

Shenzhen Huatongwei International Inspection Co., Ltd. Huatongwei Building, keji'nan 12th Road, High-Tech Industrial Park, Nanshan District, Shenzhen, Guangdong, China Tel:86-755-26715499 E-mail: cs@ szhtw.com.cn http://www.szhtw.com.cn

т	EST REPORT	
•••		
Report No:	CHTEW21010015	Report verificaiton:
Project No:	SHT2012092301EW	
FCC ID	SZGGPQY2	
Applicant's name:	Weifang GoerTek Electronics C	o., Ltd.
Address:	Gaoxin 2 Road,Free Trade Zone,Weifang,Shandong,261205	P.R.China
Test item description:	Wireless Device	
Trade Mark	-	
Model/Type reference:	GPQY2	
Listed Model(s)		
Standard :	FCC 47 CFR Part2.1093 IEEE Std C95.1, 1999 Edition IEEE 1528: 2013	
Date of receipt of test sample	Dec.28, 2020	
Date of testing	Dec.29, 2020- Jan.04, 2021	
Date of issue	Jan.06, 2021	
Result	PASS	
Compiled by		fong his Thu
(position+printedname+signature):	File administrators: Fanghui Zhu	
Supervised by (position+printedname+signature):	Test Engineer: Patrick Qiu	Poetrick . Rin Homsty
Approved by		Langetu
(position+printedname+signature):	Manager: Hans Hu	
Testing Laboratory Name: :	Shenzhen Huatongwei Internati	onal Inspection Co., Ltd
Address:	1/F, Bldg 3, Hongfa Hi-tech Indus Gongming, Shenzhen, China	trial Park, Genyu Road, Tianliao,
Shenzhen Huatongwei International I	•	
This publication may be reproduced in v Shenzhen Huatongwei International Ins the material. Shenzhen Huatongwei Inter assume liability for damages resulting fr placement and context.	pection Co., Ltd is acknowledged a ernational Inspection Co., Ltd takes	s copyright owner and source of no responsibility for and will not
The test report merely correspond to the	e test sample.	

Contents

<u>1.</u>	Statement of Compliance	3
<u>2.</u>	Test Standards and Report version	4
2.1.	Test Standards	4
2.2.	Report version	4
<u>3.</u>	Summary	5
3.1.	Client Information	5
3.2.	Product Description	5
3.3.	RF Specification Description	5
3.4.	Testing Laboratory Information	6
3.5.	Environmental conditions	6
<u>4.</u>	Equipments Used during the Test	7
<u>5.</u>	Measurement Uncertainty	8
<u>6.</u>	SAR Measurements System Configuration	9
6.1.	SAR Measurement Set-up	9
6.2.	DASY5 E-field Probe System	10
6.3.	Phantoms	11
6.4.	Device Holder	11
<u>7.</u>	SAR Test Procedure	12
7.1.	Scanning Procedure	12
7.2.	Data Storage and Evaluation	14
<u>8.</u>	Position of the wireless device in relation to the phantom	16
8.1.	Head Position	16
8.2.	Body Position	17
<u>9.</u>	Dielectric Property Measurements & System Check	18
9.1.	Tissue Dielectric Parameters	18
9.2.	System Check	19
<u>10.</u>	SAR Exposure Limits	22
<u>11.</u>	Conducted Power Measurement Results	23
11.1.	Bluetooth	23
<u>12.</u>	Maximum Tune-up Limit	23
<u>13.</u>	Measured and Reported SAR Results	24
13.1.	Head SAR	24
13.2.	Body SAR	25
<u>14.</u>	SAR Measurement Variability	26

1. Statement of Compliance

Maximum Reported SAR (W/kg @1g)					
RF Exposure Conditions BR+EDR BLE					
Head	0.15	0.06			
Body-worn(Dist.= 0mm)	0.46	0.23			

This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1992, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013 and FCC KDB publications.

Shenzhen Huatongwei International Inspection Co., Ltd.

2. Test Standards and Report version

2.1. Test Standards

The tests were performed according to following standards:

FCC 47 Part 2.1093: Radiofrequency radiation exposure evaluation: portable devices.

<u>IEEE Std C95.1, 1999 Edition:</u> IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz

<u>IEEE Std 1528™-2013</u>: IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.

