

Center for Quality Engineering

Test Report No.: D15F0001

FCC ID: SZV-STM310C IC: 5713A-STM310C

Order No.: D15F	Pages: 28	Munich, Sep 24, 2010	
Client:	EnOcean GmbH		
Equipment Under Test:	Transmitter Module STM310C (W	Transmitter Module STM310C (Whip antenna, 15cm)	
Manufacturer:	EnOcean GmbH		
Task:	Conformance test according to the test specifications mentioned below		
Test Specification(s):	FCC 47 CFR Part 15 IC RSS-210		
Result:	The EUT complies with the require	ements of the specification.	
The regulte relate only to t	he items tosted as described in this to	ot roport	

The results relate only to the items tested as described in this test report.

edited by:	Date	Signature
Steinmüller Qualification Engineer	Sep 24, 2010	M. Donto
approved by:	Date	Signature
Bauer Lab Manager EMC	Sep 24, 2010	Josef Burer

This document was signed electronically.

The Center for Quality Engineering of SGS Germany GmbH is accredited by DATech for COMPONENTS TESTING ENVIRONMENTAL ENGINEERING ELECTROMAGNETIC COMPATIBILITY PRODUCT SAFETY TELECOM CONFORMANCE TESTS

SGS Germany GmbH, SGS CQE, Hofmannstr. 50, D-81379 München, Phone +49 89-787475-130, Fax +49 89-787475-122, Internet www.sgs-cqe.de

CONTENTS

1	Summary	4
2	References	5
	2.1 Specifications	5
	2.2 Glossary of Terms	5
3	General Information	6
	3.1 Identification of Client	6
	3.2 Test Laboratory	6
	3.3 Time Schedule	6
	3.4 Participants	6
4	Equipment Under Test	7
	4.1 Description of EUT	7
	4.2 Configuration of EUT	8
	4.3 Operating Conditions	8
	4.4 Compliance Criteria	8
5	General Description of Tests	9
	5.1 Tested Carrier Frequencies	9
	5.2 Calibration of the Test Equipment	9
6	Test Results	10
	6.1 Test No. 1: Conducted Emissions ([1] § 15.207)	10
	6.2 Test No. 2: Field strength correction for pulse operation (Duty Cycle) ([1] § 15.35(c))	10
	6.2.1 Purpose	10
	6.2.2 Limits	10
	6.2.3 EUT Operating Condition	10
	6.2.4 Test Configuration	10
	6.2.5 Test Procedure and Results	11
	6.2.6 Test Protocol	11
	6.3 Test No. 3: Field strength of the fundamental wave ([1] § 15.231(b), [3] A1.1.2)	13
	6.3.1 Purpose	13
	6.3.2 Limits	13
	6.3.3 EUT Operating Condition	13
	6.3.4 Test Configuration	13
	6.3.5 Test Procedure and Results	14
	6.3.6 Test Protocol	14
	6.4 Test No. 4: Radiated Emissions (9kHz - 30MHz) ([1] § 15.209; [3] T1, 3)	
	6.4.1 Purpose	15

	6.4.2 Limits	15
	6.4.3 EUT Operating Condition	15
	6.4.4 Test Configuration	15
	6.4.5 Test Procedure and Results	16
	6.4.6 Test Protocol	16
	6.5 Test No. 5: Radiated Emissions (30MHz - 1GHz) ([1] § 15.209, 231(b); [3] T1, 2)	18
	6.5.1 Purpose	18
	6.5.2 Limits	18
	6.5.3 EUT Operating Condition	19
	6.5.4 Test Configuration	19
	6.5.5 Test Procedure and Results	19
	6.5.6 Test Protocol	20
	6.6 Test No. 6: Radiated Emissions (1GHz - 4GHz) ([1] § 15.209, 231(b); [3] T1, 2)	21
	6.6.1 Purpose	21
	6.6.2 Limits	21
	6.6.3 EUT Operating Condition	22
	6.6.4 Test Configuration	22
	6.6.5 Test Procedure and Results	22
	6.6.6 Test Protocol	23
	6.7 Test No. 7: Emission Bandwidth ([1] § 15.231(c); [3] A1.1.3)	24
	6.7.1 Purpose	24
	6.7.2 Limits	24
	6.7.3 EUT Operating Condition	24
	6.7.4 Test Configuration	24
	6.7.5 Test Procedure and Results	24
	6.7.6 Test Protocol	25
	6.8 Test No. 8: Transmit Duration ([1] § 15.231(a))	26
	6.8.1 Purpose	26
	6.8.2 Limits	26
	6.8.3 EUT Operating Condition	26
	6.8.4 Test Configuration	26
	6.8.5 Test Procedure and Results	27
	6.8.6 Test Protocol	27
7	Test Data	28
	7.1 Part List of the Test Equipment	28

1 Summary

The measurements described in this report were conducted pursuant to 47 CFR § 2.947, § 2.1041 and [1] § 15.31. All applicable paragraphs of the [1] 47 CFR part 15 of the most current version of the rules were considered.

