

FCC TEST REPORT

Report No.:	FVC-ESH-P20112379B-15
FCC ID:	T2C-A20
Product:	Video Conferencing Endpoint
Test Model:	MeetingBar A20
Received:	Dec.30, 2020
ISSUED:	Jan.23, 2021
Applicant:	YEALINK(XIAMEN) NETWORK TECHNOLOGY CO., LTD.
Address:	309, 3rd Floor, No.16, Yun Ding North Road, Huli District, Xiamen City,
	Fujian, P.R. China
Issued By:	BUREAU VERITAS ADT (Shanghai) Corporation

No. 829, Xinzhuan Road, Shanghai, P.R.China (201612)

This test report consists of 35 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product certification, approval, or endorsement by A2LA, CNAS, or any government agency. The test results in the report only apply to the tested item. The test results in this report are traceable to the national or international standards.

Lab Location:

Contents

1.	TEST	PROGRAM	3
2.	Sumn	nary of Test Procedure and Test Results	4
3.	Test C	Configuration of Equipment under Test	5
	3.1	Manufacturer information	5
	3.2	Feature of Equipment under Test	5
	3.3	Description of support units	5
	3.4	Measurement Uncertainty	6
4	Test o	f Conducted Emission	7
	4.1	Test Limit	7
	4.2	Test Procedures	8
	4.3	Typical Test Setup	8
	4.4	Measurement Equipment	9
	4.5	Test Result and Data	10
	4.6	Test Photographs	14
5	Test o	f Radiated Emission	14
	5.1	Test Limit	15
	5.2	Test Procedures	16
	5.3	Typical Test Setup	16
	5.4	Measurement Equipment	17
	5.5	Test Result and Data (30MHz ~ 1GHz)	18
	5.6	Test Result and Data (1GHz ~ 18GHz)	22
	5.7	Test Photographs (30MHz ~ 1000MHz)	24
	5.8	Test Photographs (1000MHz ~ 18000MHz)	
6	Photo	graphs of EUT	

1. TEST PROGRAM

 PRODUCT:
 Video Conferencing Endpoint

 TEST MODEL:
 MeetingBar A20

 APPLICANT:
 YEALINK(XIAMEN) NETWORK TECHNOLOGY CO.,LTD.

 TESTED:
 Jan.02 to Jan.22, 2021

 STANDARDS:
 47 CFR FCC Part15, Subpart B, Class B

 ANSI C63.4:2014

We, BUREAU VERITAS ADT (Shanghai) Corporation, declare that the equipment above has been tested and found compliance with the requirement limits of applicable standards. The test record, data evaluation and Equipment Under Test (EUT) configurations represented herein are true and accurate under the standards herein specified.

PREPARED BY	:Yuan ZHANG Project Engineer	DATE:	Jan.23, 2021
APPROVED BY	: Daniel Sun EMC Lab Manager 名E报	DATE:	Jan.23, 2021

2. Summary of Test Procedure and Test Results

EMISSION (47 CFR FCC Part15, Subpart B)									
Test Item	Test Result								
Conducted Emission	47 CFR FCC Part15, Subpart B 15.107	Meets the Class B requirements							
Radiated Emission	47 CFR FCC Part15, Subpart B 15.109	Meets the Class B requirements							

3. Test Configuration of Equipment under Test

3.1 Manufacturer information

 Manufacturer :
 YEALINK(XIAMEN) NETWORK TECHNOLOGY CO.,LTD.

 Address
 309, 3rd Floor, No.16, Yun Ding North Road, Huli District, Xiamen City,

 Fujian, P.R. China

3.2 Feature of Equipment under Test

Product Name: Video Conferencing Endpoint				
Brand:	Yealink			
Test Model:	MeetingBar A20			
Model Discrepancy:				
EUT Power Rating:	I/P: 48V ===, 0.7A for Video Conferencing Endpoint; I/P: 100-240Vac, 50/60Hz, 1.0A; O/P: 48V ===, 0.7A for AC Adapter.			

