

Type / Model Name : RR01 **Product Description** : Active Timing System Applicant : race result AG Address : Haid-und-Neu-Str. 7 76131 Karlsruhe GERMANY Manufacturer : race result AG Address : Haid-und-Neu-Str. 7 76131 Karlsruhe GERMANY

Test Result according to the standards listed in clause 1 test standards:

POSITIVE

Test Report No. : T39567-00-02JP

11. November 2015 Date of issue

EXS Deutsche Akkreditierungsstelle D-PL-12030-01-01 D-PL-12030-01-02 The test report merely corresponds to the test sample. It is not permitted to copy extracts of these test results without the written permission of the test laboratory.

CSA Group Bayern GmbH Ohmstrasse 1-4 • 94342 STRASSKIRCHEN • GERMANY Tel.: +49(0)9424-94810 • Fax: +49(0)9424-9481440 File No. T39567-00-02JP, page 1 of 24

FCC I	D: SZO	D-RR01
-------	--------	---------------

IC: 20465-RR01

Contents

1	TEST STANDARDS	3
2	EQUIPMENT UNDER TEST	4
2.1	Photo documentation of the EUT – Detailed photos see attachment A	4
2.2	Short description of the equipment under test (EUT)	5
2.3	Variants of the EUT	5
2.4	Operation frequency and channel plan	5
2.5	EuT operation mode:	5
2.6	Antenna	5
2.7	Power supply system utilised	5
2.8	Peripheral devices and interface cables	6
2.9	Determination of worst case conditions for final measurement	6
3	TEST RESULT SUMMERY	7
3.1	Final assessment	7
4	TEST ENVIRONMENT	8
4.1	Address of the test laboratory	8
4.2	Environmental conditions	8
4.3	Statement of the measurement uncertainty	8
4.4	Measurement protocol for FCC and IC	9
5	TEST CONDITIONS AND RESULTS	10
5.1	Field strength of fundamental	10
5.2	Out-of-band emission, radiated	12
5.3	EBW and OBW	16
5.4	Correction for pulse operation (duty cycle)	21
6	USED TEST EQUIPMENT AND ACCESSORIES	24

IC: 20465-RR01

1 TEST STANDARDS

The tests were performed according to following standards:

FCC Rules and Regulations Part 15, Subpart A - General (September, 2014)

FCC Rules and Regulations Part 15, Subpart C Part 15, Subpart C, Section 15.209 Part 15, Subpart C, Section 15.249	 Intentional Radiators (September, 2014) Radiated emission limits, general requirements Operation within the bands 902 - 928 MHz, 2400 - 2483.5 MHz, 5725 - 5875 MHz, and 24.0 - 24.25 GHz
RSS-Gen Issue 4, Nov 2014	General Requirements and Information for the Certification of Radio Apparatus
RSS-210 Issue 8, Dec 2010	Licence-exempt Radio Apparatus (All Frequency Bands): Category I Equipment
ANSI C63.10: 2013	Testing Unlicensed Wireless Devices
CISPR 16-4-2: 2013	Uncertainty in EMC measurement

IC: 20465-RR01

2 EQUIPMENT UNDER TEST

2.1 Photo documentation of the EUT

File No. T39567-00-02JP, page 4 of 24

IC: 20465-RR01

2.2 Short description of the equipment under test (EUT)

The activce timing system is used for time measurements in sport events and consists out of the RR02 (base srarion) and the RR01 (transponder). The RR02s 125 kHz loop antenna is placed on the time measurement position. The RR01 is mounted on the participant of the event or its equipment. The 125 kHz signal triggers a 2.4GHz transmission between the RR02 and the RR01. This message contains the required information and is stored.

The functions of the RR01 are controlled by the 125 kHz signal of the RR02.

Number of tested samples: 1 Serial number: AETUN02 (mod KORKM05 (upp

AETUN02 (modulated) KCBKM95 (unmodulated)

2.3 Variants of the EUT

none

2.4 Operation frequency and channel plan

The operating frequency band is 2400 MHz to 2483.5 MHz.

