

TEST PLOT OF OUT OF BAND EMISSIONS THE WORST CASE OF 802.11n40 FOR MODULATION IN HIGH CHANNEL

Note: Two transmit chains had been tested, the chain 0 was the worst case and record in the test report.

Report No.: AGC01035180503FE05

Page 43 of 79

10. MAXIMUM CONDUCTED OUTPUT POWER SPECTRAL DENSITY

10.1 MEASUREMENT PROCEDURE

- (1). Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- (2). Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- (3). Set SPA Trace 1 Max hold, then View.

Note: The method of AVGPSD-1 in the ANSI C63.10 (2013) item 10.3 was used in this testing.

10.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

Refer To Section 8.2.

10.3 MEASUREMENT EQUIPMENT USED

Refer To Section 6.

10.4 LIMITS AND MEASUREMENT RESULT

TEST ITEM	POWER SPECTRAL DENSITY	TK 100 malanes	The Compliance (8)
TEST MODE	802.11b with data rate 1	© Medalion of Cities C.C.	Ades Julion C

Channel No.	Power density (dBm/20kHz)	Limit (dBm/3kHz)	Result Pass	
Low Channel	-0.781	8		
Middle Channel	0.642	8	Pass	
High Channel	0.820	8	Pass	

TEST ITEM	POWER SPECTRAL DENSITY		
TEST MODE	802.11g with data rate 6	The Till	® # The of Codes Company

Channel No.	Power density (dBm/20kHz)	Limit (dBm/3kHz)	Result	
Low Channel	-5.289	The state of the s	Pass	
Middle Channel	-4.996	8	Pass	
High Channel	-4.659	8	Pass	

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Attestation of Global Compliance

Report No.: AGC01035180503FE05 Page 44 of 79

TEST ITEM	POWER SPECTRAL DENSITY	The Complete	T. T
TEST MODE	802.11n 20 with data rate 6.5	(i) Allestation of Call	S America C America

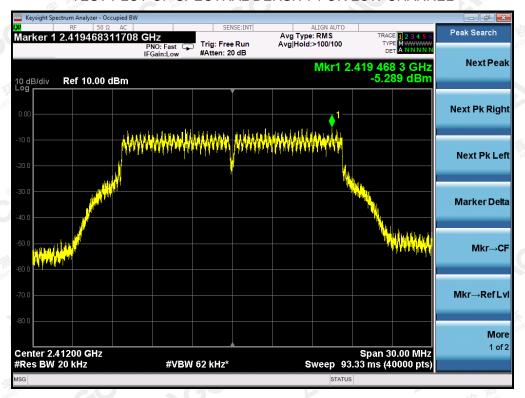
Channel No.	Power density Chain 0 (dBm/20kHz)	Power density Chain 1 (dBm/20kHz)	Power density Total (dBm/20kHz)	Limit (dBm/3kHz)	Result
Low Channel	-5.110	-6.529	-2.752	8 C	Pass
Middle Channel	-4.972	-6.619	-2.708	8	Pass
High Channel	-5.394	-6.015	-2.683	8	Pass

TEST ITEM	POWER SPECTRAL DENSITY	100	::111
TEST MODE	802.11n 40 with data rate 13.5	K. K. Janaharos	Type Completion (6)

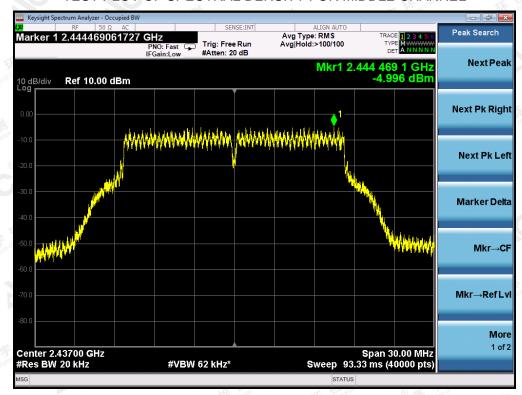
Channel No.	Power density Chain 0 (dBm/20kHz)	Power density Chain 1 (dBm/20kHz)	Power density Total (dBm/20kHz)	Limit (dBm/3kHz)	Result
Low Channel	-8.929	-9.802	-6.333	8	Pass
Middle Channel	-8.162	-9.523	-5.779	G ************************************	Pass
High Channel	-7.964	-9.752	-5.756	8	Pass

