

Nemko GmbH & Co. KG
Prüf- und Zertifizierungsstelle
Test and Certification Institute
Reetzstraße 58
D-76327 Pfinztal
Tel.: +49 (0) 72 40 / 63 -0
Fax: +49 (0) 72 40 / 63 -11

Deutsche
Akkreditierungsstelle
D-PL-18175-01-05
D-PL-18175-01-06

EMV
Testzentrum

FCC TEST REPORT / IC TEST REPORT

APPLICANT

Company: race result AG
Address: Joseph-von-Fraunhofer-Str. 11
D - 76327 Pfinztal (Germany)
Witness(es) at tests: -

EQUIPMENT UNDER TEST (EUT)

Equipment: Chip2Go
Model/Type: RR06
Serial No.: C2G-W0083

TEST

Arrival of EUT: 2019-10-08
Date of measurement: 2019-10-14; 2019-10-23; 2019-11-26
Standards: 47 CFR Part 15, Subpart B
ICES-003 Issue 6
limit class: class B
Results: Passed - Details see test result summary
Performed by: F. Hupbauer

LABORATORY

Test site: Nemko GmbH & Co. KG, Pfinztal, Germany
FCC Reg. No.: 973501
IC File No.: 10921A

TEST REPORT

Identification No.: **FC-1907-379011**

Date of Report: 2019-12-20

Provided by: F. Hupbauer

Person responsible

Signature

Approved by: Dipl.-Ing. P. Lukas

Person responsible

Signature

Index of the test report:

1	General information	5
1.1	Description of Equipment under test (EUT).....	5
1.2	Internal frequency.....	5
1.3	Equipment configuration.....	5
1.3.1	Assembly of EUT	5
1.3.2	EUT software during test.....	5
1.4	Operating status (OS).....	5
1.5	Project history	5
1.6	Labelling information	6
1.7	Test equipment.....	6
1.8	definitions limit class	7
1.9	General	8
2	Test Report Summary.....	9
2.1	Standards	9
2.2	Results.....	9
3	Measurement of conducted emission	10
3.1	Standards	10
3.2	Measurement equipment.....	10
3.3	Test set-up.....	10
3.4	Test methods and limits.....	11
3.5	Subpart B - FCC Part 15.107 / ICES-003 class B limit values	11
3.6	Settings receiver	11
3.7	Climatic conditions.....	12
3.8	Test result.....	12
3.9	Diagrams and tables.....	12
3.9.1	Diagram 379011-32EC	12
3.9.2	Table Final Measurements 379011-32EC_fin QP	13
3.9.3	Table Final Measurements 379011-32EC_fin AV	13

4	Measurement of radiated field	14
4.1	Standards	14
4.2	Measurement equipment.....	14
4.3	Test set-up.....	14
4.4	Test method and limits	15
4.5	Subpart B - Part 15.109 / ICES-003 class B limit values	16
4.6	Settings receiver.....	16
4.7	Climatic conditions.....	16
4.8	Internal generated or used frequency for <u>intentional</u> radiators.....	16
4.9	Test result.....	17
4.10	Diagrams and tables.....	17
4.10.1	Diagram 379011-4ER	17
4.10.2	Table Final measurements 379011-4ER QP	17
5	Measurement of radiated field	18
5.1	Standards	18
5.2	Measurement equipment.....	18
5.3	Test set-up.....	18
5.4	Test method and limits	19
5.5	Subpart B - FCC Part 15.109 / ICES-003 class B limit values	20
5.6	Settings receiver.....	20
5.7	Climatic conditions.....	20
5.8	Internal generated or used frequency for <u>intentional</u> radiators.....	20
5.9	Test result.....	21
5.10	Diagrams and tables.....	21
5.10.1	Diagram 379011-5ER	21
5.10.2	Table Final measurements 379011-5ER QP	21

6	Measurement of radiated field	23
6.1	Standards	23
6.2	Measurement equipment	23
6.3	Test set-up	23
6.4	Test method and limits	24
6.5	Subpart B - FCC Part 15.109 / ICES-003 class B limit values	25
6.6	Settings receiver	25
6.7	Climatic conditions	25
6.8	Internal generated or used frequency for <u>intentional</u> radiators	25
6.9	Test result	25
6.10	Diagrams and tables	26
6.10.1	Diagram 379011-34ER2	26
6.10.2	Table Final measurements 379011-34ER2 PK	26
6.10.3	Table Final measurements 379011-34ER2 AV	27
7	Test equipment used	28
Annex A	29	
EUT / technical data	29	
Annex B	33	
Arrangement in the semi anechoic chamber	33	

1 General information

1.1 Description of Equipment under test (EUT)

Chip2Go is a programming device for passive transponders for sports timing. The RFID transponders are automatically transported and programmed from a roll. The device can be operated via a touch screen or a USB numeric keypad. At the front there is an additional antenna to check the programmed transponders. The antennas operate in the 865 - 927 MHz frequency range (US Band: 917.10 – 926.90 MHz).

1.2 Internal frequency

Maximum internal frequency (base unit and EuT)	1200 MHz
---	----------

1.3 Equipment configuration

Devices often consists of systems with no fixed configuration. The kind, number and installation of different subassemblies within the equipment may vary from system to system. To realistically simulate EMC conditions (related both to emission and immunity), the equipment assembly shall represent a typical installation as specified by the manufacturer. Such tests shall be carried out as type tests under normal conditions as specified by the manufacturer. The equipment was tested in one configuration.

1.3.1 Assembly of EUT

The EuT was tested in the following typical set up, because the highest disturbance was expected in this configuration.

Item	Component	Serial number	Description
1	Chip2Go	C2G-W0083	-
2	Delock USB Key Pad	12481	USB NumPad
3	CUI SDI50-15-U	-	Power supply

1.3.2 EUT software during test

The software used for simulating the different modes of operation is documented below. This software represents the estimated worst-case operating mode for normal application.

Item	Software version	Description
1	1.0.2	firmware
2	2.1.2_E	firmware UHF-module

1.4 Operating status (OS)

OS I) **Programming transponder cyclically, motor in operation
supply voltage 115 V / 60 Hz**

The operational conditions of the EUT was be determined by the manufacturer according to the typical use of the EUT with respect to the expected highest level of emission.

1.5 Project history

test report (Ident.-No.)	date of report	modification of the EuT	Change in standard in clause:
FC-1907-379011	2019-12-20	delivery status	initial test report

1.6 Labelling information

The EuT had been tested against FCC §15 / ICES-003 class B limits.

U.S. only:

The device under test shall bear the following statement in a conspicuous location on the device:

This device complies with Part 15 of the FCC Rules.
Operation is subject to the following two conditions:

- (1) this device may not cause harmful interference, and
- (2) this device must accept any interference received, including interference's that may cause undesirable operation.

Canada only:

Each unit of an ITE model shall bear a label which represents the manufacturer's or importer's Self-Declaration of Compliance (SDoC) to Industry Canada ICES-003:

"CAN ICES-3 (*)/NMB-3(*)"

* Insert either "A" or "B" but not both to identify the applicable Class of ITE.

1.7 Test equipment

See list of test equipment in chapter 7.

If any modifications are made to the EUT to bring the EUT into compliance with the appropriate specifications, the test report shall give a complete description of, and reasons for, these modifications.

1.8 definitions limit class

Class A digital device:

A digital device that is marketed for use in a commercial, industrial or business environment, exclusive of a device which is marketed for use by the general public or is intended to be used in the home.

Class B digital device:

A digital device that is marketed for use in a residential environment notwithstanding use in commercial, business and industrial environments. Examples of such devices include, but are not limited to, personal computers, calculators, and similar electronic devices that are marketed for use by the general public.

Information to the user

(a) For a Class A digital device or peripheral, the instructions furnished the user shall include the following or similar statement, placed in a prominent location in the text of the manual:

Note:

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

(b) For a Class B digital device or peripheral, the instructions furnished the user shall include the following or similar statement, placed in a prominent location in the text of the manual:

Note:

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

1.9 General

The tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with:

47 CFR Part 15, Subpart B

ICES-003 Issue 6

The test methods have been in accordance with 47 CFR Part 15 and RSS where applicable.

- Production Unit
- Pre-production Unit

THIS TEST REPORT RELATES ONLY TO THE ITEM(S) AND CONFIGURATIONS TESTED.