The following tests were performed according to the FCC rules in order to verify the compliance of the EUT with the FCC requirements:

Test No.	Measurement	FCC Rule	Page Number of this Report	Result
1	Conducted Emissions	[1] § 15.207	10	n/a ¹
2	Field strength correction for pulse operation (Duty Cycle)	[1] § 15.35(c)	10	-
3	Field strength of the fundamental wave	[1] § 15.231(b) [3] Annex 1.1.2, Table 4	13	compliant
4	Radiated Emissions (9kHz – 30MHz)	[1] § 15.209 [3] Table 1 and 3	15	compliant
5	Radiated Emissions (30MHz – 1GHz)	[1] § 15.205, 15.209 15.231(b) [3] Table 1 and 2	18	compliant
6	Radiated Emissions (1GHz – 4GHz)	[1] § 15.205, 15.209 15.231(b) [3] Table 1 and 2	21	compliant
7	Emission Bandwidth	[1] § 15.231(c) [3] Annex 1.1.3	24	compliant
8	Transmit Duration	[1] § 15.231(a) [3] Annex 1.1.1	26	compliant

1) Measurement is not applicable since the EUT has no AC mains connection

Table 1-1: Results – Summary

2 References

2.1 Specifications

No.	Standard	Title	Date
[1]	FCC 47 CFR Part 15	Code of Federal Regulations, Title 47: Telecommunication Part 15: Radio Frequency Devices	2009-10
[2]	ANSI C63.4-2003	American National Standard for Methods of Measurement of Radio Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz	2004-01
[3]	RSS-210 Issue 7	Radio Standards Specification Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment	2007-06

2.2 Glossary of Terms

°C	Degree Celsius
AC	Alternating Current
ANT	Antenna
chk	checked against a calibrated reference
cnn	calibration not necessary
DAR	Deutscher Akkreditierungsrat (German Accreditation Council)
DATech	Deutsche Akkreditierungsstelle Technik e.V.
dB	Decibel
dBc	Decibel per Carrier
dBm	Decibel per Milliwatt
EUT	Equipment Under Test
ind	for indication only
kbps	Kilobits per second
max	Maximum
min	Minimum
n/a	Not Applicable
n/p	Not Performed
P	Power
Pmax	Maximum Output Power
Prat	Rated Output Power
RBW	Resolution Bandwidth
Ref	Reference
RF	Radio Frequency
RMS	Root Mean Square
RX	Receive Path
SW	Software
Т	Temperature
TRX	Transceiver
ТХ	Transmit Path
V	Volt
W	Watt
w/	with
w/o	without

3 General Information

3.1 Identification of Client

EnOcean GmbH Kolpingstr. 18a 82041 Oberhaching Dr. Wolfgang Hellerl

3.2 Test Laboratory

Center for Quality Engineering SGS Germany GmbH Hofmannstraße 50 81379 München

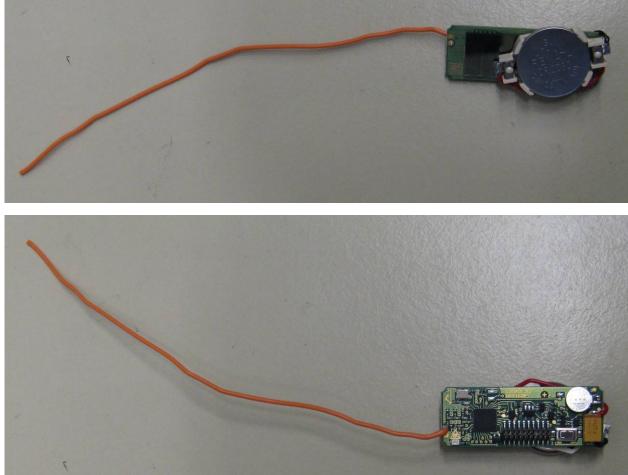
Federal Communications Commission (FCC):Testfirm registration numbers- MZ2: 97242

Industry Canada (IC):	
Company number:	9058A
Test-site number:	– MZ2: 9058A-2

3.3 Time Schedule

Test No.:	28
Start of Test:	27.08.2010
End of Test:	27.08.2010

3.4 Participants


Name	Function
Michael Steinmüller	Accredited Testing, Editor

4 Equipment Under Test

The tested equipment is representative for serial production.

4.1 Description of EUT

The tested Transmitter-Module transmits control data by using ASK modulation through its 315MHz carrier signal.

Note: During the tests the energy havesting system was replaced by a 3V Li Mn battery to allow continuous operation of the EUT.

