

SGS-CSTC Standards Technical Services Co., Ltd.

198 Kezhu Road, Scientech Park, Guangzhou Economic & TechnologicalDevelopment District, Guangzhou, China 510663Telephone: +86 (0) 20 82155555Fax:+86 (0) 20 82075059Email:ee.guangzhou@sgs.com

Report No.: GZEM140800437101 Page: 1 of 31 FCC ID: SZQ-T140

TEST REPORT

Application No.:	GZEM1408004371RF
Applicant:	Salcomp (Shenzhen) Co., Ltd.
Manufacturer:	Salcomp (Shenzhen) Co., Ltd.
Factory:	Salcomp (Shenzhen) Co., Ltd.
	Salcomp Industrial Eletrônica da Amazônia Ltda
	Salcomp Manufacturing India Pvt Ltd.
FCC ID:	SZQ-T140
Product Name:	Verizon Wireless Charging Stand
Product Description:	Low Power Transmitter
Model No.:	VZW3COIL-WC
Trade Mark:	Verizon
Standards:	CFR 47 FCC PART 15 SUBPART C:2013 section 15.207
	CFR 47 FCC PART 15 SUBPART C:2013 section 15.209
Date of Receipt:	2014-08-28
Date of Test:	2014-08-27 to 2014-08-28
Date of Issue:	2014-09-09
Test Result :	Pass*

* In the configuration tested, the EUT detailed in this report complied with the standards specified above. Please refer to section 3 of this report for further details.

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government. All test results in this report can be traceable to National or International Standards.

Report No.: GZEM140800437101 Page: 2 of 31

2 Version

	Revision Record				
Version	Chapter	Date	Modifier	Remark	
00		2014-09-09		Original	

Authorized for issue by:			
Tested By	Jack Ling	2014-08-27 to 2014-08-28	
	(Jack Liang) /Project Engineer	Date	
Prepared By	June Chen	2014-09-09	
	(June Chen) /Clerk	Date	
Checked By	ful . The	2014-09-09	
	(Fred Zhu) /Reviewer	Date	

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sqs.com/terms_and_conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sqs.com/terms_e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions; if any. The Company's sole responsibility is to its Client and this document does not exconcrete parties to a transaction from exercising all their rights and obligations under the transaction of one exercising all their rights and obligations under the transaction of document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document to unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

Report No.: GZEM140800437101 Page: 3 of 31

3 Test Summary

ELECTROMAGNETIC INTERFERENCE (EMI)					
Test	Test Requirement	Test Method	Class / Severity	Result	
Radiated Emission	FCC PART 15 C	ANSI C 63.10:	Section 15.209	PASS	
(9 kHz to30MHz)	section 15.209	Clause 6.4	360101115.209	FA33	
Radiated Emission	FCC PART 15	ANSI C 63.10:	section 15.209	PASS	
(30MHz to 1GHz)	section 15.209	Clause 6.4	360101113.209	1700	
Conducted Emission	FCC PART 15	ANSI C63.10:	agation 15 007	PASS	
(150 KHz to 30 MHz)	section 15.207	Clause 6.2	section 15.207	PASS	

Remark:

EUT: In this whole report EUT means Equipment Under Test.

N/A: not applicable. Refer to the relative section for the details.

Tx: In this whole report Tx (or tx) means Transmitter.

Rx: In this whole report Rx (or rx) means Receiver.

RF: In this whole report RF means Radio Frequency.

Report No.: GZEM140800437101 Page: 4 of 31

4 Contents

1	COVE	ER PAGE	1			
2	VERS	SION	2			
3	TEST	SUMMARY	3			
4	CON	TENTS	4			
5	GENE	ERAL INFORMATION	5			
	5.1	Client Information				
	5.2	General Description of E.U.T.	5			
	5.3	Details of E.U.T.	5			
	5.4	Description of Support Units	6			
	5.5	Deviation from Standards	6			
	5.6	Abnormalities from Standard Conditions	6			
	5.7	Test Location	6			
	5.8	Test Facility	7			
6	EQUI	PMENT USED DURING TEST	8			
7	EMIS	SION TEST RESULTS	10			
	7.1	Radiated Emissions				
	7.2 Conducted Emissions at Mains Terminals 150 kHz to 30 MHz					

Report No.: GZEM140800437101 Page: 5 of 31

5 General Information

5.1 Client Information

Applicant:	Salcomp (Shenzhen) Co., Ltd.
Address of Applicant:	Salcomp Road, Furong Industrial Area, Xinqiao, Shajing, Baoan District, Shenzhen 518125 CHINA
Manufacturer:	Salcomp (Shenzhen) Co., Ltd.
Address of Manufacturer	Salcomp Road, Furong Industrial Area, Xinqiao, Shajing, Baoan District, Shenzhen 518125 CHINA
Factory:	Salcomp (Shenzhen) Co., Ltd.
Address of Factory:	Salcomp Road, Furong Industrial Area, Xinqiao, Shajing, BaoanDistrict, Shenzhen 518125 CHINA
Factory:	Salcomp Industrial Eletrônica da Amazônia Ltda
Address of Factory:	Av. dos Oitis, no. 4,145, Distrito Industrial 69075-842 Manaus, Amazonas BRAZIL
Factory:	Salcomp Manufacturing India Pvt Ltd
Address of Factory:	Nokia Telecom SEZ SIPCOT Industrial Park Phase III Chennai – Bangalore Highway Sriperumbudur, Tamil Nadu-602 105

5.2 General Description of E.U.T.

Product Name:	Verizon Wireless Charging Stand
Model No.:	VZW3COIL-WC
Product Description:	Low Power Transmitter

5.3 Details of E.U.T.

Power Supply:	DC 12V(supplied by adaptor)
Transmitter details	Model:VZW3COIL-WC
	Input:DC12V,750mA
	Output:5W

Report No.: GZEM140800437101 Page: 6 of 31

5.4 Description of Support Units

The EUT has been tested with simulate receiver, resistor and adapter provided by applicant.

Adapter details

Model: S15A02, Input: AC 100-240V, 50-60Hz 0.3A. Output: DC 12V 0.75A

5.5 Deviation from Standards

None.

5.6 Abnormalities from Standard Conditions

None.

5.7 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services Co., Ltd., Guangzhou EMC Laboratory, 198 Kezhu Road, Scientech Park, Guangzhou Economic & Technology Development District, Guangzhou, China 510663 Tel: +86 20 82155555 Fax: +86 20 82075059

No tests were sub-contracted.