**Deviations from, additions to, or exclusions from the test specifications
are described in "Test results".**

TEST REPORT NO.: FC-1907-379011

Nemko authorizes the above-named company to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only. Any reproduction of parts of this report requires approval in writing from Nemko. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Nemko accepts no responsibility for damages suffered by any third party as a result of decisions made or actions based on this report.

2 Test Report Summary

2.1 Standards

Federal Communications Commission **47 CFR Part 15, Subpart B**
Interference-Causing Equipment Standard **ICES-003 Issue 6**
limit class **class B**

2.2 Results

Environmental phenomena	Port / Test module	Basic standard and test setup	Limit class	Result
Conducted emission	Input and output power ports	EC	see chapter test module EC.	B
Radiated field	Enclosure 30 - 200 MHz	ER low	see chapter test module ER low.	B
Radiated field	Enclosure 200 - 1000 MHz	ER high	see chapter test module ER high.	B
Radiated field	Enclosure 1 - 14 GHz	ER2	see chapter test module ER2.	B

For details (e.g. date of standards) see chapter test modules.

Test module EC

3 Measurement of conducted emission

3.1 Standards

Federal Communications Commission	47 CFR Part 15, Subpart B
Interference-Causing Equipment Standard	ICES-003 Issue 6
limit class	class B
Measurement standard	ANSI C63.4: 2014
Internal procedure	QMA-5.4.1-11
Frequency range	0.15 - 30 MHz
Limits FCC	§15.107; class B
Limits IC	ICES-003 clause 6.1; class B
Test uncertainty U95	3.58 dB (150 kHz - 30 MHz)

3.2 Measurement equipment

Equipment	Ident. No.	Type	Manufacturer
<input checked="" type="checkbox"/> Artificial mains network, 1ph	1-0072	ESH3-Z5	Rohde & Schwarz
<input type="checkbox"/> Artificial mains network, 3ph	1-0037	ESH2-Z5	Rohde & Schwarz
<input type="checkbox"/> Current clamp	1-0353	EZ-17	Rohde & Schwarz
<input type="checkbox"/> Capacitive voltage probe	1-1122	CVP 9222 C	Schwarzbeck
<input type="checkbox"/> 8-wire ISN CAT3	1-0850	ISN CAT 3 8158	Schwarzbeck
<input type="checkbox"/> Passive probe	1-0092	ESH2-Z3	Rohde & Schwarz
<input type="checkbox"/> conical test adaptor	1-0765	Konus EN 55015	Erika Fiedler
<input type="checkbox"/> M2 - CDN	1-0094	FCC-801-M2-16	FCC
<input type="checkbox"/> M3 - CDN	1-0083	FCC-801-M3-16	FCC
<input type="checkbox"/> M5 - CDN	1-0374	L-801 M5	Lüthi
<input checked="" type="checkbox"/> Antenna cable 2	1-0364	RF 214-N/7	Kabelwerk Eupen
<input checked="" type="checkbox"/> Coaxial cable (to SAC)	1-0365	Aircom plus	SSB electronic
<input checked="" type="checkbox"/> Coaxial cable (to switch)	1-1118	RG 213	-
<input checked="" type="checkbox"/> Pulse limiter	1-0054	ESH3-Z2	Rohde & Schwarz
<input checked="" type="checkbox"/> Measuring receiver	1-0604	ESU8	Rohde & Schwarz
<input checked="" type="checkbox"/> EMI-Software RadiMation	1-0624	RM 2018.2.8	DARE
<input checked="" type="checkbox"/> Semi anechoic chamber	1-0361	-	R&M München

3.3 Test set-up

The test set-up was realized in a shielded chamber according to the above-mentioned standard.

The test has been performed as following:

- 1) Preview test: Peak- and Average-Detector; measuring time 100 ms; frequency step 2,5 kHz; all lines; protection earth grounded.

- 2) Find frequencies with maximum emission:
 - ⇒ Acceptance-analysis: Limit minus 10 dB
 - ⇒ Peak-reduction: 20 Peaks in frequency range 150 kHz - 30 MHz
- 3) Final test; Quasi-Peak and Average-Detector; measuring time 1 s; at the critical frequencies.

3.4 Test methods and limits

The test was performed according to ANSI C63.4-2014 inside a shielded room where the floor and one of the walls of the test site comprised the reference ground plane (RGP). The test was performed at the AC input. For the duration of the test EUT were placed 0.4 m apart from the vertical RGP (see fig. 3). The power input cable of the was connected to an artificial mains network. The test was performed separately on each phase and on the neutral wire also.

The disturbances were first examined by performing a spectrum scan by using a peak detector. The general procedure in the conducted disturbance emission test is that no further measurements are necessary if the disturbance levels measured by using the peak detector are below the limit value defined for the measurement performed by using an average detector. If not, then at the test frequencies concerned the measurement is performed also by using a quasi-peak detector. If the disturbance levels measured by using the quasi-peak detector are below the limit value defined for the measurement performed by using an average detector, then measurements by using the average detector are not necessary.

The frequency and amplitude of the six highest ac power-line conducted emissions relative to the limit, measured over all the current-carrying conductors of the EUT power cords, and the operating frequency or frequency to which the EUT is tuned (if appropriate) are reported, unless such emissions are more than 20 dB below the limit. AC power-line conducted emissions measurements were carried out separately only on each of the phase ("hot") line(s) and (if used) on the neutral line(s), but not on the ground [protective earth] line(s). If fewer than six emission frequencies are within 20 dB of the limit, the noise level of the measuring instrument at representative frequencies is reported. The specific conductor of the power-line cord for each of the reported emissions is identified in the table below.

3.5 Subpart B - FCC Part 15.107 / ICES-003 class B limit values

Frequency MHz	Quasi-peak dB μ V	Average dB μ V
0.15 - 0.5	66 to 56 *)	56 to 46 *)
0.5 - 5	56	46
5 - 30	60	50

The lower limit applies at the band edges.

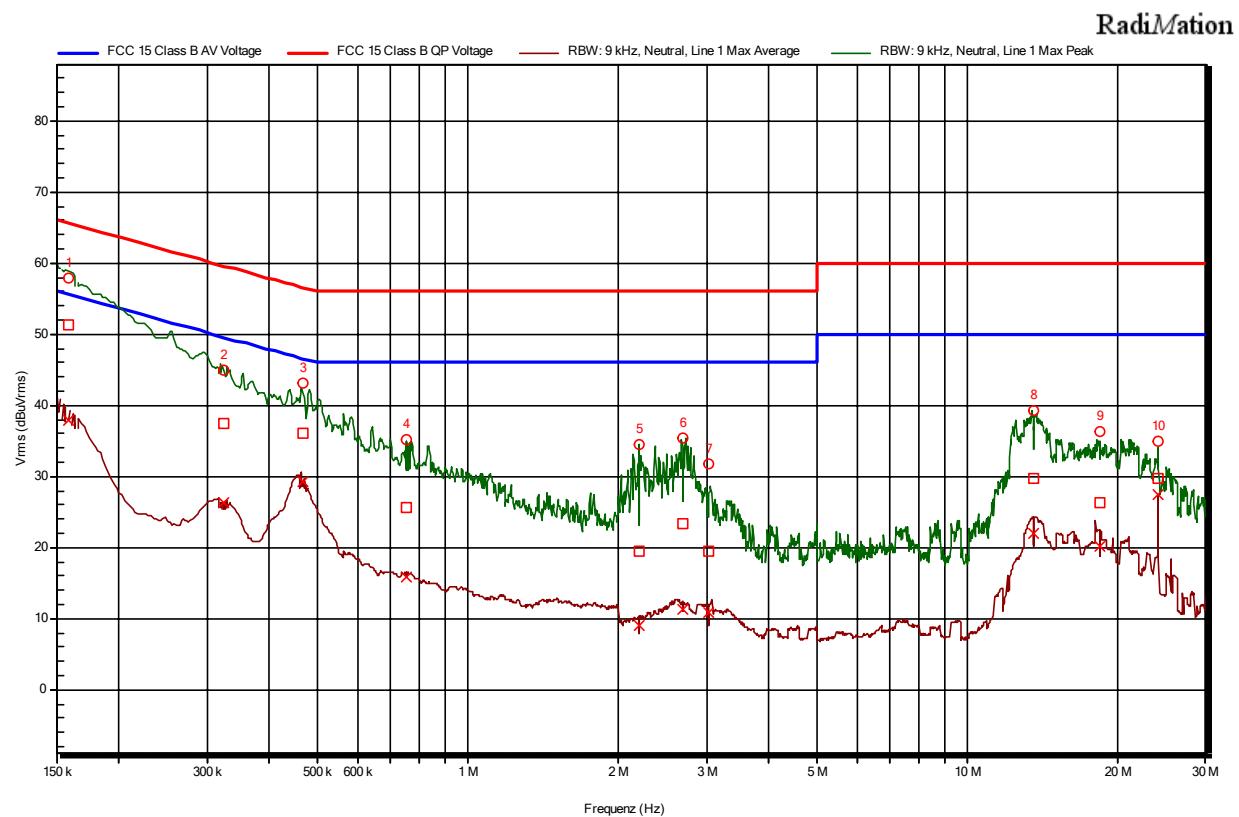
*)Decreases with the logarithm of the frequency.

