Precor, Inc.

RFID Radio Module

Report No. PRCR0111

Report Prepared By

www.nwemc.com 1-888-EMI-CERT

© 2009Northwest EMC, Inc

Certificate of Test Last Date of Test: July 29, 2009 Precor, Inc. Model: RFID Radio Module

	Emissions		
Test Description	Specification	Test Method	Pass/Fail
Field Strength of Fundamental	FCC 15.225:2009	ANSI C63.4:2003	Pass
Field Strength of Spurious Emissions	FCC 15.225:2009	ANSI C63.4:2003	Pass
AC Powerline Conducted Emissions	FCC 15.207:2009	ANSI C63.4:2003	Pass
Frequency Stability	FCC 15.225:2009	ANSI C63.4:2003	Pass

Modifications made to the product See the Modifications section of this report

Test Facility

The measurement facility used to collect the data is located at:

Northwest EMC, Inc. 22975 NW Evergreen Parkway, Suite 400 Hillsboro, OR 97124

Phone: (503) 844-4066 Fax: 844-3826

This site has been fully described in a report filed with and accepted by the FCC (Federal Communications Commission) and Industry Canada (Site filing #2834D-1).

Approved By: Don Facteau, IS Manager

NVLAP Lab Code: 200630-0

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America.

Product compliance is the responsibility of the client, therefore the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. This Report may only be duplicated in its entirety. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test.

Revision Number	Description	Date	Page Number
00	None		

Barometric Pressure

The recorded barometric pressure has been normalized to sea level.

FCC: Accredited by NVLAP for performance of FCC radio, digital, and ISM device testing. Our Open Area Test Sites, certification chambers, and conducted measurement facilities have been fully described in reports filed with the FCC and accepted by the FCC in letters maintained in our files. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by the FCC as a Telecommunications Certification Body (TCB). This allows Northwest EMC to certify transmitters to FCC specifications in accordance with 47 CFR 2.960 and 2.962.

NVLAP: Northwest EMC, Inc. is accredited under the United States Department of Commerce, National Institute of Standards and Technology, and National Voluntary Laboratory Accreditation Program for satisfactory compliance with the requirements of ISO/IEC 17025 for Testing Laboratories. The NVLAP accreditation encompasses Electromagnetic Compatibility Testing in accordance with the European Union EMC Directive 2004/108/EC, and ANSI C63.4. Additionally, Northwest EMC is accredited by NVLAP to perform radio testing in accordance with the European Union R&TTE Directive 1999/5/EEC, the requirements of FCC, and the RSS radio standards for Industry Canada.

Industry Canada: Accredited by NVLAP for performance of Industry Canada RSS and ICES testing. Our Open Area Test Sites and certification chambers comply with RSS-Gen, Issue 2 and have been filed with Industry Canada and accepted. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by NIST and recognized by Industry Canada as a Certification Body (CB) per the APEC Mutual Recognition Arrangement (MRA). This allows Northwest EMC to certify transmitters to Industry Canada technical requirements. (*Site Filing Numbers - Hillsboro: 2834D-1, 2834D-2, Sultan: 2834C-1, Irvine: 2834B-1, 2834B-2*)

CAB: Designated by NIST and validated by the European Commission as a Conformity Assessment Body (CAB) to conduct tests and approve products to the EMC directive and transmitters to the R&TTE directive, as described in the U.S. - EU Mutual Recognition Agreement.

NVLAP LAB CODE 200629-0 NVLAP LAB CODE 200630-0 NVLAP LAB CODE 200676-0 NVLAP LAB CODE 200761-0

NEMKO: Assessed and accredited by NEMKO (Norwegian testing and certification body) for European emissions and immunity testing. As a result of NEMKO's laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification (Authorization No. ELA 119).

Australia/New Zealand: The National Association of Testing Authorities (NATA), Australia has been appointed by the ACA as an accreditation body to accredit test laboratories and competent bodies for EMC standards. Accredited test reports or assessments by competent bodies must carry the NATA logo. Test reports made by an overseas laboratory that has been accredited for the relevant standards by an overseas accreditation body that has a Mutual Recognition Agreement (MRA) with NATA are also accepted as technical grounds for product conformity. The report should be endorsed with the respective logo of the accreditation body (NVLAP).

