

Product Digital Video Recorder

Trade mark

Model/Type reference HD6-600W

Serial Number N/A

Report Number EED32N80836802 FCC ID SZR-HD6-600W

Date of Issue : Nov. 24, 2021

47 CFR Part 15 Subpart E **Test Standards**

Test result **PASS**

Prepared for:

Radio Engineering Industries Inc. 6534 L Street Omaha, Nebraska 68117, United States

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

> TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Compiled by:

Tom Chen

Reviewed by:

Date:

Aaron Ma

Nov. 24, 2021

Check No.:3619060921

David Wang

David Wang

Page 2 of 52

2 Content

1 COVER PAGE		 1
2 CONTENT		
3 VERSION		
4 TEST SUMMARY		 4
5 GENERAL INFORMATION		 5
5.1 CLIENT INFORMATION	OMER	
6 EQUIPMENT LIST		 9
7 RADIO TECHNICAL REQUIREMENTS SPECIFIC	CATION	 11
7.1 ANTENNA REQUIREMENT	D BANDWIDTH	
8 APPENDIX A		 49
PHOTOGRAPHS OF TEST SETUP		 50
PHOTOGRAPHS OF EUT CONSTRUCTIONAL DE		

Version

Version No.	Date		Description	
00	Nov. 24, 2021		Original	
		(3/2)		

Report No. : EED32N80836802 Page 4 of 52

4 Test Summary

Test Item	Test Requirement	Result
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203	PASS
AC Power Line Conducted Emission	47 CFR Part 15 Subpart E Section 15.407 (b)(6)	N/A
Duty Cycle	47 CFR Part 15 Subpart E Section 15.407	PASS
Maximum Conducted Output Power	47 CFR Part 15 Subpart E Section 15.407 (a)	PASS
26dB emission bandwidth	47 CFR Part 15 Subpart E Section 15.407 (a)	PASS
99% Occupied bandwidth	(6,)	PASS
6dB emission bandwidth	47 CFR Part 15 Subpart E Section 15.407 (e)	PASS
Maximum Power Spectral Density	47 CFR Part 15 Subpart E Section 15.407 (a)	PASS
Frequency stability	47 CFR Part 15 Subpart E Section 15.407 (g)	PASS
Radiated Emissions	47 CFR Part 15 Subpart E Section 15.407 (b)	PASS
Radiated Emissions which fall in the restricted bands	47 CFR Part 15 Subpart E Section 15.407 (b)	PASS
7 8 3 1		182

Remark:

Company Name and Address shown on Report, the sample(s) and sample Information were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified. N/A: The Product is powered DC 8-36V.

Report No.: EED32N80836802 Page 5 of 52

5 General Information

5.1 Client Information

Applicant:	Radio Engineering Industries Inc.	
Address of Applicant:	6534 L Street Omaha, Nebraska 68117, United States	(6)
Manufacturer:	Streamax Technology Co.,Ltd	
Address of Manufacturer:	21-23/F, Building B1 ,Zhiyuan, No.1001, Xueyuan Avenue, Nar District, Shenzhen City, Guangdong Province, P.R.China	shan

5.2 General Description of EUT

Product Name:	Digital Video Recorder
Model No.(EUT):	HD6-600W
Trade mark:	REI
Product Type:	☐ Mobile ☐ Portable ☐ Fix Location
Type of Modulation:	IEEE 802.11a: OFDM (BPSK, QPSK, 16QAM, 64QAM) IEEE 802.11n(HT20/HT40): OFDM (BPSK, QPSK, 16QAM, 64QAM) IEEE 802.11ac(VHT20/VHT40/VHT80): OFDM (BPSK, QPSK, 16QAM, 64QAM, 256QAM)
Operating Frequency	U-NII-1: 5180-5240MHz U-NII-3: 5745-5825MHz
Operating Temperature:`	-10℃~ +50℃
Antenna Type:	Monopole Antenna
Antenna Gain:	2dBi
Power Supply:	DC12V
Test voltage:	DC12V
Sample Received Date:	Sep. 06, 2021
Sample tested Date:	Sep. 06, 2021 to Oct. 13, 2021

Page 6 of 52

Operation Frequency each of channel

802.11a/802.11n/802.11ac (20MHz) Frequency/Channel Operations:

U-NII-1 Channel Frequency(MHz)		U-NII-3		
		Channel	Frequency(MHz)	
36	5180	149	5745	
40	5200	153	5765	
44	5220	157	5785	
48	5240	161	5805	
- 6) -	165	5825	

802.11n/802.11ac (40MHz) Frequency/Channel Operations:

U-NII-1		U-NII-3		
Channel	Frequency(MHz)	Channel	Frequency(MHz)	
38	5190	151	5755	
46	5230	159	5795	

802.11ac (80MHz) Frequency/Channel Operations:

1	U-NII-1		U-NII-3
Channel	Frequency(MHz)	Channel	Frequency(MHz)
42	5210	155	5775

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Page 7 of 52 Report No.: EED32N80836802

5.3 Test Configuration

EUT Test Software Settin	ngs:	
Software:	PUTTY	
EUT Power Grade:	Default	(25)
Use test software to set the transmitting of the EUT.	e lowest frequency, the middle frequency and the highe	st frequency keep
Test Mode:		
	truction and function in typical operation. All the test mo eration, which was shown in this test report and defined	
Per-scan all kind of data	rate in lowest channel, and found the follow list wh	ich it
was worst sees		

was worst case.	

Mode	Data rate
802.11a	6 Mbps
802.11n(HT20)	MCS0
802.11n(HT40)	MCS0
802.11ac(VHT20)	MCS0
802.11ac(VHT40)	MCS0
802.11ac(VHT80)	MCS0

5.4 Test Environment

Operating Environment:			
Radiated Spurious Emission	s:		
Temperature:	22~25.0 °C		(41)
Humidity:	50~56 % RH	(0.)	6.
Atmospheric Pressure:	1010mbar		
RF Conducted:			
Humidity:	50~56 % RH		
Atmospheric Pressure:	1010mbar	·) (E	~)
	NT (Normal Temperature)	22~25.0 °C	
Temperature:	LT (Low Temperature)	-10 °C	
	HT (High Temperature)	50 °C	C*>
	NV (Normal Voltage)	DC12V	(27)
Working Voltage of the EUT:	LV (Low Voltage)	DC 8V	
	HV (High Voltage)	DC 36V	

Page 8 of 52 Report No.: EED32N80836802

5.5 Description of Support Units

The EUT has been tested independently.

5.6 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted.

FCC Designation No.: CN1164

5.7 **Deviation from Standards**

None.

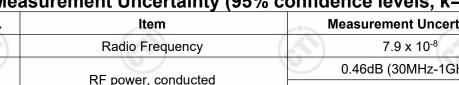
5.8 **Abnormalities from Standard Conditions**

Other Information Requested by the Customer 5.9

None.

5.10 **Measurement Uncertainty (95% confidence levels, k=2)**

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
	DE naven conducted	0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-18GHz)
	100	3.3dB (9kHz-30MHz)
3	Radiated Spurious emission test	4.5dB (30MHz-1GHz)
3		4.8dB (1GHz-18GHz)
		3.4dB (18GHz-40GHz)
-1	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%
	-0-	- 10



6 Equipment List

	RF test system				
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Spectrum Analyzer	Keysight	N9010A	MY54510339	12-28-2020	12-27-2021
Spectrum Analyzer	R&S	FSV40	101200	08-26-2021	08-25-2022
Signal Generator	Keysight	N5182B	MY53051549	12-28-2020	12-27-2021
Signal Generator	Keysight	E8257D	MY53401106	12-28-2020	12-27-2021
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	06-28-2021	06-27-2022
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002			
High-pass filter	MICRO- TRONICS	SPA-F-63029-4			
DC Power	Keysight	E3642A	MY56376072	12-28-2020	12-27-2021
Power unit	R&S	OSP120	101374	12-28-2020	12-27-2021
RF control unit	JS Tonscend	JS0806-2	158060006	12-28-2020	12-27-2021
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3)	

3M Semi/full-anechoic Chamber						
Equipment Manufacturer		Model No. Serial Number		Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
3M Chamber & Accessory Equipment	TDK	SAC-3		05-24-2019	05-23-2022	
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	05-16-2021	05-15-2022	
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04-15-2021	04-14-2024	
Receiver	R&S	ESCI7	100938-003	10-16-2020	10-15-2021	
Multi device Controller	maturo	NCD/070/10711 112		- /	-	
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	06-23-2021	06-22-2022	
Communication test set	Agilent	E5515C	GB47050534	03-01-2019	02-28-2022	
Cable line	Fulai(7M)	SF106	5219/6A			
Cable line	Fulai(6M)	SF106	5220/6A	-0-		
Cable line	Fulai(3M)	SF106	5216/6A	-	(2)	
Cable line	Fulai(3M)	SF106	5217/6A		(6)	
band rejection filter	Sinoscite	FL5CX01CA08 CL12-0393-001				

