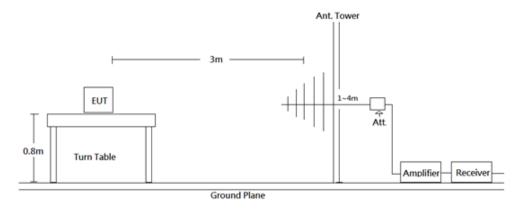
According to ANSI C63.10-2013, section 5.3.3

Measurements may be performed at a distance other than the limit distance provided they are not performed in the near field, and the emissions to be measured can be detected by the measurement equipment (see 4.3.4). Measurements shall not be performed at a distance greater than 30 m for frequencies above 30 MHz, unless it can be further demonstrated that measurements at a distance of 30 m or less are impractical. Measurements from 18 GHz to 40 GHz are typically made at distances significantly less than 3 m from the EUT. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade of distance (inverse of linear distance for field-strength measurements or inverse of linear distance-squared for power-density measurements).

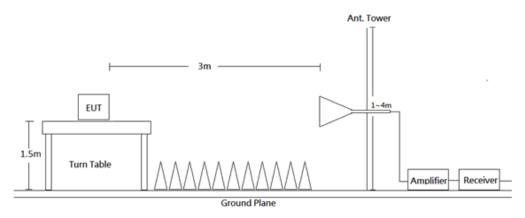
As per FCC §15.247 (d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c).

As per RSS-247 5.5,

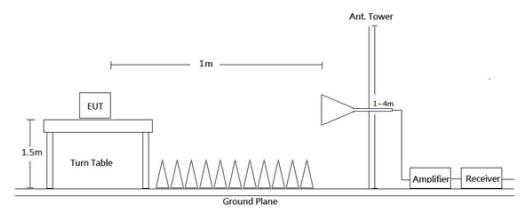
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)


Page 24 of 86

radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.


No.: RXZ231115070RF01

9.2. EUT Setup


Below 1 GHz:

1-18 GHz:

18-26.5 GHz:

Radiated emission tests were performed in the 3 meters chamber test site, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC Part 15.209 and FCC 15.247 Limits.

9.3. EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 30 MHz to 26.5 GHz. During the radiated emission test, the EMI test receiver was set with the following configurations measurement method 6.3 in ANSI C63.10.

Frequency Range	RBW	VBW	Measurement method		
30-1000 MHz	100 kHz	300 kHz	QP		
A1 1 CII-	1 MHz	3 MHz	PK		
Above 1 GHz	1 MHz	10 Hz	Ave		

9.4. Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All data was recorded in the Quasi-peak detector mode from 30 MHz to 1 GHz and PK and average detector modes for frequencies above 1 GHz.

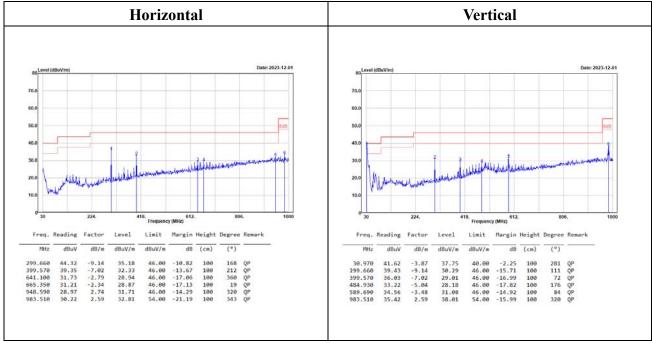
9.5. Corrected Factor & Margin Calculation

The Correct Factor is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Correct Factor = Antenna Factor + Cable Loss – Amplifier Gain

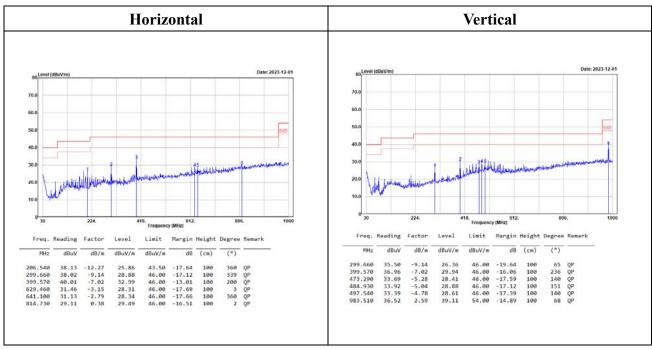
The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7 dB means the emission is 7 dB below the limit. The equation for margin calculation is as follows:

Margin = Level - Limit


9.6. Test Results

Test Mode: Transmitting

30MHz-1GHz:


(worst case is BR(GFSK) mode High channel)

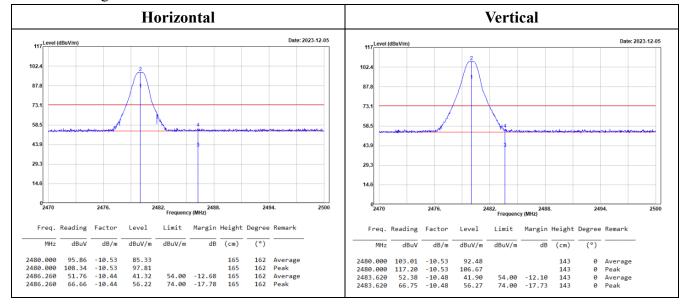
Adapter Mode:

No.: RXZ231115070RF01

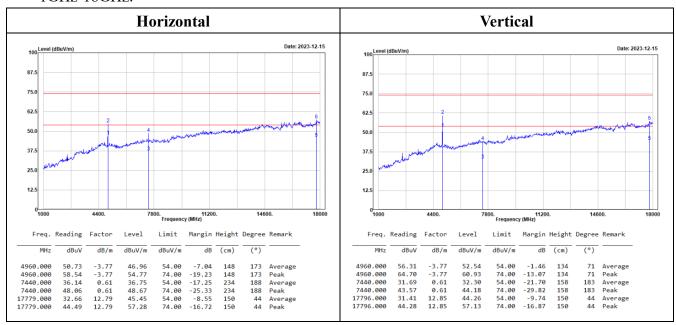
PoE Mode:

Level = Reading + Factor.

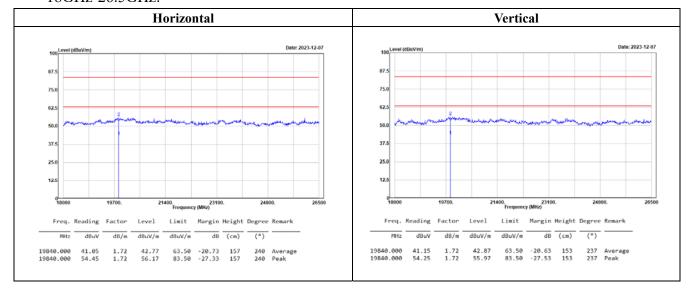
Margin = Level-Limit.


 $Factor = Antenna \; Factor + Cable \; Loss - Amplifier \; Gain.$

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)


Page 27 of 86

(worst case is BR(GFSK) mode High channel)


Band-Edge:

1GHz-18GHz:

18GHz-26.5GHz:

Level = Reading + Factor.

Margin = Level - Limit.

 $Factor = Antenna \ Factor + Cable \ Loss - Amplifier \ Gain.$

Above 1GHz

BR (GFSK)