FCC published RF exposure KDB procedures:

865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04: SAR Measurement Requirements for 100 MHz to 6 GHz

<u>865664 D02 RF Exposure Reporting v01r02:</u> RF Exposure Compliance Reporting and Documentation Considerations

<u>447498 D01 General RF Exposure Guidance v06:</u> Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies

248227 D01 802 11 Wi-Fi SAR v02r02: SAR Measurement Proceduresfor802.11 a/b/g Transmitters

<u>TCB workshop</u> April, 2019; Page 19, Tissue Simulating Liquids (TSL)

2.2. Report version

Revision No.	Date of issue	Description
N/A	2021-01-06	Original

3. Summary

3.1. Client Information

Applicant:	Weifang GoerTek Electronics Co., Ltd.	
Address:	Gaoxin 2 Road, Free Trade Zone, Weifang, Shandong, 261205, P.R. China	
Manufacturer:	Weifang GoerTek Electronics Co., Ltd.	
Address:	Gaoxin 2 Road, Free Trade Zone, Weifang, Shandong, 261205, P.R. China	

3.2. Product Description

Main unit	
Name of EUT:	Wireless Device
Trade Mark:	-
Model No.:	GPQY2
Listed Model(s):	-
Power supply:	3.7V
Device Category:	Portable
Product stage:	Production unit
RF Exposure Environment:	General Population/Uncontrolled
Hardware version:	309000124899R2
Software version:	Ver34.1
Device Dimension:	Overall (Length x Width x Thickness): 27x20x15 mm

3.3. RF Specification Description

Bluetooth					
Bluetooth version:	V5.2				
Support function:	EDR				
Operating Mode:	GFSK π/4DQPSK 8DPSK				
Antenna Type:	Internal				
Does this device support Bluet	Does this device support Bluetooth Tethering? Yes No				
Bluetooth					
Bluetooth version:	V5.2				
Support function:	BLE				
Operating Mode:	GFSK				
Antenna Type:	Internal				
Does this device support Bluet	ooth Tethering? 🗌 Yes 🖾 No				
Remark: 1. The EUT battery must be a power.	ully charged and checked periodically during the test to ascertain uniform				

3.4. Testing Laboratory Information

Laboratory Name	Shenzhen Huatongwei International Inspection Co., Ltd.		
Laboratory Location	1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China		
Connect information:	Tel: 86-755-26715499 E-mail: <u>cs@szhtw.com.cn</u> <u>http://www.szhtw.com.cn</u>		
Qualifications	Туре	Accreditation Number	
Qualifications	FCC	762235	

3.5. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Ambient temperature	18 °C to 25 °C
Ambient humidity	30%RH to 70%RH
Air Pressure	950-1050mbar

4. Equipments Used during the Test

Used	Test Equipment	Manufacturer	Model No.	Serial No.	Cal. date (YY-MM-DD)	Due date (YY-MM-DD)
•	Data Acquisition Electronics DAEx	SPEAG	DAE4	1549	2020/04/04	2021/04/03
•	E-field Probe	SPEAG	EX3DV4	7494	2020/04/01	2021/03/31
0	Universal Radio Communication Tester	R&S	CMW500	137681	2020/06/18	2021/06/17
• Ti	issue-equivalent liquids Va	lidation				
•	Dielectric Assessment Kit	SPEAG	DAK-3.5	1267	N/A	N/A
0	Dielectric Assessment Kit	SPEAG	DAK-12	1130	N/A	N/A
•	Network analyzer	Keysight	E5071C	MY46733048	2020/10/15	2021/10/14
• S	ystem Validation					
0	System Validation Antenna	SPEAG	CLA-150	4024	2018/02/21	2021/02/20
0	System Validation Dipole	SPEAG	D450V3	1102	2018/02/23	2021/02/22
0	System Validation Dipole	SPEAG	D750V3	1180	2018/02/07	2021/02/06
0	System Validation Dipole	SPEAG	D835V2	4d238	2018/02/19	2021/02/18
0	System Validation Dipole	SPEAG	D1750V2	1164	2018/02/06	2021/02/05
0	System Validation Dipole	SPEAG	D1900V2	5d226	2018/02/22	2021/02/21
•	System Validation Dipole	SPEAG	D2450V2	1009	2018/02/05	2021/02/04
0	System Validation Dipole	SPEAG	D2600V2	1150	2018/02/05	2021/02/04
0	System Validation Dipole	SPEAG	D5GHzV2	1273	2018/02/21	2021/02/20
•	Signal Generator	R&S	SMB100A	114360	2020/08/11	2021/08/10
•	Power Viewer for Windows	R&S	N/A	N/A	N/A	N/A
•	Power sensor	R&S	NRP18A	101010	2020/08/11	2021/08/10
•	Power sensor	R&S	NRP18A	101386	2020/06/08	2021/06/07
•	Power Amplifier	BONN	BLWA 0160-2M	1811887	2020/11/12	2021/11/11
•	Dual Directional Coupler	Mini-Circuits	ZHDC-10-62-S+	F975001814	2020/11/12	2021/11/11
•	Attenuator	Mini-Circuits	VAT-3W2+	1819	2020/11/12	2021/11/11
•	Attenuator	Mini-Circuits	VAT-10W2+	1741	2020/11/12	2021/11/11