VCCI: Accepted as an Associate Member to the VCCI, Acceptance No. 564. Conducted and radiated measurement facilities have been registered in accordance with Regulations for Voluntary Control Measures, Article 8. (*Registration Numbers. - Hillsboro: C-1071, R-1025, C-2687, T-289, and R-2318, Irvine: R-1943, C-2766, and T-298, Sultan: R-871, C-1784, and T-294*).

BSMI: Northwest EMC has been designated by NIST and validated by C-Taipei (BSMI) as a CAB to conduct tests as described in the APEC Mutual Recognition Agreement (US0017). License No.SL2-IN-E-1017.

GOST: Northwest EMC, Inc. has been assessed and accredited by the Russian Certification bodies Certinform VNIINMASH, CERTINFO, SAMTES, and Federal CHEC, to perform EMC and Hygienic testing for Information Technology Products. As a result of their laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification

KCC: Northwest EMC, Inc is a CAB designated by MRA partners and recognized by Korea. (*Assigned Lab Numbers: Hillsboro: US0017, Irvine: US0158, Sultan: US0157*)

SCOPE For details on the Scopes of our Accreditations, please visit: <u>http://www.nwemc.com/accreditations/</u>

Revision 12/08/08

California – Orange County Facility Labs OC01 – OC13

41 Tesla Ave. Irvine, CA 92618 (888) 364-2378 Fax: (503) 844-3826

Oregon – Evergreen Facility Labs EV01 – EV11

22975 NW Evergreen Pkwy. Suite 400 Hillsboro, OR 97124 (503) 844-4066 Fax: (503) 844-3826

Washington – Sultan Facility Labs SU01 – SU07

14128 339th Ave. SE Sultan, WA 98294 (888) 364-2378

Rev 11/17/06

Party Requesting the Test

Company Name:	Precor, Inc.
Address:	PO Box 7202
City, State, Zip:	Woodinville, WA 98072-4002
Test Requested By:	James Minahan
Model:	RFID Radio Module
First Date of Test:	July 27, 2009
Last Date of Test:	July 29, 2009
Receipt Date of Samples:	July 27, 2009
Equipment Design Stage:	Prototype
Equipment Condition:	No Damage

Information Provided by the Party Requesting the Test

Functional Description of the EUT (Equipment Under Test): RFID Radio Module

Testing Objective:

RFID radio seeking full modular approval under FCC 15.225

EUT Photo

Configurations

CONFIGURATION 1 PRCR0111

Software/Firmware Running during test	
Description	Version
Hyper Terminal Script	Unknown

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
Atlas RFID Reader - RFID Radio Module	Precor, Inc.	300181-303	MPT-340704-0926-008

Peripherals in test setup boundary					
Description	Manufacturer	Model/Part Number	Serial Number		
Host	Precor, Inc.	Unknown	None		
Power Adapter	XP Power	VEH60US12	0848-00045		

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
Host	No	0.1m	No	Atlas RFID Reader - RFID Radio Module	Host
Power	PA	1.2m	PA	Host	Power Adapter
AC Power	No	1.8m	No	Power Adapter	AC Mains
PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.					

CONFIGURATION 2 PRCR0111

Software/Firmware Running during test	
Description	Version
Hyper Terminal Script	Unknown

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
Atlas RFID Reader - RFID Radio Module	Precor, Inc.	300181-303	MPT-340704-0926-008

Peripherals in test setup boundary							
Description	Manufacturer	Model/Part Number	Serial Number				
Host	Precor, Inc.	Unknown	None				
DC Power supply	Topoward Electronic	TPS 2000	None				

Cables						
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2	
Host	No	0.1m	No	Atlas RFID Reader - RFID Radio Module	Host	
Power	PA	1.2m	PA	Host	Power Adapter	
AC Power	No	1.8m	No	Power Adapter	AC Mains	
PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.						

Modifications

Equipment modifications							
Item	Date	Test	Modification	Note	Disposition of EUT		
1	7/27/2009	Field Strength of Fundamental	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.		
2	7/28/2009	Field Strength of Out of Band Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.		
3	7/28/2009	Frequency Stability	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.		
4	7/29/2009	AC Powerline Conducted Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was completed.		