802.11b TEST RESULT TEST PLOT OF SPECTRAL DENSITY FOR LOW CHANNEL

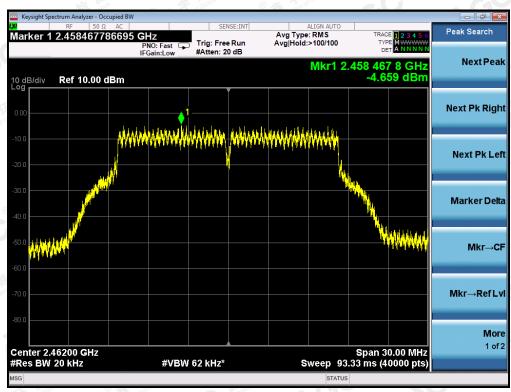
TEST PLOT OF SPECTRAL DENSITY FOR MIDDLE CHANNEL



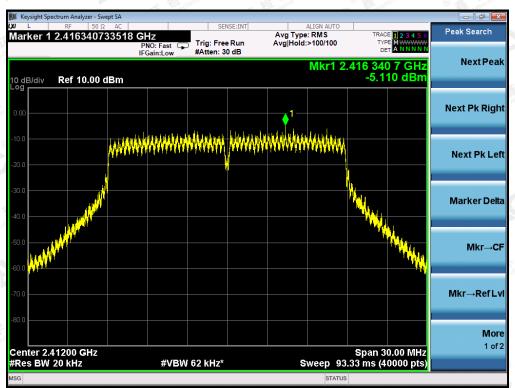
TEST PLOT OF SPECTRAL DENSITY FOR HIGH CHANNEL



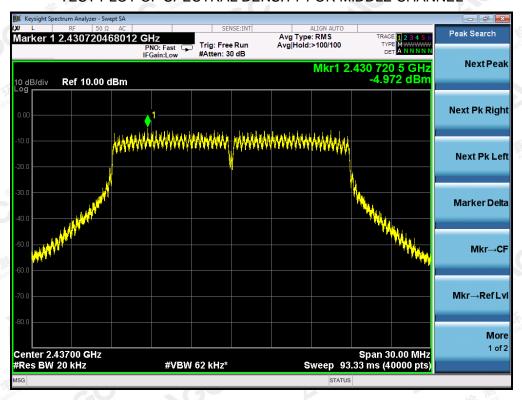
802.11g TEST RESULT
TEST PLOT OF SPECTRAL DENSITY FOR LOW CHANNEL