Page 10 of 52

		3M full-anechoi	Serial	Cal. date	Cal. Due date
Equipment	Manufacturer	Model No.	Number	(mm-dd-yyyy)	(mm-dd-yyyy
RSE Automatic test software	JS Tonscend	JS36-RSE	10166		
Receiver	Keysight	N9038A	MY57290136	03-04-2021	03-03-2022
Spectrum Analyzer	Keysight	N9020B	MY57111112	03-04-2021	03-03-2022
Spectrum Analyzer	Keysight	N9030B	MY57140871	03-04-2021	03-03-2022
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-28-2021	04-27-2024
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-15-2021	04-14-2024
Communication Antenna	Schwarzbeck	CLSA 0110L	1014		
Horn Antenna	ETS- LINDGREN	3117	57407	07-04-2021	07-03-2024
Preamplifier	EMCI	EMC184055SE	980597	05-20-2021	05-19-2022
Communication test set	R&S	CMW500	102898	12-31-2020	12-30-2021
Preamplifier	EMCI	EMC001330	980563	04-15-2021	04-14-2022
Preamplifier	JS Tonscend	980380	EMC051845 SE	12-31-2020	12-30-2021
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-16-2021	04-15-2022
Fully Anechoic Chamber	TDK	FAC-3		01-09-2021	01-08-2024
Cable line	Times	SFT205-NMSM- 2.50M	394812-0001		
Cable line	Times	SFT205-NMSM- 2.50M	394812-0002		(2
Cable line	Times	SFT205-NMSM- 2.50M	394812-0003		@
Cable line	Times	SFT205-NMSM- 2.50M	393495-0001		
Cable line	Times	EMC104-NMNM- 1000	SN160710	/	- 65
Cable line	Times	SFT205-NMSM- 3.00M	394813-0001		<u>ن (ن</u>
Cable line	Times	SFT205-NMNM- 1.50M	381964-0001		
Cable line	Times	SFT205-NMSM- 7.00M	394815-0001	Z:5	
Cable line	Times	HF160-KMKM- 3.00M	393493-0001	(61)	(c.

Report No. : EED32N80836802 Page 11 of 52

7 Radio Technical Requirements Specification

7.1 Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna: Please see Internal photos

The antenna is Monopole Antenna. The best case gain of the antenna is 2dBi.

Page 12 of 52 Report No.: EED32N80836802

7.2 Maximum Conducted Output Power

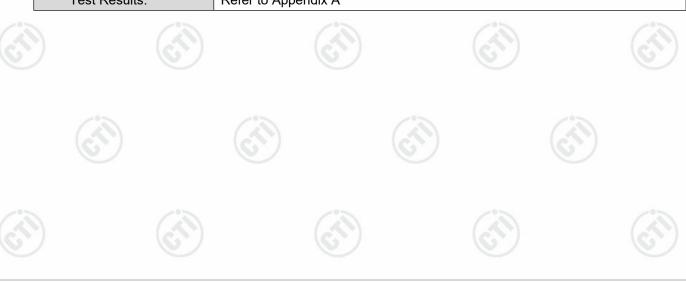
		100			
Tes	st Requirement:	47 CFR Part 15C S	Section 15.407 (a)		
Tes	st Method:	KDB789033 D02 G	General UNII Tes	t Procedures New Ri	ules v02r01 Section
Tes	st Setup:	(3	50)		(chi
		C cetted C computer Power Supply TEMPERATURE CAB	Attenuator	RF test - System Instrument	
P		(6)		ent Procedure of KDI	(0,1)
		2. The RF output of attenuator. The pattenuator. The pattenuator. 3. Set to the maximum continuously.	f EUT was conne th loss was comp num power setting	Rules v02r01 Section cted to the power me ensated to the results g and enable the EUT wer and record the re	ter by RF cable and s for each transmit
Lim	nit:				
		Frequency band (MHz)	Limit		6
		5150-5250	≤1W(30dBm) fo	or master device	
		/ *S	≤250mW(24dBi	m) for client device	~
		5250-5350	≤250mW(24dBi	m) for client device or	11dBm+10logB*
		5470-5725	≤250mW(24dBi	m) for client device or	11dBm+10logB*
		5725-5850	≤1W(30dBm)		
		Remark:	The maximum of measured over	e 26dB emission band conducted output pow any interval of contin ntation calibrated in te age.	ver must be uous transmission
Tes	st Mode:	Transmitting mode	with modulation		
		Refer to Appendix			

7.3 6dB Emisson Bandwidth

	47 055 5 4 450 0 11 45 405 ()
Test Requirement:	47 CFR Part 15C Section 15.407 (e)
Test Method:	KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C
Test Setup:	RF test Control Congular Power Power Power Power Power Table Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	1. KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C 2. Set to the maximum power setting and enable the EUT transmit continuously. 3. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz. 4. Measure and record the results in the test report.
Limit:	≥ 500 kHz
Test Mode:	Transmitting mode with modulation
Test Results:	Refer to Appendix A

7.4 26dB Emission Bandwidth and 99% Occupied Bandwidth

Test Requirement:	47 CFR Part 15C Section 15.407 (a)		
Test Method:	KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section D		
Test Setup:			
	Control Composite Actenina Power Supply Actenina Power Table RF test System Instrument Table		
	Remark: Offset=Cable loss+ attenuation factor.		
Test Procedure:	1. KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section D 2. Set to the maximum power setting and enable the EUT transmit continuously. 3. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. 4. Measure and record the results in the test report.		
Limit:	No restriction limits		
Test Mode:	Transmitting mode with modulation		
Test Results:	Refer to Appendix A		



7.5 Maximum Power Spectral Density

			1,70,7	/		
	Test Requirement:	47 CFR Part 15C S	47 CFR Part 15C Section 15.407 (a)			
	Test Method:	KDB789033 D02 G	eneral UNII Test	Procedures New	Rules v02r01 Section F	
1000	Test Setup:	~	•>	/%	(cti)	
		Control Computer Power Supply Table	Attenuator	RF test - System Instrument		
ŝ		Remark: Offset=Ca	ible loss+ attenua	ation factor.		
	Test Procedure:	bandwidth. 1. Set F Auto, Detector = RI 2. Allow the sweep	 Set the spectrum analyzer or EMI receiver span to view the entire emission bandwidth. Set RBW = 510 kHz/1 MHz, VBW ≥ 3*RBW, Sweep time = Auto, Detector = RMS. Allow the sweeps to continue until the trace stabilizes. Use the peak marker function to determine the maximum amplitude level. 			
	Limit:	(25)	(2))	(27)	
		Frequency band (MHz)	Limit			
		5150-5250	≤17dBm in 1MHz for master device			
			≤11dBm in 1MHz for client device			
V		5250-5350	≤11dBm in 1Ml	Hz for client device	e (C)	
1		5470-5725	≤11dBm in 1MHz for client device			
		5725-5850	≤30dBm in 500kHz			
		Remark:	a conducted en	nission by direct co	nsity is measured as connection of a equipment under test.	
	Test Mode:	Transmitting mode	with modulation			
	Test Results:	Refer to Appendix	Α			
_						

7.6 Frequency Stability

Test Requirement:	47 CFR Part 15C Section 15.407 (g)
Test Method:	ANSI C63.10: 2013
Test Setup:	
	Control Control Control Power Power Power Power Power Fisher Table EUT RF test System System Attenuator Instrument
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	 1.The EUT was placed inside the environmental test chamber and powered by nominal AC/DC voltage. 2. Turn the EUT on and couple its output to a spectrum analyzer. 3. Turn the EUT off and set the chamber to the highest temperature specified. d. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize. 4. Repeat step 2 and 3 with the temperature chamber set to the lowest temperature. 5. The test chamber was allowed to stabilize at +20 degree C for a minimum of 30 minutes. The supply voltage was then adjusted on the EUT from 85% to 115% and the frequency record.
Limit:	The frequency tolerance shall be maintained within the band of operation frequency over a temperature variation of 0 degrees to 45 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.
Test Mode:	Transmitting mode with modulation
Test Results:	Refer to Appendix A

Report No. : EED32N80836802 Page 17 of 52

7.7 Radiated Emission

Radiated Lilis	551011	(Co.)		10,	
Test Requirement:	47 CFR Part 15C Section	15.209 and 15	5.407 (b)	6	
Test Method:	ANSI C63.10 2013				
Test Site:	Measurement Distance: 3	3m (Semi-Anec	hoic Chan	nber)	
Receiver Setup:	Frequency	Detector	RBV	V VBW	Remark
	0.009MHz-0.090MHz	Peak	10kH	lz 30kHz	Peak
	0.009MHz-0.090MHz	Average	10kH	lz 30kHz	Average
	0.090MHz-0.110MHz	Quasi-peak			Quasi-peak
	0.110MHz-0.490MHz	Peak	10kH	lz 30kHz	Peak
	0.110MHz-0.490MHz	Average	10kH	lz 30kHz	Average
	0.490MHz -30MHz	Quasi-peak	(10kH	lz 30kHz	Quasi-peak
	30MHz-1GHz	Quasi-peak	< 100 kl	Hz 300kHz	Quasi-peak
	Above 1CHz	Peak	1MH	z 3MHz	Peak
	Above 1GHz	Peak	1MH	z 10kHz	Average
Limit:					
		ield strength icrovolt/meter)	Limit (dBuV/m)	Remark	Measureme distance (m
	0.009MHz-0.490MHz	2400/F(kHz)	-(0)) -	300
	0.490MHz-1.705MHz 2	4000/F(kHz)	-	-	30
	1.705MHz-30MHz	30	-	-	30
	30MHz-88MHz	100	40.0	Quasi-peak	3
	88MHz-216MHz	150	43.5	Quasi-peak	3
	216MHz-960MHz	200	46.0	Quasi-peak	3
	960MHz-1GHz	500	54.0	Quasi-peak	3
	Above 1GHz	500	54.0	Average	3
	outside of the 5.15-5.3 dBm/MHz. (2) For transmitters operated of the 5.15-5.35 GHz band. (3) For transmitters operated of the 5.47-5.72 dBm/MHz. (4) For transmitters operated of the 5.47-5.72 dBm/MHz. (i) All emissions shall be above or below the band above or below the band edge increasing linearly to the band edge, and from linearly to a level of 27 dE Remark: The emission measurements employing frequency bands 9-90kl emission limits in these an average detector, the	ating in the 5.25 dd shall not exceptating in the 25 GHz band ating in the 5.72 limited to a level of 15 m 5 MHz abov Bm/MHz at the limits showning a CISPR Hz, 110-490kH three bands ar peak field stre	5-5.35 GH eed an e.i 5.47-5.72 shall not 25-5.85 GH el of -27 ong linearly om 25 MH .6 dBm/M e or below band edge in the a quasi-pea de based of ength of an	z band: All en .r.p. of -27 dE 5 GHz band t exceed an Hz band: dBm/MHz at 7 y to 10 dBm/I Hz above or I Hz at 5 MHz w the band e e. above table ak detector of above 1000 l on measurem ny emission s	nissions outsion of the mission of t
	the maximum permitted under any condition of mo		specified	above by me	ore than 20 d