Channel plan:

Channels	Frequency
0*	2480*
1*	2405*
2	2425
3	2475
4	2415
5	2460
6	2435
7*	2450*

* Frequencies tested.

2.5 EuT operation mode:

The equipment under test was operated during the measurement under the following conditions:

- 2.4GHz communication is active, 125kHz RFID reading is active

2.6 Antenna

Internal antenna, not accesable by the end user

2.7 Power supply system utilised

Power supply voltage tag : 3V DC (battery suplied)

File No. T39567-00-02JP, page 5 of 24

IC: 20465-RR01

2.8 Peripheral devices and interface cables

The following peripheral devices and interface cables are connected during the measurements:

- none

Model :

2.9 Determination of worst case conditions for final measurement

Measurement was made in all three orthogonal axes to locate the worst-case position. The results obtained in worst-case position are noted in this report.

IC: 20465-RR01

3 TEST RESULT SUMMERY

FCC Rule Part	RSS Rule Part	Description	Result
15.207	RSS Gen, 8.8	AC power line conducted emissions	Not applicable ¹
15.209	RSS Gen, 8.9	General radiated emission limits	passed
15.215	-	Additional provisions (20dB BW)	passed
-	RSS-Gen, 6.6	Occupied bandwidth (99% BW)	passed
15.249	RSS-210, A2.9	Field strength of fundamental	passed

¹EuT is battery supplied

This test report deals with the 2.4 GHz DTS function of the EuT.

3.1 Final assessment

The equipment under test fulfills the EMI requirements cited in clause 1 test standards.

Date of receipt of test sample :

: acc. to storage records

Testing commenced on

: 08 April 2015

Testing concluded on

: <u>26 October 2015</u>

Checked by:

Tested by:

Klaus Gegenfurtner Teamleader Radio

Jürgen Pessinger

IC: 20465-RR01

4 TEST ENVIRONMENT

4.1 Address of the test laboratory

CSA Group Bayern GmbH Ohmstrasse 1-4 94342 STRASSKIRCHEN GERMANY

4.2 Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

 Temperature:
 15-35 ° C

 Humidity:
 30-60 %

Atmospheric pressure: 86-106 kPa

4.3 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. It is noted that the expanded measurement uncertainty corresponds to the measurement results from the standard measurement uncertainty multiplied by the coverage factor k = 2. The true value is located in the corresponding interval with a probability of 95 % The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16-4-2 / 11.2003 "Uncertainties, statistics and limit modelling – Uncertainty in EMC measurements" and is documented in the quality system acc. to DIN EN ISO/IEC 17025. For all measurements shown in this report, the measurement uncertainty of the test laboratory, CSA Group Bayern GmbH, is below the measurement uncertainty as defined by CISPR. Therefore, no special measures must be taken into consideration with regard to the limits according to CISPR. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

IC: 20465-RR01

4.4 Measurement protocol for FCC and IC

4.4.1 General information

4.4.1.1 <u>Test methodology</u>

Conducted and radiated disturbance testing is performed according to the procedures set out by the International Special Committee on Radio Interference (CISPR) Publication 22, European Standard EN 55022 as shown under section 1 of this report.

The Open Area test site is listed under the Canadian Test-Sites File-No:

IC 3009A-1

In compliance with RSS 210 testing for RSS compliance may be achieved by following the procedures set out in ANSI C63.10 and applying the CISPR 22 limits.

4.4.1.2 Justification

The equipment under test (EUT) is configured in a typical user arrangement in accordance with the manufacturer's instructions. A cable is connected to each available port and either terminated with a peripheral using the appropriate impedance characteristic or left unterminated. Where appropriate, cables are manually manipulated with respect to each other thus obtaining maximum disturbances from the unit.