			Hor	izonta	1							V.	rtical				
				ZOIItt	1							ve	rucai				
Freq. 1	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark	Enoc	Pooding	Factor	Level	limi+	Mangin	Uoi ab+	Dognoo	Remark
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)			Reading			Limit				Kelllark
									MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)	
2336.600	51.62 66.87	-11.36 -11.36	40.26 55.51		-13.74 -18.49	152 152	166 166	Average Peak	2376.300 2376.300	51.94 66.82	-11.10 -11.10	40.84 55.72		-13.16 -18.28	134 134	161 161	Average Peak
2402.000	97.42	-10.96	86.46	74.00	10.45	152	166	Average	2402.000	104.10	-11.10 -10.96	93.14	74.00	-18.28	134	161	Average
2402.000	109.90	-10.96	98.94			152	166	Peak	2402.000	118.28	-10.96	107.32			134	161	Peak
Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark	Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)	
4804.000	45.06	-3.70	41.36	54.00	-12.64	118	185	Average	4804.000	50.63	-3.70	46.93	54.00	-7.07	152	75	Average
4804.000	53.52 41.48	-3.70 0.23	49.82 41.71	74.00 54.00	-24.18 -12.29	118 197	185 193	Peak	4804.000	58.17	-3.70	54.47	74.00 54.00	-19.53	152		Peak
7206.000	51.87	0.23	52.10	74.00	-21.90	197	193	Average Peak	7206.000 7206.000	37.76 49.30	0.23 0.23	37.99 49.53	74.00	-16.01 -24.47	187 187		Average Peak
							-	Middle	channel								
			Hor	izonta	1		-	viiuuic	Chamie			Ve	rtical				
Freq.	Reading	Hactor 	Level dBuV/m	Limit ———— dBuV/m	Margin ————————————————————————————————————	Height (cm)	(°)	Kemark		Reading		Level	Limit			Degree	Remark
2441.000	dBuV	-10.93	86.01	abuv/m	ав	(cm) 195	163	Average	MHz 2441.000	dBuV	dB/m	dBuV/m	dBuV/m	ав	(cm)	(°)	Average
2441.000		-10.93	98.53			195		Peak	2441.000			107.66			196		Peak
Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark	Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)	
4882.000	48.55	-3.89	44.66	54.00	-9.34	139	189	Average	4882.000	54.18	-3.89	50.29	54.00	-3.71	122		Average
4882.000 7323.000	56.53 39.78	-3.89 0.23	52.64 40.01	74.00 54.00	-21.36 -13.99	139 220	189 170	Peak Average	4882.000 7323.000	62.06 35.44	-3.89 0.23	58.17 35.67	74.00 54.00	-15.83 -18.33	122 195		Peak Average
7323.000	50.28	0.23	50.51	74.00	-23.49	220	170	Peak	7323.000	48.08	0.23	48.31	74.00	-25.69	195		Peak
								High c	hannel								
			Hor	izonta	l							Ve	rtical				
Frea I	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark	Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark
MHz	dBuV	dB/m	dBuV/m	dBuV/m		(cm)	(°)		MHz	dBuV	dB/m	dBuV/m	dBuV/m		(cm)	(°)	
2480.000	95.86	-10.53	85.33			165	162	Average	2480.000	103.01	-10.53	92.48			143	0	Averag
	108.34	-10.53	97.81			165	162	Peak	2480.000	117.20	-10.53	106.67	F4 65	40.4-	143	0	Peak
2486.260 2486.260		-10.44 -10.44	41.32 56.22		-12.68 -17.78	165 165		Average Peak	2483.620 2483.620	52.38 66.75	-10.48 -10.48	41.90 56.27		-12.10 -17.73	143 143		Averag Peak
Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark	Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)	
4000 000		-3.77	46.96	54.00	-7.04	148		Average	4960.000		-3.77	52.54	54.00	-1.46	134		Average
4960.000		-3.77	54.77	74.00	-19.23	148	173	Peak	4960.000	64.70	-3.77	60.93	74.00	-13.07	134	71	Peak
4960.000						224	100	Avonago	7/// 000	31 60	0 61	32 30	54 00	-21 70	159		Avenage
	36.14	0.61 0.61	36.75 48.67	54.00 74.00	-17.25 -25.33	234 234		Average Peak	7440.000 7440.000 17796.000	43.57	0.61 0.61	32.30 44.18 44.26	54.00 74.00	-21.70 -29.82	158 158	183 183	Average Peak Average

Level = Reading + Factor.

Margin = Level-Limit.

 $Correct\ Factor = Antenna\ Factor + Cable\ Loss - Amplifier\ Gain.$

EDR $(\pi/4$ -DQPSK)