TEST PLOT OF SPECTRAL DENSITY FOR MIDDLE CHANNEL

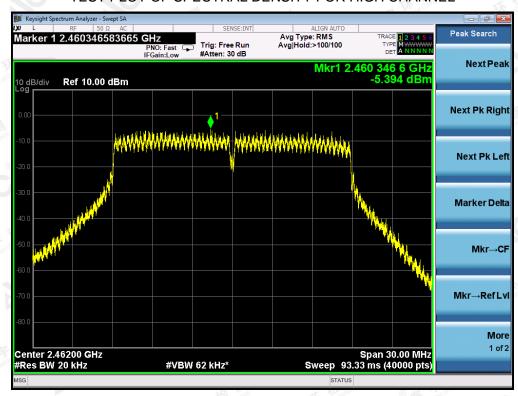


TEST PLOT OF SPECTRAL DENSITY FOR HIGH CHANNEL

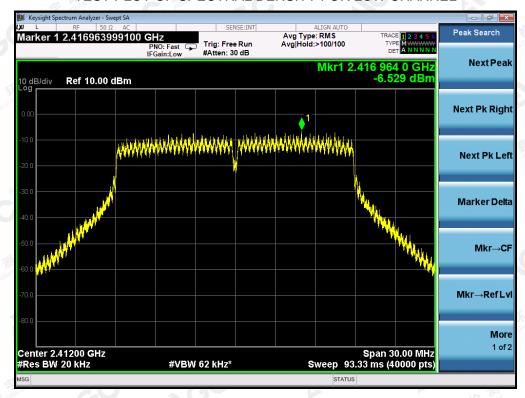


802.11n 20 TEST RESULT AT CHAIN 0 TEST PLOT OF SPECTRAL DENSITY FOR LOW CHANNEL

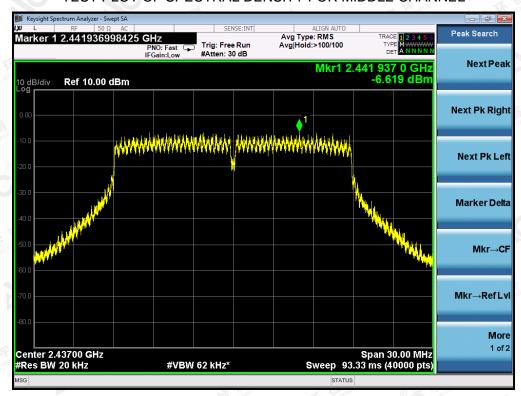
TEST PLOT OF SPECTRAL DENSITY FOR MIDDLE CHANNEL



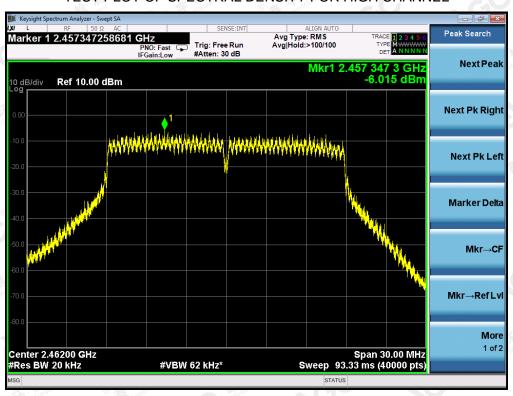
The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a true www.ago.gent.com.


Attestation of Global Compliance

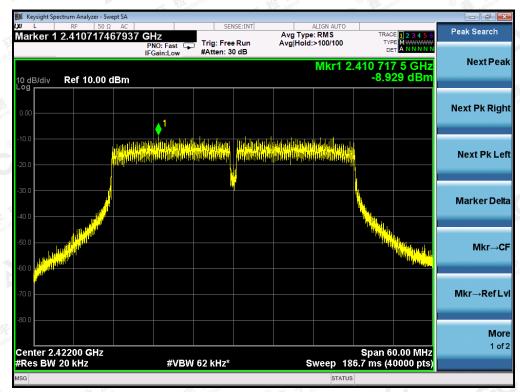
TEST PLOT OF SPECTRAL DENSITY FOR HIGH CHANNEL