4.4.1.3 Details of test procedures

The test methods used comply with CISPR Publication 22, EN 55022 - "Information technology equipment - Radio disturbance characteristics - Limits and methods of measurement" and with ANSI C63.4 - "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz". In compliance with 47 CFR Part 15 Subpart A, Section 15.38 testing for FCC compliance may be achieved by following the procedures set out in ANSI C63.10 and applying the CISPR 22 limits.

IC: 20465-RR01

5 TEST CONDITIONS AND RESULTS

5.1 Field strength of fundamental

For test instruments and accessories used see section 6 Part CPR 3.

5.1.1 Description of the test location

Test location:Anechoic chamber 1Test distance:3 m

5.1.2 Photo documentation of the test set-up

5.1.1 Applicable standard

According to FCC Part 15C, Section 15.249 and RSS-210 A2.9:

File No. T39567-00-02JP, page 10 of 24

IC: 20465-RR01

5.1.2 Description of Measurement

The radiated emission of the fundamental wave from the EUT is measured using a spectrum analyser and appropriate linear polarized antennas. The set up of the EUT and the measurement procedure is in accordance to ANSI C63.10, Item 6.5. The EUT is measured in TX continuous mode unmodulated under normal conditions.

Analyser settings:						
Peak measurement:	RBW:	1 MHz	VBW:	1 MHz	Detector:	Max peak

5.1.3 Test result

PK results

Channel	Frequency (MHz)	Reading level PK (dBµV)	Correction factor (dB)	Corrected level PK dB(µV/m)	Limit PK dB(µV/m)	Delta (dB)
0	2480	109.3	-14.3	94.9	114.0	-19.1
1	2405	107.5	-14.9	92.7	114.0	-21.3
7	2450	108.5	-14.7	93.8	114.0	-20.2

Note: The correction factor includes cable loss and antenna factor.

AV results

Channel	Frequency (MHz)	Level PK (dBµV)	Duty cycle correction (dB)	Level AV dB(µV/m)	Limit AV dB(µV/m)	Delta (dB)
0	2480	94.9	-29.3	65.6	94.0	-28.4
1	2405	92.7	-29.3	63.4	94.0	-30.6
7	2450	93.8	-29.3	64.5	94.0	-29.5

Note: The correction factor includes cable loss and antenna factor.

Average-Limit according to FCC Part 15C, Section 15.249 and RSS-210 A2.9:

Frequency	Field strength of fundamental			
(MHz)	(mV/m)	dB(µV/m)		
902 - 928	50	94		
2400 - 2483.5	50	94		
5725-5875	50	94		
24000 - 24250	250	108		

The requirements are **FULFILLED**.

Remarks:

Duty cycle correction factor is calculated under subclause 5.4 of this report.

IC: 20465-RR01

5.2 Out-of-band emission, radiated

For test instruments and accessories used see section 6 Part SER1, SER 2, SER 3.

5.2.1 Description of the test location

Test location:OATS 1Test location:Anechoic chamber 1

Test distance:

3 m

5.2.2 Photo documentation of the test set-up

Test setup 30 MHz – 1000 MHz:

Test setup >1 GHz:

File No. T39567-00-02JP, page 12 of 24

IC: 20465-RR01

5.2.3 Applicable standard

According to FCC Part 15C, Section 15.209 and RSS-Gen 8.9:

5.2.4 Description of Measurement

The radiated emissions from the EUT are measured in the frequency range of 9 kHz to 1000 MHz using a tuned receiver and appropriate broadband linearly polarized antennas. The setup of the EUT and the measurement procedure is in accordance to ANSI C63.10, Item 6.3. In the frequency range above 1 GHz a spectrum analyser is used with appropriate linear polarized antennas. If the emission level in peak mode complies with the average limit testing is stopped and peak values will be reported, otherwise, the emission is measured in average mode again and reported. The EUT is measured in TX continuous mode unmodulated under normal conditions.

RBW:	200 Hz
RBW:	9 kHz
RBW:	120 kHz
RBW:	1 MHz
	RBW: RBW: RBW: RBW:

5.2.1 Test result f < 30 MHz

Note: In the frequency range 9 kHz to 30 MHz no emission could be detected. The frequencies mention the noise level. The measurement results from distance 3 m are extrapolated (D factor) to the specified distance.