								Low c	hannel								
			Hor	izonta	l							Ve	rtical				
Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark	Freq	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)			dBuV	dB/m	dBuV/m	dBuV/m	dB		(°)	
2348.800	51.64	-11.27	40.37	54.00	-13.63	454	450		7.11.2	abav	GD/ III	abav, iii	abav, iii	ub.	(СШ)	()	
2348.800		-11.27	55.69	74.00	-13.63	151 151	168 168	Average Peak	2370.500 2370.500	51.81 66.49	-11.14 -11.14	40.67 55.35		-13.33 -18.65	132 132		Averag Peak
2402.000	95.14	-10.96	84.18			151	168	Average	2402.000			90.54	74.00	-10.05	132		Averag
2402.000	110.15	-10.96	99.19			151	168	Peak	2402.000	118.17	-10.96	107.21			132	162	Peak
Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark	Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)	
4804.000		-3.70	38.01	54.00	-15.99	117	186	Average	4804.000	47.78	-3.70	44.08	54.00	-9.92	120	67	Averag
4804.000 7206.000		-3.70 0.23	49.26		-24.74 -16.38	117 207	186 186	Peak	4804.000	58.09	-3.70	54.39	74.00	-19.61	120	67	Peak
7206.000		0.23	37.62 50.01		-23.99	207	186	Average Peak	7206.000 7206.000	36.99 48.42	0.23 0.23	37.22 48.65	54.00 74.00	-16.78 -25.35	169 169		Averag Peak
								Middle	channel								
			Hor	izonta	1		-	Madic				Ve	rtical				
Enea	Reading	Factor	Level	Limit	Margin	Height	Degree	Ramank	Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remar
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB		(°)		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB		(°)	
2441.000	94.44	-10.93	83.51			196	164	Average	2441.000	101 66	-10 03	90.73			196	a	Avera
	109.06	-10.93	98.13			196	164	Peak	2441.000			107.39			196		Peak
Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark	Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)	
4882.000	44.30	-3.89	40.41	54.00	-13.59	140	188	Average	4882.000	49.88	-3.89	45.99	54.00	-8.01	120	75	Averag
4882.000	54.64	-3.89	50.75	74.00	-23.25	140	188	Peak	4882.000	60.59	-3.89	56.70	74.00	-17.30	120	75	Peak
7323.000 7323.000	36.33 48.94	0.23 0.23	36.56 49.17	54.00 74.00	-17.44 -24.83	214 214	160 160	Average Peak	7323.000 7323.000	34.23 45.33	0.23 0.23	34.46 45.56	54.00 74.00	-19.54 -28.44	163 163		Averag Peak
								High c	hannel								
			Hor	izonta	l			8				Ve	rtical				
F	B	F	Level	Limit	Mi-		D	Dama ala	Fred	Reading	Factor	Level	Limit	Margin	Height	Degree	Romank
Freq.	Reading ———— dBuV	dB/m	dBuV/m	dBuV/m	Margin ————————————————————————————————————	(cm)	(°)	K	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)	
2480.000		-10.53	81.95	abav/III	ub	148	82	Average	2480.000	100.17	-10.53	89.64	,		145		Averag
2480.000		-10.53	96.17			148		Peak	2480.000	117.16	-10.53	106.63			145	0	Peak
2488.330		-10.43	41.73		-12.27	148	82	Average	2483.560	54.47	-10.48	43.99		-10.01	145		Averag
2488.330	66.90	-10.43	56.47	74.00	-17.53	148	82	Peak	2483.560	70.59	-10.48	60.11	74.00	-13.89	145	в	Peak
Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark	Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark
	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)	
MHz							470			F2 62							
4960.000	.,,,,	-3.77	43.43		-10.57	162		Average	4960.000	52.62	-3.77	48.85	54.00	-5.15	133		
MHz 4960.000 4960.000 7440.000	57.14	-3.77 -3.77 0.61	43.43 53.37 35.01	54.00 74.00 54.00	-10.57 -20.63 -18.99	162 162 196		Average Peak Average	4960.000 4960.000 7440.000	63.00 33.61	-3.77 -3.77 0.61	48.85 59.23 34.22	54.00 74.00 54.00	-5.15 -14.77 -19.78	133 133 159		Averag Peak Averag

Level = Reading + Factor.

Margin = Level-Limit.

Correct Factor = Antenna Factor + Cable Loss – Amplifier Gain.

EDR (8DPSK)