where: • E is the field strength in V/m; · d is the measurement distance in meters; • EIRP is the equivalent isotropically radiated power in watts. (ii) Working in dB units, the above equation is equivalent to: $EIRP[dBm] = E[dB\mu V/m] + 20 log(d[meters]) - 104.77$ (iii) Or, if d is 3 meters: $EIRP[dBm] = E[dB\mu V/m] - 95.2$ Test Setup: **RX Antenna** EUT 0.8 m **Ground Plane** Receiver Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

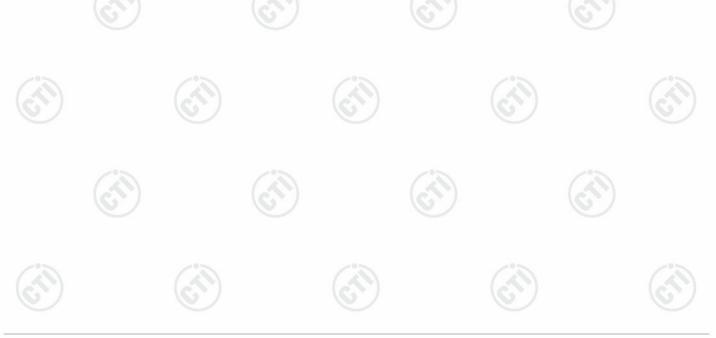
Test Procedure:

Figure 3. Above 1 GHz

- a. 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
 - 2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

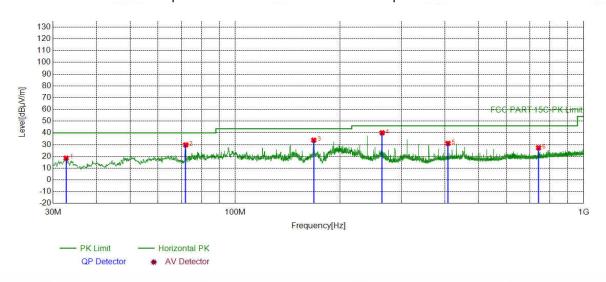
Note: For the radiated emission test above 1GHz:

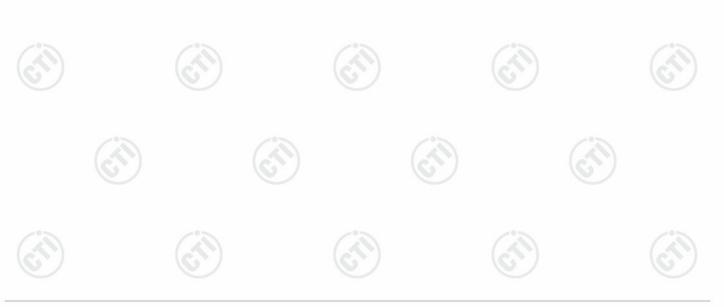
Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement



Page 19 of 52 Report No.: EED32N80836802

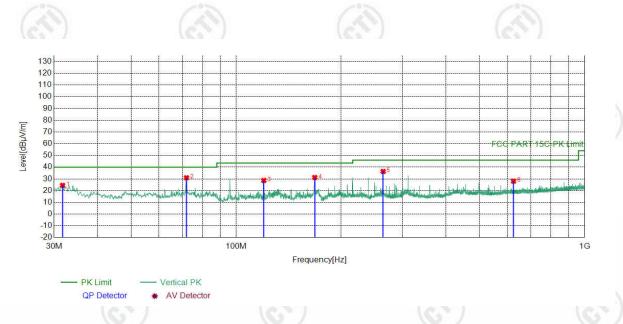
	distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	 e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or
	 average method as specified and then reported in a data sheet. g. Test the EUT in the lowest channel, the middle channel and the highest channel h. The radiation measurements are performed in X, Y, Z axis positioning
	for Transmitting mode, and found the X axis positioning which it is the worst case.
	i. Repeat above procedures until all frequencies measured was complete.
Test Mode:	Transmitting mode with modulation
Test Results:	Pass



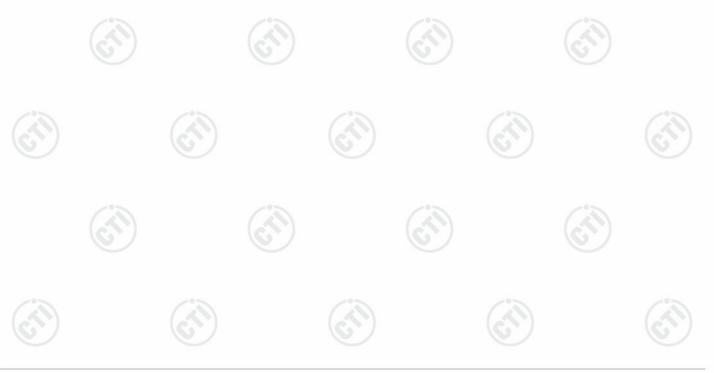


Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

Remark: During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case lower channel of 6Mbps for 802.11a was recorded in the report.



	Suspec	ted List								
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	32.7163	-19.68	38.21	18.53	40.00	21.47	PASS	Horizontal	PK
0.7	2	72.1022	-21.17	50.99	29.82	40.00	10.18	PASS	Horizontal	PK
7	3	168.0448	-20.59	54.41	33.82	43.50	9.68	PASS	Horizontal	PK
	4	264.0844	-16.27	56.38	40.11	46.00	5.89	PASS	Horizontal	PK
	5	408.1438	-12.76	43.90	31.14	46.00	14.86	PASS	Horizontal	PK
	6	742.5363	-7.11	34.44	27.33	46.00	18.67	PASS	Horizontal	PK



Suspe	cted List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	31.7462	-19.72	44.24	24.52	40.00	15.48	PASS	Vertical	PK
2	72.0052	-21.15	52.13	30.98	40.00	9.02	PASS	Vertical	PK
3	120.0250	-20.08	48.77	28.69	43.50	14.81	PASS	Vertical	PK
4	168.0448	-20.59	51.80	31.21	43.50	12.29	PASS	Vertical	PK
5	264.0844	-16.27	52.64	36.37	46.00	9.63	PASS	Vertical	PK
6	625.0575	-8.44	36.53	28.09	46.00	17.91	PASS	Vertical	PK

Report No.: EED32N80836802 Page 22 of 52

Transmitter Emission above 1GHz

Remark: Through Pre-scan, for 20MHz Occupied Bandwidth, 802.11 a mode was the worst case; for 40MHz Occupied Bandwidth, 802.11 n(HT40) mode was the worst case; for 80MHz Occupied Bandwidth, 802.11 ac(VHT80) mode was the worst case; only the worst case was in the report.