Note:

1. Please refer to user manual.

3.3 Description of support units

NO.	PRODUCT	BRAND/ Manufacturer	MODEL NO.
1	PC	ThinkPad	L470
2	Network Cable		
3	LCD Monitor	Lenovo	T2054pC

3.4 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT:

This listed uncertainties are the worst case uncertainty for the entire range of measurement. Please note that the uncertainty values are provided for informational purposes only and are not used in determining the PASS/FAIL results.

Measurement	Value	
Conducted emissions	2.55 dB	
	30 MHz ~ 1GHz	3.22 dB
Radiated emissions	Above 1GHz	2.89 dB

4 Test of Conducted Emission

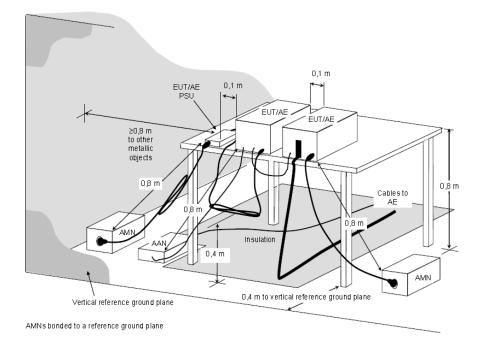
4.1 Test Limit

TEST STANDARD:

CFR 47 FCC Part 15, Subpart B (Section: 15.107)

FREQUENCY (MHz)	Class A	(dBµV)	Class B (dBµV)		
	Quasi-peak	Average	Quasi-peak	Average	
0.15 - 0.5	79	66	66 - 56	56 - 46	
0.50 - 5.0	73	60	56	46	
5.0 - 30.0	73	60	60	50	

NOTES: 1. The lower limit shall apply at the transition frequencies.


- 2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.
- 3. All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

4.2 Test Procedures

- 1. The EUT was placed on a desk 0.8 meter height from the metal ground plane and 0.4 meter from the conducting wall of the shielding room and it was kept at least 0.8 meters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a Artificial Mains Network (AMN).
- 3. All the support units are connecting to the other AMN.
- 4. The AMN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The CISPR states that a 50 ohm, 50 micro-Henry AMN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched
- 8. Set the test-receiver system to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

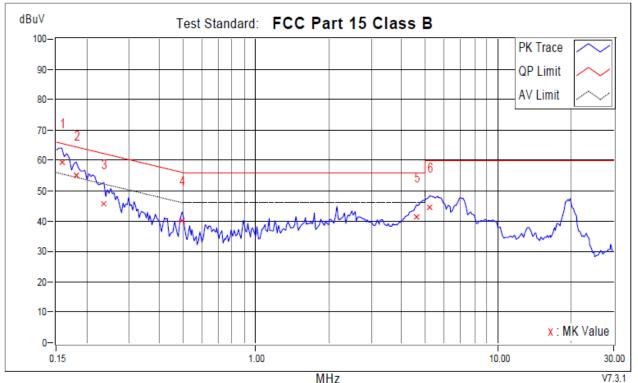
4.3 Typical Test Setup

NOTE The 0.8 m distance specified between EUT/AE/PSU and AMN/AAN, is applicable only to the EUT being measured. If the device is AE then it shall be \geq 0.8 m.

Figure D.2 – Example measurement arrangement for table-top EUT (Conducted emission measurement – alternative 1)

4.4 Measurement Equipment

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED UNTIL
Test Receiver ROHDE & SCHWARZ	ESCS30	E1R1001	Mar.11, 2021
LISN ROHDE & SCHWARZ	ENV216	E1L1011	Mar.11, 2021
Software ADT	ADT_Cond_V7.3.0	N/A	N/A