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sqs.com/terms and conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sqs.com/terms e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's one responsibility is to its Client and this document does not exconcrate parties to a transaction from exercising all their rights and obligations under the transaction document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s)

Report No.: GZEM140800437101 Page: 7 of 31

5.8 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• NVLAP (Lab Code: 200611-0)

SGS-CSTC Standards Technical Services Co., Ltd., Guangzhou EMC Laboratory is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP/NIST). NVLAP Code: 200611-0.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

• ACMA

SGS-CSTC Standards Technical Services Co., Ltd., EMC Laboratory can also perform testing for the Australian C-Tick mark as a result of our NVLAP accreditation.

• SGS UK(Certificate No.: 32), SGS-TUV SAARLAND and SGS-FIMKO

Have approved SGS-CSTC Standards Technical Services Co., Ltd., EMC Laboratory as a supplier of EMC TESTING SERVICES and SAFETY TESTING SERVICES.

• CNAS (Lab Code: L0167)

SGS-CSTC Standards Technical Services Co., Ltd., EMC Laboratory has been assessed and in compliance with CNAS-CL01:2006 accreditation criteria for testing laboratories (identical to ISO/IEC 17025:2005 General Requirements) for the Competence of Testing Laboratories.

• FCC (Registration No.: 282399)

SGS-CSTC Standards Technical Services Co., Ltd., EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 282399, May 31, 2002.

• Industry Canada (Registration No.: 4620B-1)

The 3m/10m Alternate Semi-anechoic chamber of SGS-CSTC Standards Technical Services Co., Ltd., has been registered by Certification and Engineering of Industry Canada for radio equipment testing with Registration No. 4620B-1.

• VCCI (Registration No.: R-2460, C-2584, G-449 and T-1179)

The 10m Semi-anechoic chamber and Shielded Room of SGS-CSTC Standards Technical Services Co. Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-2460, C-2584, G-449 and T-1179 respectively.

• CBTL (Lab Code: TL129)

SGS-CSTC Standards Technical Services Co., Ltd., E&E Laboratory has been assessed and fully comply with the requirements of ISO/IEC 17025:2005, the Basic Rules, IECEE 01:2006-10 and Rules of procedure IECEE 02:2006-10, and the relevant IECEE CB-Scheme Operational documents.

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sqs.com/terms</u> and <u>conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sqs.com/terms</u> e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's of responsibility is to its Client and this document does not exconrete parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is not for 90 days only.

Report No.: GZEM140800437101 Page: 8 of 31

Conducte	Conducted Emission					
No.	Toot Fauinment	Manufacturer	Model No.	Serial No.	Cal. date	Cal. Due date
NO.	Test Equipment	Manuacturer	woder No.	Senarino.	(YYYY-MM-DD)	(YYYY-MM-DD)
EMC0306	Shielding Room	Zhong Yu	8 x 3 x 3.8 m ³	N/A	N/A	N/A
EMC0118	Two-line v-netwok	R&S	ENV216	100359	2014-03-03	2015-03-03
EMC0102	LISN	SCHAFFNER CHASE	MN2050D/1	1421	2013-09-22	2014-09-22
EMC2046	Artificial Mains Network (LISN)	AFJ Instruments	LT32C	S.N.320311201 50	2014-03-03	2015-03-03
EMC0506	EMI Test Receiver	Rohde & Schwarz	ESCS30	100085	2014-03-03	2015-03-03
EMC0107	Coaxial Cable	SGS	2m	N/A	2014-07-25	2016-07-25
EMC0106	Voltage Probe	SGS	N/A	N/A	2014-4-19	2015-4-19
EMC0120	8 Line ISN	Fischer Custom Communications	FCC-TLISN-T8- 02	20550	2014-08-30	2015-08-30
EMC0121	4 Line ISN	Fischer Custom Communications	FCC-TLISN-T4- 02	20549	2014-08-30	2015-08-30
EMC0122	2 Line ISN	Fischer Custom Communications	FCC-TLISN-T2- 02	20548	2014-08-30	2015-08-30
EMC2047	CDN	Elektronik- Feinmechanik	L-801:AF2	2793	2011-11-11	2014-11-11
EMC2048	CDN	Elektronik- Feinmechanik	L-801:M2/M3	2738	2011-11-11	2014-11-11
EMC2062	6dB Attenuator	HP	8491A	24487	2014-04-19	2015-04-19
EMC167	Conical metal housing	SGS-EMC	N/A	N/A	2014-02-16	2016-02-16

6 Equipment Used during Test

Report No.: GZEM140800437101 Page: 9 of 31

RE in Cha	RE in Chamber					
No.	Test Family ment	Manufacturar	Madal Na		Cal. date	Cal.Due date
NO.	Test Equipment	Manufacturer	Model No.	Serial No.	(YYYY-MM-DD)	(YYYY-MM-DD)
EMC0525	Compact Semi- Anechoic Chamber	ChangZhou ZhongYu	N/A	N/A	2013-12-5	2014-12-5
EMC0522	EMI Test Receiver	Rohde & Schwarz	ESIB26	100283	2014-04-19	2015-04-19
EMC0056	EMI Test Receiver	Rohde & Schwarz	ESCI	100236	2014-03-03	2015-03-03
EMC0528	RI High frequency Cable	SGS	20 m	N/A	2014-05-09	2015-05-09
EMC2025	Trilog Broadband Antenna 30-1000MHz	SCHWARZBECK MESS- ELEKTRONIK	VULB 9160	9160-3372	2014-07-14	2017-07-14
EMC0524	Bi-log Type Antenna	Schaffner -Chase	CBL6112B	2966	2013-08-31	2016-08-31
EMC0519	Bilog Type Antenna	Schaffner -Chase	CBL6143	5070	2014-05-04	2017-05-04
EMC2026	Horn Antenna 1-18GHz	SCHWARZBECK MESS- ELEKTRONIK	BBHA 9120D	9120D-841	2013-08-31	2016-08-31
EMC0518	Horn Antenna	Rohde & Schwarz	HF906	100096	2012-07-01	2015-07-01
EMC0521	1-26.5 GHz Pre-Amplifier	Agilent	8449B	3008A01649	2014-03-03	2015-03-03
EMC2065	Amplifier	HP	8447F	N/A	2014-08-25	2015-08-25
EMC0075	310N Amplifier	Sonama	310N	272683	2014-03-03	2015-03-03
EMC0523	Active Loop Antenna	EMCO	6502	42963	2014-03-03	2016-03-03
EMC2041	Broad-Band Horn Antenna (14)15-26.5(40)GHz	SCHWARZBECK MESS- ELEKTRONI	BBHA 9170	9170-375	2014-05-26	2017-05-26
EMC2069	2.4GHz filter	Micro-Tronics	BRM 50702	149	2014-04-19	2015-04-19
EMC0530	10m Semi- Anechoic Chamber	ETS	N/A	N/A	2014-05-03	2016-05-03