Mode	e:		802.11 a Tran	smitting		Channel:		5180 MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1400.9901	1.44	43.38	44.82	68.20	23.38	PASS	Н	PK
2	2130.9131	4.70	44.35	49.05	68.20	19.15	PASS	Н	PK
3	3073.1573	6.74	42.09	48.83	68.20	19.37	PASS	Н	PK
4	8357.3429	-10.81	53.64	42.83	68.20	25.37	PASS	Н	PK
5	11252.0376	-6.16	52.88	46.72	68.20	21.48	PASS	Н	PK
6	15495.1748	0.41	50.89	51.30	68.20	16.90	PASS	Н	PK
7	1432.8933	1.49	42.24	43.73	68.20	24.47	PASS	V	PK
8	2129.8130	4.72	42.40	47.12	68.20	21.08	PASS	V	PK
9	3254.1254	7.20	40.99	48.19	68.20	20.01	PASS	V	PK
10	8512.6006	-10.58	53.36	42.78	68.20	25.42	PASS	V	PK
11	12449.2475	-4.14	53.38	49.24	68.20	18.96	PASS	V	PK
12	14940.8470	-0.92	49.67	48.75	68.20	19.45	PASS	V	PK

Mode) :		802.11 a Tran	smitting		Channel:		5200 MHz	
NO	Freq. [MHz]	Facto [dB]	r Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1313.5314	1.19	42.59	43.78	68.20	24.42	PASS	Н	PK
2	2031.3531	4.75	41.45	46.20	68.20	22.00	PASS	Н	PK
3	3073.1573	6.74	42.55	49.29	68.20	18.91	PASS	Н	PK
4	7574.7287	-10.72	2 54.60	43.88	68.20	24.32	PASS	Н	PK
5	12040.4020	-5.27	53.20	47.93	68.20	20.27	PASS	Н	PK
6	14394.5697	0.58	48.61	49.19	68.20	19.01	PASS	Н	PK
7	1395.4895	1.43	42.72	44.15	68.20	24.05	PASS	V	PK
8	2127.6128	4.74	42.41	47.15	68.20	21.05	PASS	V	PK
9	3312.9813	7.41	40.68	48.09	68.20	20.11	PASS	V	PK
10	9173.8837	-7.97	53.03	45.06	68.20	23.14	PASS	V	PK
11	11384.2942	-6.28	53.60	47.32	68.20	20.88	PASS	V	PK
12	15887.9194	-0.05	50.68	50.63	68.20	17.57	PASS	V	PK

		_	
Page	つて	∩f	52
r auc	/ .)		. 1/

_		1 2 3				1. 4			181	
	Mode	:		802.11 a Tra	ansmitting		Channel:		5240 MHz	
	NO	Freq. [MHz]	Facto	[dBuV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
3	1	1418.0418	1.47	42.89	44.36	68.20	23.84	PASS	Н	PK
V	2	2150.7151	4.48	42.32	46.80	68.20	21.40	PASS	Н	PK
	3	3073.7074	6.75	42.17	48.92	68.20	19.28	PASS	Н	PK
	4	7605.2053	-10.56	54.38	43.82	68.20	24.38	PASS	Н	PK
	5	10479.7740	-6.45	53.95	47.50	68.20	20.70	PASS	Н	PK
	6	15488.8494	0.32	51.29	51.61	68.20	16.59	PASS	Н	PK
	7	1329.4829	1.24	43.24	44.48	68.20	23.72	PASS	V	PK
Ī	8	2128.1628	4.73	43.74	48.47	68.20	19.73	PASS	V	PK
	9	3179.8680	6.94	41.41	48.35	68.20	19.85	PASS	V	PK
	10	7606.3553	-10.57	7 54.17	43.60	68.20	24.60	PASS	V	PK
	11	11452.7226	-6.00	53.07	47.07	68.20	21.13	PASS	V	PK
	12	15498.6249	0.45	49.28	49.73	68.20	18.47	PASS	V	PK

Mode):		802.11 n(HT4	802.11 n(HT40) Transmitting				5190 MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1250.8251	0.99	43.30	44.29	68.20	23.91	PASS	Н	PK
2	2009.3509	4.66	41.96	46.62	68.20	21.58	PASS	Н	PK
3	3073.1573	6.74	42.29	49.03	68.20	19.17	PASS	Н	PK
4	7605.2053	-10.56	53.59	43.03	68.20	25.17	PASS	Н	PK
5	11005.9253	-5.86	52.30	46.44	68.20	21.76	PASS	Н	PK
6	14415.8458	0.41	49.22	49.63	68.20	18.57	PASS	Н	PK
7	1306.9307	1.17	42.91	44.08	68.20	24.12	PASS	V	PK
8	2039.0539	4.79	42.04	46.83	68.20	21.37	PASS	V	PK
9	3368.5369	7.51	40.88	48.39	68.20	19.81	PASS	V	PK
10	8529.8515	-10.57	56.21	45.64	68.20	22.56	PASS	V	PK
11	12429.1215	-4.09	52.02	47.93	68.20	20.27	PASS	V	PK
12	17110.4305	1.74	50.87	52.61	68.20	15.59	PASS	V	PK

_	O 4	•	
Page	74	ΩŤ	52

-		1 40 41		(100)					10.3	40. 41		
	Mode	:		802.11 n(HT40) Transmitting				Channel:		5230 MHz		
	NO	Freq. [MHz]	Factor	r	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
9	1	1283.8284	1.10		42.95	44.05	68.20	24.15	PASS	Н	PK	
	2	2014.8515	4.68		41.13	45.81	68.20	22.39	PASS	Н	PK	
	3	3432.3432	7.59		39.68	47.27	68.20	20.93	PASS	Н	PK	
	4	7605.2053	-10.56		54.38	43.82	68.20	24.38	PASS	Н	PK	
	5	10479.7740	-6.45		53.95	47.50	68.20	20.70	PASS	Н	PK	
	6	14375.5938	0.38		48.77	49.15	68.20	19.05	PASS	Н	PK	
Ī	7	1329.4829	1.24		43.24	44.48	68.20	23.72	PASS	V	PK	
Ī	8	2128.1628	4.73		43.74	48.47	68.20	19.73	PASS	V	PK	
Ī	9	3179.8680	6.94		41.41	48.35	68.20	19.85	PASS	V	PK	
3	10	7606.3553	-10.57		54.17	43.60	68.20	24.60	PASS	V	PK	
	11	10132.4566	-6.89		52.45	45.56	68.20	22.64	PASS	V	PK	
	12	12718.3609	-4.36		52.81	48.45	68.20	19.75	PASS	V	PK	

Mode	:		802.11 ac(VH	T80) Transm	Channel:		5210 MHz		
NO	Freq. [MHz]	Factor	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1299.7800	1.15	43.25	44.40	68.20	23.80	PASS	Н	PK
2	2127.0627	4.75	43.76	48.51	68.20	19.69	PASS	Н	PK
3	3073.7074	6.75	41.42	48.17	68.20	20.03	PASS	Н	PK
4	7581.6291	-10.67	53.78	43.11	68.20	25.09	PASS	Н	PK
5	10992.1246	-5.87	52.89	47.02	68.20	21.18	PASS	Н	PK
6	14343.9672	0.03	48.79	48.82	68.20	19.38	PASS	Н	PK
7	1359.1859	1.32	42.55	43.87	68.20	24.33	PASS	V	PK
8	2127.6128	4.74	42.06	46.80	68.20	21.40	PASS	V	PK
9	3345.9846	7.47	40.82	48.29	68.20	19.91	PASS	V	PK
10	8904.7702	-9.24	52.97	43.73	68.20	24.47	PASS	V	PK
11	11207.7604	-5.79	52.74	46.95	68.20	21.25	PASS	V	PK
12	15495.1748	0.41	51.00	51.41	68.20	16.79	PASS	V	PK

Page 25 of 52 Report No.: EED32N80836802

	1 10 10		1 6 91		1.0	7 (7)			
Mode	:	8	302.11 a Tran	smitting		Channel:		5745 MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1517.6018	2.06	42.76	44.82	68.20	23.38	PASS	Н	PK
2	2419.1419	4.97	42.24	47.21	68.20	20.99	PASS	Н	PK
3	4035.7536	10.41	39.39	49.80	68.20	18.40	PASS	Н	PK
4	7582.6055	-10.66	54.00	43.34	68.20	24.86	PASS	Н	PK
5	12007.3338	-4.91	53.18	48.27	68.20	19.93	PASS	Н	PK
6	15897.6598	0.09	50.74	50.83	68.20	17.37	PASS	Н	PK
7	1574.8075	2.50	43.18	45.68	68.20	22.52	PASS	V	PK
8	2471.3971	5.27	41.42	46.69	68.20	21.51	PASS	V	PK
9	3959.8460	10.11	39.25	49.36	68.20	18.84	PASS	V	PK
10	7557.3038	-10.85	55.20	44.35	68.20	23.85	PASS	V	PK
11	11967.4645	-5.03	53.09	48.06	68.20	20.14	PASS	V	PK
12	16530.2020	0.69	51.48	52.17	68.20	16.03	PASS	V	PK

Mode):		802.11 a Tran	smitting	Channel:		5785 MHz		
NO	Freq. [MHz]	Factor	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1481.8482	1.90	42.40	44.30	68.20	23.90	PASS	Н	PK
2	2428.4928	5.03	42.46	47.49	68.20	20.71	PASS	Н	PK
3	3539.0539	8.10	40.64	48.74	68.20	19.46	PASS	Н	PK
4	8721.1814	-9.90	53.23	43.33	68.20	24.87	PASS	Н	PK
5	11194.6130	-5.76	53.03	47.27	68.20	20.93	PASS	Н	PK
6	14279.8853	-0.52	50.11	49.59	68.20	18.61	PASS	Н	PK
7	1365.7866	1.76	43.73	45.49	68.20	22.71	PASS	V	PK
8	2126.5127	5.30	45.01	50.31	68.20	17.89	PASS	V	PK
9	3187.5688	7.80	41.08	48.88	68.20	19.32	PASS	V	PK
10	8199.8133	-10.87	53.02	42.15	68.20	26.05	PASS	V	PK
11	11648.5099	-6.14	52.85	46.71	68.20	21.49	PASS	V	PK
12	15893.8263	0.04	51.32	51.36	68.20	16.84	PASS	V	PK