Frequency	Reading PK	D factor	Level PK	Limit AV	Delta
(MHz)	dB(µV)	dB(µV/m)	dB(µV/m)	dB(µV/m)	(dB)
0.047	52.0	-80.0	-28.0	34.2	-62.2
1.5	51.0	-40.0	11.0	24.1	-13.1
18.2	39.0	-40.0	-1.0	29.5	-30.5

5.2.2 Test result f < 1 GHz

Channel 0

Frequency	Reading	Correction	Corrected	Limit	Delta
	level QP	factor	level QP		
(MHz)	(dBµV)	(dB/m)	dB(µV/m)	dB(µV/m)	(dB)
127.26	11.5	13.6	25.1	43.5	-18.4
137.51	6.2	14.3	20.5	43.5	-23.0
211.36	16.5	12.3	28.8	43.5	-14.7
332.81	8.7	17.7	26.4	46.0	-19.6

Channel 1

Frequency	Reading	Correction	Corrected	Limit	Delta
	level QP	factor	level QP		
(MHz)	(dBµV)	(dB/m)	dB(µV/m)	dB(µV/m)	(dB)
127.26	11.7	13.6	25.3	43.5	-18.2
137.51	6.0	14.3	20.3	43.5	-23.2
211.36	16.5	12.3	28.8	43.5	-14.7
332.81	8.9	17.7	26.6	46.0	-19.4

IC: 20465-RR01

Channel 7

Frequency	Reading	Correction	Corrected	Limit	Delta
	level QP	factor	level QP		
(MHz)	(dBµV)	(dB/m)	dB(µV/m)	dB(µV/m)	(dB)
127.26	11.0	13.6	24.6	43.5	-18.9
137.51	6.2	14.3	20.5	43.5	-23.0
211.36	16.4	12.3	28.7	43.5	-14.8
332.81	8.7	17.7	26.4	46.0	-19.6

Note: The correction factor includes cable loss and antenna factor.

5.2.3 Test result f > 1 GHz

Channel 0 PK results

Frequency (MHz)	Reading level PK (dBµV)	Correction factor (dB)	Corrected level PK dB(µV/m)	Limit PK dB(µV/m)	Delta (dB)
1438.00	58.7	-20.6	38.0	74.0	-36.0
4960.00	53.1	3.2	56.3	74.0	-17.7
7440.00	49.2	7.1	56.2	74.0	-17.8

Note: The correction factor includes cable loss and antenna factor. Note: For frequencies were the PK value is below the average limit, no duty cycle correction was performed

AV results

Frequency (MHz)	Level PK (dBµV)	Duty cycle correction (dB)	Level AV dB(µV/m)	Limit AV dB(µV/m)	Delta (dB)
4960.00	56.3	-29.3	27.0	54.0	-27.0
7440.00	56.2	-29.3	26.9	54.0	-27.1

Note: The correction factor includes cable loss and antenna factor. Note: For frequencies were the PK value is below the average limit, no duty cycle correction was performed

Channel 1 PK results

PK results

Frequency (MHz)	Reading level PK (dBµV)	Correction factor (dB)	Corrected level PK dB(µV/m)	Limit PK dB(µV/m)	Delta (dB)
1330.00	58.1	-19.8	38.3	74	-35.7
1848.00	59.8	-17.2	42.6	74	-31.4
4810.00	54.7	2.7	57.4	74	-16.6
7215.00	46.7	7.2	53.9	74	-20.1

Note: The correction factor includes cable loss and antenna factor. Note: For frequencies were the PK value is below the average limit, no duty cycle correction was performed

AV results

Frequency (MHz)	Level PK (dBµV)	Duty cycle correction (dB)	Level AV dB(µV/m)	Limit AV dB(µV/m)	Delta (dB)
4810.00	57.4	-29.3	28.1	54	-25.9

Note: The correction factor includes cable loss and antenna factor.