Figure 4-1: Photos of EUT

4.2 Configuration of EUT

The used different EUT configurations are shown by the following tables.

Module Type		Transmitter-Module	
Operating Band		315MHz	
Operating Frequency		315MHz	
Rated Output Power (Prat)		n/a	
Modulation	Туре	ASK (OOK)	
	Operation w/o modulation	No	
	Emission designator	398KA1D	
Antenna	Туре	Whip antenna (15cm)	
	Number of Antenna Ports	1	
	Gain	n/a	
Power Src.	Туре	Energy harvesting DC supply system ¹	
	Battery type (if applicable)	Li Mn (CR2032) ¹	
	Voltage nominal	3V	
	minimal	3V	
	maximum:	6V	

1) During the tests the energy havesting system was replaced by a 3V Li Mn battery to allow continuous operation of the EUT.

Table 4-1: Overview of EUT Configuration

The tests were performed with one EUT.

The used different EUT configurations are shown by the following table.

Module Name	Serial-No.	Module Type
STM310C	none	Transmitter-Module

1) Except of some none RF relevant differences the tested STM310C and the module types STM312C and STM330C are functionally identical. The provided measurement results are worst case values.

Table 4-2: Configuration of EUT

For a functional description of the modules, please refer to the appropriate related parts and exhibit sections of this certification application.

4.3 Operating Conditions

If not stated otherwise, the following standard setup procedure for the EUT was used:

The EUT was set up in a continuously transmitting operating mode. The TX signal was thus permanently activated during the test. To do so the pulse train which will be sent only once (after manual activation) during normal operation was repeated each second.

The EUT was supplied with 3V DC by a new Li Mn battery.

4.4 Compliance Criteria

The EUT must fulfil the requirements (described in the specifications mentioned in chapter 2.1, Specifications) for the selected test cases.

5 General Description of Tests

5.1 Tested Carrier Frequencies

The measurements were performed on 1 carrier frequency, according to the following table:

Frequency [MHz]	Remark
315	Only possible carrier frequency

Table 5	5-1: Car	rier Fre	quency
---------	----------	----------	--------

5.2 Calibration of the Test Equipment

All relevant test equipment has a valid calibration from an external calibration laboratory. Additionally the used spectrum and EMI analyzers have a built-in self-calibration procedure. This calibration procedure was activated prior to the measurements so that the analyzer is deemed accurate. High quality cables were used to connect the measurement equipment. The actual loss of the attenuators and the cables was measured with a high precision network analyzer and taken into account for all measurements.

6 Test Results

6.1 Test No. 1: Conducted Emissions ([1] § 15.207)

Not applicable since the EUT power input terminals are not directly connected to a public power network.

6.2 Test No. 2: Field strength correction for pulse operation (Duty Cycle) ([1] § 15.35(c))

6.2.1 Purpose

When the radiated emission limits are expressed in terms of the average value of the emission, and pulsed operation is employed according to [1] § 15.35(c) the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds.

As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value. The exact method of calculating the average field strength shall be submitted.

6.2.2 Limits

According to [1] § 15.35(b) the duty cycle correction factor must be not below -20dB.

6.2.3 EUT Operating Condition

The standard setup procedure as described in section 4.3 of this report was used.

6.2.4 Test Configuration

The measurement of the duty cycle of the EUT's pulse train was performed with a probe antenna by means of a spectrum analyzer operating in the zero span mode. For the parts list of used test equipment see chapter 7.1

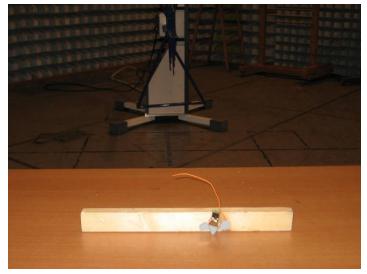


Figure 6-1: Test Configuration – Duty Cycle

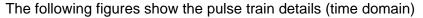
6.2.5 Test Procedure and Results

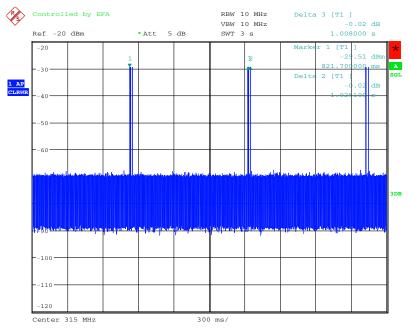
The duty cycle correction factor (dB) was calculated with following formula:

$$CF = 20 \log \frac{t_p}{t_t}$$

With:

CF: Duty cycle correction factor

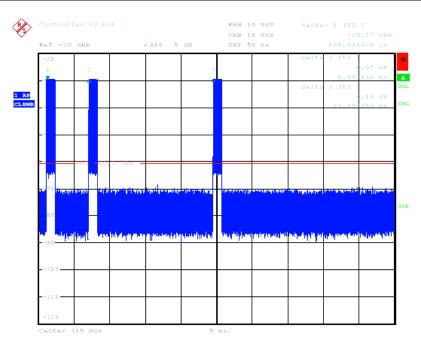

 t_t : Puls train duration


 t_p : Puls duration

<i>t_p</i> [ms]	<i>t</i> _t [ms]	CF [dB] calculated	<i>CF</i> [dB] used (≥ -20dB)
3 x 1.31	100.0	-28.1	-20.0

Table 6-1: Results – Duty Cycle

6.2.6 Test Protocol




Date: 27.AUG.2010 12:07:10

Figure 6-2: Duty Cycle (Pulse Train repetition)

SGS

Date: 27.AUG.2010 12:09:39

Figure 6-3: Duty Cycle (Complete Pulse train)

Date: 27.AUG.2010 12:11:43

Figure 6-4: Duty Cycle (Pulse details)

The determined duty cycle correction factor will be applied for the field strength and radiated emission measurements

The test report shall not be reproduced except in full without the written approval of the testing laboratory

6.3 Test No. 3: Field strength of the fundamental wave ([1] § 15.231(b), [3] A1.1.2)

6.3.1 Purpose

The measurement of the field strength of the fundamental wave of the EUT was performed pursuant to [2] Clause 13.1.4 to verify that the field strength of the fundamental wave does not exceed the specified limit.

6.3.2 Limits

According to [1] § 15.231(b) and [3] A1.1.2, the field strength of the fundamental wave must not exceed following field strength levels:

Frequency of Emission [MHz]	Field strength [μV/m]	Field strength [dBµV/m]	Meas. Distance [m]
40.66-40.70	2250	67.0	3
70–130	1250	61.9	3
130–174	1250–3750 ¹	61.9–71.5	3
174–260	3750	71.5	3
260–470	3750–12500 ¹	71.6–81.9	3
315	6042 ²	75.6	3
Above 470	12500	81.9	3

1) Linear interpolation

2) Calculated by linear interpolation

Table 6-2: Limits – Field Strength of Fundamental Wave

6.3.3 EUT Operating Condition

The standard setup procedure as described in section 4.3 of this report was used.

6.3.4 Test Configuration

The measurements were performed in an anechoic chamber. The radiated test site complies with the site attenuation requirements of [2] and is listed with the FCC and IC. The resolution bandwidth used during the emission measurement was as follows:

30MHz – 1GHz: 120kHz

For the parts list of used test equipment see chapter 7.1

SGS

Figure 6-5: Test Configuration – Field Strength of Fundamental Wave

6.3.5 Test Procedure and Results

This investigation is performed with a broadband antenna and a receiver with peak detector. The field strength is measured in a distance of 3m with an antenna in horizontal and vertical polarization, the antenna height is varied from 1 to 4 m and the EUT is turned around 360° to maximize the emission. The used bandwidth for the measurement is 120 kHz.

Frequency (MHz)	Average (dBµV/m) ¹	Meas. Time (ms)	Height (cm)	Polarization	Azimuth (deg)	Margin (dB)	Limit (dBµV/m)
315.0000	71.86	1000.0	166.0	V	165.0	3.74	75.6
Measurement Uncertainty:				+3.1 dB / -3.9	dB		

1) The average field strength was calculated by applying the duty cycle correction factor of -20dB (see chapter 6.2) to the measured peak field strength.

Table 6-3: Results – Field Strength of Fundamental Wave

6.3.6 Test Protocol

See chapter 6.5.6 for the test protocol of the fundamental wave field strength measurement.

The measured filed strength of the fundamental wave was found to be compliant with the manufacturer's specifications and with all requirements of the FCC rules.

6.4 Test No. 4: Radiated Emissions (9kHz – 30MHz) ([1] § 15.209; [3] T1, 3)

6.4.1 Purpose

The radiated emissions of the EUT were measured pursuant to [2] Clause 13.1.4. The measurement was performed to verify that emissions radiated directly from the cabinet, control circuits, power leads or intermediate circuit elements are attenuated below the specified limits.

6.4.2 Limits

At frequencies equal to or less than 1000MHz, compliance with the limits in [1] § 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. According to [1] § 15.209 and [3] Table 1 and 3 the radiated emissions of an intentional radiator must not exceed following field strength levels:

Frequency of Emission [MHz]	Field strength [µV/m]	Field strength [dBµV/m]	Meas. Distance [m]
0.009–0.490	2400/F [kHz]	88.5 – 53.8 ¹	300
0.490–1.705	24000/F [kHz]	$53.8 - 43^{1}$	30
1.705–30	30	49.5 ¹	30

1): Limit adapted to a measurement distance of 3m!