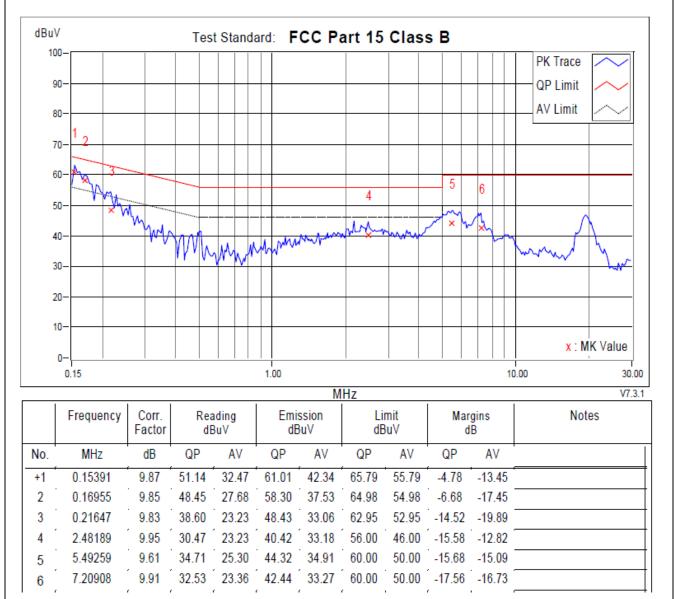


4.5 Test Result and Data

Conducted Emission Test Data

120Vac/60Hz

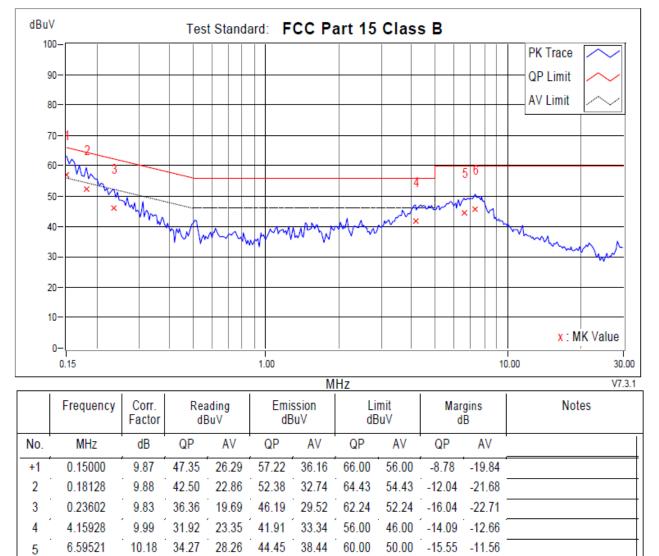
Phase : LINE



11112										
Frequency	Corr. Factor	Reading dBuV		Emission dBuV		Limit dBuV			<u> </u>	Notes
MHz	dB	QP	AV	QP	AV	QP	AV	QP	AV	
0.15782	9.86	49.43	31.45	59.29	41.31	65.58	55.58	-6.28	-14.26	
0.18128	9.87	45.08	24.29	54.95	34.16	64.43	54.43	-9.47	-20.26	
0.23602	9.82	35.71	19.32	45.53	29.14	62.24	52.24	-16.70	-23.09	
0.49799	9.74	30.58	25.05	40.32	34.79	56.03	46.03	-15.71	-11.24	
4.61284	9.84	31.52	22.15	41.36	31.99	56.00	46.00	-14.64	-14.01	
5.22280	9.86	34.69	25.35	44.55	35.21	60.00	50.00	-15.45	-14.79	
	MHz 0.15782 0.18128 0.23602 0.49799 4.61284	MHz GB 0.15782 9.86 0.18128 9.87 0.23602 9.82 0.49799 9.74 4.61284 9.84	Factor dB QP 0.15782 9.86 49.43 0.18128 9.87 45.08 0.23602 9.82 35.71 0.49799 9.74 30.58 4.61284 9.84 31.52	Factor dBuV MHz dB QP AV 0.15782 9.86 49.43 31.45 0.18128 9.87 45.08 24.29 0.23602 9.82 35.71 19.32 0.49799 9.74 30.58 25.05 4.61284 9.84 31.52 22.15	Factor dBuV dB MHz dB QP AV QP 0.15782 9.86 49.43 31.45 59.29 0.18128 9.87 45.08 24.29 54.95 0.23602 9.82 35.71 19.32 45.53 0.49799 9.74 30.58 25.05 40.32 4.61284 9.84 31.52 22.15 41.36	Factor dBuV dBuV MHz dB QP AV QP AV 0.15782 9.86 49.43 31.45 59.29 41.31 0.18128 9.87 45.08 24.29 54.95 34.16 0.23602 9.82 35.71 19.32 45.53 29.14 0.49799 9.74 30.58 25.05 40.32 34.79 4.61284 9.84 31.52 22.15 41.36 31.99	Factor dBu√ QP A√ Q1 A/A A/A	Factor dBuV dBuV dBuV dBuV MHz dB QP AV QP AV QP AV 0.15782 9.86 49.43 31.45 59.29 41.31 65.58 55.58 0.18128 9.87 45.08 24.29 54.95 34.16 64.43 54.43 0.23602 9.82 35.71 19.32 45.53 29.14 62.24 52.24 0.49799 9.74 30.58 25.05 40.32 34.79 56.03 46.03 4.61284 9.84 31.52 22.15 41.36 31.99 56.00 46.00	Factor dBuV dBuV dBuV dBuV ddBuV QP AV QP 0.15782 9.86 49.43 31.45 59.29 41.31 65.58 55.58 -6.28 0.18128 9.87 45.08 24.29 54.95 34.16 64.43 54.43 -9.47 0.23602 9.82 35.71 19.32 45.53 29.14 62.24 52.24 -16.70 0.49799 9.74 30.58 25.05 40.32 34.79 56.03 46.03 -15.71 4.61284 9.84 31.52 22.15 41.36 31.99 56.00 46.00 -14.64	Factor dBuV dBuV dBuV dBuV dBuV dB MHz dB QP AV QP