Note: For frequencies were the PK value is below the average limit, no duty cycle correction was performed

IC: 20465-RR01

Channel 7 PK results

PK results

Frequenc (MHz)	y Read level (dBµ	ing Correc PK fact V) (dE	or Correction Correcti	ted PK dB(μV/r /m)	rK Delta m) (dB)
1327.60	57.3	3 -19	.8 37.5	5 74	-36.5
1444.00	58.	5 -20	.7 37.8	3 74	-36.2
1864.00	57.	7 -17	.0 40.7	7 74	-33.3
4900.00	54.9	9 2.9	9 57.	7 74	-16.3
7350.00	47.0	0 7.0) 54.0) 74	-20.0

Note: The correction factor includes cable loss and antenna factor.

Note: For frequencies were the PK value is below the average limit no duty cycle correction was performed

AV results

Frequency (MHz)	Level PK (dBµV)	Duty cycle correction (dB)	Level AV dB(µV/m)	Limit AV dB(µV/m)	Delta (dB)
4900.00	57.7	-29.3	28.4	54	-25.6
7350.00	54.0	-29.3	24.7	54	-29.3

Note: The correction factor includes cable loss and antenna factor. Note: For frequencies were the PK value is below the average limit, no duty cycle correction was performed

Limit according to FCC Part 15C, Section 15.209 and RSS-Gen 8.9:

Frequency	Limit	Measurement
(MHz)	(µV/m)	distance (m)
0.0090.49	2400/f(kHz)	300
0.49 – 1.705	24000/f(kHz)	30
1.705 – 30.0	30	30
30 - 88	100	3
88 - 216	150	3
216 - 960	200	3
Above 960	500	3

The requirements are **FULFILLED**.

Remarks: The measurement was performed up to the 10th harmonic (25000 MHz).

Duty cycle correction factor is calculated under subclause 5.4 of this report.

The limit according to FCC subpart 15.209 and RSS-Gen 8.9 are met.

File No. T39567-00-02JP, page 15 of 24

IC: 20465-RR01

5.3 EBW

For test instruments and accessories used see section 6 Part SER 3.

5.3.1 Description of the test location

Test location: Anechoic chamber 1

5.3.2 Photo documentation of the test set-up

5.3.3 Applicable standard

According to FCC Part 15, Section 15.215 and RSS-Gen 6.6:

5.3.4 Description of Measurement

Spectrum analyser settings: See attached plots

IC: 20465-RR01

5.3.5 Test result

Channel	20 dB Bandwidth (MHz)	99% Bandwidth (MHz)
0 (2480 MHz)	2.634	2.518
1 (2405 MHz)	2.634	2.373
7 (2450 MHz)	2.605	2.460

The requirements are **FULFILLED.**

none

Remarks:

IC: 20465-RR01

5.3.6 Test protocols

20dB Bandwidth, Channel 1

Spectru	ım										
Ref Leve	el -1:	2.00 dBn	ı	🖷 RB	W 100 kHz						
Att		5 d8	SWT 38	µs 👄 VB	W 300 kHz	Mode Auto	FFT	Inpu	ut 1 DC		
⊖1Pk Viev	4										
-20 dBm-						D: M2 M	3[1]			-	0.41 dB 2.6340 MHz
					m	×. "	1[1]			2 40	97260 GHz
-30 aBm-						- Y					
-40 dBm-			dD as		M	03					
-50 dBm-	701	-40.56L	asm-		h	1					
-60 dBm-	_			-	<u> </u>	V	Ηm		'n		
-70 dBm—	-	~ /	$\gamma / \gamma /$	V V			V	¥	$\rightarrow \rightarrow$	ηm,	
-80 dBm-	47	⊬₩	V V	-				• 	VV	VV	Mr mr
-90 dBm-	-										
-100 dBm											
225 0011											
CF 2.405	i GHz	2			691	pts				Span	20.0 MHz
Marker											
Type F	Ref	Trc	X-value		Y-value	Func	tion		Fund	tion Result	
M1		1	2.4037	26 GHz	-47.31 dB	m					
M2	M1	1	2.4052	32 GHz	-26.56 dB	m HB					
	1011	-	2.03	74 10112	0.410	10					