3.6 Settings receiver

Ref. Level:	80 dB μ Vrms	Measure time:	100 ms
Attenuator:	10 dB	Sweep time:	Auto [120 ms]
RBW:	9 kHz	Step freq:	Linear: 0,002250 MHz steps
Preamp:	0 dB		

3.7 Climatic conditions

Parameter	Admissible range	Actual range	
Ambient temperature	10 °C - 40 °C (50 °F - 105 °F)	22 °C	O.K.
Relative humidity	10 % - 90 %	58 %	O.K.
Atmospheric pressure	N/A	999 mbar	O.K.


3.8 Test result

Power ports AC input

OS	Diagram	Remarks	Result
I)	379011-32EC	Measurement at 115 V / 60 Hz.	Passed.

3.9 Diagrams and tables

3.9.1 Diagram 379011-32EC

3.9.2 Table Final Measurements 379011-32EC_fin QP

No.	Frequency MHz	Level dB μ V	Transd dB	Limit dB μ V	Margin dB	Line	PE
1	0,159000	51,41	9,97	65,52	14,11	Neutral	GND
2	0,323250	37,48	9,99	59,62	22,15	Line 1	GND
3	0,467250	36,03	10,00	56,56	20,53	Line 1	GND
4	0,755250	25,70	10,02	56,00	30,30	Line 1	GND
5	2,206500	19,49	10,12	56,00	36,51	Line 1	GND
6	2,690250	23,44	10,15	56,00	32,56	Neutral	GND
7	3,023250	19,38	10,17	56,00	36,62	Line 1	GND
8	13,535250	29,65	10,69	60,00	30,35	Line 1	GND
9	18,413250	26,40	10,88	60,00	33,60	Neutral	GND
10	24,002250	29,71	11,15	60,00	30,29	Line 1	GND

3.9.3 Table Final Measurements 379011-32EC_fin AV

No.	Frequency MHz	Level dB μ V	Transd dB	Limit dB μ V	Margin dB	Line	PE
1	0,159000	37,89	9,97	55,52	17,63	Neutral	GND
2	0,323250	26,21	9,99	49,62	23,41	Line 1	GND
3	0,467250	29,24	10,00	46,56	17,32	Line 1	GND
4	0,755250	15,77	10,02	46,00	30,23	Line 1	GND
5	2,206500	8,95	10,12	46,00	37,05	Line 1	GND
6	2,690250	11,34	10,15	46,00	34,66	Neutral	GND
7	3,023250	10,81	10,17	46,00	35,19	Line 1	GND
8	13,535250	22,06	10,69	50,00	27,94	Line 1	GND
9	18,413250	20,22	10,88	50,00	29,78	Neutral	GND
10	24,002250	27,55	11,15	50,00	22,45	Line 1	GND

For calculating the disturbance voltage U and the Margin the following formulas were employed:

$$U = U_M + CF \quad \text{with: } CF = a_{CB1} + a_{CB2} + a_{PL}$$

CF Correction factor (All transducers)
 U Value in dB μ V
 U_M Measured value at receiver input in dB μ V
 a_{CB} Cable loss in dB
 a_{PL} Attenuation Pulse limiter in dB

Margin = Limit - Result

Test module ER low (30 - 200 MHz)

4 Measurement of radiated field

4.1 Standards

Federal Communications Commission	47 CFR Part 15, Subpart B	
Interference-Causing Equipment Standard	ICES-003 Issue 6	
limit class	class B	
Measurement standard	ANSI C63.4: 2014	
Internal procedure	QMA-5.4.1-12	
Frequency range	30 - 200 MHz	
Limits FCC	§15.109; class B	
Limits IC	ICES-003 clause 6.2; class B	
Test uncertainty U95	4.17 dB	(30 - 200 MHz) horizontal
	4.77 dB	(30 - 200 MHz) vertical

4.2 Measurement equipment

Equipment	Ident. No.	Type	Manufacturer
<input checked="" type="checkbox"/> Biconical antenna HK116	1-0040	HK116	Rohde & Schwarz
<input type="checkbox"/> Log.-per. antenna	1-0055	HL223	Rohde & Schwarz
<input type="checkbox"/> Trilog antenna	1-0200	VULB 9163	Schwarzbeck
<input checked="" type="checkbox"/> Antenna mast	1-0807	MA4000-XPET	Innco
<input checked="" type="checkbox"/> Turntable	1-0080	DS 420	H. Deisel
<input checked="" type="checkbox"/> Controller	1-0806	CO3000	Innco
<input type="checkbox"/> Antenna cable 1	1-0363	RF 214-N/7	Kabelwerk Eupen
<input checked="" type="checkbox"/> Antenna cable 2	1-0364	RF 214-N/7	Kabelwerk Eupen
<input checked="" type="checkbox"/> Coaxial cable (to FAC)	1-0619	SF 106	Huber & Suhner
<input checked="" type="checkbox"/> Measuring receiver	1-0604	ESU 8	Rohde & Schwarz
<input type="checkbox"/> Spectrum analyser	1-0611	FSV 40	Rohde & Schwarz
<input type="checkbox"/> Attenuator	1-0994	BW-N3W5+	mini circuits
<input checked="" type="checkbox"/> Attenuator	1-0995	UNAT-6+	mini circuits
<input type="checkbox"/> Attenuator	1-0870	BW-N10W5+	mini circuits
<input type="checkbox"/> Attenuator	1-0871	BW-N10W5+	mini circuits
<input type="checkbox"/> EMI-Software ES-K1	1-0071	ES-K1	Rohde & Schwarz
<input checked="" type="checkbox"/> EMI-Software RadiMation	1-0624	RM 2018.2.8	DARE
<input checked="" type="checkbox"/> Semi anechoic chamber	1-0361	-	R&M München

4.3 Test set-up

The test set-up was realized in a semi anechoic chamber according to the above-mentioned standard. The position of the receiving antenna and the EUT in the semi-anechoic chamber is shown in the figure.

ANNEX B

The test has been performed as following:

- 1) Preview test; Peak-Detector; measuring time 10 ms; frequency range from 30 MHz to 200 MHz; frequency step 30 kHz; antenna height from 1,00 m up to 4,00 m; horizontal and vertical polarization; antenna-to-EUT azimuth 0 up to 360 degrees in steps of 22.5 degrees.
- 2) Find frequencies with maximum emission:
 - ⇒ Acceptance-analyze: Limit minus 20 dB; Because of the dimensions of the FAR the measurements have been performed at a distance of 3 m.
 - ⇒ According to §15.31 of CFR 47 (Code of Federal Regulations Title 47; Volume 1; Chapter I; Subchapter A) measurements at frequencies at or above 30 MHz may be performed at a distance other than what is specified provided: measurements are not made in the near field except where it can be shown that near field measurements are appropriate due to the characteristics of the device; and it can be demonstrated that the signal levels needed to be measured at the distance employed can be detected by the measurement equipment.
 - ⇒ While performing measurements at a distance other than that specified, the **limit line** was extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse linear-distance for field strength measurements; inverse-linear-distance-squared for power density measurements). An inverse proportionality of 20 dB per decade was used to normalize the limit line to the specified distance for determine compliance.
 - ⇒ Peak-reduction of highest peaks in frequency range 30,000 MHz - 200,000 MHz
- 3) Final test; Quasi-Detector; measuring time 1 s; at frequencies from step 2); Search maximum: vary antenna height and azimuth (rotate turntable) to find the maximum field strength readings.
- 4) Manual test of selected frequencies which meet the criterion 2).