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value.

Phase : NEUTRAL



- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value.

240Vac/50Hz

Phase: LINE

REMARKS:

6

7.34984

10.24

35.28

1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

39.50

60.00

50.00

-14.48 -10.50

- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value


29.26

- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value.

45.52

Phase: NEUTRAL

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value.

4.6 Test Photographs

Please refer to the attached file (Test Setup Photo).

5 Test of Radiated Emission

5.1 Test Limit

TEST STANDARD:

CFR 47 FCC Part 15, Subpart B (Section: 15.109)

FOR FREQUENCY BELOW 1000 MHz

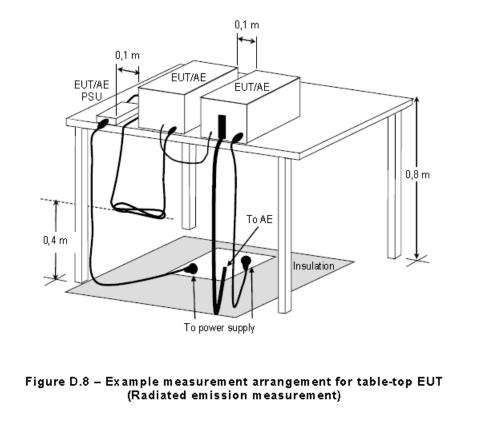
FREQUENCY (MHz)	Class A	(at 10m)	Class B (at 3m)		
	μV/m	dBµV/m	μV/m	dBµV/m	
30 - 88	90	39.1	100	40.0	
88 – 216	150	43.5	150	43.5	
216 – 960	210	46.4	200	46.0	
960 – 1000	300	49.5	500	54.0	

LIMIT OF RADIATED EMISSION OF FCC PART 15, SUBPART B FOR FREQUENCY ABOVE 1000 MHz

FREQUENCY (MHz)	Class A (dBµ	ıV/m) (at 3m)	Class B (dBµV/m) (at 3m)		
	PEAK	AVERAGE	PEAK	AVERAGE	
Above 1000	80.0	60.0	74.0	54.0	

Note: 1. The lower limit shall apply at the transition frequencies.

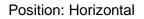
2. Emission level $(dBuV/m) = 20 \log Emission level (uV/m)$.