EMC FIELD STRENGTH OF FUNDAMENTAL

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION	
Transmitting in a default polling mode	

POWER SETTINGS INVESTIGATED

120VAC/60Hz

FREQUENCY RANGE INVESTIGATED					
Start Frequency	10 kHz	Stop Frequency	30 MHz		

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4446A	AAY	12/11/2008	13
Antenna, Loop	EMCO	6502	AOA	7/1/2009	24
EV01 Cables		Bilog Cables	EVA	7/10/2009	13

MEASUREMENT BANDWIDTHS						
	Frequency Range	Peak Data	Quasi-Peak Data	Average Data		
	(MHz)	(kHz)	(kHz)	(kHz)		
	0.01 - 0.15	1.0	0.2	0.2		
	0.15 - 30.0	10.0	9.0	9.0		
	30.0 - 1000	100.0	120.0	120.0		
	Above 1000	1000.0	N/A	1000.0		
	Measurements were made us	ing the bandwidths and det	ectors specified. No video filte	r was used.		

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. The measurement uncertainty estimation is available upon request.

TEST DESCRIPTION

The antennas to be used with the EUT were tested. The EUT was transmitting and receiving while set at the lowest channel, a middle channel, and the highest channel available. While scanning, emissions from the EUT were maximized by rotating the EUT, adjusting the measurement antenna height and polarization, and manipulating the EUT antenna in 3 orthogonal planes (per ANSI C63.4:2003).

Distance Adjustment Factor for Radiated Emissions below 30 MHz

Method: Per 47 CFR 15.31(f)(2), the data was extrapolated based upon the measured fall-off

 EUT:
 RFID Radio Module

 S/N:
 MPT-340704-0926-008

 Date:
 7/27/2009

 Job Number:
 PRCR0110

Frequency	Loop Antenna Polarity	Test Distance	Adjusted Level	Fall-Off from 3 to 5 m	Extrapolation Factor for Specification Limit	Test Distance of Spec. Limit	Distance Adjustment Factor	
(MHz)		(meters)	(dBuV/m)	(dB)	(dB / decade)	(meters)	(dB)	l
12 110	Par/EUT	3	19.0	0.2	0.0	20.0	0.9	l
13.110	Par/EUT	5	18.8	0.2	0.9	30.0	0.7	l
13/10	Par/EUT	3	24.9	17	21.2	30.0	21.2	l
13.410	Par/EUT	5	20.2	4.7	21.2	50.0	16.5	l
13 553	Par/EUT	3	51.3	10.0	45 1	30.0	45.1	l
10.000	Par/EUT	5	41.3	10.0	40.1	00.0	35.1	l
13 561	Par/EUT	3	68.3	10.2	46.0	30.0	46.0	
13.301	Par/EUT	5	58.1	10.2	40.0	30.0	35.8	
13 561	Perp/EUT, Par /Gnd	3	68.1		30.2	30.0	39.2	
13.301	Perp/EUT, Par /Gnd	5	59.4	0.7	39.2	50.0	30.5	ł
13 561	Perp/EUT, Perp /Gnd	3	68.2	0.0	40.6	30.0	40.6	
13.301	Perp/EUT, Perp /Gnd	5	59.2	9.0	10.0	50.0	31.6	
10 561	Par/EUT	3		0.0	0.0	20.0	0.0	
13.301	Par/EUT	5		0.0	0.0	30.0	0.0	
12 561	Par/EUT	3		0.0	0.0	20.0	0.0	
13.301	Par/EUT	5		0.0	0.0	30.0	0.0	
13 561	Par/EUT	3		0.0	0.0	30.0	0.0	
15.501	Par/EUT	5		0.0	0.0	50.0	0.0	
13 561	Par/EUT	3		0.0	0.0	30.0	0.0	
15.501	Par/EUT	5		0.0	0.0	50.0	0.0	
13 561	Par/EUT	3		0.0	0.0	30.0	0.0	
15.501	Par/EUT	5		0.0	0.0	50.0	0.0	
13 561	Par/EUT	3		0.0	0.0	30.0	0.0	
10.001	Par/EUT	5		0.0	0.0	00.0	0.0	
13 567	Par/EUT	3	56.8	10.1	45.5	30.0	45.5	l
10.001	Par/EUT	5	46.7	10.1	10.0	00.0	35.4	l
13 710	Par/EUT	3	26.7	69	31.1	30.0	31.1	l
	Par/EUT	5	19.8	0.0	0	00.0	24.2	l
14,100	Par/EUT	3	18.8	0.2	0.9	30.0	0.9	l
	Par/EUT	5	18.6	0.12	0.0	00.0	0.7	1

EUT on side

..