IC: 20465-RR01

20dB Bandwidth, Channel 7

99% Bandwidth, Channel 0

Ref Level -12.00 dBm • RBW 100 kHz Att S dB SWT 38 µs • VBW 300 kHz Mode Auto FFT Input 1 DC • IPk Max • 111 1 -31.49 dBm • 20 dBm • 0 Cc Bw 2.518089725 MHz • 30 dBm • 0 Cc Bw 2.518089725 MHz • 40 dBm • 0 Cc Bw 2.518089725 MHz • 40 dBm • 0 Cc Bw • 2.518089725 MHz • 50 dBm • 0 Cc Bw • 2.518089725 MHz • 50 dBm • 0 Cc Bw • 0 Cc Bw • -00 dBm • 0 dBm • 100 dBm	Spectrun	'n								
Att 5 dB SWT 38 µs ♥ VBW 300 kHz Mode Auto FFT Input 1 DC ●1Pk Max -31.49 dBm -31.49 dBm -31.49 dBm -2.4799710 GHz -20 dBm 0cc Bw 2.518089725 MHz -31.49 dBm -30 dBm Mt 0cc Bw 2.518089725 MHz -40 dBm Tf V -30 dBm -60 dBm Tf V -30 dBm -70 dBm -30 dBm -30 dBm -30 dBm -100 dBm -30 dBm -30 dBm -30 dBm	Ref Level	-12.00 dBm		RBW	100 kHz					
IPk Max M1[1] -31.49 dBm -20 dBm Occ Bw 2.4799710 GHz -30 dBm M1 -30.518089725 MHz -40 dBm -12 -30.60 -50 dBm -30.60 -30.60 -90 dBm -30.60 -30.60 -100 dBm -30.60 -30.60 -100 dBm -30.60 -30.60	Att	5 dB	SWT 38	µs 👄 VBW	300 kHz	Mode Auto	FFT Inp	ut 1 DC		
-20 dBm -31.49 dBm -20 dBm 2.4799710 GHz -30 dBm Occ Bw -30 dBm -40 dBm -40 dBm -70 dBm -50 dBm -70 dBm -90 dBm -90 dBm -100 dBm -100 dBm	⊖1Pk Max									
-30 dBm -40 dBm -50 dBm -60 dBm -70 dBm -70 dBm -90 dBm -100 dBm -100 dBm -100 dBm	-20 dBm					M	1[1] cc Bw		- 2.47 2.5180	31.49 dBm 99710 GHz 89725 MHz
-40 dBm -50 dBm -60 dBm -70 dBm -70 dBm -100 dBm -100 dBm -110 dBm	-30 dBm				M	1				
-50 dBm -60 dBm -70 dBm -70 dBm -90 dBm -100 dBm -110 dBm	-40 dBm				-	12				
-60 dBm -70 dBm -90 dBm -100 dBm -100 dBm	-50 dBm				т <u>1</u> 	¥				
-70 dBm -80 dBm -90 dBm -100 dBm -110 dBm	-60 dBm				V	\downarrow	1~			
-90 dBm	-70 dBm	/	4 A f	$\gamma \downarrow$			+ + + /			
-90 dBm	Ľeo,ďβλi,	Y-Y	V V	V			γ	+	$\mathbb{V}\mathbb{V}$	YM7
-100 dBm-	-90 dBm								v U	νV
-110 dBm	-100 dBm—									
CE 9.40 CU a 601 at 2 0 0 0 MU a	-110 dBm-				601	nte			Conn	00.0 MU-

IC: 20465-RR01

99% Bandwidth, Channel 1

99% Bandwidth, Channel 7

IC: 20465-RR01

5.4 Correction for pulse operation (duty cycle)

For test instruments and accessories used see section 6 Part DC.