Table 6-4: Limits – Radiated Emissions (9kHz – 30MHz)

According to [1] § 15.205(a) the field strength of emissions in the following restricted bands of operation shall not exceed the limits of [1] § 15.209.

MHz	MHz	MHz	GHz
0.090–0.110	6.215–6.2	8.41425-8.41475	16.69475-16.69525
0.495–0.505	6.26775-6.26825	12.29–12.293	16.80425-16.80475
2.1735-2.1905	6.31175–6.31225	12.51975-12.52025	25.5–25.67
4.125-4.128	8.291-8.294	12.57675-12.57725	
4.17725-4.17775	8.362-8.366	13.36–13.41	
4.20725-4.20775	8.37625-8.38675	16.42–16.423	

Table 6-5: Restricted Bands (9kHz – 30MHz)

6.4.3 EUT Operating Condition

The standard setup procedure as described in section 4.3 of this report was used.

6.4.4 Test Configuration

The measurements were performed in an anechoic chamber. The radiated test site complies with the site attenuation requirements of [2] and is listed with the FCC and IC. The resolution bandwidth used during the emission measurement was as follows:

9kHz – 150 kHz: 200Hz 150kHz – 30MHz: 9kHz

For the parts list of used test equipment see chapter 7.1

SGS

Figure 6-6: Test Configuration – Radiated Emissions (9kHz – 30MHz)

6.4.5 Test Procedure and Results

This investigation is performed with the EUT turned around 360° to maximize the emission. The spectrum analyzer is set to 'peak' mode from 9 kHz to 30 MHz. On any emission over the limit, the spectrum analyzer is set to 'average' mode for 9 kHz to 150 kHz and the spectrum analyzer is set to quasi-peak mode between 150 kHz and 30 MHz. The rod antenna is positioned 3 meters from the closest point of any part of the test sample. The antenna counterpoise is grounded.

Frequency (MHz)	Peak (dBµV/m)	Meas. Time (ms)	Polarization	Azimuth (deg)	Margin (dB)	Limit (dBµV/m)
			V		>30	
Measurement Uncertainty:					+3.1 dB / -3.9	dB

Note: Margin of pre measurement was >30dB, so no final measurement was performed

Table 6-6: Results – Radiated Emissions (9kHz – 30MHz)

6.4.6 Test Protocol

The following figure shows the test protocol of the radiated emissions (9kHz – 30MHz) measurement.

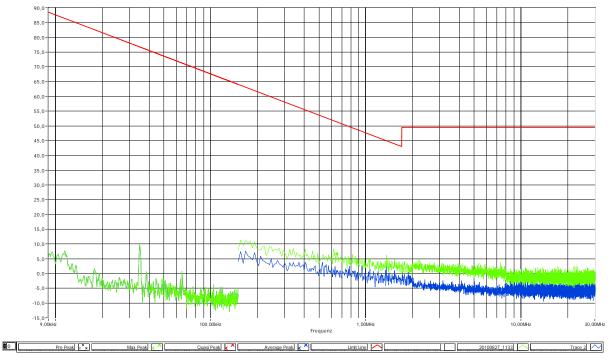


Figure 6-7: Radiated Emissions (9kHz – 30MHz)

The measured emission levels were found to be compliant with the manufacturer's specifications and with all requirements of the FCC rules.

6.5 Test No. 5: Radiated Emissions (30MHz – 1GHz) ([1] § 15.209, 231(b); [3] T1, 2)

6.5.1 Purpose

The radiated emissions of the EUT were measured pursuant to [2] Clause 13.1.4. The measurement was performed to verify that emissions radiated directly from the cabinet, control circuits, power leads or intermediate circuit elements are attenuated below the specified limits.

6.5.2 Limits

At frequencies equal to or less than 1000MHz radiated emissions shall be attenuated to CISPR quasi peak limits specified by [1] § 15.209 and [3] Table 1 and 2 (general limits) or to the limits specified by [1] § 15.231(b), whichever limit permits a higher field strength.

According to [1] § 15.209 and [3] Table 1 and 2 the radiated emissions of an intentional radiator must not exceed following field strength levels:

Frequency of Emission [MHz]	Field strength [μV/m]	Field strength [dBµV/m]	Meas. Distance [m]
30–88	100	40	3
88–216	150	43.5	3
216–960	200	46	3
Above 960	500	54	3

Table 6-7: Limits – Radiated Emissions (30MHz – 1GHz) (§ 15.209)

According to [1] § 15.231(b) the radiated emissions of an intentional radiator must not exceed following field strength levels:

Frequency of Emission [MHz]	Field strength [μV/m]	Field strength [dBµV/m]	Meas. Distance [m]
40.66–40.70	225	47.0	3
70–130	125	41.9	3
130–174	125–375 ¹	41.9–51.5	3
174–260	375	51.5	3
260–470	375–1250 ¹	51.6–61.9	3
315	604.2 ²	55.6	3
Above 470	1250	61.9	3

1) Linear interpolation

2) Calculated by linear interpolation

Table 6-8: Limits – Radiated Emissions (30MHz – 1GHz) (§ 15.231(b))

According to [1] § 15.205(a) the field strength of emissions in the following restricted bands of operation shall not exceed the limits of [1] § 15.209.