NORTHWEST

FIELD STRENGTH OF FUNDAMENTAL

NORTHWEST EMC

FIELD STRENGTH OF FUNDAMENTAL

NORTHWEST

FIELD STRENGTH OF FUNDAMENTAL

NORTHWEST **Field Strength of Out of Band Emissions EMC**

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION
Transmitting in a default polling mode

POWER SETTINGS INVESTIGATED

120VAC/60Hz

FREQUENCY RANGE INVESTIGATED

Start Frequency

Stop Frequency

1000MHz

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

10kHz

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4446A	AAY	12/11/2008	13
Pre-Amplifier	Miteq	AM-1616-1000	AOL	7/10/2009	13
EV01 Cables		Bilog Cables	EVA	7/10/2009	13
Antenna, Loop	EMCO	6502	AOA	7/1/2009	24
Antenna, Biconilog	EMCO	3141	AXE	1/15/2008	24

MEASUREMENT BANDWIDTHS						
	Frequency Range	Peak Data	Quasi-Peak Data	Average Data		
	(MHz)	(kHz)	(kHz)	(kHz)		
	0.01 - 0.15	1.0	0.2	0.2		
	0.15 - 30.0	10.0	9.0	9.0		
	30.0 - 1000	100.0	120.0	120.0		
	Above 1000	1000.0	N/A	1000.0		
	Measurements were made us	sing the bandwidths and deter	ctors specified No video filte	r was used		

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. The measurement uncertainty estimation is available upon request.

TEST DESCRIPTION

The antennas to be used with the EUT were tested. The EUT was transmitting and receiving while set at the channel available. While scanning, emissions from the EUT were maximized by rotating the EUT, adjusting the measurement antenna height and polarization, and manipulating the EUT antenna in 3 orthogonal planes (per ANSI C63.4:2003).

Distance Adjustment Factor for Radiated Emissions below 30 MHz

Method: Per 47 CFR 15.31(f)(2), the data was extrapolated based upon the measured fall-off

 EUT:
 RFID Radio Module

 S/N:
 7/27/2009

 Job Number:
 PRCR0110

Frequency	Loop Antenna Polarity	Test Distance	Adjusted Level	Fall-Off from 3 to 5 m	Extrapolation Factor for Specification Limit	Test Distance of Spec. Limit	Distance Adjustment Factor		
(MHz)		(meters)	(dBuV/m)	(dB)	(dB / decade)	(meters)	(dB)		
27 110	Par/EUT	3	19.8	5.0	22 F	20.0	22.5		
27.110	Par/EUT	5	14.8	5.0	22.0	30.0	17.5		
27.110	Perp/EUT, Par /Gnd	3	17.1	2.2	0.0	20.0	9.9		
	Perp/EUT, Par /Gnd	5	14.9		9.9	30.0	7.7		
27 110	Perp/EUT, Perp /Gnd	3	17.0	2.2	2.2	2.2	0.0	20.0	9.9
27.110	Perp/EUT, Perp /Gnd	5	14.8	۷.۷	5.5	50.0	7.7		

EUT on side

NORTHWEST

Field Strength of Out of Band Emissions

Field Strength of Out of Band Emissions

NORTHWEST

Field Strength of Out of Band Emissions

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION

Transmitting in a default polling mode, with antenna connected Transmitting in a default polling mode, with antenna dis-connected

POWER SETTINGS INVESTIGATED

12.5 VDC

CONFIGURATIONS INVESTIGATED

PRCR0111 - 2

SAMPLE CALCULATIONS

Conducted Emissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
High Pass Filter	TTE	H97-100K-50-720B	HFX	5/27/2009	13 mo
Attenuator	Coaxicom	66702 2910-20	ATO	7/21/2009	13 mo
EV07 Cables		Conducted Cables	EVG	6/1/2009	13 mo
LISN	Solar	9252-50-R-24-BNC	LIR	2/4/2009	13 mo

MEASUREMENT BANDWIDTHS						
	Frequency Range	Peak Data	Quasi-Peak Data	Average Data		
	(MHz)	(kHz)	(kHz)	(kHz)		
	0.01 - 0.15	1.0	0.2	0.2		
	0.15 - 30.0	10.0	9.0	9.0		
	30.0 - 1000	100.0	120.0	120.0		
	Above 1000	1000.0	N/A	1000.0		
Ν	Aeasurements were made us	ing the bandwidths and dete	ctors specified. No video filt	er was used.		