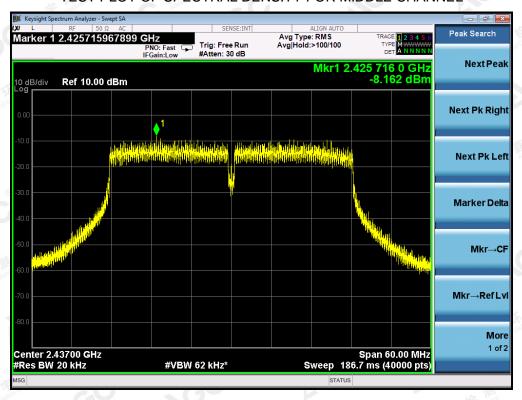
802.11n 20 TEST RESULT AT CHAIN 1 TEST PLOT OF SPECTRAL DENSITY FOR LOW CHANNEL



TEST PLOT OF SPECTRAL DENSITY FOR MIDDLE CHANNEL

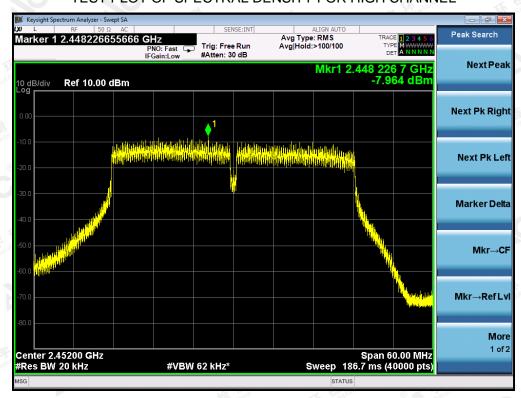


TEST PLOT OF SPECTRAL DENSITY FOR HIGH CHANNEL



802.11n 40 TEST RESULT AT CHAIN 0 TEST PLOT OF SPECTRAL DENSITY FOR LOW CHANNEL

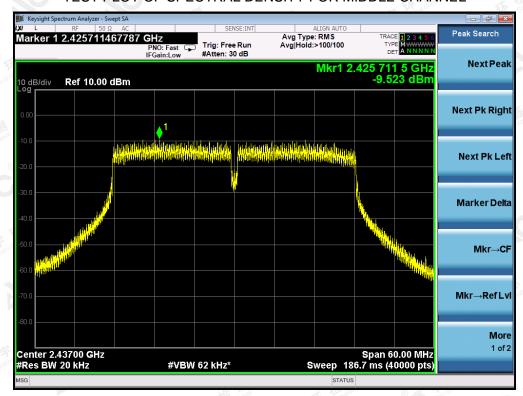
TEST PLOT OF SPECTRAL DENSITY FOR MIDDLE CHANNEL



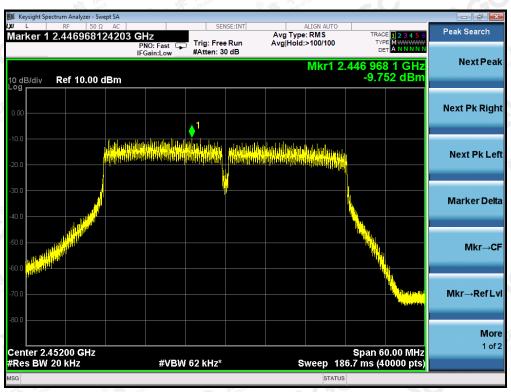
The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a true www.ago.gent.com.

Attestation of Global Compliance

TEST PLOT OF SPECTRAL DENSITY FOR HIGH CHANNEL



802.11n 40 TEST RESULT AT CHAIN 1 TEST PLOT OF SPECTRAL DENSITY FOR LOW CHANNEL



TEST PLOT OF SPECTRAL DENSITY FOR MIDDLE CHANNEL

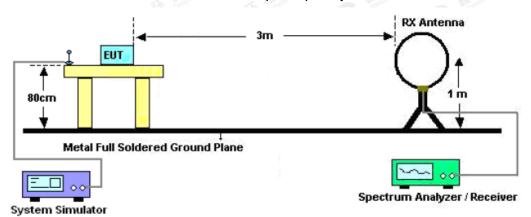
TEST PLOT OF SPECTRAL DENSITY FOR HIGH CHANNEL