General used equipment						
No. Toot Equipment		Manufacturan	Model No.	Serial No.	Cal. date	Cal.Due date
No.	Test Equipment	Manufacturer	Model No.	Serial No.	(YYYY-MM-DD)	(YYYY-MM-DD)
EMC0006	DMM	Fluke	73	70681569	2013-09-13	2014-09-13
EMC0007	DMM	Fluke	73	70671122	2013-09-13	2014-09-13

Report No.: GZEM140800437101 Page: 10 of 31

7 Emission Test Results

7.1 Radiated Emissions

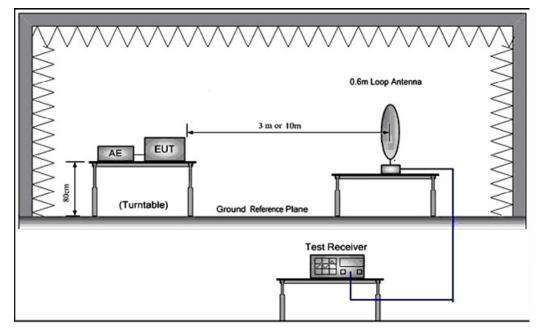
Test Requirement:	FCC Part15 C
Test Method:	ANSI C63.10:2009
Frequency Range:	9 kHz to1GHz
Measurement Distance:	3 m
Detector:	peak and average for pre-scan
Class / Limit:	

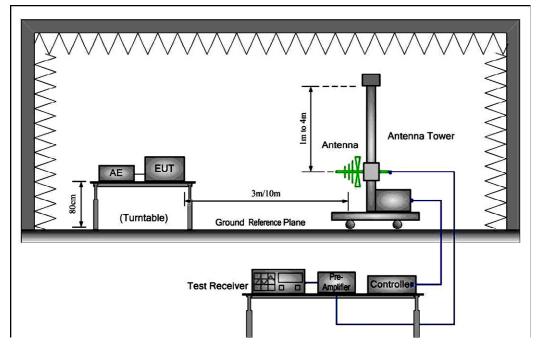
Frequency range MHz	Field strength (uV/m)	Measurement Distance (meters)
0.009 to 0.490	2400/F(kHz)	300
0.490 to 1.705	24000/F(kHz)	30
1.705 to 30.0	30	30
30 to 88	100	3
88 to 216	150	3
216 to 960	200	3
Above 960	500	3

Correction factor used due to measurement distance of 3m:

Frequency range MHz	Field strength (dBuV/m)	Measurement Distance (meters)
0.009 to 0.490	67.6-20log(f)(kHz)+40	3
0.490 to 1.705	87.6-20log(f)(kHz)+20	3
1.705 to 30.0	49.5	3
30 to 88	40.0	3
88 to 216	43.5	3
216 to 960	46.0	3
Above 960	49.0	3

7.1.1 E.U.T. Operation


Operating Env	rironment:			
Temperature:	22.0 °C	Humidity: 51 %RH	Atmospheric Pressure: 1006	mbar
EUT Operation	n: Test the E	UT in charging &standby mode.		


Report No.: GZEM140800437101 Page: 11 of 31

Test Configuration:

1)9 kHz to 30 MHz emissions:

2)30 MHz to 1 GHz emissions:

Report No.: GZEM140800437101 Page: 12 of 31

Test Procedure:

1) 9 kHz to 30 MHz emissions:

For testing performed with the loop antenna. The center of the loop was positioned 1 m above the ground and positioned with its plane vertical at the specied distance from the EUT.During testing the loop was rotated about its vertical axis for maximum response at each azimuth and also investigated with the loop positioned in the horizontal plane.

2) 30 MHz to 1 GHz emissions:

For testing performed with the bi-log type antenna. The measurement is performed with the EUT rotated 360°, the antenna height scaned between 1m and 4m, and the antenna rotated to repeat the measurement for both the horizontal and vertical antenna polarizations.

Detector Peak for pre-scan

Test Receiver test setup	Detector						
	9 kHz-150 kHz	150 kHz-30 MHz	30 MHz-1000 MHz				
RBW	200 Hz	9 kHz	120 kHz				
VBW	≥ RBW	≥ RBW	≥ RBW				
Sweep	auto	auto	auto				
Detector function	QP	QP	QP				
Trace	max hold	max hold	max hold				

Report No.: GZEM140800437101 Page: 13 of 31

7.1.2 Spurious Emission: below 30 MHz

Charging with max load mode

No.	Frequency	Reading	Correct	Result	Limit	Over limit	Remark
	(MHz)	(dBuV/m)	Factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	0.12	58.17	0.02	58.19	66.02	-7.83	PK
2	0.98	41.24	0.07	41.31	47.78	-6.47	PK
3	1.81	31.96	0.09	32.05	49.50	-17.45	PK
4	4.26	22.89	0.10	22.99	49.50	-26.51	PK
5	6.79	22.33	0.10	22.43	49.50	-27.07	PK
6	25.20	23.28	0.10	23.38	49.50	-26.12	PK

Charging with mid load mode

No.	Frequency	Reading	Correct	Result	Limit	Over limit	Remark
	(MHz)	(dBuV/m)	Factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	0.13	58.23	0.02	58.25	65.32	-7.07	PK
2	0.62	41.67	0.07	41.74	51.75	-10.01	PK
3	2.34	31.12	0.09	31.21	49.50	-18.29	PK
4	4.29	22.24	0.10	22.34	49.50	-27.16	PK
5	6.47	22.95	0.10	23.05	49.50	-26.45	PK
6	25.98	23.15	0.10	23.25	49.50	-26.25	PK

Charging with min load mode

No.	Frequency	Reading	Correct	Result	Limit	Over limit	Remark
	(MHz)	(dBuV/m)	Factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	0.03	58.12	0.02	58.14	78.06	-19.92	PK
2	0.64	41.95	0.07	42.02	51.48	-9.46	PK
3	1.15	31.64	0.09	31.73	49.50	-17.77	PK
4	4.95	22.48	0.10	22.58	49.50	-26.92	PK
5	6.42	23.56	0.10	23.66	49.50	-25.84	PK
6	25.19	22.14	0.10	22.24	49.50	-27.26	PK

Standby mode

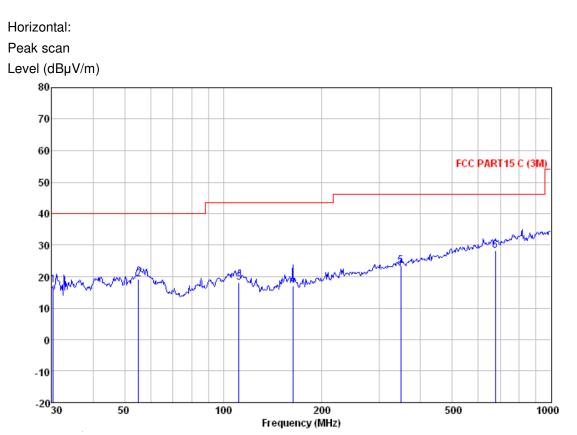
No.	Frequency	Reading	Correct	Result	Limit	Over limit	Remark
	(MHz)	(dBuV/m)	Factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	0.10	57.12	0.02	57.14	67.60	-10.46	PK
2	0.95	42.92	0.07	42.99	48.05	-5.06	PK
3	1.95	31.23	0.09	31.32	49.50	-18.18	PK
4	5.24	23.56	0.10	23.66	49.50	-25.84	PK
5	7.18	23.14	0.10	23.24	49.50	-26.26	PK
6	28.34	23.62	0.10	23.72	49.50	-25.78	PK