4.4 Test method and limits

The test was performed in a test chamber according to ANSI C63.4-2014. In order to find the maximum levels of the disturbance radiation the angle of the turntable, the height of the measuring antenna and the lay-out of the EUT cables were varied during the tests. The test was performed separately with the measuring antenna being both in horizontal and vertical polarizations.

For ITE unintentional radiators, the frequency and amplitude of the six highest radiated emissions relative to the limit and independent of antenna polarization are reported in the table below, unless such emissions are more than 20 dB below the limit.

For unintentional radiators other than ITE, for each of the frequencies to which the device is tuned, the frequency and amplitude of the six highest radiated emissions relative to the limit and the operating frequency, or frequency to which the EUT is tuned (if appropriate), are reported in the table below unless such emissions are more than 20 dB below the limit.

4.5 Subpart B - Part 15.109 / ICES-003 class B limit values

Frequency MHz	Quasi-peak µV/m	Quasi-peak dB(µV/m) @3 m	Average dB(µV/m) @3 m
30 - 88	100 @3 m	40.00 @3 m	-
88 - 216	150 @3 m	43.52 @3 m	-
216 - 960	200 @3 m	46.02 @3 m	-
960 - 1000	500 @3 m	53.98 @3 m	-

In the emission tables above, the tighter limit applies at the band edges.

4.6 Settings receiver

Ref. Level:	80 dBuVrms	VBW:	Auto [120 kHz]
Attenuator:	10 dB	Sweep time:	Auto [120 ms]
RBW:	120 kHz	Step freq:	Linear: 30,000 kHz steps
Preamp:	10 dB	Measure time:	10 ms
Antenna distance:	3 m	Antenna tower:	1,00 m - 4,00 m

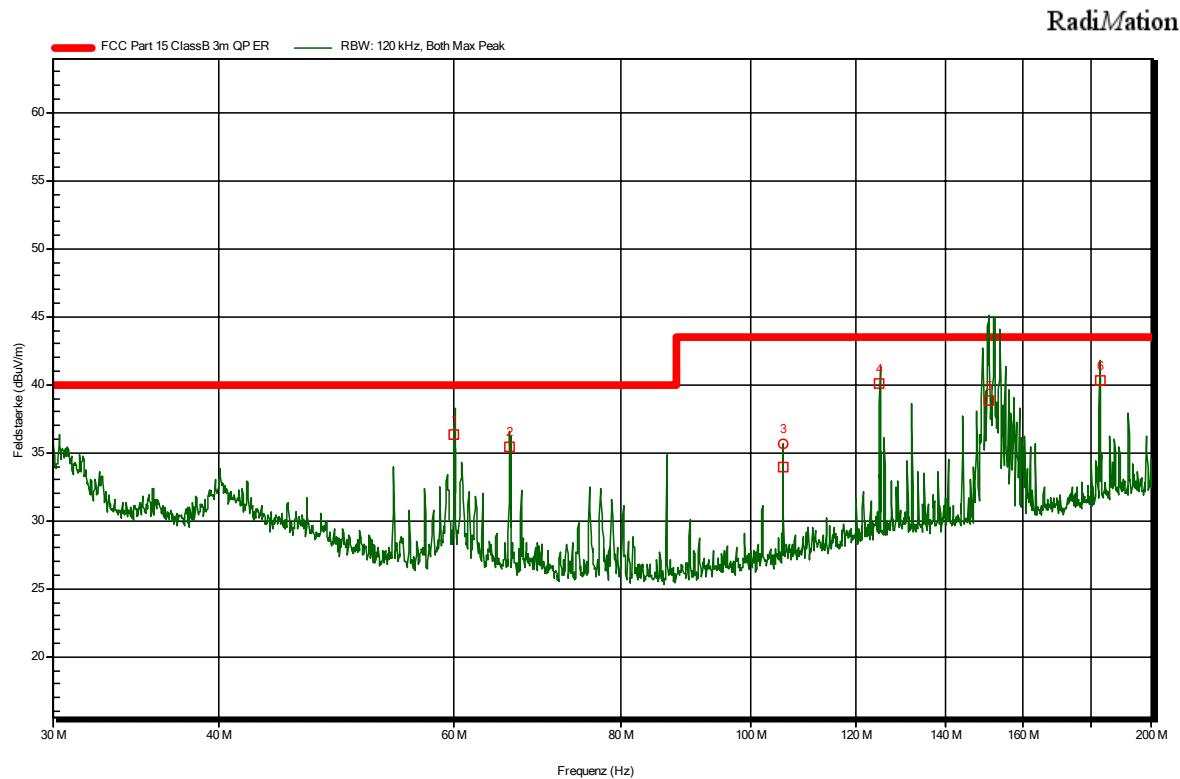
Of those disturbances above (L -20 dB), where L is the limit level in logarithmic units, at least the disturbance levels and the frequencies of the 6 highest disturbances is recorded. The antenna polarization for each reported disturbance is recorded.

4.7 Climatic conditions

Parameter	Admissible range	Actual range	
Ambient temperature	10 °C - 40 °C (50 °F - 105 °F)	18 °C	O.K.
Relative humidity	10 % - 90 %	59 %	O.K.
Atmospheric pressure	N/A	999 mbar	O.K.

4.8 Internal generated or used frequency for intentional radiators

The highest internal source of an EUT is defined as the highest frequency generated or used within the EUT or on which the EUT operates or tunes.


	Highest frequency generated or used in the device or on which the device operates or tunes (MHz)	Upper frequency of measurement range
<input checked="" type="checkbox"/>	9 kHz - 10 GHz	The measurement is made up to 10 times the highest frequency or 40 GHz, whichever is less.
<input type="checkbox"/>	10 - 30 GHz	The measurement is made up to 5 times the highest frequency or 100 GHz, whichever is less.
<input type="checkbox"/>	30 - 95 GHz	The measurement is made up to 5 times the highest frequency or 200 GHz, whichever is less.
<input type="checkbox"/>	> 95 GHz	The measurement is made up to 3 times the highest frequency or 750 GHz, whichever is less.

4.9 Test result

OS	Diagram	Remarks	Result
I)	379011-4ER	-	Passed.

4.10 Diagrams and tables

4.10.1 Diagram 379011-4ER

4.10.2 Table Final measurements 379011-4ER QP

Frequency MHz	Level QP dB(µV/m)	QP Limit dB(µV/m)	Margin dB	Angle deg	Height m	Polarization
60,000	36,33	40,00	3,67	19,0	1,00	Vertical
66,000	35,45	40,00	4,55	4,0	1,00	Vertical
105,780	33,90	43,50	9,60	292,0	4,00	Horizontal
125,010	40,06	43,50	3,44	279,0	2,10	Horizontal
150,750	38,86	43,50	4,64	279,0	1,60	Horizontal
182,700	40,29	43,50	3,21	214,0	1,10	Horizontal

For calculating the disturbance field strength and the Margin the following formulas were employed:

$$E = U_M + CF \quad \text{with } CF = a_{Cb1} + a_{Cb2} + AF + a_{ATT}$$

CF Correction factor (All transducers)

E Value in dBµV/m

U_M Measured value at receiver input in dBµV

a_{CB} Cable loss in dB

AF Antenna factor in dB/m

a_{ATT} Attenuation in dB

Margin = Limit - Result

Test module ER high (200 - 1000 MHz)

5 Measurement of radiated field

5.1 Standards

Federal Communications Commission	47 CFR Part 15, Subpart B	
Interference-Causing Equipment Standard	ICES-003 Issue 6	
limit class	class B	
Measurement standard	ANSI C63.4: 2014	
Internal procedure	QMA-5.4.1-12	
Frequency range	200 - 1000 MHz	
Limits FCC	§15.109; class B	
Limits IC	ICES-003 clause 6.2; class B	
Test uncertainty U95	4.54 dB	(200 - 1000 MHz) horizontal
	5.02 dB	(200 - 1000 MHz) vertical