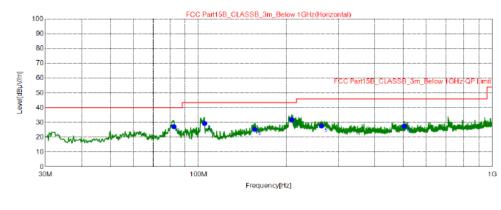

3. All emanation from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

5.2 Test Procedures

- 1. The EUT was placed on a rotatable table top 0.8 meter above ground.
- 2. The EUT was set 3/10 meters from the interference receiving antenna which was mounted on the top of a variable height antenna tower.
- 3. The table was rotated 360 degrees to determine the position of the highest radiation.
- 4. The antenna is a half wave dipole and its height is varied between one meter and four meters above ground to find the maximum value of the field strength both horizontal polarization and vertical polarization of the antenna are set to make the measurement.
- 5. For each suspected emission the EUT was arranged to its worst case and then tune the antenna tower (from 1 M to 4 M) and turn table (from 0 degree to 360 degrees) to find the maximum reading.
- 6. Set the test-receiver system to Peak Detect Function and specified bandwidth with Maximum Hold Mode.
- 7. If the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method and reported.

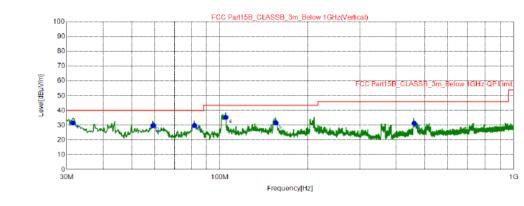
5.3 Typical Test Setup




5.4 Measurement Equipment			
DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED UNTIL
EMI Test Spectrum ROHDE & SCHWARZ	ESR7	E1R1005	May.11, 2021
Spectrum Analyzer Keysight	N9030B	E1S1003	Aug.03, 2021
Broad-Band Antenna Schwarzbeck	VULB9168	E1A1012	Jul.27, 2021
Double Riaged Vroadband Horn Antenna Schwarzbeck	BBHA9120D	E1A1017	Jan.25, 2021
Preamplifier Agilent	8447D	E1A2001	Apr.19, 2021
Preamplifier Agilent	EMC051845SE	E1A2009	Jul.05, 2021

5.5 Test Result and Data (30MHz ~ 1GHz)

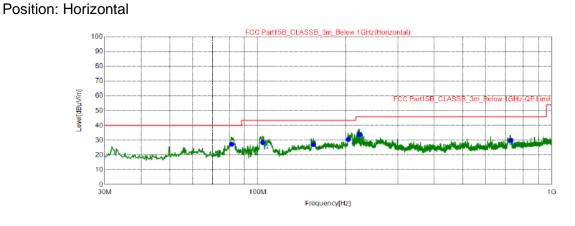
120Vac/60Hz


QP Detector

Final	L Data	List							
NO.	Freq.	QP Reading	Factor	QP Value	QP Limit	QP Margin	Height	Angle	Polarity
	[MHz]	[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity
1	82.38	41.91	-14.70	27.21	40.00	12.79	200	183	Horizontal
2	104.8	43.73	-14.37	29.36	43.50	14.14	200	301	Horizontal
3	155.5	35.33	-9.88	25.45	43.50	18.05	100	110	Horizontal
4	208.2	43.89	-11.97	31.92	43.50	11.58	100	101	Horizontal
5	262.9	37.64	-9.95	27.69	46.00	18.31	100	141	Horizontal
6	503.9	31.91	-4.47	27.44	46.00	18.56	100	106	Horizontal

- 1. Q.P. is abbreviation of quasi-peak individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. QP Margin value = QP Limit value QP value.
- 4. Factor = Antenna Factor + Amplifier Factor + Cable loss.
- 5. QP value = Factor + Reading Value.