Remark:

Result = Reading+ Correct Factor

Report No.: GZEM140800437101 Page: 14 of 31

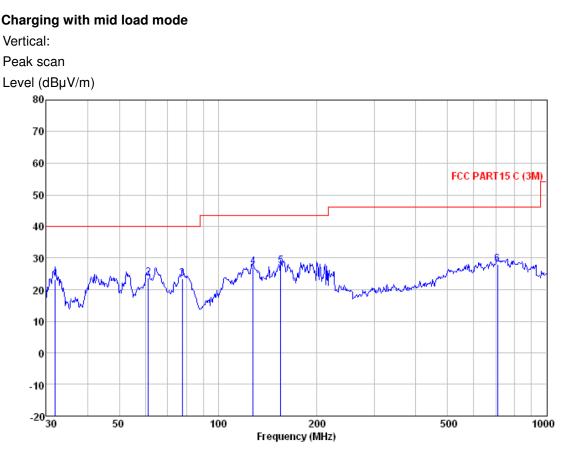
7.1.3 Spurious Emssion: above 30 MHz


Charging with max load mode Vertical: Peak scan Level (dBµV/m) ⁸⁰ 0

70						_												_
60														FCC	PARI	15 (· (3	M
50						_								100		1.5 (. (3	
40																		
30 20	A	port	A.	N	m	L.	1	Wind	th www.	1	w	within the	Jackson	m	un	r	-49er	°L,
10						_												_
0						_												_
-10						_											_	_
-20	30	50	0			10	00	Frequ	20 Jency (N)) AHz)			5	00				1000
uasi-p	eak me	easure	eme	nt														

	ReadA	ntenna	Cable	Preamp		Limit	0ver	
Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
MHz	dBu∨	dB/m	dB	dB	dBu∨/m	dBu∨/m	dB	
31.955	46.51	12.32	0.84	31.60	28.07	40.00	-11.93	QP
52.575	47.86	13.14	1.10	31.60	30.50	40.00	-9.50	QP
60.492	44.14	12.56	1.10	31.60	26.20	40.00	-13.80	QP
104.903	49.09	12.68	1.41	31.59	31.59	43.50	-11.91	QP
155.364	50.00	8.48	1.71	31.39	28.80	43.50	-14.70	QP
211.527	45.45	10.93	1.93	31.30	27.01	43.50	-16.49	QP

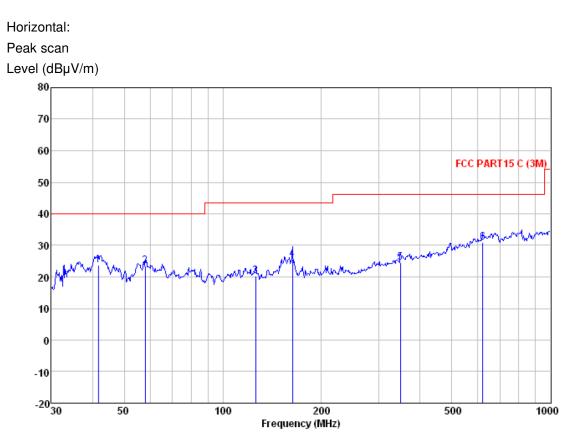
Report No.: GZEM140800437101 Page: 15 of 31



Quasi-peak measurement

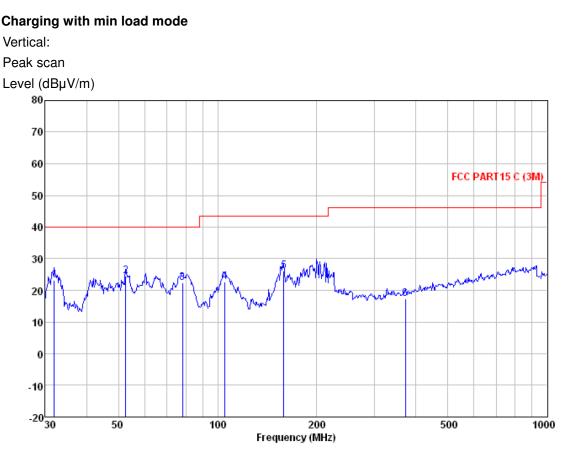
Freq		ntenna Factor				Limit Line	0∨er Limit	Remark
MHz	dBu∨	dB/m	dB	dB	dBu∨/m	dBu∨/m	dB	
111.738 163.182 348.027	37.91	11.94 8.77 14.25	1.10 1.43 1.77 2.58	31.60 31.57 31.36 31.19	17.20 19.21 18.01 17.09 23.35 28.25	40.00 43.50 43.50 46.00	-20.79 -25.49 -26.41 -22.65	QP QP QP QP