5.2 Measurement equipment

	Equipment	Ident. No.	Type	Manufacturer
<input type="checkbox"/>	Biconical antenna HK116	1-0040	HK116	Rohde & Schwarz
<input checked="" type="checkbox"/>	Log.-per. antenna	1-0055	HL223	Rohde & Schwarz
<input type="checkbox"/>	Trilog antenna	1-0200	VULB 9163	Schwarzbeck
<input checked="" type="checkbox"/>	Antenna mast	1-0807	MA4000-XPET	Innco
<input checked="" type="checkbox"/>	Turntable	1-0080	DS 420	H. Deisel
<input checked="" type="checkbox"/>	Controller	1-0806	CO3000	Innco
<input checked="" type="checkbox"/>	Antenna cable 2	1-0364	RF 214-N/7	Kabelwerk Eupen
<input checked="" type="checkbox"/>	Coaxial cable (to FAC)	1-0619	SF 106	Huber & Suhner
<input checked="" type="checkbox"/>	Measuring receiver	1-0604	ESU 8	Rohde & Schwarz
<input type="checkbox"/>	Spectrum analyser	1-0611	FSV 40	Rohde & Schwarz
<input type="checkbox"/>	Attenuator	1-0994	BW-N3W5+	mini circuits
<input type="checkbox"/>	Attenuator	1-0995	UNAT-6+	mini circuits
<input type="checkbox"/>	Attenuator	1-0870	BW-N10W5+	mini circuits
<input type="checkbox"/>	Attenuator	1-0871	BW-N10W5+	mini circuits
<input checked="" type="checkbox"/>	EMI-Software RadiMation	1-0624	RM 2018.2.8	DARE
<input checked="" type="checkbox"/>	Semi anechoic chamber	1-0361	-	R&M München

5.3 Test set-up

The test set-up was realized in a semi anechoic chamber according to the above-mentioned standard. The position of the receiving antenna and the EUT in the semi-anechoic chamber is shown in the figure.

ANNEX B

The test has been performed as following:

- 5) Preview test; Peak-Detector; measuring time 10 ms; frequency range from 200 MHz to 1000 MHz, frequency 30 kHz; antenna height from 1,00 m up to 4,00 m; horizontal and vertical polarization; antenna-to-EUT azimuth 0 up to 360 degrees in steps of 22.5 degrees.
- 6) Find frequencies with maximum emission:
 - ⇒ Acceptance-analyze: Limit minus 20 dB; Because of the dimensions of the FAR the measurements have been performed at a distance of 3 m.
 - ⇒ According to §15.31 of CFR 47 (Code of Federal Regulations Title 47; Volume 1; Chapter I; Subchapter A) measurements at frequencies at or above 30 MHz may be performed at a distance other than what is specified provided: measurements are not made in the near field except where it can be shown that near field measurements are appropriate due to the characteristics of the device; and it can be demonstrated that the signal levels needed to be measured at the distance employed can be detected by the measurement equipment.
 - ⇒ While performing measurements at a distance other than that specified, the **limit line** was extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse linear-distance for field strength measurements; inverse-linear-distance-squared for power density measurements). An inverse proportionality of 20 dB per decade was used to normalize the limit line to the specified distance for determine compliance.
 - ⇒ Peak-reduction of highest peaks in frequency range 200,000 MHz - 1,000 GHz
- 7) Final test; Quasi-Detector; measuring time 1 s; at frequencies from step 2); Search maximum: vary antenna height and azimuth (rotate turntable) to find the maximum field strength readings.
- 8) Manual test of selected frequencies which meet the criterion 2).

5.4 Test method and limits

The test was performed in a test chamber according to ANSI C63.4-2014. In order to find the maximum levels of the disturbance radiation the angle of the turntable, the height of the measuring antenna and the lay-out of the EUT cables were varied during the tests. The test was performed separately with the measuring antenna being both in horizontal and vertical polarizations.

For ITE unintentional radiators, the frequency and amplitude of the six highest radiated emissions relative to the limit and independent of antenna polarization are reported in the table below, unless such emissions are more than 20 dB below the limit.

For unintentional radiators other than ITE, for each of the frequencies to which the device is tuned, the frequency and amplitude of the six highest radiated emissions relative to the limit and the operating frequency, or frequency to which the EUT is tuned (if appropriate), are reported in the table below unless such emissions are more than 20 dB below the limit.

5.5 Subpart B - FCC Part 15.109 / ICES-003 class B limit values

Frequency MHz	Quasi-peak μV/m	Quasi-peak dB(μV/m) @3 m	Average dB(μV/m) @3 m
30 - 88	100 @3 m	40.00 @3 m	-
88 - 216	150 @3 m	43.52 @3 m	-
216 - 960	200 @3 m	46.02 @3 m	-
960 - 1000	500 @3 m	53.98 @3 m	-

In the emission tables above, the tighter limit applies at the band edges.

5.6 Settings receiver

Ref. Level:	80 dBuVrms	VBW:	Auto [120 kHz]
Attenuator:	10 dB	Sweep time:	Auto [120 ms]
RBW:	120 kHz	Step freq:	Linear: 30,000 kHz steps
Preamp:	10 dB	Measure time:	10 ms
Antenna distance:	3 m	Antenna tower:	1,00 m - 4,00 m

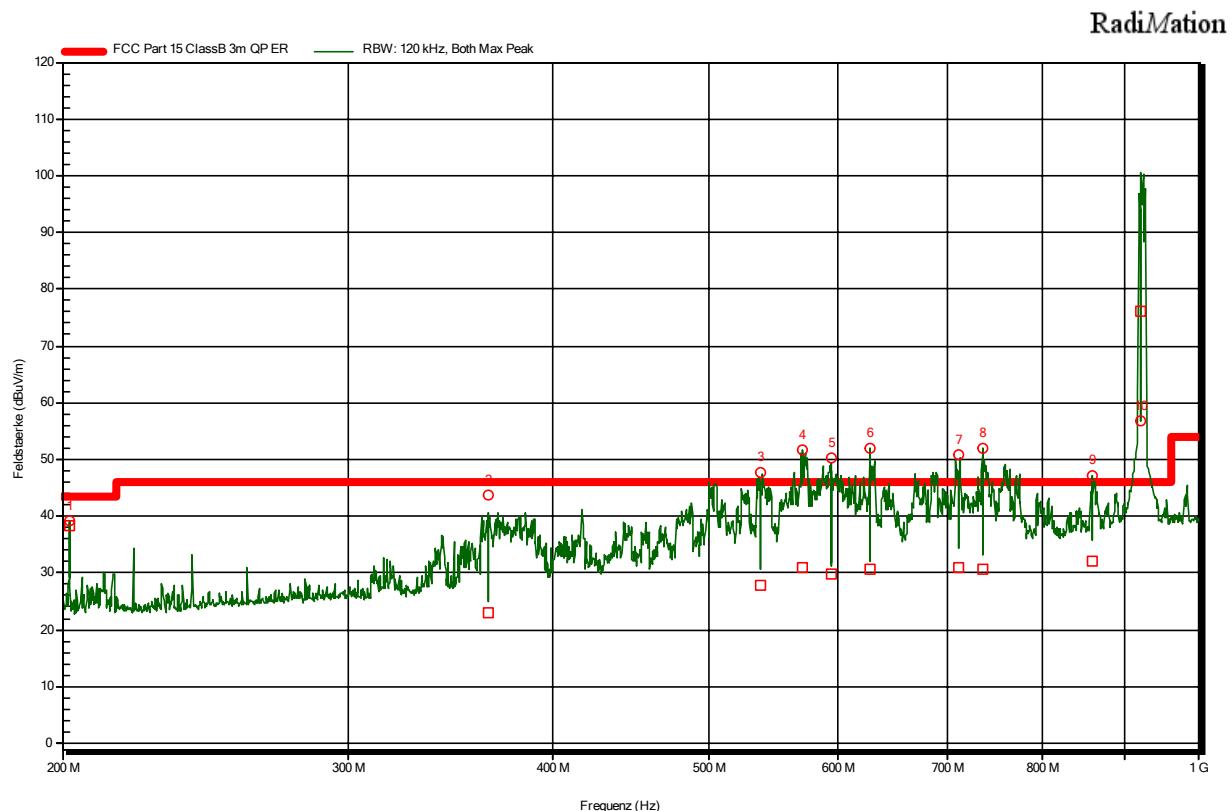
Of those disturbances above (L -20 dB), where L is the limit level in logarithmic units, at least the disturbance levels and the frequencies of the 6 highest disturbances is recorded. The antenna polarization for each reported disturbance is recorded.

5.7 Climatic conditions

Parameter	Admissible range	Actual range	
Ambient temperature	10 °C - 40 °C (50 °F - 105 °F)	18 °C	O.K.
Relative humidity	10 % - 90 %	59 %	O.K.
Atmospheric pressure	N/A	999 mbar	O.K.

5.8 Internal generated or used frequency for intentional radiators

The highest internal source of an EUT is defined as the highest frequency generated or used within the EUT or on which the EUT operates or tunes.