_	~ ~	-	
Page	26	O†	52

	Mada			000 44 T		1.7	Channali			FOOE MILE	
	Mode	:		802.11 a Trar	nsmitting		Channel:		5825 MHz		
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
3	1	1403.1903	1.82	42.78	44.60	68.20	23.60	PASS	Н	PK	
6	2	2034.1034	5.27	41.68	46.95	68.20	21.25	PASS	Н	PK	
	3	3309.1309	8.30	40.79	49.09	68.20	19.11	PASS	Н	PK	
	4	8547.9032	-10.55	53.80	43.25	68.20	24.95	PASS	Н	PK	
	5	11987.3992	-4.91	52.67	47.76	68.20	20.44	PASS	Н	PK	
	6	15508.9339	0.46	50.14	50.60	68.20	17.60	PASS	Н	PK	
	7	1362.4862	1.75	43.27	45.02	68.20	23.18	PASS	V	PK	
	8	2102.8603	5.59	40.89	46.48	68.20	21.72	PASS	V	PK	
	9	3073.1573	7.51	42.43	49.94	68.20	18.26	PASS	V	PK	
	10	9226.4484	-7.68	52.56	44.88	68.20	23.32	PASS	V	PK	
3	11	12456.6304	-4.16	53.01	48.85	68.20	19.35	PASS	V	PK	
	12	15524.2683	0.45	50.00	50.45	68.20	17.75	PASS	V	PK	

Mode	:		802.11 n(HT4	0) Transmitti	ng	Channel:		5755 MHz	
NO	Freq. [MHz]	Facto	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1535.7536	2.20	42.57	44.77	68.20	23.43	PASS	Н	PK
2	2545.1045	5.56	41.83	47.39	68.20	20.81	PASS	Н	PK
3	3387.2387	8.17	40.96	49.13	68.20	19.07	PASS	Н	PK
4	8737.2825	-9.74	53.16	43.42	68.20	24.78	PASS	Н	PK
5	12427.4952	-4.08	52.51	48.43	68.20	19.77	PASS	Н	PK
6	16517.1678	0.56	51.50	52.06	68.20	16.14	PASS	Н	PK
7	1317.3817	1.67	43.11	44.78	68.20	23.42	PASS	V	PK
8	2102.8603	5.59	41.58	47.17	68.20	21.03	PASS	V	PK
9	3196.9197	7.81	40.77	48.58	68.20	19.62	PASS	V	PK
10	9162.8109	-8.07	52.41	44.34	68.20	23.86	PASS	V	PK
11	12430.5620	-4.09	53.66	49.57	68.20	18.63	PASS	V	PK
12	15899.9600	0.13	51.84	51.97	68.20	16.23	PASS	V	PK

Report No. : EED32N80836802 Page 27 of 52

	1 0000		1		1 - 75		A contract			
Mode	:		802.11 n(HT4	0) Transmitti	ng	Channel:		5795 MH	5795 MHz	
NO	Freq. [MHz]	Factoi [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	1426.2926	1.85	42.61	44.46	68.20	23.74	PASS	Н	PK	
2	2131.4631	5.23	41.86	47.09	68.20	21.11	PASS	Н	PK	
3	3073.1573	7.51	42.64	50.15	68.20	18.05	PASS	Н	PK	
4	8573.2049	-10.53	53.81	43.28	68.20	24.92	PASS	Н	PK	
5	11001.4001	-5.83	53.18	47.35	68.20	20.85	PASS	Н	PK	
6	15886.1591	-0.08	51.05	50.97	68.20	17.23	PASS	Н	PK	
7	1314.0814	1.67	43.02	44.69	68.20	23.51	PASS	V	PK	
8	2123.7624	5.33	43.05	48.38	68.20	19.82	PASS	V	PK	
9	3491.7492	8.35	41.39	49.74	68.20	18.46	PASS	V	PK	
10	7969.0313	-11.41	54.60	43.19	68.20	25.01	PASS	V	PK	
11	10774.4516	-6.18	52.87	46.69	68.20	21.51	PASS	V	PK	
12	13891.9261	-0.96	50.00	49.04	68.20	19.16	PASS	V	PK	

Mode	:		802.11 ac(VH	T80) Transm	nitting	Channel:		5775 MH	5775 MHz	
NO	Freq. [MHz]	Factor	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	1375.6876	1.78	42.63	44.41	68.20	23.79	PASS	Н	PK	
2	2415.2915	4.95	41.66	46.61	68.20	21.59	PASS	Н	PK	
3	3447.7448	8.26	40.04	48.30	68.20	19.90	PASS	Н	PK	
4	7617.1078	-10.64	53.98	43.34	68.20	24.86	PASS	Н	PK	
5	10979.1653	-5.95	52.53	46.58	68.20	21.62	PASS	Н	PK	
6	14390.2927	0.54	48.53	49.07	68.20	19.13	PASS	Н	PK	
7	1312.4312	1.66	42.38	44.04	68.20	24.16	PASS	V	PK	
8	2126.5127	5.30	42.40	47.70	68.20	20.50	PASS	V	PK	
9	3835.5336	9.49	39.31	48.80	68.20	19.40	PASS	V	PK	
10	7472.1981	-11.34	54.89	43.55	68.20	24.65	PASS	V	PK	
11	10405.6604	-6.28	52.21	45.93	68.20	22.27	PASS	V	PK	
12	14955.3637	-0.93	49.98	49.05	68.20	19.15	PASS	V	PK	

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

2) Scan from 9kHz to 40GHz, the disturbance above 18GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

Report No. : EED32N80836802 Page 28 of 52

7.8 Radiated Emission which fall in the restricted bands

							100	1
	Test Requirement:	47 CFR Part 15C Section	ion 1	15.209 and 1	5.407 (b)			
	Test Method: Test Site:	ANSI C63.10 2013 Measurement Distance	. 2m	a (Somi Ano	shoic Char	mho	r)	
	Receiver Setup:		z. JII		RBV		VBW	Domork
	receiver octup.	Frequency 0.009MHz-0.090MH	17	Detector Peak	10kH		30kHz	Remark Peak
		0.009MHz-0.090MH		Average	10kl		30kHz	Average
		0.090MHz-0.110MH		Quasi-pea			30kHz	Quasi-peak
		0.110MHz-0.490MF		Peak	10kl		30kHz	Peak
		0.110MHz-0.490MH		Average	10kH		30kHz	Average
		0.490MHz -30MHz	_	Quasi-pea	k 10kH	Ηz	30kHz	Quasi-peak
		30MHz-1GHz		Quasi-pea			300kHz	Quasi-peak
		Above 1GHz		Peak	1MF		3MHz	Peak
	1.59	718010 10112		Peak	1MF	lz	10kHz	Average
	Limit:							
		Frequency		ld strength rovolt/meter)	Limit (dBuV/m)	R	Remark	Measurement distance (m)
		0.009MHz-0.490MHz		100/F(kHz)	0	/	-	300
		0.490MHz-1.705MHz	240	000/F(kHz)	-		-	30
		1.705MHz-30MHz		30	-		-	30
		30MHz-88MHz		100	40.0		asi-peak	3
		88MHz-216MHz		150	43.5	Qu	asi-peak	3
		216MHz-960MHz		200	46.0	Qu	asi-peak	3
		960MHz-1GHz		500	54.0	Qu	asi-peak	3
		Above 1GHz		500	54.0	A	verage	3
		*(1) For transmitters outside of the 5.15-5 dBm/MHz. (2) For transmitters ope of the 5.15-5.35 GHz be (3) For transmitters of outside of the 5.47-5 dBm/MHz. (4) For transmitters ope (i) All emissions shall be above or below the beabove or b	5.35 eratii eand opera 5.725 eratii oe lir oe lir and dy to rom dBn on li oying 0kHz ee th he p	GHz band ng in the 5.2 shall not except ating in the 5.73 mited to a level of 15 5 MHz above a level of 15 5 MHz above imits shown a CISPR z, 110-490kl ree bands a level of street a level of street a level of street a level of street a cispe a level of street a level of stre	shall not shall not seed an e. 5.47-5.72 shall not 25-5.85 Grel of -27 ing linearly om 25 M s.6 dBm/M re or below the quasi-pearly and a re based ength of a	t ex t ex lz ba i.r.p. 25 G t ex Hz b dBm y to Hz a sabov as con r ny e	ceed an and: All em of -27 dE GHz band: ceed an and: n/MHz at 7 above or bat 5 MHz at 5 MHz are band edetector edeced and and emeasurememission s	e.i.r.p. of -27 hissions outside Bm/MHz. : All emissions e.i.r.p. of -27 T5 MHz or more MHz at 25 MHz below the band above or below edge increasing are based on except for the MHz. Radiated ents employing hall not exceed
127		under any condition of Note: (i) EIRP = ((E*d)^2) / 3		iulation.				

where: • E is the field strength in V/m; · d is the measurement distance in meters; • EIRP is the equivalent isotropically radiated power in watts. (ii) Working in dB units, the above equation is equivalent to: $EIRP[dBm] = E[dB\mu V/m] + 20 log(d[meters]) - 104.77$ (iii) Or, if d is 3 meters: $EIRP[dBm] = E[dB\mu V/m] - 95.2$ Test Setup: **RX Antenna** EUT 0.8 m **Ground Plane** Receiver Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

Test Procedure:

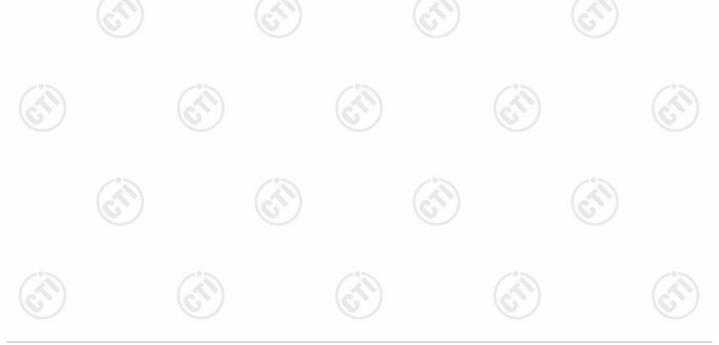
Figure 3. Above 1 GHz

. 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

Note: For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement



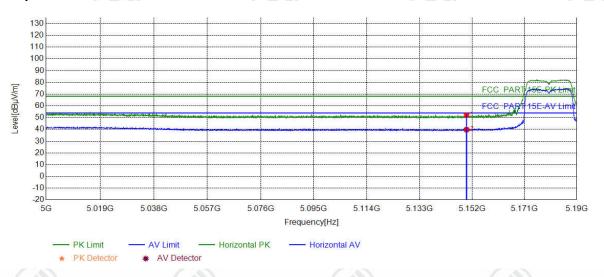
Page 30 of 52 Report No.: EED32N80836802

	distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. k. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	 The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	m. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	n. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	o. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
	 p. Test the EUT in the lowest channel, the Highest channel q. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
	r. Repeat above procedures until all frequencies measured was complete.
Test Mode:	Transmitting mode with modulation
Test Results:	Pass

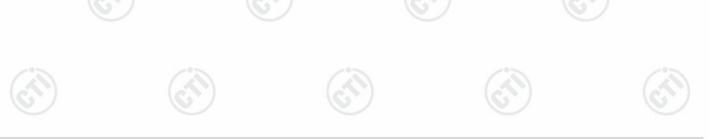
Report No.: EED32N80836802 Page 31 of 52

Remark: During the test, the Radiates Emission from 1GHz to 40GHz was performed in all modes,

for 20MHz Occupied Bandwidth, 802.11 a mode was the worst case;

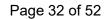

for 40MHz Occupied Bandwidth, 802.11 n(HT40) mode was the worst case;

for 80MHz Occupied Bandwidth, 802.11 ac(VHT80) mode was the worst case;

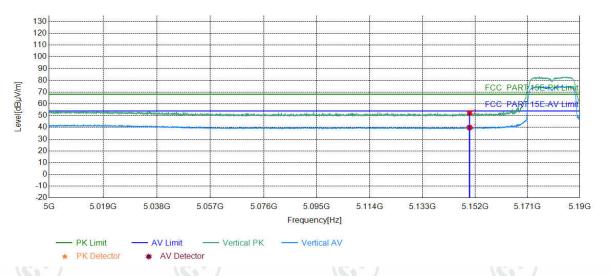

only the worst case was in the report.

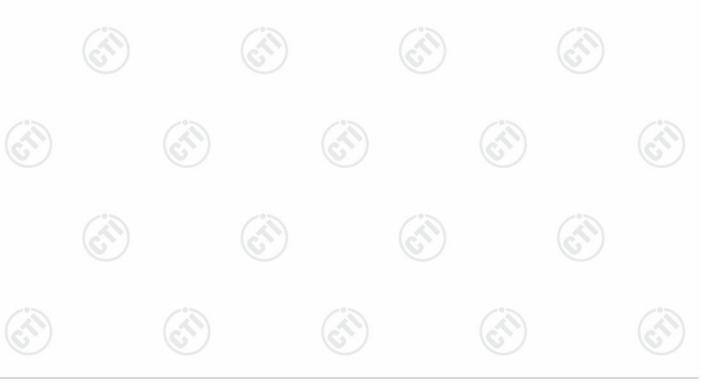
Test Data:

Mode:	802.11 a Transmitting	Channel:	5180MHz	
Remark:				

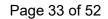


	Suspected List									
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
9	1	5150.0000	12.36	39.75	52.11	68.20	16.09	PASS	Horizontal	PK
9	2	5150.0000	12.36	27.44	39.80	54.00	14.20	PASS	Horizontal	AV

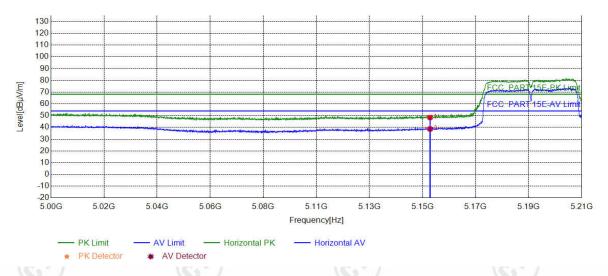


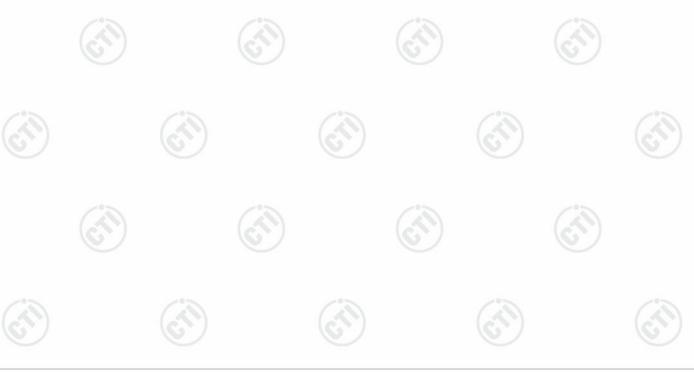


Mode:	802.11 a Transmitting	Channel:	5180MHz
Remark:			

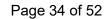


	Suspected List									
10	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	5150.0000	12.36	27.56	39.92	54.00	14.08	PASS	Vertical	PK
	2	5150.0000	12.36	39.93	52.29	68.20	15.91	PASS	Vertical	AV

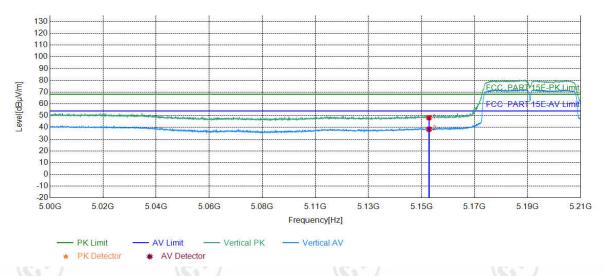


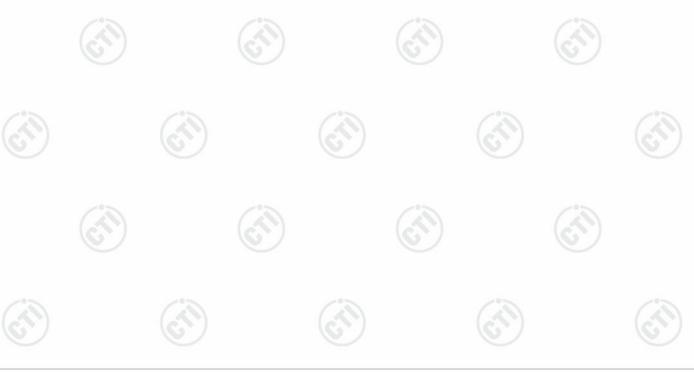


Mode:	802.11 n(HT40) Transmitting	Channel:	5190MHz
Remark:			

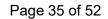


Suspected List										
100	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	5150.0000	12.36	36.06	48.42	68.20	19.78	PASS	Horizontal	PK
	2	5150.0000	12.36	26.34	38.70	54.00	15.30	PASS	Horizontal	AV

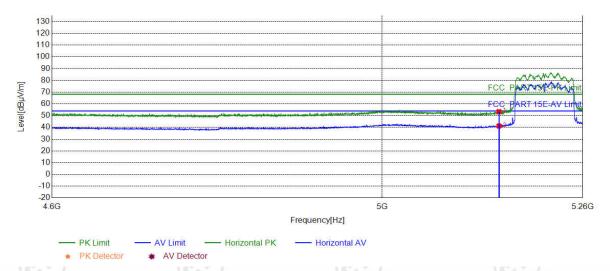




Mode:	802.11 n(HT40) Transmitting	Channel:	5190MHz
Remark:			

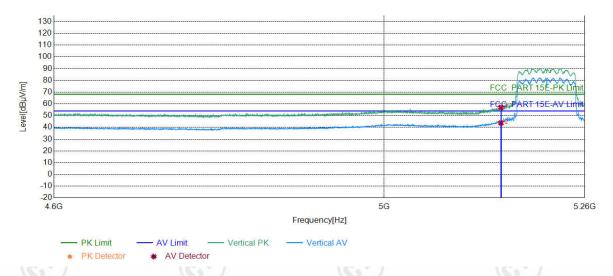


Suspected List										
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	5150.0000	12.36	35.88	48.24	68.20	19.96	PASS	Vertical	PK
	2	5150.0000	12.36	26.11	38.47	54.00	15.53	PASS	Vertical	AV

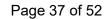


Mode:	802.11 ac(VHT80) Transmitting	Channel:	5210MHz
Remark:			