Report No.: GZEM140800437101 Page: 16 of 31


Quasi-peak measurement

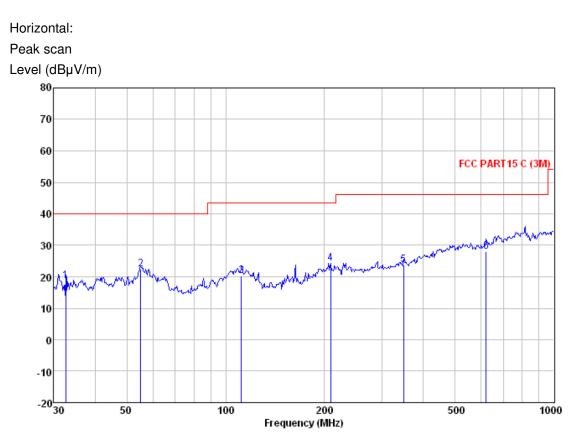
Read/	htenna	Cable	Preamp		Limit	0ver	
Level	Factor	Loss	Factor	Level	Line	Limit	Remark
dBu∨	dB/m	dB	dB	dBu∨/m	dBu∨/m	dB	
41.68	12.32	0.84	31.60	23.24	40.00	-16.76	QP
42.10	12.16	1.11	31.60	23.77	40.00	-16.23	QP
45.40	8.26	1.28	31.60	23.34	40.00	-16.66	QP
47.99	9.32	1.49	31.52	27.28	43.50	-16.22	QP
48.54	8.48	1.71	31.39	27.34	43.50	-16.16	QP
36.71	18.91	3.51	31.20	27.93	46.00	-18.07	QP
	Level dBuV 41.68 42.10 45.40 47.99	Level Factor dBuV dB/m 41.68 12.32 42.10 12.16 45.40 8.26 47.99 9.32 48.54 8.48	Level Factor Loss dBuV dB/m dB 41.68 12.32 0.84 42.10 12.16 1.11 45.40 8.26 1.28 47.99 9.32 1.49 48.54 8.48 1.71	Level Factor Loss Factor dBuV dB/m dB dB 41.68 12.32 0.84 31.60 42.10 12.16 1.11 31.60 45.40 8.26 1.28 31.60 47.99 9.32 1.49 31.52 48.54 8.48 1.71 31.39	Level Factor Loss Factor Level dBuV dB/m dB dB dBuV/m 41.68 12.32 0.84 31.60 23.24 42.10 12.16 1.11 31.60 23.77 45.40 8.26 1.28 31.60 23.34 47.99 9.32 1.49 31.52 27.28 48.54 8.48 1.71 31.39 27.34	Level Factor Loss Factor Level Line dBuV dB/m dB dB dBuV/m dBuV/m 41.68 12.32 0.84 31.60 23.24 40.00 42.10 12.16 1.11 31.60 23.77 40.00 45.40 8.26 1.28 31.60 23.34 40.00 47.99 9.32 1.49 31.52 27.28 43.50 48.54 8.48 1.71 31.39 27.34 43.50	Level Factor Loss Factor Level Line Limit dBuV dB/m dB dB dBuV/m dBuV/m dB 41.68 12.32 0.84 31.60 23.24 40.00 -16.76 42.10 12.16 1.11 31.60 23.77 40.00 -16.23 45.40 8.26 1.28 31.60 23.34 40.00 -16.66 47.99 9.32 1.49 31.52 27.28 43.50 -16.22 48.54 8.48 1.71 31.39 27.34 43.50 -16.16

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sqs.com/terms and conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sqs.com/terms e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions; if any. The Company's one responsibility is to its Client and this document does not exconcret parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this are retained for 90 days only.


Report No.: GZEM140800437101 Page: 17 of 31

Freq		Antenna Factor		Preamp Factor	Level	Limit Line	0∨er Limit	Remark
MHz	dBu∨	dB/m	dB	dB	dBu∨/m	dBu∨/m	dB	
41.713 57.999 125.886 163.182 348.027 620.710	41.05 40.78 46.48	13.57 12.82 9.51 8.77 14.25 18.53	1.10 1.48 1.77 2.58	31.60 31.60 31.53 31.36 31.19 31.28	23.37 20.24 25.66 24.63	40.00 43.50 43.50	-16.63 -23.26 -17.84 -21.37	QP QP QP QP

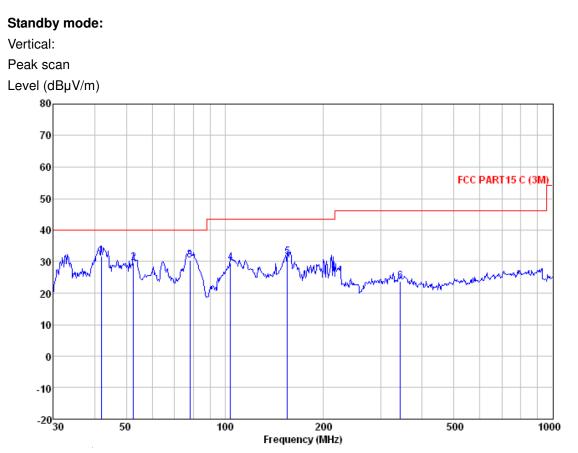
Report No.: GZEM140800437101 Page: 18 of 31


Quasi-peak measurement

Freq		ntenna Factor				Limit Line	Over Limit	Remark
			dB				dB	
MHz	dBu∨	dB/m	аb	ав	dBu∨/m	abuv/m	ав	
31.955	41.68	12.32	0.84	31.60	23.24	40.00	-16.76	QP
52.575	41.93	13.14	1.10	31.60	24.57	40.00	-15.43	QP
78.139	44.47	8.31	1.29	31.60	22.47	40.00	-17.53	QP
105.272	40.22	12.68	1.41	31.59	22.72	43.50	-20.78	QP
158.668	47.18	8.61	1.74	31.37	26.16	43.50	-17.34	QP
370.702	31.34	14.51	2.73	31.14	17.44	46.00	-28.56	QP

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sqs.com/terms and conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sqs.com/terms e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions; if any. The Company's sole responsibility is to its Client and this document does not exconcrete parties to a transaction from exercising all their rights and obligations under the transaction of one exercising all their rights and obligations under the transaction of our exercising all their rights and obligations under the transaction of our exercising all their rights and obligations under the transaction form exercising all their rights and obligations under the transaction form exercising all their rights and obligations under the transaction form all offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

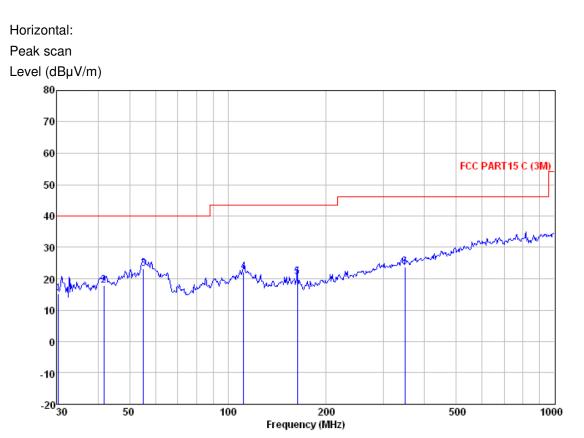
Report No.: GZEM140800437101 Page: 19 of 31



Quasi-peak measurement

Freq		ntenna Factor				Limit Line	0∨er Limit	Remark
MHz	dBu∨	dB/m	dB	dB	dBu∨/m	dBu∨/m	dB	
111.738 208.580 348.027	38.43 42.94	10.84	1.10 1.43 1.92 2.58	31.60 31.57 31.30 31.19	18.57 22.32 20.23 24.40 23.63 27.88	40.00 43.50 43.50 46.00	-17.68 -23.27 -19.10 -22.37	QP QP QP QP