MHz	MHz	MHz	MHz
37.5–38.25	123–138	162.0125–167.17	399.9–410
73–74.6	149.9–150.05	167.72–173.2	608–614
74.8–75.2	156.52475-156.52525	240–285	960–1000
108–121.94	156.7–156.9	322–335.4	

Table 6-9: Restricted Bands (30MHz – 1GHz)

6.5.3 EUT Operating Condition

The standard setup procedure as described in section 4.3 of this report was used.

6.5.4 Test Configuration

The measurements were performed in an anechoic chamber. The radiated test site complies with the site attenuation requirements of [2] and is listed with the FCC and IC. The resolution bandwidth used during the emission measurement was as follows:

30MHz – 1GHz: 120kHz

For the parts list of used test equipment see chapter 7.1

Figure 6-8: Test Configuration – Radiated Emissions (30MHz – 1GHz)

6.5.5 Test Procedure and Results

This investigation is performed with a broadband antenna and a receiver with peak detector. The field strength is measured in a distance of 3m with an antenna in horizontal and vertical polarization, the antenna height is varied from 1 to 4 m and the EUT is turned around 360° to maximize the emission. The used bandwidth for the measurement is 120 kHz and a step size of 40 kHz is applied.

Frequency (MHz)	Average (dBµV/m) ¹	Meas. Time (ms)	Height (cm)	Polarization	Azimuth (deg)	Margin (dB)	Limit (dBµV/m)
315.000	71.86	1000.0	166.0	V	165.0	3.74	Carrier
629.993	43.73	1000.0	100.0	V	196.0	11.87	55.6
945.001	29.75	1000.0	103.0	V	7.0	25.85	55.6
Measurement Uncertainty:				+3.1 dB / -3.9) dB		

1) The average field strength was calculated by applying the duty cycle correction factor of -20dB (see chapter 6.2) to the measured peak field strength.

Table 6-10: Results – Radiated Emissions (30MHz – 1GHz)

6.5.6 Test Protocol

The following figure shows the test protocol of the radiated emissions (30MHz - 1GHz) measurement.

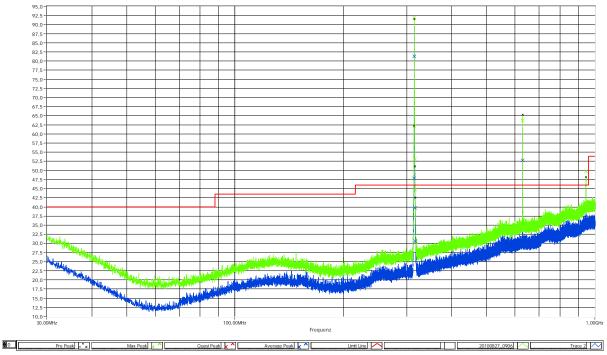


Figure 6-11: Radiated Emissions (30MHz – 1GHz)

The measured emission levels were found to be compliant with the manufacturer's specifications and with all requirements of the FCC rules.

6.6 Test No. 6: Radiated Emissions (1GHz – 4GHz) ([1] § 15.209, 231(b); [3] T1, 2)

6.6.1 Purpose

The radiated emissions of the EUT were measured pursuant to [2] Clause 13.1.4. The measurement was performed to verify that emissions radiated directly from the cabinet, control circuits, power leads or intermediate circuit elements are attenuated below the specified limits.

6.6.2 Limits

At frequencies above 1GHz radiated emissions shall be attenuated to average limits specified by, [1] § 15.209 and [3] Table 1 and 2 (general limits) or to the limits specified by [1] § 15.231(b), whichever limit permits a higher field strength.