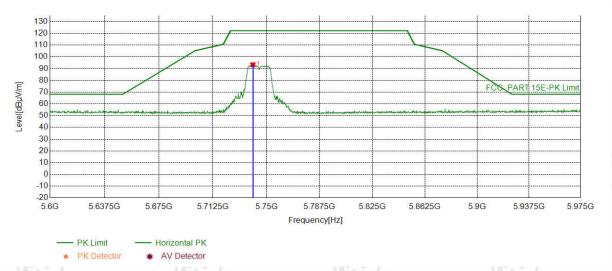
	Suspe	cted List								
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	5150.0000	12.36	41.10	53.46	68.20	14.74	PASS	Horizontal	PK
pett	2	5150.0000	12.36	28.84	41.20	54.00	12.80	PASS	Horizontal	AV

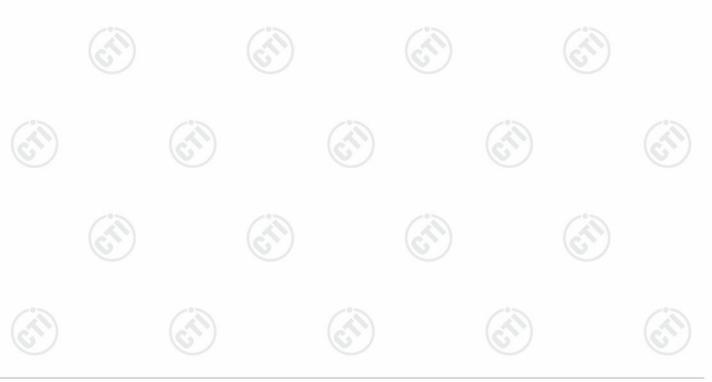


Mode:	802.11 ac(VHT80) Transmitting	Channel:	5210MHz
Remark:			

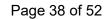


Suspected List									
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5150.0000	12.36	44.69	57.05	68.20	11.15	PASS	Vertical	PK
2	5150.0000	12.36	31.45	43.81	54.00	10.19	PASS	Vertical	AV

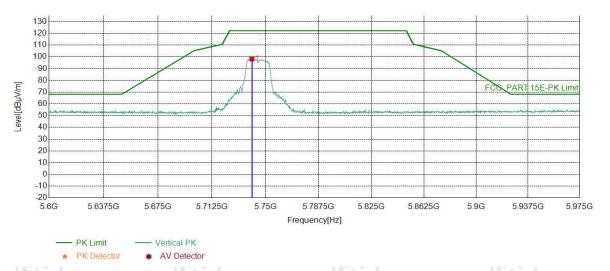


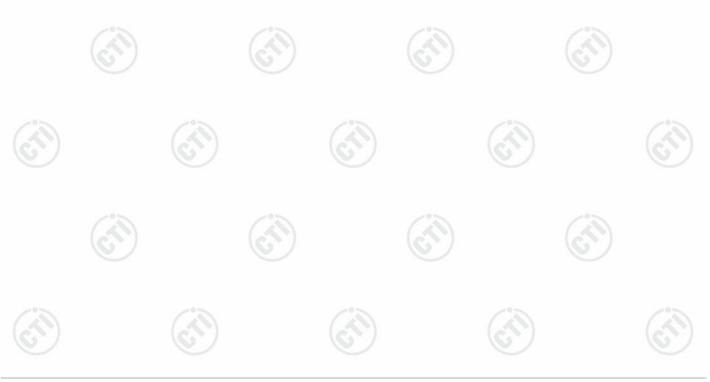


Mode:	802.11 a Transmitting	Channel:	5745MHz
Remark:			



Suspe	Suspected List										
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
1	5740.5078	13.84	79.49	93.33	122.20	28.87	PASS	Horizontal	PK		

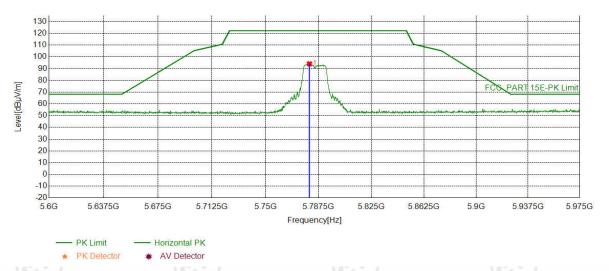


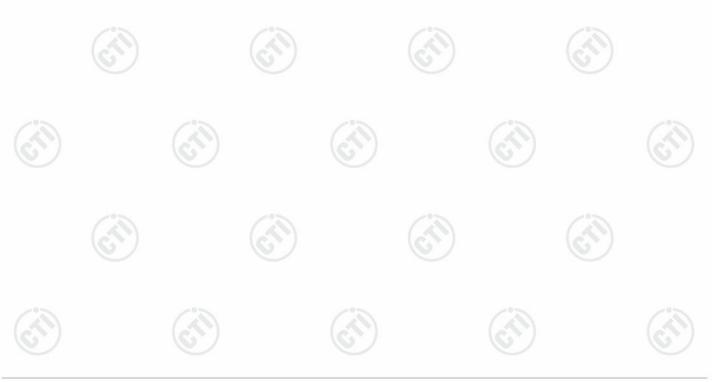


Mode:	802.11 a Transmitting	Channel:	5745MHz
Remark:			



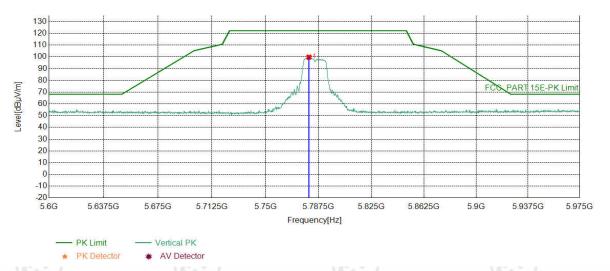
Suspec	Suspected List										
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
1	5740.5078	13.84	84.36	98.20	122.20	24.00	PASS	Vertical	PK		

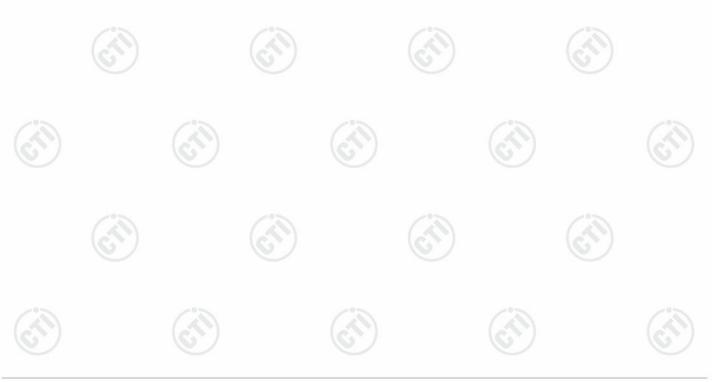




Mode:	802.11 a Transmitting	Channel:	5785MHz
Remark:			

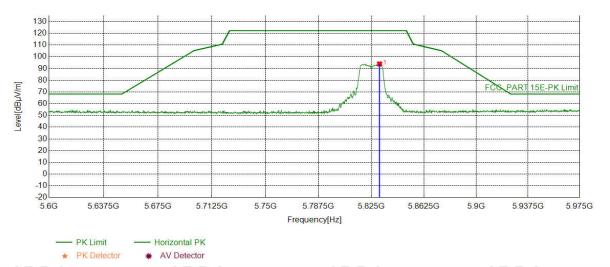
	Suspected List										
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	1	5781.0280	13.91	80.17	94.08	122.20	28.12	PASS	Horizontal	PK	

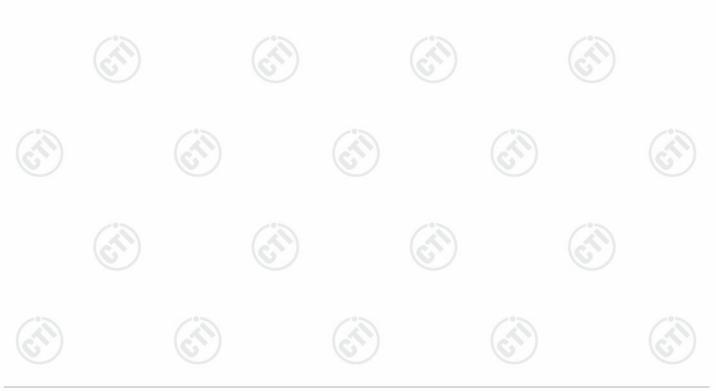




Mode:	802.11 a Transmitting	Channel:	5785MHz
Remark:			

Suspec	Suspected List										
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
1	5780.6528	13.91	85.86	99.77	122.20	22.43	PASS	Vertical	PK		

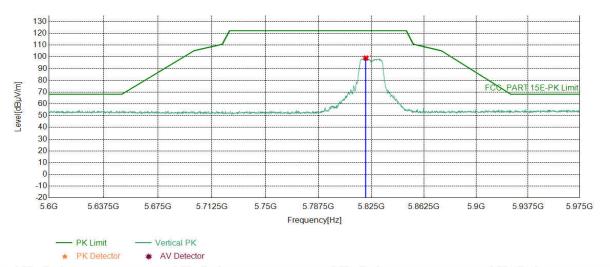


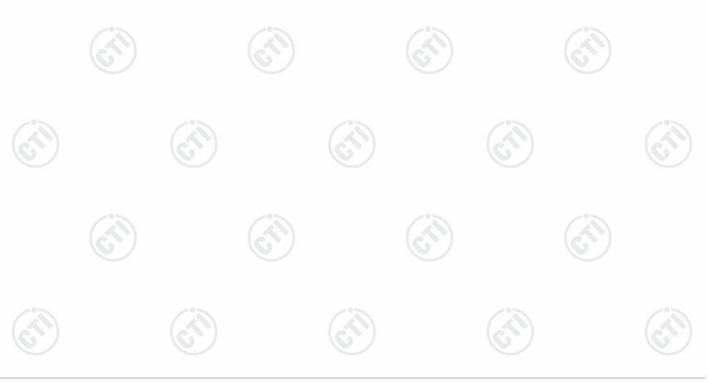


Mode:	802.11 a Transmitting	Channel:	5825MHz
Remark:			