Report No.: AGC01035180503FE05 Page 54 of 79

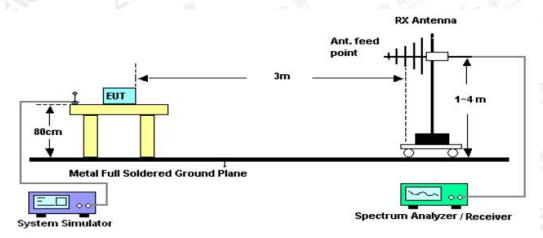
11. RADIATED EMISSION

11.1. MEASUREMENT PROCEDURE

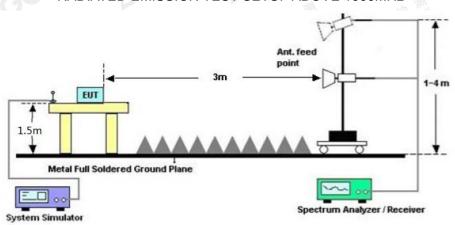
- 1. The EUT was placed on the top of the turntable 0.8 or 1.5 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz RBW and 3MHz VBW for peak reading. Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- 7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum values.
- 8.If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 10. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.


The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by QC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

Attestation of Global Compliance



11.2. TEST SETUP


Radiated Emission Test-Setup Frequency Below 30MHz

RADIATED EMISSION TEST SETUP 30MHz-1000MHz

RADIATED EMISSION TEST SETUP ABOVE 1000MHz

Report No.: AGC01035180503FE05

Page 56 of 79

11.3. LIMITS AND MEASUREMENT RESULT

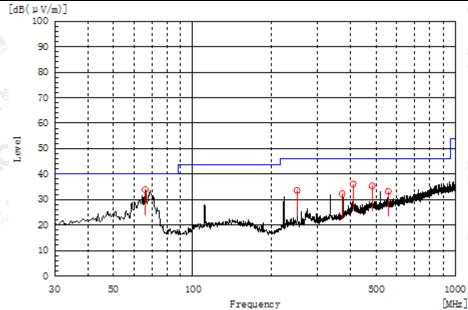
15.209(a) Limit in the below table has to be followed

Frequencies (MHz)	Field Strength (micorvolts/meter)	Measurement Distance (meters)		
0.009~0.490	2400/F(KHz)	300		
0.490~1.705	24000/F(KHz)	30		
1.705~30.0	30	30		
30~88	100	3		
88~216	150	The state of the s		
216~960	200	3		
Above 960	500	3		

Note: All modes were tested For restricted band radiated emission,

the test records reported below are the worst result compared to other modes.

11.4. TEST RESULT

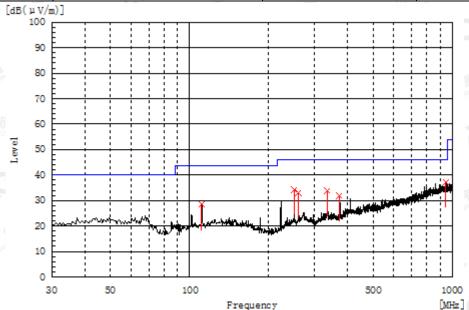

RADIATED EMISSION BELOW 30MHZ

No emission found between lowest internal used/generated frequencies to 30MHz.

RADIATED EMISSION BELOW 1GHZ

EUT	MDVR	Model Name	NVR-2400
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11b with date rate 1 2412MHZ	Antenna	Horizontal

(S)	Frequency MHz	Polarization	Reading dB(uV)	Factor dB (1/m)	Level dB(uV/m) PK	Limit dB(uV/m) QP	Margin dB	Pass/Fail	Height cm	Angle deg
D	65.890	TY THE	18.4	15.4	33.8	40.0	6.2	Pass	100.0	180.8
O.C.	249.705	H	17.4	16.1	33.5	46.0	12.5	Pass	150.0	71.3
	371.440	Н	12.6	19.7	32.3	46.0	13.7	Pass	100.0	145.8
	408.300	H	15.0	21.1	36.1	46.0	9.9	Pass	100.0	287.7
	482.505	© A Honor Claus	12.8	22.6	35.4	46.0	10.6	Pass	150.0	71.3
DE	556.710	Н	9.2	24.0	33.2	46.0	12.8	Pass	100.0	251.3