According to [1] § 15.209 and [3] Table 1 and 2 the radiated emissions of an intentional radiator must not exceed following field strength levels:

Frequency of Emission	Field strength	Field strength	Meas. Distance
[MHz]	[μV/m]	[dBµV/m]	[m]
Above 960	500	54	3

Table 6-12: Limits – Radiated Emissions (1GHz – 4GHz) (§ 15.209)

According to [1] § 15.231(b) the radiated emissions of an intentional radiator must not exceed following field strength levels:

Frequency of Emission [MHz]	Field strength [µV/m]	Field strength [dBµV/m]	Meas. Distance [m]
40.66–40.70	225	47.0	3
70–130	125	41.9	3
130–174	125–375 ¹	41.9–51.5	3
174–260	375	51.5	3
260–470	375–1250 ¹	51.6-61.9	3
315	604.2 ²	55.6	3
Above 470	1250	61.9	3

1) Linear interpolation

2) Calculated by linear interpolation

Table 6-113: Limits – Radiated Emissions (1GHz – 4GHz) (§ 15.231(b))

According to [1] § 15.205(a) the field strength of emissions in the following restricted bands of operation shall not exceed the limits of [1] § 15.209.

MHz	MHz	MHz	MHz
1000–1240	1660–1710	2483.5–2500	3345.8–3358
1300–1427	1718.8–1722.2	2690–2900	3600–4000
1435–1626.5	2200–2300	3260–3267	
1645.5–1646.5	2310–2390	3332–3339	

Table 6-14: Restricted Bands (1GHz – 4GHz)

6.6.3 EUT Operating Condition

The standard setup procedure as described in section 4.3 of this report was used.

6.6.4 Test Configuration

The measurements were performed in an anechoic chamber. The radiated test site complies with the site attenuation requirements of [2] and is listed with the FCC and IC. The resolution bandwidth used during the emission measurement was as follows:

1GHz – 4GHz: 1MHz

For the parts list of used test equipment see chapter 7.1

Figure 6-15: Test Configuration – Radiated Emissions (1GHz – 4GHz)

6.6.5 Test Procedure and Results

This investigation is performed with the EUT rotated 360°, the antenna height scanned between 1m and 4m, and the antenna rotated to repeat the measurements for both the horizontal and vertical antenna polarizations.

Frequency (MHz)	Average (dBµV/m) ¹	Meas. Time (ms)	Height (cm)	Polarization	Azimuth (deg)	Margin (dB)	Limit (dBµV/m)
2520	22.17	1000	100	V	302.0	31.83	54.0
2835	22.26	1000	150	V	13.0	31.74	54.0
2205	18.71	1000	100	V	331.0	35.29	54.0
1575	13.56	1000	200	V	27.0	40.44	54.0
Measurement Uncertainty:						+4.4 dB / -6.3	3 dB

1) The average field strength was calculated by applying the duty cycle correction factor of -20dB (see chapter 6.2) to the measured peak field strength.

Table 6-12: Results – Radiated Emissions	(1GHz – 4GHz)
--	---------------

6.6.6 Test Protocol

The following figure shows the test protocol of the radiated emissions (1GHz - 4GHz) measurement.

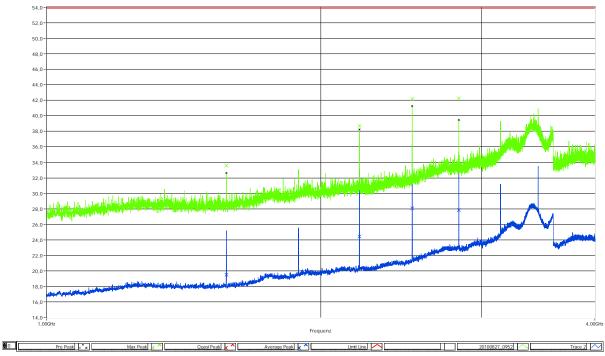


Figure 6-96: Radiated Emissions (1GHz – 4GHz)

The measured emission levels were found to be compliant with the manufacturer's specifications and with all requirements of the FCC rules.

6.7 Test No. 7: Emission Bandwidth ([1] § 15.231(c); [3] A1.1.3)

6.7.1 Purpose

The emission bandwidth of the EUT was measured pursuant to [2] Clause 13.1.7. The measurement was performed to verify the 20 dB bandwidth of emission.

6.7.2 Limits

According to § 15.231(c) and [3] Annex 1.1.3 the bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70MHz and below 900MHz. For the EUT with a center frequency of 315MHz therefore an emission bandwidth limit of 787.5kHz applies.

According to § 15.231(c) the bandwidth is determined at the points 20 dB down from the modulated carrier.

Instead of the 99% bandwidth according to [3] A1.1.3 the 20 dB bandwidth of emission was determined.

6.7.3 EUT Operating Condition

The standard setup procedure as described in section 4.3 of this report was used.

6.7.4 Test Configuration

The measurement was performed with activated modulation by using a probe antenna and a spectrum analyzer. The analyzer frequency span was set wide enough to capture the most of the power envelope of the modulated signal.