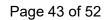


	Suspected List										
101	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
-	1	5830.7404	14.05	79.85	93.90	122.20	28.30	PASS	Horizontal	PK	

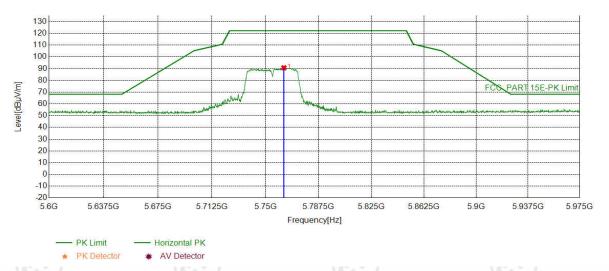


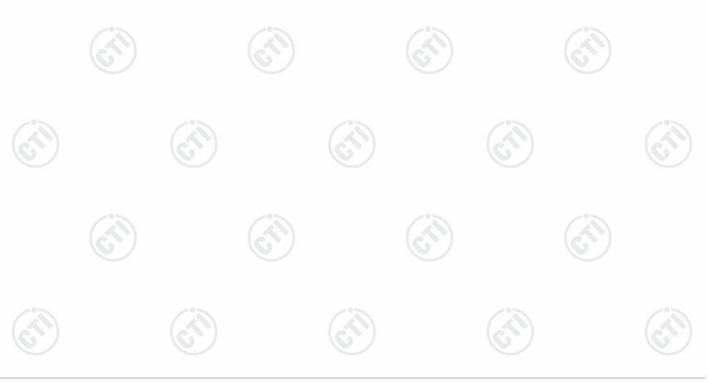


Mode:	802.11 a Transmitting	Channel:	5825MHz
Remark:			

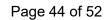


Suspe	Suspected List										
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
1	5820.9855	14.02	84.97	98.99	122.20	23.21	PASS	Vertical	PK		

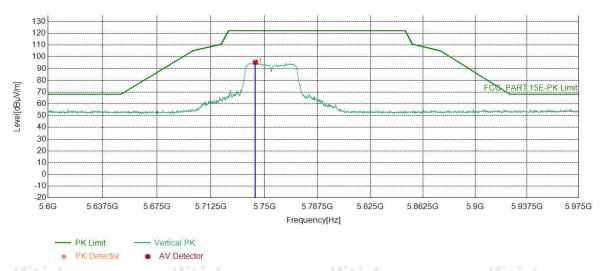


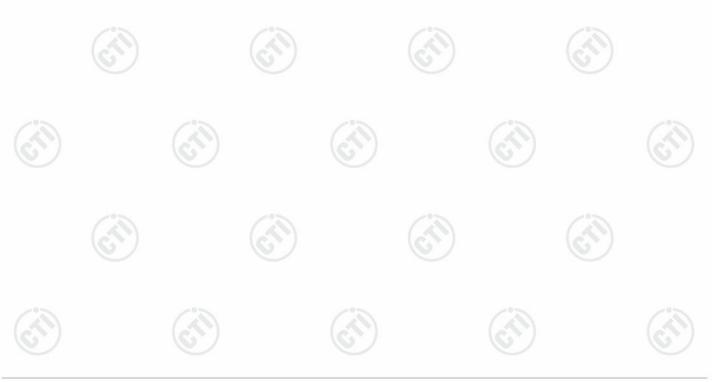


Mode:	802.11 n(HT40) Transmitting	Channel:	5755MHz
Remark:			



Suspe	Suspected List										
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
1	5763.0190	13.88	76.82	90.70	122.20	31.50	PASS	Horizontal	PK		

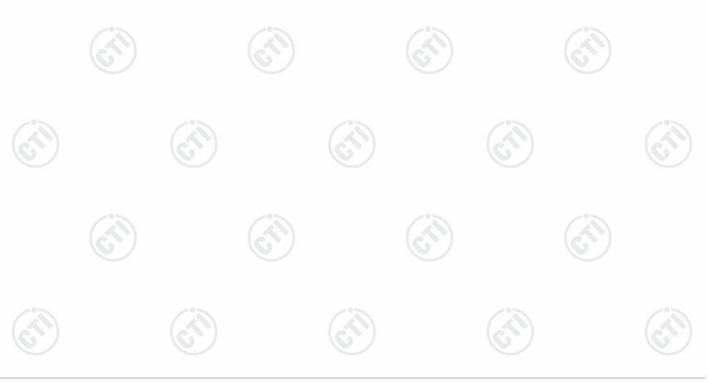




Mode:	802.11 n(HT40) Transmitting	Channel:	5755MHz
Remark:			

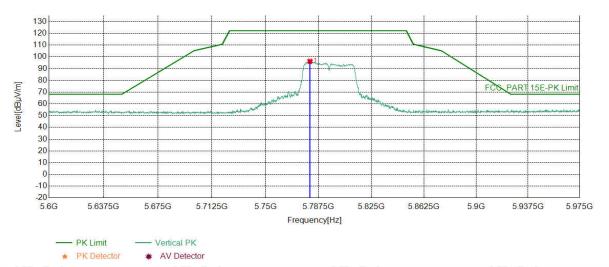
Suspec	Suspected List										
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
1	5743.6968	13.84	81.53	95.37	122.20	26.83	PASS	Vertical	PK		

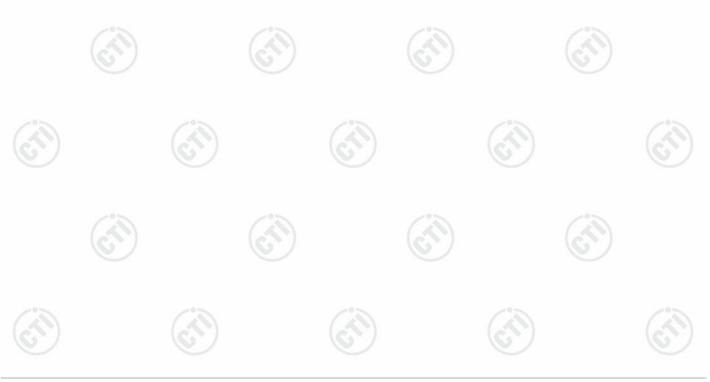




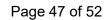
Mode:	802.11 n(HT40) Transmitting	Channel:	5795MHz
Remark:			

Suspe	Suspected List										
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
1	5797.7239	13.94	76.92	90.86	122.20	31.34	PASS	Horizontal	PK		

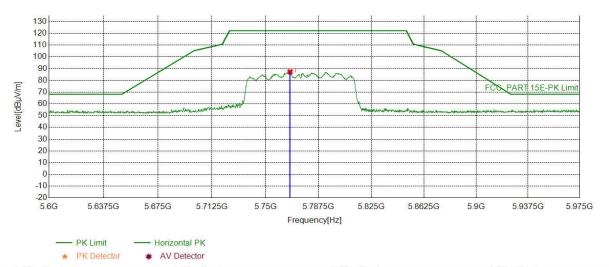


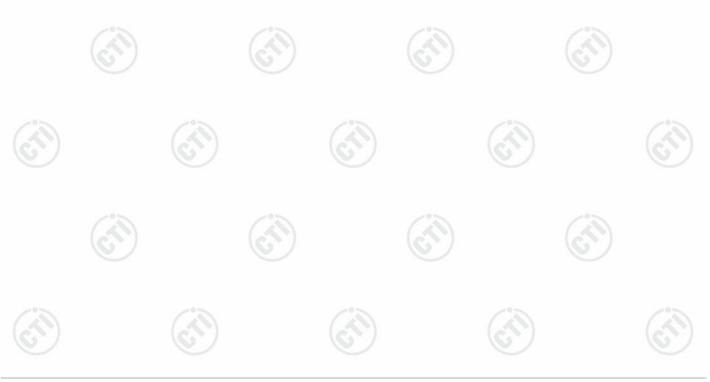


Mode:	802.11 n(HT40) Transmitting	Channel:	5795MHz
Remark:			



	Suspected List										
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	1	5781.4032	13.91	82.31	96.22	122.20	25.98	PASS	Vertical	PK	





Mode:	802.11 ac(VHT80) Transmitting	Channel:	5775MHz
Remark:			


Suspe	Suspected List										
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
1	5767.3337	13.88	73.38	87.26	122.20	34.94	PASS	Horizontal	PK		

Mode:	802.11 ac(VHT80) Transmitting	Channel:	5775MHz
Remark:			

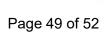
Suspe	Suspected List										
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
1	5783.2791	13.91	78.16	92.07	122.20	30.13	PASS	Vertical	PK		

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor


2) Scan from 1GHz to 25GHz, the disturbance above 13GHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

Refer to Appendix: 5G WIFI of EED32N80836802.