								Low	channel								
			Hor	izonta	l							Ve	rtical				
Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark	Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB		(°)	
					42.20	453			0270 000	F4 70	44.00	40.50		42.20	420	450	
2386.100	51.66 66.21	-11.04 -11.04	40.62 55.17		-13.38 -18.83	153 153	166 166	Average Peak	2379.200		-11.08 -11.08	40.62 55.01	74.00	-13.38 -18.99	139 139		Average Peak
2402.000	95.14	-10.96	84.18	, 1100	10.03	153	166	Average	2402.000	101.12	-10.96	90.16	, , , , ,	10.55	139	158	Average
2402.000	110.12	-10.96	99.16			153	166	Peak	2402.000	117.87	-10.96	106.91			139	158	Peak
Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark	Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)	
4804.000	41.29	-3.70	37.59	54.00	-16.41	119	186	Average	4804.000	47.45	-3.70	43.75	54.00	-10.25	108	71	Average
4804.000 7206.000	52.69 36.89	-3.70 0.23	48.99 37.12	74.00 54.00	-25.01 -16.88	119 229	186 186	Peak Average	4804.000		-3.70	54.33	74.00		108	71	Peak
7206.000	50.07	0.23	50.30	74.00	-23.70	229	186	Peak	7206.000 7206.000		0.23 0.23	35.11 48.83	54.00 74.00		109 109	264 264	Average Peak
								Middle	channel								
			Hor	izonta	1			Milaule	Channel			Va	rtical				
			1101	IZUIITA	.1							70	iticai				
	Reading		Level	Limit	Margin	Height		Remark	Freq.	Reading	Factor	Level	Limit			Degree	Remark
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)	
2441.000 2441.000	94.20 108.96	-10.93 -10.93	83.27 98.03			196 196	165 165	Average Peak	2441.000 2441.000	101.73 118.25	-10.93 -10.93	90.80 107.32			196 196		Average Peak
Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark	Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)	
4882.000	43.67	-3.89	39.78	54.00	-14.22	140	184	Average	4882.000		-3.89	45.52	54.00	-8.48	121		Average
4882.000	54.45 35.29	-3.89 0.23	50.56 35.52	74.00 54.00	-23.44	140 196	184 185	Peak	4882.000		-3.89	56.77	74.00		121		Peak
7323.000	48.66	0.23	48.89	74.00	-18.48 -25.11	196	185	Average Peak	7323.000 7323.000		0.23 0.23	35.04 48.78	54.00 74.00	-18.96 -25.22	158 158	149 149	Average Peak
								High	channel								
			Hor	izonta	l							Ve	rtical				
Frea.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark	Freg.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark
MHz	dBuV	dB/m	dBuV/m	dBuV/m		(cm)	(°)		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)	
2480.000		-10.53	83.09			165	163	Average	2480.000		-10.53	90.35			143	3	Average
2480.000 2483.620	108.03 52.29	-10.53 -10.48	97.50 41.81	54.00	-12.19	165 165		Peak	2480.000 2483.501		-10.53 -10.48	106.60 43.96	E4 00	-10.04	143 143		Peak
2483.620		-10.48	55.81	74.00	-18.19	165	163 163	Average Peak	2483.501	71.20	-10.48	60.72	74.00	-13.28	143		Average Peak
Freq.	. Reading	Factor	Level	Limit	Margin	Height	Degree	Remark	Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)	
4960.000	47.15	-3.77	43.38	54.00	-10.62	161	169	Average	4960.000	52.45	-3.77	48.68	54.00	-5.32	134	79	Average
4960.000			53.40	74.00	-20.60	161	169	Peak	4960.000	63.24	-3.77	59.47	74.00	-14.53	134	79	Peak
7440.000		0.61 0.61	35.78 48.99	54.00 74.00	-18.22 -25.01	225 225	177 177	Average Peak	7440.000	34.18	0.61	34.79	54.00	-19.21	158		Average
. 666	48.38	0.61	48.99	74.00	-25.01	225	1//	reak	7440.000	47.30	0.61	47.91	74.00	-26.09	158	91	Peak


Level = Reading + Factor.

Margin = Level-Limit.

 $Correct\ Factor = Antenna\ Factor + Cable\ Loss - Amplifier\ Gain.$

Transmitting simultaneously test:

The worst case of WIFI 2.4GHz and BT mode transmitting simultaneously:

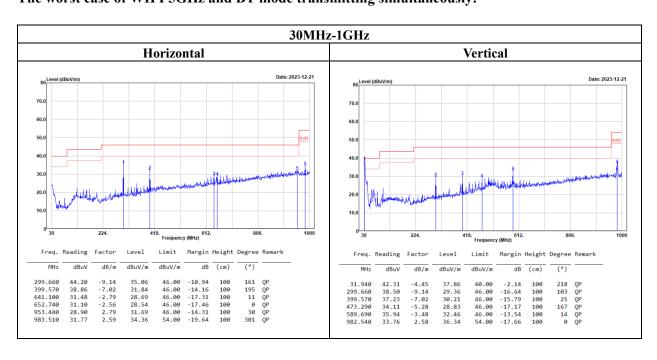
No.: RXZ231115070RF01

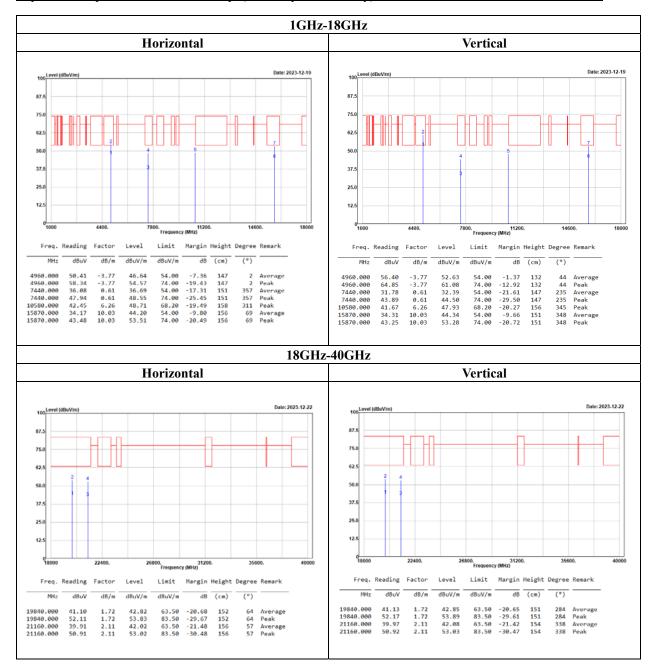
Date: 2023.12.22

Horizontal

41.74 54.02 42.62 56.06

1.64 1.64 1.72 1.72


37.5


No.: RXZ231115070RF01

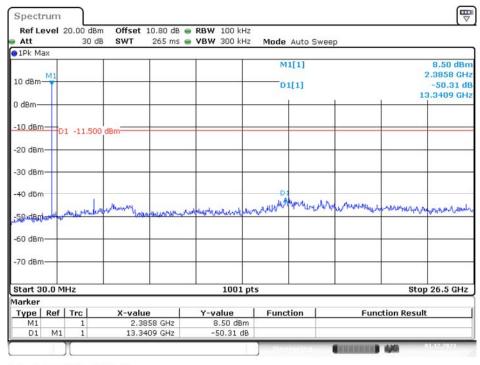
Margin Height Degree Remark

-21.76 -29.48 -20.88 -27.44

Note:

Level = Reading + Factor.

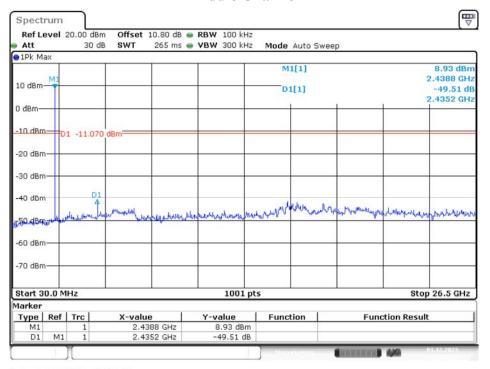
Margin = Level – Limit.


 $Factor = Antenna \; Factor + Cable \; Loss - Amplifier \; Gain.$

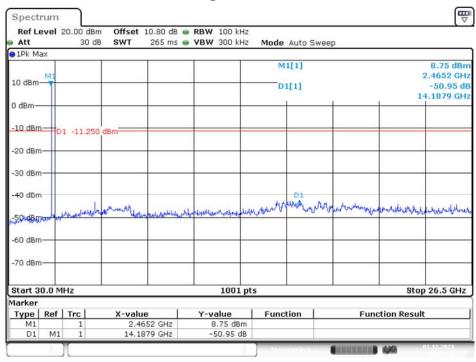
Conducted Spurious Emissions:

Channel	Frequency (MHz)	Delta Peak to Band Emission (dBc)	Limit (dBc)	Result									
BR Mode (GFSK)													
Low	2402	50.31	≥ 20	PASS									
Mid	2441	49.51	≥ 20	PASS									
High	2480	50.95	≥ 20	PASS									
EDR Mode (π/4-DQPSK)													
Low	2402	47.05	≥ 20	PASS									
Mid	2441	48.61	≥ 20	PASS									
High	2480	47.71	≥ 20	PASS									
EDR Mode (8DPSK)													
Low	2402	47.43	≥ 20	PASS									
Mid	2441	48.53	≥ 20	PASS									
High	2480	49.28	≥ 20	PASS									