	Highest frequency generated or used in the device or on which the device operates or tunes (MHz)	Upper frequency of measurement range
<input checked="" type="checkbox"/>	9 kHz - 10 GHz	The measurement is made up to 10 times the highest frequency or 40 GHz, whichever is less.
<input type="checkbox"/>	10 - 30 GHz	The measurement is made up to 5 times the highest frequency or 100 GHz, whichever is less.
<input type="checkbox"/>	30 - 95 GHz	The measurement is made up to 5 times the highest frequency or 200 GHz, whichever is less.
<input type="checkbox"/>	> 95 GHz	The measurement is made up to 3 times the highest frequency or 750 GHz, whichever is less.

5.9 Test result

OS	Diagram	Remarks	Result
I)	379011-5ER	-	Passed.

5.10 Diagrams and tables

5.10.1 Diagram 379011-5ER

5.10.2 Table Final measurements 379011-5ER QP

Frequency MHz	Level QP dB(µV/m)	QP Limit dB(µV/m)	Margin dB	Angle deg	Height m	Polarization
201,920	38,25	43,50	5,25	247,0	1,00	Horizontal
365,450	22,88	46,00	23,12	292,0	4,00	Horizontal
536,780	27,85	46,00	18,15	22,0	1,00	Vertical
570,530	30,86	46,00	15,14	45,0	1,00	Vertical
593,480	29,95	46,00	16,05	135,0	1,00	Vertical
626,870	30,77	46,00	15,23	90,0	4,00	Vertical
711,530	31,00	46,00	15,00	337,0	1,00	Horizontal
735,800	30,73	46,00	15,27	67,0	2,50	Horizontal
859,670	32,02	46,00	13,98	247,0	1,00	Horizontal
920,450 *)	76,20			360,0	1,00	Vertical

*) Fundamental frequency

For calculating the disturbance field strength and the Margin the following formulas were employed:

$$E = U_M + CF \quad \text{with } CF = a_{Cb1} + a_{Cb2} + AF + a_{ATT}$$

<i>CF</i>	Correction factor (All transducers)
<i>E</i>	Value in dB μ V/m
<i>U_M</i>	Measured value at receiver input in dB μ V
<i>a_{CB}</i>	Cable loss in dB
<i>AF</i>	Antenna factor in dB/m
<i>a_{ATT}</i>	Attenuation in dB

Margin = Limit - Result

Test module ER2 (1 - 14 GHz)

6 Measurement of radiated field

6.1 Standards

Federal Communications Commission	47 CFR Part 15, Subpart B	
Interference-Causing Equipment Standard	ICES-003 Issue 6	
limit class	class B	
Measurement standard	ANSI C63.4: 2014	
Internal procedure	QMA-5.4.1-40	
Frequency range	1000 - 14000 MHz	
Limits FCC	§15.109; class B	
Limits IC	ICES-003 clause 6.2; class B	
Test uncertainty U95	7.03 dB	(1 - 6 GHz)
	16.46 dB	(6 - 18 GHz)

6.2 Measurement equipment

Equipment	Ident. No.	Type	Manufacturer
<input checked="" type="checkbox"/> Horn antenna	1-0772	BBHA 9120D	Schwarzbeck
<input type="checkbox"/> Trilog antenna	1-0200	VULB 9163	Schwarzbeck
<input checked="" type="checkbox"/> Antenna mast	1-0807	MA4000-XPET	Innco
<input type="checkbox"/> Coaxial cable	1-1037	AK 9515H	Schwarzbeck
<input checked="" type="checkbox"/> Pre amplifier	1-0615	BBV 9718	Schwarzbeck
<input checked="" type="checkbox"/> Coaxial cable	1-0620	SF 106	Huber & Suhner
<input checked="" type="checkbox"/> Coaxial cable (to FAC)	1-0619	SF 106	Huber & Suhner
<input type="checkbox"/> Measuring receiver	1-0604	ESU 8	Rohde & Schwarz
<input checked="" type="checkbox"/> Spectrum analyser	1-0611	FSV 40	Rohde & Schwarz
<input checked="" type="checkbox"/> EMI-Software RadiMation	1-0624	RM 2018.2.8	DARE
<input checked="" type="checkbox"/> Turntable	1-0080	DS 420	H. Deisel
<input checked="" type="checkbox"/> Controller	1-0806	CO3000	Innco
<input checked="" type="checkbox"/> Semi anechoic chamber	1-0361	-	R&M München

6.3 Test set-up

The test set-up was realized in a semi anechoic chamber according to the above-mentioned standard. The position of the receiving antenna and the EUT in the semi-anechoic chamber is shown in the figure.

Annex B

The test has been performed as following:

9) Preview test; Peak-Detector; measuring time 10 ms; frequency range from 1000 MHz to 14,000 GHz; frequency step 250 kHz; antenna height from 1,00 m up to 1,00 m; horizontal and vertical polarization; antenna-to-EUT azimuth 0 up to 360 degrees in steps of 15 degrees.

10) Find frequencies with maximum emission:

- ⇒ Acceptance-analyze: Limit minus 20 dB; Because of the dimensions of the FAR the measurements have been performed at a distance of 3,00 m.
- ⇒ According to §15.31 of CFR 47 (Code of Federal Regulations Title 47; Volume 1; Chapter I; Subchapter A) measurements at frequencies at or above 30 MHz may be performed at a distance other than what is specified provided: measurements are not made in the near field except where it can be shown that near field measurements are appropriate due to the characteristics of the device; and it can be demonstrated that the signal levels needed to be measured at the distance employed can be detected by the measurement equipment.
- ⇒ While performing measurements at a distance other than that specified, the **limit line** was extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse linear-distance for field strength measurements; inverse-linear-distance-squared for power density measurements). An inverse proportionality of 20 dB per decade was used to normalize the limit line to the specified distance for determine compliance.
- ⇒ Peak-reduction: 0 Peaks frequency range 1,000 GHz - 14,000 GHz

11) Final test; Peak- und Average-Detector; measuring time 1 s; at frequencies from step 2); Search maximum: vary antenna height and azimuth (rotate turntable) to find the maximum field strength readings.

12) If there are more than 10 peaks within the 10 dB margin a manual test with all settings is necessary to find the maximum field strength readings.

6.4 Test method and limits

The test was performed in a test chamber according to ANSI C63.4-2014. In order to find the maximum levels of the disturbance radiation the angle of the turntable, the height of the measuring antenna and the lay-out of the EUT cables were varied during the tests. The test was performed separately with the measuring antenna being both in horizontal and vertical polarizations.

For ITE unintentional radiators, the frequency and amplitude of the six highest radiated emissions relative to the limit and independent of antenna polarization are reported in the table below, unless such emissions are more than 20 dB below the limit.

For unintentional radiators other than ITE, for each of the frequencies to which the device is tuned, the frequency and amplitude of the six highest radiated emissions relative to the limit and the operating frequency, or frequency to which the EUT is tuned (if appropriate), are reported in the table below unless such emissions are more than 20 dB below the limit.

6.5 Subpart B - FCC Part 15.109 / ICES-003 class B limit values

Frequency MHz	Peak μV/m	Peak dB(μV/m) @3 m	Average dB(μV/m) @3 m
1000 - 14000	-	73.98 @3 m	53.98 @3 m

6.6 Settings receiver

Ref. Level:	80 dBuVrms	VBW:	1 MHz
Attenuator:	Auto [0 dB]	Sweep time:	30 s
RBW:	1 MHz	Step freq:	Fixed step count: 20001 steps per Band
Preamp:	0 dB	Measure time:	1 ms
Antenna distance:	3 m	Antenna tower:	1 m - 1 m