RESULT: PASS

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by KGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Attestation of Global Compliance

The Colin	Aller Aller		In the
EUT	MDVR	Model Name	NVR-2400
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11b with date rate 1 2412MHZ	Antenna	Vertical

Frequency MHz	Polarization	Reading dB(uV)	Factor dB (1/m)	Level dB(uV/m) PK	Limit dB(uV/m) QP	Margin dB	Pass/Fail	Height cm	Angle deg
110.995	V	13.8	14.6	28.4	43.5	15.1	Pass	100.0	12.4
250.190	T. V	18.2	16.1	34.3	46.0	11.7	Pass	150.0	250.3
259.890	V	17.1	15.9	33.0	46.0	13.0	Pass	100.0	47.4
334.095	V	15.4	18.3	33.7	46.0	12.3	Pass	100.0	173.8
371.440	V	12.1	19.7	31.8	46.0	14.2	Pass	100.0	192.4
946.650	® Francisco	6.7	30.6	37.3	46.0	8.7	Pass	150.0	287.2

RESULT: PASS

Note:

- 1. Factor=Antenna Factor + Cable loss, Margin=Measurement-Limit.
- 2. The "Factor" value can be calculated automatically by software of measurement system.
- 3. All test modes had been pre-tested. The 802.11b at low channel is the worst case and recorded in the report.

Report No.: AGC01035180503FE05

Page 59 of 79

RADIATED EMISSION ABOVE 1GHZ

EUT	MDVR	Model Name	NVR-2400
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11b with date rate 1 2412MHZ	Antenna	Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type
4824.051	46.18	3.72	49.9	74	-24.1	peak
4824.079	40.89	3.72	44.61	54	-9.39	AVG
7236.069	42.72	8.15	50.87	74	-23.13	peak
7236.078	37.37	8.15	45.52	54	-8.48	AVG
Allestation	The station of the st	Altesta				litre
					The same	KEL MANCO
emark:		- il	IIII:	Tr	Complian	E Modal Com
actor = Ante	enna Factor + C	able Loss –	Pre-amplifier.	® # Nion of Glo	(C) ### 15/10/10/10/10/10/10/10/10/10/10/10/10/10/	lion
				122,435 1740		

EUT	MDVR	Model Name	NVR-2400
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11b with date rate 1 2412MHZ	Antenna	Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type
4824.059	45.15	3.72	48.87	74	-25.13	peak
4824.096	39.13	3.72	42.85	54	-11.15	AVG
7236.106	43.88	8.15	52.03	74	-21.97	peak
7236.037	37.71	8.15	45.86	54	-8.14	AVG
in the second	Godon (Globall (G)	Alle valion of City	AC THE	60		
Remark:	10°				4/3L	Min
actor = Ante	enna Factor + C	Cable Loss –	Pre-amplifier.	The Compliance	FA Comp	alles
		47/11/1	Part IV .		0 - 3 40	

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by KGE, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gett.com.

Attestation of Global Compliance

Report No.: AGC01035180503FE05 Page 60 of 79

EUT	MDVR	Model Name	NVR-2400
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11b with date rate 1 2437MHZ	Antenna	Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type
4874.037	47.21	3.75	50.96	74	-23.04	peak
4874.060	42.79	3.75	46.54	54	-7.46	AVG
7311.086	41.81	8.16	49.97	74	-24.03	peak
7311.080	37.49	8.16	45.65	54	-8.35	AVG
® A Jon of the	(i) The Francisco	(c) State dation of				
Remark:	- C Milesum				-1111	THE TAIL
actor = Ante	enna Factor + Ca	ble Loss – F	Pre-amplifier.	z 1	Tollance	The Compilar