Report No.: GZEM140800437101 Page: 20 of 31



Quasi-peak measurement

_			Cable Preamp		Limit Level Line		0ver	
Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
MHz	dBu∨	dB/m	dB	dB	dBu∨/m	dBu∨/m	dB	
42.007	48.82	13.57	1.01	31.60	31.80	40.00	-8.20	QP
52.575	46.93	13.14	1.10	31.60	29.57	40.00	-10.43	QP
78.139	52.47	8.31	1.29	31.60	30.47	40.00	-9.53	QP
104.170	46.90	12.78	1.41	31.59	29.50	43.50	-14.00	QP
155.364	52.54	8.48	1.71	31.39	31.34	43.50	-12.16	QP
343.180	38.11	14.17	2.54	31.20	23.62	46.00	-22.38	QP

Report No.: GZEM140800437101 Page: 21 of 31

Quasi-peak measurement

Freq		Antenna Factor		Preamp Factor	Level	Limit Line	0∨er Limit	Remark
MHz	dBu∨	dB/m	dB	dB	dBu∨/m	dBu∨/m	dB	
30.317 41.713 55.221 111.738 163.182 348.027	40.82 40.43	12.33 13.57 13.00 11.94 8.77 14.25	1.01 1.10 1.43 1.77	31.60 31.60 31.57 31.57 31.36 31.19	17.73 23.32 22.23 20.66	40.00 40.00 43.50 43.50	-16.68 -21.27 -22.84	QP QP QP QP

Report No.: GZEM140800437101 Page: 22 of 31

7.2 Conducted Emissions at Mains Terminals 150 kHz to 30 MHz

Test Requirement:FCC Part 15 C section 15.207Test Method:ANSI C63.10: Clause 6.2Frequency Range:150 kHz to 30 MHzDetector:Peak for pre-scan (9 kHz Resolution Bandwidth)

Test Limit

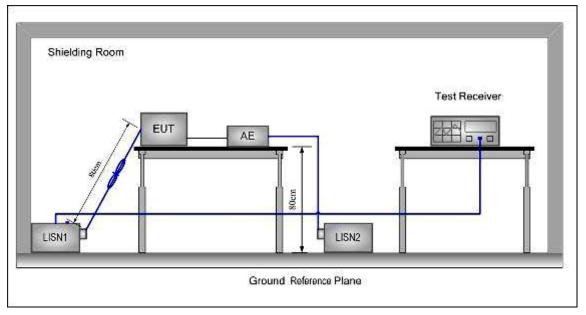
Limits for conducted disturbance at the mains ports of class B

k Average
56 to 46
46
50

NOTE 1 The limit decreases linearly with the logarithm of the frequency in the range 0,15 MHz to 0,50 MHz.

EUT Operation:

Test the EUT in charging & standby mode. For intentional radiators, measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, shall be performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage.


Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sqs.com/terms and conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sqs.com/terms e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's one responsibility is to its Client and this document does not exconerate parties to a transaction from exercising all their rights and obligations under the transaction for document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s)

Report No.: GZEM140800437101 Page: 23 of 31

Test Configuration:

Test procedure:

1. The mains terminal disturbance voltage test was conducted in a shielded room.

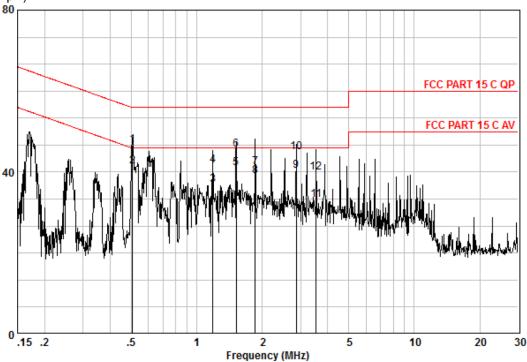
2. The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a $50\Omega/50\mu$ H + 5Ω linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.

3. The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane, but separated from metallic contact with the ground reference plane by 0.1m of insulation.

4. The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0,4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0,8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0,8 m from the LISN 2.

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sqs.com/terms</u> and <u>conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sqs.com/terms</u> e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's of responsibility is to its Client and this document does not exconrete parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is not for 90 days only.

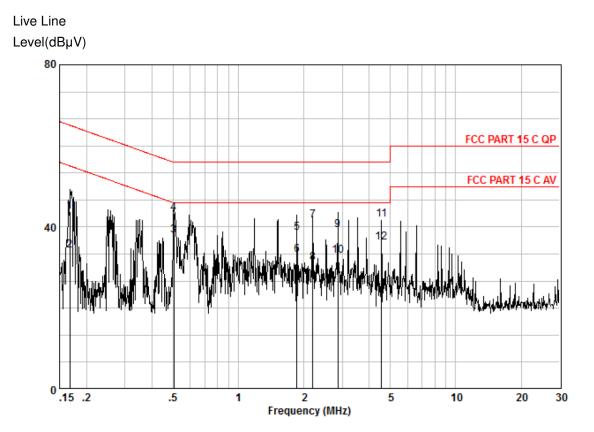
Report No.: GZEM140800437101 Page: 24 of 31


7.2.1 Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected. For EUT the communicating was worst case mode. **The following Quasi-Peak and Average measurements were performed on the EUT:**

Charging with max load mode

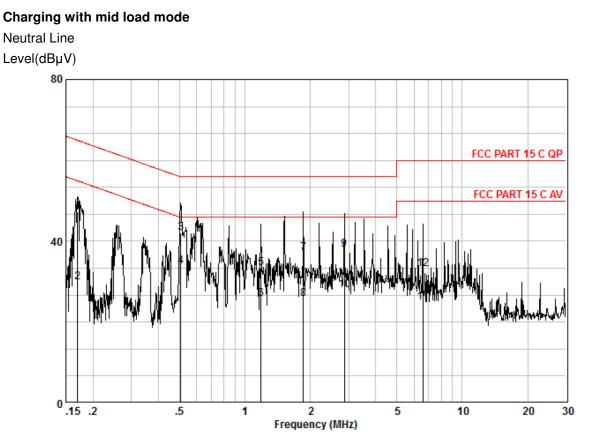
Neutral Line


Measure data:

Freq	Read Level	Cable Loss	LISN Factor	Level	Limit Line	Over Limit	Remark
MHz	dBuV	dB	dB	dBuV	dBuV	dB	
0,507 0,507 1,184 1,184 1,519 1,519 1,858 1,858 2,869 2,869 3,547 3,547	36,98 31,67 27,10 32,00 31,18 35,86 31,52 29,24 30,40 35,16 23,22 30,08	$ \begin{array}{c} 0.07\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.14\\ 0.16\\ 0.16\\ 0.16\\ \end{array} $	9,66 9,68 9,68 9,68 9,68 9,69 9,69 9,70 9,70 9,71 9,71	46.71 41.40 36.83 41.73 40.91 45.59 41.26 38.98 40.24 45.00 33.08 39.94	56,00 46,00 46,00 56,00 46,00	-9.17 -14.27 -5.09 -10.41 -14.74 -7.02 -5.76 -11.00	AVERAGE QP AVERAGE QP QP QP AVERAGE AVERAGE QP AVERAGE

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sqs.com/lerms and conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sqs.com/lerms e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions; if any. The Company's one responsibility is to its Client and this document does not exconcrate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document for 90 days only.