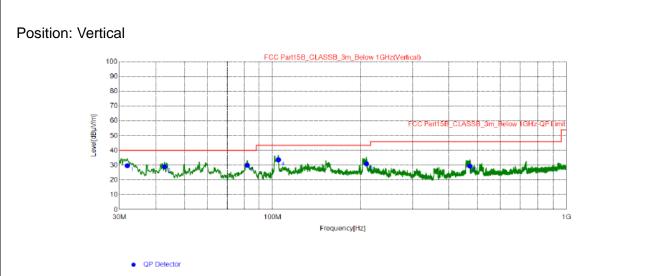
Position: Vertical


QP Detector

Final	L Data	List							
NO.	Freq.	QP Reading	Factor	QP Value	QP Limit	QP Margin	Height	Angle	Polarity
	[MHz]	[dB µ V/m]	[dB]	$[dB \mu V/m]$	[dBµV/m]	[dB]	[cm]	[°]	POIATICY
1	31.55	43.01	-11.47	31.54	40.00	8.46	100	179	Vertical
2	59.10	39.92	-10.22	29.70	40.00	10.30	100	354	Vertical
3	81.99	44.45	-14.64	29.81	40.00	10.19	200	136	Vertical
4	104.6	49.8	-14.39	35.41	43.50	8.09	100	219	Vertical
5	155.3	41.39	-9.89	31.50	43.50	12.00	100	138	Vertical
6	460.0	36.3	-5.01	31.29	46.00	14.71	100	88	Vertical

- 1. Q.P. is abbreviation of quasi-peak individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. QP Margin value = QP Limit value QP value
- 4. Factor = Antenna Factor + Amplifier Factor + Cable loss
- 5. QP value = Factor + Reading Value.

240Vac/50Hz



Final	L Data	List							
NO.	Freq.	QP Reading	Factor	QP Value	QP Limit	QP Margin	Height	Angle	Polarity
	[MHz]	[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	FOIAIICY
1	81.41	41.82	-14.54	27.28	40.00	12.72	200	200	Horizontal
2	103.9	42.98	-14.49	28.49	43.50	15.01	200	295	Horizontal
3	154.9	36.99	-9.90	27.09	43.50	16.41	200	182	Horizontal
4	203.4	42.74	-12.06	30.68	43.50	12.82	100	183	Horizontal
5	222.0	45.57	-11.68	33.89	46.00	12.11	100	178	Horizontal
6	730.3	31.05	-1.00	30.05	46.00	15.95	200	128	Horizontal

- 1. Q.P. is abbreviation of quasi-peak individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. QP Margin value = QP Limit value QP value.
- 4. Factor = Antenna Factor + Amplifier Factor + Cable loss.
- 5. QP value = Factor + Reading Value.

Final	Data	List							
NO.	Freq.	QP Reading	Factor	QP Value	QP Limit	QP Margin	Height	Angle	Delevitu
NO.	[MHz]	[dB µ V/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity
1	31.94	41.14	-11.43	29.71	40.00	10.29	100	228	Vertical
2	42.80	39.21	-10.23	28.98	40.00	11.02	100	259	Vertical
3	81.99	44.63	-14.64	29.99	40.00	10.01	200	104	Vertical
4	104.6	48.06	-14.39	33.67	43.50	9.83	100	360	Vertical
5	209.2	42.95	-11.95	31.00	43.50	12.50	100	187	Vertical
6	470.9	34.28	-4.88	29.40	46.00	16.60	100	336	Vertical

- 1. Q.P. is abbreviation of quasi-peak individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. QP Margin value = QP Limit value QP value
- 4. Factor = Antenna Factor + Amplifier Factor + Cable loss
- 5. QP value = Factor + Reading Value.