EUT	MDVR	Model Name	NVR-2400
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11b with date rate 1 2437MHZ	Antenna	Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Value Type
4874.034	48.25	3.75	52	74	-22	peak
4874.032	42.89	3.75	46.64	54	-7.36	AVG
7311.083	41.27	8.16	49.43	74	-24.57	peak
7311.098	36.46	8.16	44.62	54	-9.38	AVG
npliance	a salion of Green	Altestation	-0			
emark:				45 mmcs	不恒	The spilance & The
actor = Ante	enna Factor + Ca	able Loss –	Pre-amplifier.	FA mal Comm	Global Global	Alte

Report No.: AGC01035180503FE05 Page 61 of 79

10			atill and
EUT	MDVR	Model Name	NVR-2400
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11b with date rate 1 2462MHZ	Antenna	Horizontal

Meter Reading (dBµV)	Factor (dB)	Emission Level	Limits	Margin	Value Em
(dBµV)	(dB)	300,000			
	(ab)	(dBµV/m)	(dBµV/m)	(dB)	Value Type
47.13	3.81	50.94	74	-23.06	peak
42.27	3.81	46.08	54	-7.92	AVG
44.88	8.19	53.07	74	-20.93	peak
38.47	8.19	46.66	54	-7.34	AVG
W Ce ubil	4	liopi Co.,	Status -	Alle	
® # Mon of Give	(B) ### station U				
Allesta				liti:	
nna Factor + Cal	ole Loss – F	Pre-amplifier.	7 1	Joliance	Ek Compilar
	47.13 42.27 44.88 38.47	47.13 3.81 42.27 3.81 44.88 8.19 38.47 8.19	47.13 3.81 50.94 42.27 3.81 46.08 44.88 8.19 53.07	47.13 3.81 50.94 74 42.27 3.81 46.08 54 44.88 8.19 53.07 74 38.47 8.19 46.66 54	47.13 3.81 50.94 74 -23.06 42.27 3.81 46.08 54 -7.92 44.88 8.19 53.07 74 -20.93 38.47 8.19 46.66 54 -7.34

EUT	MDVR	Model Name	NVR-2400
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11b with date rate 1 2462MHZ	Antenna	Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type
4924.033	45.72	3.81	49.53	74	-24.47	peak
4924.073	40.58	3.81	44.39	54	-9.61	AVG
7386.079	38.79	8.19	46.98	74	-27.02	peak
7386.098	33.57	8.19	41.76	54	-12.24	AVG
	The Compliance	The Compile	© # Glov	(C) \$50,000 (C)	on o'	
0.5	of Globe 8	sation of	C Alle			
Remark:						-ail
actor = Ante	enna Factor + Ca	able Loss -	Pre-amplifier.	Lillie .		AST TOUCE

RESULT: PASS

Note:

Other emissions from 1G to 25 GHz are considered as ambient noise. No recording in the test report. Factor = Antenna Factor + Cable loss - Amplifier gain, Over=Measure-Limit.

The "Factor" value can be calculated automatically by software of measurement system.

All test modes had been pre-tested. The 802.11b mode is the worst case and recorded in the report.

Report No.: AGC01035180503FE05

Page 62 of 79

12. BAND EDGE EMISSION

12.1. MEASUREMENT PROCEDURE

Radiated restricted band edge measurements

The radiated restricted band edge measurements are measured with an EMI test receiver connected to the receive antenna while the EUT is transmitting

12.2. TEST SET-UP

same as 11.2

Note:

- 1. Factor=Antenna Factor + Cable loss Amplifier gain. Field Strength=Factor + Reading level
- 2. The factor had been edited in the "Input Correction" of the Spectrum Analyzer. So the Amplitude of test plots is equal to Reading level plus the Factor in dB. Use the A dB(μ V) to represent the Amplitude. Use the F dB(μ V/m) to represent the Field Strength. So A=F.