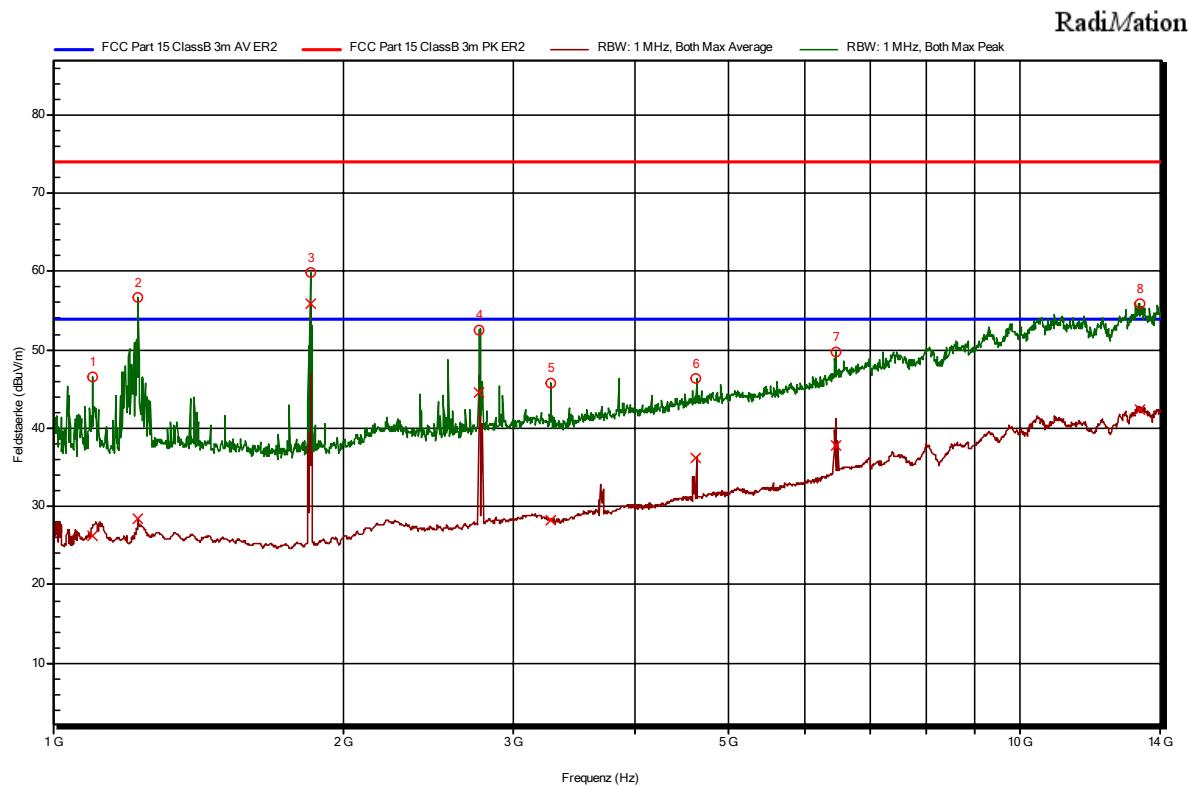
Of those disturbances above (L -20 dB), where L is the limit level in logarithmic units, at least the disturbance levels and the frequencies of the 8 highest disturbances is recorded. The antenna polarization for each reported disturbance is recorded.

6.7 Climatic conditions

Parameter	Admissible range	Actual range	
Ambient temperature	10 °C - 40 °C (50 °F - 105 °F)	20 °C	O.K.
Relative humidity	10 % - 90 %	40 %	O.K.
Atmospheric pressure	N/A	992 mbar	O.K.

6.8 Internal generated or used frequency for intentional radiators

The highest internal source of an EUT is defined as the highest frequency generated or used within the EUT or on which the EUT operates or tunes.


	Highest frequency generated or used in the device or on which the device operates or tunes (MHz)	Upper frequency of measurement range
<input checked="" type="checkbox"/>	9 kHz - 10 GHz	The measurement is made up to 10 times the highest frequency or 40 GHz, whichever is less.
<input type="checkbox"/>	10 - 30 GHz	The measurement is made up to 5 times the highest frequency or 100 GHz, whichever is less.
<input type="checkbox"/>	30 - 95 GHz	The measurement is made up to 5 times the highest frequency or 200 GHz, whichever is less.
<input type="checkbox"/>	> 95 GHz	The measurement is made up to 3 times the highest frequency or 750 GHz, whichever is less.

6.9 Test result

OM	Diagram	Remarks	Result
I)	379011-34ER2	-	Passed.

6.10 Diagrams and tables

6.10.1 Diagram 379011-34ER2

6.10.2 Table Final measurements 379011-34ER2 PK

Frequency	Level PK	Peak Limit	Margin	Angle	Height	Polarization
GHz	dB(μ V/m)	dB(μ V/m)	dB	deg	m	
1,099	46,58	73,98	27,4	180,00	1	Horizontal
1,224	56,58	73,98	17,4	180,00	1	Horizontal
1,845	59,85	73,98	14,13	337,00	1	Vertical
2,763	52,53	73,98	21,45	0,00	1	Horizontal
3,270	45,70	73,98	28,28	337,00	1	Vertical
4,630	46,29	73,98	27,69	0,00	1	Vertical
6,450	49,63	73,98	24,35	337,00	1	Vertical
13,292	55,84	73,98	18,14	291,00	1	Vertical

6.10.3 Table Final measurements 379011-34ER2 AV

Frequency	Level AV	Peak Limit	Margin	Angle	Height	Polarization
GHz	dB(μ V/m)	dB(μ V/m)	dB	deg	m	
1,099	26,16	53,98	27,82	180,00	1	Horizontal
1,224	28,54	53,98	25,44	180,00	1	Horizontal
1,845 *)	55,98			337,00	1	Vertical
2,763	44,48	53,98	9,5	0,00	1	Horizontal
3,270	28,25	53,98	25,73	337,00	1	Vertical
4,630	36,29	53,98	17,69	0,00	1	Vertical
6,450	37,83	53,98	16,15	337,00	1	Vertical
13,292	42,34	53,98	11,64	291,00	1	Vertical

*) Harmonic of the fundamental frequency

For calculating the disturbance field strength and the Margin the following formulas were employed:

$$E = U_M + CF \quad \text{with } CF = a_{Cb1} - g_{PA} + a_{Cb2} + AF + a_{ATT}$$

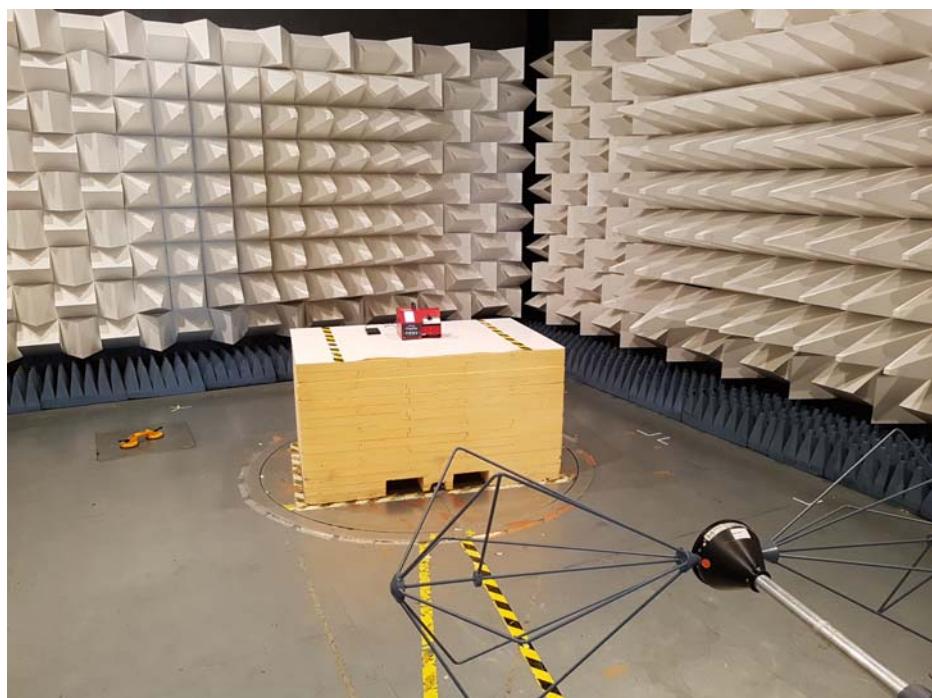
CF Correction factor (All transducers)
 E Value in $\text{dB}\mu\text{V}/\text{m}$
 U_M Measured value at receiver input in $\text{dB}\mu\text{V}$
 a_{CB} Cable loss in dB
 g_{PA} gain pre amplifier in dB
 AF Antenna factor in dB/m
 a_{ATT} Attenuation in dB

Margin = Limit - Result

7 Test equipment used

To facilitate inclusion on each page of the test equipment used for related tests, each item of test equipment and ancillaries are identified (numbered) by the test house.