	T (D)/		(4.01)	VERI	TAS				
6 .6	Test Result	and Data	(1GHz ~	18GHz)					
ک ⁰ כ	sition: Horizon	tal							
00									
	100		FC	C Part15_CLASS	3_Above1GHz(F	lorizontal)			
	90 80						00 D-415 (121:
	70							ASSB_Above1GHz-P	K Limit
	ق <u>م</u> 60					F	CC Part15_C	LASSB_Above1GHz-A	V Limit
	[□] 60 [□] 50 [□] 50 [□] 1 [0] 1 [0							z 10	
	30		3	6 5 − − − − − − − − − − − − − − − − − − −					
	20								
	10								
	1G		2G	3G 40	; Jency[Hz]	6G	8G		18G
		Readin							
	_		Level	Limit	Margi	Heigh			
0	Freq.	g					7 7		Datast
			[dBµV/	[dBµV/	n	t	Angl	Polarity	
•	[MHz]	[dBµV/	[dBµV/ m]	[dBµV/ m]	n [dB]	t [cm]	Angl e[°]	Polarity	Detect r
•		[dBµV/ m]	m]	m]	[dB]			Polarity	
• 1	1102.0000	[dBµV/ m] 59.40	m] 39.22	m] 74.00	[dB] 34.78		e[°] 164	Horizont	
2	1102.0000 1153.0000	[dBµV/ m] 59.40 49.93	m] 39.22 29.93	m] 74.00 54.00	[dB] 34.78 24.07	[cm] 100 100	e[°] 164 153	Horizont Horizont	r
2	1102.0000 1153.0000 1851.7000	[dBµV/ m] 59.40 49.93 50.95	m] 39.22 29.93 33.24	m] 74.00 54.00 74.00	[dB] 34.78 24.07 40.76	[cm] 100 100 100	e[°] 164 153 247	Horizont Horizont Horizont	r PK AV PK
2 3 4	1102.0000 1153.0000 1851.7000 1853.4000	[dBµV/ m] 59.40 49.93 50.95 43.63	m] 39.22 29.93 33.24 25.93	m] 74.00 54.00 74.00 54.00	[dB] 34.78 24.07 40.76 28.07	[cm] 100 100 100 100	e[°] 164 153 247 237	Horizont Horizont Horizont Horizont	r PK AV PK AV
2 3 4 5	1102.0000 1153.0000 1851.7000 1853.4000 2817.3000	[dBµV/ m] 59.40 49.93 50.95 43.63 38.80	m] 39.22 29.93 33.24 25.93 24.49	m] 74.00 54.00 74.00 54.00 54.00	[dB] 34.78 24.07 40.76 28.07 29.51	[cm] 100 100 100 100 100	e[°] 164 153 247 237 247	Horizont Horizont Horizont Horizont	r PK AV PK AV AV
2 3 4 5 6	1102.0000 1153.0000 1851.7000 1853.4000 2817.3000 2829.2000	[dBµV/ m] 59.40 49.93 50.95 43.63 38.80 44.86	m] 39.22 29.93 33.24 25.93 24.49 30.59	m] 74.00 54.00 74.00 54.00 54.00 74.00	[dB] 34.78 24.07 40.76 28.07 29.51 43.41	[cm] 100 100 100 100 100 100	e[°] 164 153 247 237 247 132	Horizont Horizont Horizont Horizont Horizont	r PK AV PK AV AV PK
2 3 4 5 6 7	1102.0000 1153.0000 1851.7000 1853.4000 2817.3000 2829.2000 6827.6000	[dBµV/ m] 59.40 49.93 50.95 43.63 38.80 44.86 32.15	m] 39.22 29.93 33.24 25.93 24.49 30.59 30.73	m] 74.00 54.00 74.00 54.00 74.00 74.00 54.00	[dB] 34.78 24.07 40.76 28.07 29.51 43.41 23.27	[cm] 100 100 100 100 100 100 100	e[°] 164 153 247 237 247 132 258	Horizont Horizont Horizont Horizont Horizont Horizont	r PK AV PK AV PK AV
2 3 4 5 6 7 8	1102.0000 1153.0000 1851.7000 1853.4000 2817.3000 2829.2000 6827.6000 6836.1000	[dBµV/ m] 59.40 49.93 50.95 43.63 38.80 44.86 32.15 37.07	m] 39.22 29.93 33.24 25.93 24.49 30.59 30.73 35.72	m] 74.00 54.00 74.00 54.00 74.00 54.00 74.00	[dB] 34.78 24.07 40.76 28.07 29.51 43.41 23.27 38.28	[cm] 100 100 100 100 100 100 100 10	e[°] 164 153 247 237 247 132 258 237	Horizont Horizont Horizont Horizont Horizont Horizont Horizont	r PK AV PK AV PK AV PK
2 3 4 5 6 7 8 9	1102.0000 1153.0000 1851.7000 1853.4000 2817.3000 2829.2000 6827.6000 6836.1000 7279.8000	[dBµV/ m] 59.40 49.93 50.95 43.63 38.80 44.86 32.15 37.07 33.65	m] 39.22 29.93 33.24 25.93 24.49 30.59 30.73 35.72 32.88	m] 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00	[dB] 34.78 24.07 40.76 28.07 29.51 43.41 23.27 38.28 21.12	[cm] 100 100 100 100 100 100 100 10	e[°] 164 153 247 237 247 132 258 237 164	Horizont Horizont Horizont Horizont Horizont Horizont Horizont Horizont	r PK AV PK AV PK AV PK AV
• 1 2 3 4 5 6 7 8 9 9	1102.0000 1153.0000 1851.7000 1853.4000 2817.3000 2829.2000 6827.6000 6836.1000 7279.8000 10603.300	[dBµV/ m] 59.40 49.93 50.95 43.63 38.80 44.86 32.15 37.07 33.65 38.48	m] 39.22 29.93 33.24 25.93 24.49 30.59 30.73 35.72 32.88 38.16	m] 74.00 54.00 54.00 54.00 74.00 54.00 74.00 54.00 74.00	[dB] 34.78 24.07 40.76 28.07 29.51 43.41 23.27 38.28 21.12 35.84	[cm] 100 100 100 100 100 100 100 10	e[°] 164 153 247 237 247 132 258 237 164 300	Horizont Horizont Horizont Horizont Horizont Horizont Horizont Horizont Horizont	PK AV PK AV AV PK AV PK
2 3 4 5 6 7 8 9	1102.0000 1153.0000 1851.7000 1853.4000 2817.3000 2829.2000 6827.6000 6836.1000 7279.8000	[dBµV/ m] 59.40 49.93 50.95 43.63 38.80 44.86 32.15 37.07 33.65	m] 39.22 29.93 33.24 25.93 24.49 30.59 30.73 35.72 32.88	m] 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00	[dB] 34.78 24.07 40.76 28.07 29.51 43.41 23.27 38.28 21.12	[cm] 100 100 100 100 100 100 100 10	e[°] 164 153 247 237 247 132 258 237 164	Horizont Horizont Horizont Horizont Horizont Horizont Horizont Horizont	r PK AV PK AV PK AV PK AV