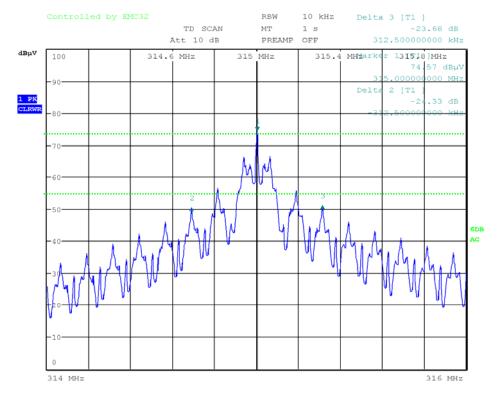
For the parts list of used test equipment see chapter 7.1

Figure 6-107: Test Configuration – Emission Bandwidth

6.7.5 Test Procedure and Results

The 20 dB bandwidth of the carrier emission is measured using a spectrum analyzer.

In order to measure the modulated signal properly, a resolution bandwidth that is small compared with the emission bandwidth limit shall be used on the measuring instrument. According to [2] the resolution bandwidth was set to 10kHz.


For the determination of the 20 dB bandwidth the delta marker function of the signal analyzer was used to measure the maximum bandwidth including side bands. The following table summarizes the results:

Carrier Frequency 20dB Emission Bandwidth		Result
[MHz]	[kHz]	
315	397.8	compliant
Measurement Uncertainty:		±3.2kHz

Table 6-138: Results -	- 20dB	Emission	Bandwidth
	LUGD		Dunamatin

6.7.6 Test Protocol

The following figure shows the test protocol of the emission bandwidth measurement.

Date: 27.AUG.2010 12:06:41

Figure 6-119: 20dB Emission Bandwidth

The occupied bandwidth was found to be compliant with the manufacturer's specifications and with all requirements of the FCC rules.

6.8 Test No. 8: Transmit Duration ([1] § 15.231(a))

6.8.1 Purpose

The measurement was performed to verify if the transmit duration limit is met.

6.8.2 Limits

According to § 15.231(a) and [3] Annex 1.1.1 the following transmit duration limitation applies: A manually or automatically operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.

6.8.3 EUT Operating Condition

The standard setup procedure as described in section 4.3 of this report was used.

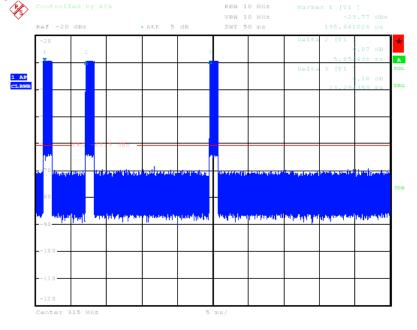
6.8.4 Test Configuration

The measurement of the transmit duration of the EUT was performed by means of a spectrum analyzer operating in the zero span mode.

For the parts list of used test equipment see chapter 7.1

Figure 6-20: Test Configuration – Transmit Duration

6.8.5 Test Procedure and Results


The following table summarizes the transmit duration results:

Transmit Condition	Transmit Duration	Result
	[ms]	
After releasing the button	24	compliant

Table 6-14: Results – Transmit Duration

6.8.6 Test Protocol

The following figure shows the test protocol of the transmit duration measurement

Date: 27.AUG.2010 12:09:39

Figure 6-20: Transmit Duration

The transmit duration was found to be compliant with the manufacturer's specifications and with all requirements of the FCC rules.

7 Test Data

7.1 Part List of the Test Equipment

No.	Test Equipment	Type (Manufacturer)	Identification No.	Calibration date	Calibration due	Test No.
1	EMI receiver	ESPI-3	P1325	03/2009	03/2011	3-5
2	Controller	CO 2000	P1304	cnn	cnn	3-5
3	Antenna	95010-1	P0065	07/2009	07/2011	4
4	Mast	MA 4000	P1303	cnn	cnn	3, 5
5	Antenna	CBL6111	P0311	04/2010	04/2011	3, 5
6	Test Chamber 2	-	P0337	02/2010	02/2011	6
7	EMI receiver	ESU40	P1327	07/2009	07/2011	6
8	Controller	CO 2000	P1284	cnn	cnn	6
9	Mast	MA 4000	P1283	cnn	cnn	6
10	Antenna	3115	P0961	04/2010	04/2012	6

Table 7-1: Part List of the EMC Measurement Test Equipment

No.	Test Equipment	Type (Manufacturer)	Identification No.	Calibration date	Calibration due	Test No.
1	Spectrum Analyzer	FSU26 (R&S)	P1523	11/2009	11/2011	2, 7, 8
2	Network Analyzer	ZVM (R&S)	F0092	10/2009	10/2011	2, 7, 8
3	Frequency Standard	Rubisource (Datum)	F0076	11/2009	05/2011	2, 7, 8

Table 7-2: Part List of the RF Measurement Test Equipment