Report No.: GZEM140800437101 Page: 25 of 31



Measure result:

Freq	Read Level	Cable Loss	LISN Factor	Level	Limit Line	Over Limit	Remark
MHz	dBuV	dB	dB	dBuV	dBuV	dB	
0,168 0,505 0,505 1,858 1,858 2,201 2,201 2,869 2,869 4,549 4,549	34.02 24.52 28.09 33.54 28.86 23.30 31.86 21.41 29.48 22.99 32.00 26.27	0.09 0.07 0.07 0.05 0.05 0.07 0.14 0.14 0.17 0.17	9,60 9,70 9,70 9,70 9,70 9,70 9,70 9,70 9,7	43.71 34.21 37.86 43.31 38.61 33.05 41.63 31.18 39.32 32.83 41.87 36.14	$\begin{array}{c} 55,08\\46,00\\56,00\\56,00\\46,00\\56,00\\46,00\\56,00\\46,00\\56,00\\56,00\\\end{array}$	-8.14 -12.69 -17.39 -12.95 -14.37 -14.82 -16.68 -13.17 -14.13	AVERAGE AVERAGE QP AVERAGE QP AVERAGE QP AVERAGE AVERAGE

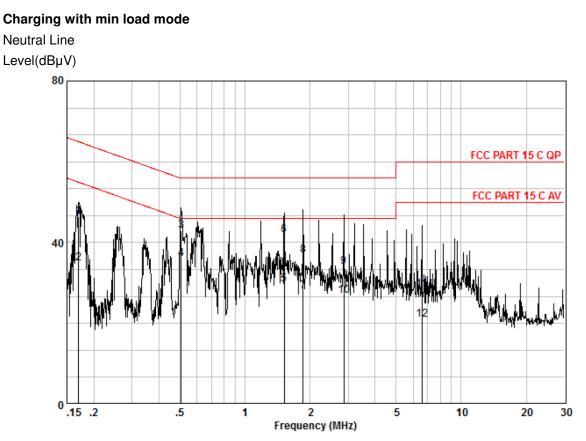
Report No.: GZEM140800437101 Page: 26 of 31

Measure data:

Freq	Read Level	Cable Loss	LISN Factor	Level	Limit Line	Over Limit	Remark
MHz	dBuV	dB	dB	dBuV	dBuV	dB	
0,169 0,507 0,507 1,184 1,858 1,858 2,869 2,869 6,592 6,592	37,52 20,21 32,42 24,14 23,54 16,08 27,30 16,08 28,18 18,02 15,02 23,32	$0.09 \\ 0.07 \\ 0.07 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.14 \\ 0.14 \\ 0.17 \\ 0.09 \\ $	9,66 9,66 9,66 9,68 9,69 9,69 9,70 9,70 9,73 9,73	47.27 29.96 42.15 33.87 33.27 25.81 37.04 25.82 38.02 27.86 24.91 33.21	$\begin{array}{c} 54,99\\56,00\\46,00\\56,00\\46,00\\56,00\\46,00\\56,00\\46,00\\56,00\\46,00\\50,00\end{array}$	-13,85 -12,13 -22,73 -20,19 -18,96 -20,18 -17,98 -18,14	AVERAGE QP AVERAGE QP AVERAGE QP AVERAGE QP AVERAGE AVERAGE

Live Line

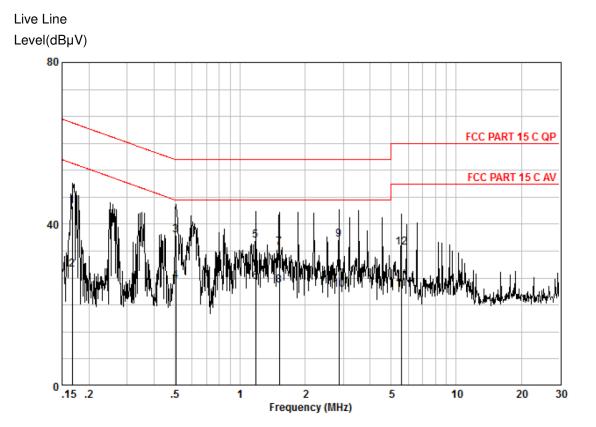
Report No.: GZEM140800437101 Page: 27 of 31


Level(dBµV)

Measure result:

Freq	Read Level	Cable Loss	LISN Factor	Level	Limit Line	Over Limit	Remark
MHz	dBuV	dB	dB	dBu∛	dBuV	dB	
$0.168 \\ 0.505 \\ 0.505 \\ 1.178 \\ 1.519 \\ 2.869 \\ 2.869 \\ 5.564 \\ 5.56$	34,38 21,14 27,34 18,14 27,18 16,08 23,38 15,14 24,26 14,02 12,08 21,22	0.09 0.07 0.07 0.05 0.05 0.05 0.14 0.18 0.18	9,60 9,70 9,70 9,70 9,70 9,70 9,70 9,70 9,7	44.07 30.83 37.11 27.91 36.93 25.83 33.13 24.89 34.10 23.86 21.99 31.13	$\begin{array}{c} 55,08\\56,00\\46,00\\56,00\\46,00\\56,00\\46,00\\56,00\\46,00\\56,00\\46,00\\50,00\end{array}$	-18,89 -18,09 -19,07 -20,17 -22,87 -21,11 -21,90	AVERAGE QP AVERAGE QP AVERAGE QP AVERAGE QP AVERAGE AVERAGE

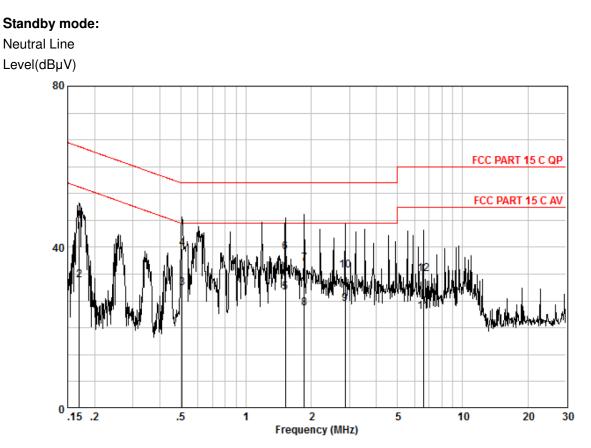
Report No.: GZEM140800437101 Page: 28 of 31



Measure data:

Freq	Read Level	Cable Loss	LISN Factor	Level	Limit Line	Over Limit	Remark
MHz	dBuV	dB	dB	dBuV	dBuV	dB	
0,169 0,169 0,507 1,519 1,519 1,858 1,858 2,869 2,869 6,592 6,592	36,72 25,14 33,30 26,14 20,02 32,20 18,08 27,16 24,20 17,02 18,48 11,02	0.09 0.07 0.07 0.05 0.05 0.05 0.05 0.14 0.14 0.17 0.17	9,66 9,66 9,66 9,68 9,68 9,69 9,69 9,70 9,70 9,73 9,73	46.47 34.89 43.03 35.87 29.75 41.93 27.82 36.90 34.04 26.86 28.37 20.91	$\begin{array}{c} 54,99\\56,00\\46,00\\56,00\\46,00\\56,00\\56,00\\56,00\\46,00\\56,00\\46,00\\60,00\end{array}$	-12,97 -10,13 -16,25 -14,07 -18,18 -19,10 -21,96 -19,14 -31,63	AVERAGE QP AVERAGE AVERAGE QP AVERAGE QP QP AVERAGE

Report No.: GZEM140800437101 Page: 29 of 31



Measure result:

Freq	Read Level	Cable Loss	LISN Factor	Level	Limit Line	Over Limit	Remark
MHz	dBuV	dB	dB	dBuV	dBuV	dB	
0,168 0,505 0,505 1,178 1,178 1,519 2,869 2,869 5,564 5,564	34.74 19.14 27.52 16.08 26.30 16.02 24.38 15.08 26.24 14.02 14.02 24.34	0.09 0.07 0.07 0.05 0.05 0.05 0.05 0.14 0.14 0.18 0.18	9,60 9,70 9,70 9,70 9,70 9,70 9,70 9,70 9,7	44,43 28,83 37,29 25,85 36,05 25,77 34,13 24,83 36,08 23,86 23,93 34,25	$\begin{array}{c} 55,08\\56,00\\46,00\\56,00\\46,00\\56,00\\46,00\\56,00\\46,00\\56,00\\46,00\\50,00\end{array}$	-18,71 -20,15 -19,95 -20,23 -21,87 -21,17 -19,92 -22,14	AVERAGE QP AVERAGE QP AVERAGE QP AVERAGE QP AVERAGE AVERAGE

Report No.: GZEM140800437101 Page: 30 of 31

Measure data:

Freq	Read Level	Cable Loss	LISN Factor	Level	Limit Line	Over Limit	Remark
MHz	dBuV	dB	dB	dBuV	dBuV	dB	
0,169 0,507 0,507 1,519 1,519 1,858 1,858 2,869 2,869 6,592 6,592	36,74 22,14 20,08 29,88 19,02 29,10 26,20 15,02 16,02 24,34 14,08 23,38	$0.09 \\ 0.07 \\ 0.07 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.14 \\ 0.14 \\ 0.17 \\ 0.17 \\ 0.17 \\ 0.17 \\ 0.17 \\ 0.17 \\ 0.17 \\ 0.17 \\ 0.17 \\ 0.17 \\ 0.17 \\ 0.17 \\ 0.17 \\ 0.17 \\ 0.17 \\ 0.17 \\ 0.17 \\ 0.17 \\ 0.17 \\ 0.09 \\ $	9,66 9,66 9,66 9,68 9,69 9,69 9,70 9,70 9,73 9,73	46,49 31,89 29,81 39,61 28,75 38,83 35,94 24,76 25,86 34,18 23,97 33,27	$\begin{array}{c} 54,99\\ 46,00\\ 56,00\\ 46,00\\ 56,00\\ 56,00\\ 46,00\\ 46,00\\ 56,00\\ 56,00\\ 50,00\end{array}$	-16,19 -16,39 -17,25 -17,17 -20,06 -21,24 -20,14 -21,82	AVERAGE AVERAGE QP AVERAGE QP AVERAGE AVERAGE QP AVERAGE

Report No.: GZEM140800437101 Page: 31 of 31

Live Line Level(dBµV)

Freq	Read Level		LISN Factor	Level	Limit Line	Over Limit	Remark
MHz	dBuV	dB	dB	dBuV	dBu∛	đB	
0,168 0,505 0,505 0,592 0,592 1,519 1,519 2,869 2,869 5,564 5,564	37,58 23,14 29,24 15,08 28,84 21,21 26,36 16,02 15,02 26,14 12,02 21,12	$0.09 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.05 \\ 0.05 \\ 0.14 \\ 0.18 \\ 0.18 \\ 0.18 \\ 0.18 \\ 0.18 \\ 0.18 \\ 0.18 \\ 0.18 \\ 0.18 \\ 0.18 \\ 0.18 \\ 0.18 \\ 0.18 \\ 0.18 \\ 0.18 \\ 0.18 \\ 0.18 \\ 0.18 \\ 0.18 \\ 0.09 \\ $	9,60 9,70 9,70 9,70 9,70 9,70 9,70 9,70 9,7	47.27 32.83 39.01 24.85 38.61 30.98 36.11 25.77 24.86 35.98 21.93 31.03	$\begin{array}{c} 55,08\\56,00\\46,00\\56,00\\46,00\\56,00\\46,00\\46,00\\56,00\\56,00\\56,00\\50,00\end{array}$	-16,99 -21,15 -17,39 -15,02 -19,89 -20,23 -21,14 -20,02	AVERAGE QP AVERAGE QP AVERAGE QP AVERAGE QP AVERAGE QP AVERAGE

Measure result:

Freq	Read Level		LISN Factor		Limit Line	Over Limit	Remark
MHz	dBuV	dB	dB	dBuV	dBuV	dB	
$0.168 \\ 0.505 \\ 0.505 \\ 0.592 \\ 0.592 \\ 1.519 \\ 1.519 \\ 2.869 \\ 2.869 \\ 5.564 \\ 5.564 $	37,58 23,14 29,24 15,08 28,84 21,21 26,36 16,02 15,02 26,14 12,02 21,12	$\begin{array}{c} 0.09\\ 0.07\\ 0.07\\ 0.07\\ 0.07\\ 0.05\\ 0.05\\ 0.14\\ 0.14\\ 0.18\\ 0.18\\ 0.18\end{array}$	9,60 9,70 9,70 9,70 9,70 9,70 9,70 9,70 9,7	47.27 32.83 39.01 24.85 38.61 30.98 36.11 25.77 24.86 35.98 21.93 31.03	$\begin{array}{c} 55,08\\56,00\\46,00\\56,00\\46,00\\56,00\\46,00\\46,00\\56,00\\56,00\\56,00\\50,00\end{array}$	-16,99 -21,15 -17,39 -15,02 -19,89 -20,23 -21,14 -20,02	AVERAGE QP AVERAGE QP AVERAGE QP AVERAGE QP AVERAGE QP AVERAGE

--End of Report--