5.4.1 Description of the test location

Test location: Anechoic chamber 1

5.4.2 Photo documentation of the test set-up

5.4.3 Applicable standard

According to FCC Part 15A, Section 15.35 and RSS-Gen 6.10:

When the radiated emission limits are expressed in terms of average value and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete puls train, including blanking intervals, as long as the pulse train does not exceed 0.1s. In cases where the puls train exceeds 0.1s, the measured field strength shall be determined from the average absolute voltage during a 0.1s interval during which the field strength is at its maximum. The exact method of calculating the average field strength shall be submitted.

IC: 20465-RR01

5.4.4 **Description of Measurement**

The duty cycle correction factor (dB) is calculated applying the following formula:

 $\delta(dB) = 20 \log ((t_1 + t_2 + ... + t_n) / T)$

- δ(dB) duty cycle correction factor expressed in dB
 - duration of pulse 1 in the defined time period T
- t1 duration of pulse n in the defined time period T tn
- period of one complete puls train or 100ms if the complete puls train is longer 100ms Т

5.4.5 Test result

t1	t2	t3	t4	Т
[ms]	[ms]	[ms]	[ms]	[ms]
3.40				100

<u>RESULT δ(dB) = -29</u>.3

Remarks: Maximum possible duty cycle used for calculation.

IC: 20465-RR01

5.4.6 Test protocol

Determination of T = 203.92ms (due to 100ms maximum 100ms are used)

IC: 20465-RR01

6 USED TEST EQUIPMENT AND ACCESSORIES

All test instruments used are calibrated and verified regularly. The calibration history is available on request.

Test ID CPR 3	Model Type FSP 40	Equipment No. 02-02/11-11-001	Next Calib. 02/10/2015	Last Calib. 02/10/2014	Next Verif.	Last Verif.
	AFS4-01000400-10-10P-4	02-02/17-13-002				
	3117	02-02/24-05-009	12/05/2016	12/05/2015		
	Sucoflex N-2000-SMA	02-02/50-05-075				
	SF104/11N/11N/1500MM	02-02/50-13-015				
DC	FSP 40	02-02/11-11-001	02/10/2015	02/10/2014		
	AFS4-01000400-10-10P-4	02-02/17-13-002				
	3117	02-02/24-05-009	12/05/2016	12/05/2015		
	Sucoflex N-2000-SMA	02-02/50-05-075				
	SF104/11N/11N/1500MM	02-02/50-13-015				
SER 1	FMZB 1516	01-02/24-01-018			19/01/2016	19/01/2015
	ESR 7	02-02/03-13-001	29/05/2016	29/05/2015		
	KK-EF393-21N-16	02-02/50-05-033				
	NW-2000-NB	02-02/50-05-113				
	KK-SD_7/8-2X21N-33,0M	02-02/50-15-028				
SER 2	ESVS 30	02-02/03-05-003	09/07/2016	09/07/2015		
	VULB 9168	02-02/24-05-005	17/04/2016	17/04/2015	29/02/2016	31/08/2015
	NW-2000-NB	02-02/50-05-113				
	KK-EF393/U-16N-21N20 m	02-02/50-12-018				
	KK-SD_7/8-2X21N-33,0M	02-02/50-15-028				
SER 3	FSP 40	02-02/11-11-001	02/10/2015	02/10/2014		
	JS4-18004000-30-5A	02-02/17-05-017				
	AFS5-12001800-18-10P-6	02-02/17-06-002				
	AFS4-01000400-10-10P-4	02-02/17-13-002				
	AMF-4F-04001200-15-10P	02-02/17-13-003				
	3117	02-02/24-05-009	12/05/2016	12/05/2015		
	BBHA 9170	02-02/24-05-014	02/06/2018	02/06/2015	02/06/2016	02/06/2015
	Sucoflex N-2000-SMA	02-02/50-05-075				
	KMS102-0.2 m	02-02/50-11-020				
	SF104/11N/11N/1500MM	02-02/50-13-015				