No.: RXZ231115070RF01

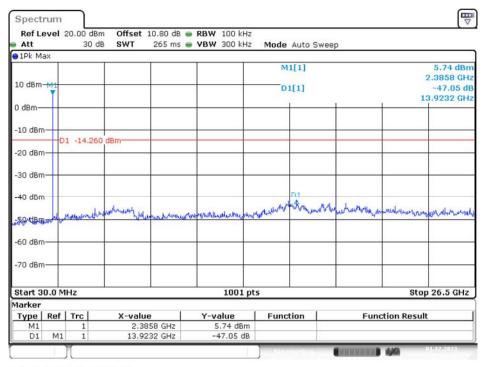

BR Mode (GFSK) Low Channel

Date: 1.DEC.2023 13:14:43

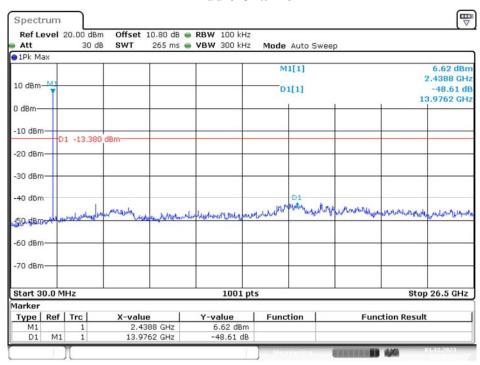

Middle Channel

No.: RXZ231115070RF01

Date: 1.DEC.2023 13:20:33

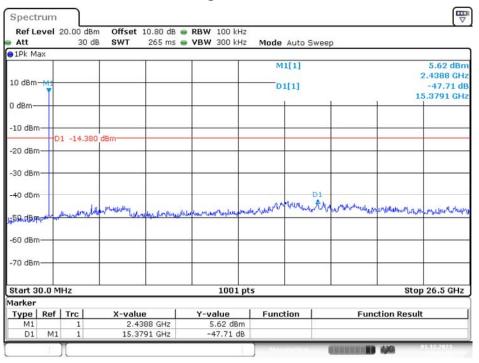

High Channel

Date: 1.DEC.2023 13:22:26


EDR Mode (π/4-DQPSK) Low Channel

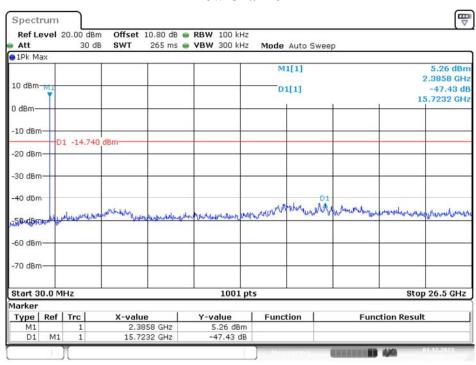
No.: RXZ231115070RF01

Date: 1.DEC.2023 13:24:38


Middle Channel

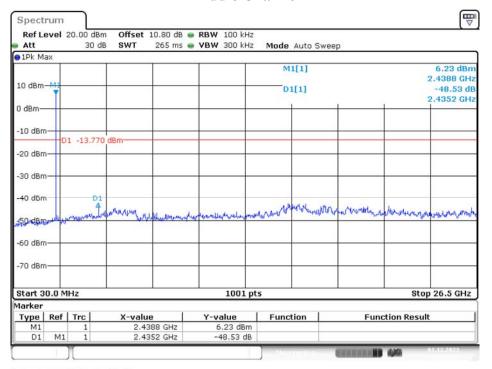
Date: 1.DEC.2023 13:26:29

High Channel

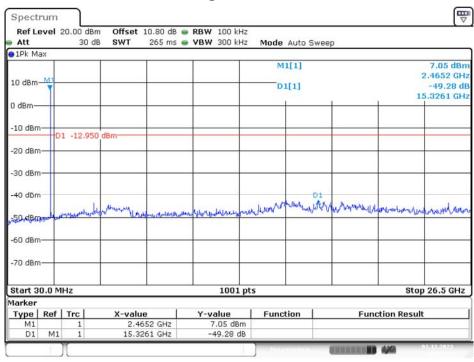

No.: RXZ231115070RF01

Date: 1.DEC.2023 14:24:31

EDR Mode (8DPSK)


Low Channel

Date: 1.DEC.2023 14:26:46


Middle Channel

No.: RXZ231115070RF01

Date: 1.DEC.2023 14:29:26

High Channel

Date: 1.DEC.2023 14:31:17