- 1. The emission levels of other frequencies were very low against the limit.
- 2. Margin = Limit –Level

				B U R V E R I					
Pos	ition: Vertical								
			-	00 8-445 01 400		0 (
	100 90			CC Part15_CLASS	SB_Above1GHz	(Vertical)			
	80					F	CC Part15	CLASSB_Above1GHz-F	PK Limit
	70								
						F	CC Part15_	CLASSB_Above1GHz-A	V Limit
		. 4					10		12
	30		hand a state of the last	5	and a state of the second				
	20								
	10								
	1G		2G	3G 40 Frea	G uency[Hz]	6G	8G		18G
NO	Freq.	Readin g	Level	Limit	Margi	Heigh	Angl		Detecto
	[MHz]	[dBµV/	[dBµV/	[dBµV/	n	t	e[°]	Polarity	r
		m]	m]	m]	[dB]	[cm]			
1	1081.6000	53.31	33.06	54.00	20.94	100	186	Vertical	AV
2	1093.5000	62.84	42.63	74.00	31.37	100	228	Vertical	PK
3	1778.6000	48.30	30.37	54.00	23.63	100	124	Vertical	AV
4	1851.7000	53.63	35.92	74.00	38.08	100	186	Vertical	PK
5	2827.5000	46.55	32.28	74.00	41.72	100	239	Vertical	PK
6	2829.2000	39.90	25.63	54.00	28.37	100	239	Vertical	AV
7	6652.5000	34.08	31.35	54.00	22.65	100	249	Vertical	AV
8	6848.0000	36.83	35.57	74.00	38.43	100	93	Vertical	PK
9	7373.3000	34.48	33.47	54.00	20.53	100	0	Vertical	AV
10	7400.5000	39.67	38.58	74.00	35.42	100	114	Vertical	PK
11	17947.300	34.68	48.94	74.00	25.06	100	343	Vertical	PK
12	17955.800	27.60	41.95	54.00	12.05	100	354	Vertical	AV

E INU VI

- 1. The emission levels of other frequencies were very low against the limit.
- 2. Margin = Limit –Level

5.7 Test Photographs (30MHz ~ 1000MHz)

Please refer to the attached file (Test Setup Photo).

5.8 Test Photographs (1000MHz ~ 18000MHz)

Please refer to the attached file (Test Setup Photo).

6 Photographs of EUT

---- END ----