Inv.-Nr.	Instrument/ ancillary	Manufacturer	Type	Serial number	Cal. Date	Cal. Due
1-0037	Artificial mains network, 3ph	Rohde & Schwarz	ESH2-Z5	882394/019	2019-09	2020-09
1-0040	Biconical antenna	Rohde & Schwarz	HK116	888945/007	2017-07	2020-07
1-0054	Pulse limiter	Rohde & Schwarz	ESH3-Z2	3MSE/0099	2019-09	2020-09
1-0055	LogPer antenna	Rohde & Schwarz	HL223	826517/014	2017-07	2020-07
1-0072	Artificial mains network, 1ph	Rohde & Schwarz	ESH3-Z5	840062/001	2019-09	2020-09
1-0080	Turntable	H. Deisel	DS 420	1361114	N / A	N / A
1-0200	Trilog antenna	Schwarzbeck	VULB 9163	VULB 9163-107	2019-02	2022-02
1-0361	Semi anechoic chamber	Reinhold & Mahla	3m	1124	2017-06	2020-06
1-0364	Antenna cable 2	Kabelwerk Eupen	CMS / RG 214-N/7	none	2019-09	2022-09
1-0604	EMI test receiver	Rohde & Schwarz	ESU8	100203	2019-09	2020-09
1-0611	Spectrum analyzer	Rohde & Schwarz	FSV 40	100898	2019-11	2020-11
1-0614	Log.-per. antenna	Schwarzbeck	STLP 9148	STLP 9148-133	2019-08	2022-08
1-0615	Pre amplifier	Schwarzbeck	BBV-9718	BBV 9718-191	2019-09	2020-09
1-0619	Coaxial cable (to SAC)	Huber+Suhner	SF106/2x11N-651/2m	70168/6	2019-09	2022-09
1-0620	Antenna cable 3	Huber+Suhner	SF106/2x11N-651/3m	70619/6	2019-09	2022-09
1-0624	EMI-Software Radimation	DARE	Radimation	not applicable	N / A	N / A
1-0770	Horn antenna	Schwarzbeck	BBHA 9170	BBHA 9170-477	2018-06	2021-06
1-0771	Horn antenna	Schwarzbeck	BBHA 9170	BBHA 9170-476	2018-03	2021-03
1-0772	Horn antenna	Schwarzbeck	BBHA 9120D	BBHA 9120D-972	2018-03	2021-03
1-0781	Pre amplifier	Schwarzbeck	BBV 9721	BBV 9721-001	2019-09	2020-09
1-0782	Antenna cable	Huber & Suhner	FB142A1060002020	75193-01	2017-10	2020-10
1-0794	Coaxial cable	Rosenberger	FB142A0010002020	65627-01	2017-10	2020-10
1-0806	Controller	Innco	CO 3000	821/34571114/L	N / A	N / A
1-0807	Antenna mast	Innco	MA-400-XPET	4681114	N / A	N / A
1-0870	10 dB Attenuator	mini circiuts	BW-N10W5+	1429	2019-09	2022-09
1-0871	10 dB Attenuator	mini circiuts	BW-N10W5+	1414	2019-09	2022-09
1-0925	Coaxial cable	HARBOUR	RG316 MIL	#003	2019-09	2022-09
1-0927	Coaxial cable	HARBOUR	RG316 MIL	#005	2019-09	2022-09
1-0993	6 dB Attenuator	mini circiuts	BW-N6W5+	1725	2017-10	2020-10
1-0994	3 dB Attenuator	mini circiuts	BW-N3W5+	1734	2017-10	2020-10
1-0995	6 dB Attenuator	mini circiuts	UNAT-6+	15542	2017-09	2021-09
1-1012	Coaxial cable	Rosenberger	LA2-018-2000	010-1964471 0001	2018-09	2021-09
1-1037	Coaxial cable	Schwarzbeck	AK 9515H	AK 9515H #91	2018-09	2021-09


Annex A

EUT / technical data

General Information			Description		
Enclosure			metal / plastic		
Dimensions			0,22 x 0,25 x 0,21 m		
input voltage					
Nominal voltage	Frequency	Neutral	PE	Nominal Current	
100 - 240 V	50 - 60 Hz	<input type="checkbox"/> without	<input type="checkbox"/> without	1,2 A	
output voltage					
Nominal voltage	Frequency	Neutral	PE	Nominal Current	
none	-	<input type="checkbox"/> without	<input type="checkbox"/> without	A	
Interface (I/O, LAN, USB)					
I/O and communication ports			No.	Shielded	max. Length
3x USB			1-3	<input checked="" type="checkbox"/>	< 3 m
Process measurement and control ports			No.	Shielded	max. Length
none			-	<input type="checkbox"/>	m
Interface Cables			Length	Shielded	Type
none			m	<input type="checkbox"/>	Round
Protective earth connection					
Cross-section	max. Length	Description			
-	-	by line connection			
Table 1	Description of EUT / Technical data				

Figure 1 EUT / set up - test module EC (spurious conducted 150 kHz - 30 MHz)

Figure 2 EUT / set up - test module ER low (radiated emissions 30 - 200 MHz)

Figure 3 EUT / set up - test module ER high (radiated emissions 200 - 1000 MHz)



Figure 4 EUT / set up - test module ER2 (radiated emissions 1 - 14 GHz)

Figure 5 EUT / type label

Annex B

Arrangement in the semi anechoic chamber

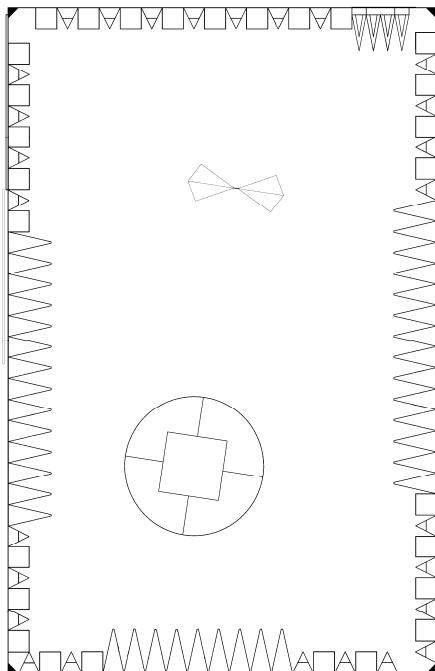


Figure 6 Set-up - ER (30 - 200 MHz)

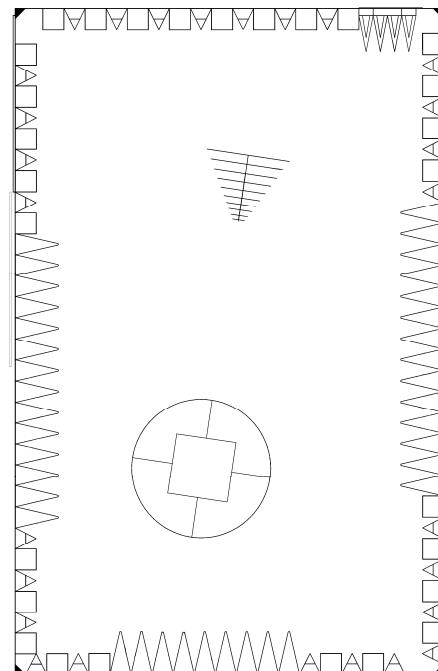


Figure 7 Set-up - ER (200 - 1000 MHz)

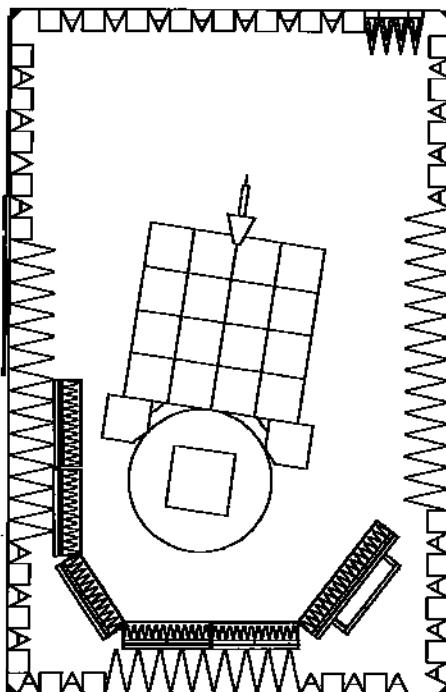


Figure 8 Set-up - ER2 (1 - 14 GHz)