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION

Using the mode of operation and configuration noted within this report, conducted emissions tests were performed. The frequency range investigated (scanned), is also noted in this report. Conducted power line measurements are made, unless otherwise specified, over the frequency range from 150 kHz to 30 MHz to determine the line-to-ground radio-noise voltage that is conducted from the EUT power-input terminals that are directly (or indirectly via separate transformer or power supplies) connected to a public power network. Equipment is tested with power cords that are normally used or that have electrical or shielding characteristics that are the same as those cords normally used. Typically those measurements are made using a LISN (Line Impedance Stabilization Network), the 50ohm measuring port is terminated by a 50ohm EMI meter or a 50ohm resistive load. All 50ohm measuring ports of the LISN are terminated by 50ohm.

Per FCC KDB Publication #174176, for devices transmitting below 30 MHz that have permanent non-detachable antennas, the FCC will accept measurements done with a suitable dummy load, in lieu of the permanent antenna under the following conditions: (1) perform the AC line conducted tests with the permanent antenna to determine compliance with the Section 15.207 limits outside the transmitter's fundamental emission band; (2) retest with a dummy load in lieu of the permanent antenna to determine compliance with the Section 15.207 limits within the transmitter's fundamental emission band;

AC Powerline Conducted Emissions

NORTHWEST

AC Powerline Conducted Emissions

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4440A	AFD	6/1/2009	13
Near Field Probe	EMCO	7405	IPD	NCR	0
Chamber, Temp./Humidity	Cincinnati Sub Zero (CSZ)	ZH-32-2-2-H/AC	TBA	7/23/2008	24
Chamber					
hamber Temp. & Humidity Controlle	ESZ / Eurotherm	Dimension II	TBC	7/23/2008	24
AC Power Source	Instek	APS-9050	TPK	NCR	0

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION

Variation of Supply Voltage

The primary supply voltage was varied from 85% to 115% of nominal. The EUT can only be operated from the public AC mains, so an AC lab supply was used to vary the supply voltage from 115% to 85% of 120 V, 60 Hz.

Variation of Ambient Temperature

Using a temperature chamber, the transmit frequency was recorded at the extremes of the specified temperature range (-20° to +50° C) and at 10°C intervals.

Measurements were made at the single transmit frequency. The antenna is integral to the EUT, so a radiated measurement was made using a spectrum analyzer and a near field probe. The spectrum analyzer is equipped with a precision frequency reference that exceeds the stability requirement of the EUT.

NORTHWEST		FREQUENC	Y STAE	BILITY				XMit 2009.03.05
EUT:	RFID Radio Module					Work Order:	PRCR0111	
Serial Number:	MPT-340704-0926-008					Date:	07/28/09	
Customer:	Precor, Inc.					Temperature:	24°C	
Attendees:	None					Humidity:	42%	
Project:	None				Ba	arometric Pres.:	30.05 in	
Tested by:	Rod Peloquin		Power:	120VAC/60Hz		Job Site:	EV01	
TEST SPECIFICATI	IONS			Test Method				
FCC 15.225:2009				ANSI C63.4:2003				
COMMENTS								
Module extended fr	rom host:							
DEVIATIONS FROM	I TEST STANDARD							
No Deviations								
Configuration #	1	Rocky le Signature	Reling					
					Value	Lir	nit	Results
FREQUENCY STAB	BILITY							

Frequency Stability with Variation of AC Voltage (Ambient Temperature = 20° C)

Voltage	Assigned Frequency	Measured Frequency	Tolerance	Specification	
(VDC)	(MHz)	(MHz)	(ppm)	(ppm)	
138 (115%)	13.560702	13.560702	0.00	n/a	
120 (100%)	13.560702	13.560702	0.00	n/a	
102 (85%)	13.560702	13.560702	0.00	n/a	

Frequency Stability with Variation of Ambient Temperature (Primary Supply = 120 VAC)

Temp	Assigned Frequency	Measured Frequency	Tolerance	Specification
(°C)	(MHz)	(MHz)	(ppm)	(ppm)
50	13.560702	13.560557	10.69	n/a
40	13.560702	13.560588	8.41	n/a
30	13.560702	13.560661	3.02	n/a
20	13.560702	13.560702	0.00	n/a
10	13.560702	13.560764	4.57	n/a
0	13.560702	13.560833	9.66	n/a
-10	13.560702	13.560876	12.83	n/a
-20	13.560702	13.560887	13.64	n/a
-30	13.560702	13.560879	13.05	n/a

FREQUENCY STABILITY