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Attestation of Global Compliance

12.3. TEST RESULT

EUT	MDVR	Model Name	NVR-2400
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11b with data rate 1 2412MHZ	Antenna	Horizontal

PK

AV

RESULT: PASS

EUT	MDVR	Model Name	NVR-2400
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11b with data rate 1 2412MHZ	Antenna	Vertical

ΑV

RESULT: PASS

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a type of the confirmed at a type of type of type of the confirmed at a type of typ

EUT	MDVR	Model Name	NVR-2400
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11b with data rate 1 2462MHZ	Antenna	Horizontal

ΑV

RESULT: PASS

EUT	MDVR	Model Name	NVR-2400
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11b with data rate 1 2462MHZ	Antenna	Vertical

ΑV

RESULT: PASS

EUT	MDVR	Model Name	NVR-2400
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11g with data rate 6 2412MHZ	Antenna	Horizontal

ΑV

RESULT: PASS

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a type of the confirmed at a type of type of type of the confirmed at a type of typ

EUT	MDVR	Model Name	NVR-2400
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11g with data rate 6 2412MHZ	Antenna	Vertical

ΑV

RESULT: PASS

EUT	MDVR	Model Name	NVR-2400
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11g with data rate 6 2462MHZ	Antenna	Horizontal

AV

RESULT: PASS

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a type of the confirmed at a type of type of type of the confirmed at a type of typ

EUT	MDVR	Model Name	NVR-2400
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11g with data rate 6 2462MHZ	Antenna	Vertical

ΑV

RESULT: PASS

EUT	MDVR	Model Name	NVR-2400
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11n 20 with data rate 6.5 2412MHZ	Antenna	Horizontal

ΑV

RESULT: PASS

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a type of the confirmed at a type of type of type of the confirmed at a type of typ

EUT	MDVR	Model Name	NVR-2400
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11n 20 with data rate 6.5 2412MHZ	Antenna	Vertical

ΑV

RESULT: PASS

EUT	MDVR	Model Name	NVR-2400
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11n 20 with data rate 6.5 2462MHZ	Antenna	Horizontal

ΑV

RESULT: PASS

EUT	MDVR	Model Name	NVR-2400
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11n 20 with data rate 6.5 2462MHZ	Antenna	Vertical

ΑV

RESULT: PASS

EUT	MDVR	Model Name	NVR-2400
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11n 40 with data rate 13.5 2422MHZ	Antenna	Horizontal

ΑV

RESULT: PASS

EUT	MDVR	Model Name	NVR-2400
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11n 40 with data rate 13.5 2422MHZ	Antenna	Vertical

ΑV

RESULT: PASS

EUT	MDVR	Model Name	NVR-2400
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11n 40with data rate 13.5 2452MHZ	Antenna	Horizontal

ΑV

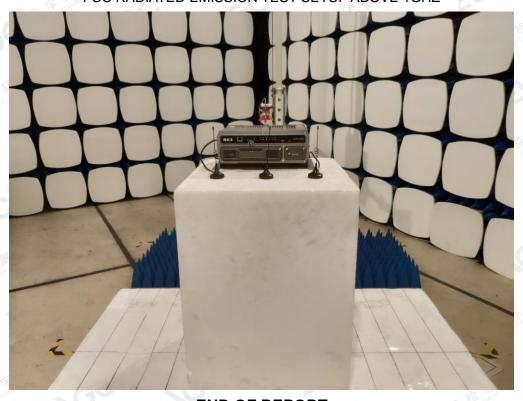
RESULT: PASS

EUT	MDVR	Model Name	NVR-2400
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11n 40 with data rate 13.5 2452MHZ	Antenna	Vertical

ΑV



RESULT: PASS



APPENDIX A: PHOTOGRAPHS OF TEST SETUP

FCC RADIATED EMISSION TEST SETUP BELOW 1GHZ

FCC RADIATED EMISSION TEST SETUP ABOVE 1GHZ

----END OF REPORT----

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attr://www.agc.cett.com.

Attestation of Global Compliance

Tel: +86-755 2908 1955 Fax: +86-755 2600 8484 E-mail: agc@agc-cert.com @ 400 089 2118 Add: 2/F., Building 2, No.1-4,Chaxi Sanwei Technical Industrial Park,Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China