Note:

1. The Probe, Dipole and DAE calibration reference to the Appendix B and C.

2. Referring to KDB865664 D01, the dipole calibration interval can be extended to 3 years with justificatio. The dipole are also not physically damaged or repaired during the interval.

5. Measurement Uncertainty

Per KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg and the measured 10-g SAR within a frequency band is < 3.75 W/kg. The expanded SAR measurement uncertainty must be \leq 30%, for a confidence interval of k = 2. If these conditions are met, extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval.

Therefore, the measurement uncertainty is not required.

6. SAR Measurements System Configuration

6.1. SAR Measurement Set-up

The DASY5 system for performing compliance tests consists of the following items:

A standard high precision 6-axis robot (Stäubli RX family) with controller and software. An arm extension for accommodating the data acquisition electronics (DAE).

A dosimetric probe, i.e. an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.

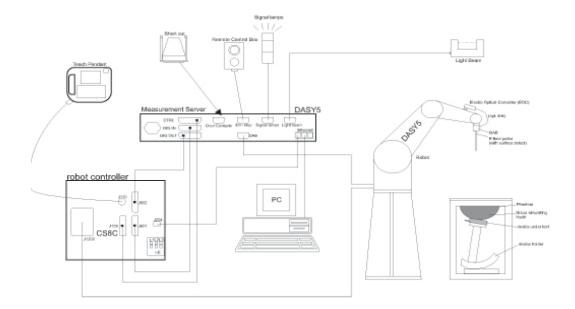
A data acquisition electronic (DAE) which performs the signal amplification, signal multiplexing, ADconversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.

A unit to operate the optical surface detector which is connected to the EOC.

The Electro-Optical Coupler (EOC) performs the conversion from the optical into a digital electric signal of the DAE. The EOC is connected to the DASY5 measurement server.

The DASY5 measurement server, which performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation. A computer operating Windows 2003.

DASY5 software and SEMCAD data evaluation software.


Remote control with teach panel and additional circuitry for robot safety such as warning lamps, etc.

The generic twin phantom enabling the testing of left-hand and right-hand usage.

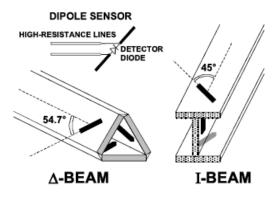
The device holder for handheld Mobile Phones.

Tissue simulating liquid mixed according to the given recipes.

System validation dipoles allowing to validate the proper functioning of the system.

6.2. DASY5 E-field Probe System

The SAR measurements were conducted with the dosimetric probe EX3DV4 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation.


• Probe Specification

Construction	Symmetrical design with triangular core Interleaved sensors Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)
Calibration	ISO/IEC 17025 calibration service available.
Frequency	4 MHz to 10 GHz; Linearity: ± 0.2 dB (30 MHz to 6 GHz)
Directivity	± 0.3 dB in HSL (rotation around probe axis) ± 0.5 dB in tissue material (rotation normal to probe axis)
Dynamic Range	10 μW/g to > 100 W/kg; Linearity: ± 0.2 dB
Dimensions	Overall length: 337 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Distance from probe tip to dipole centers: 1.0 mm
Application	General dosimetry up to 6 GHz Dosimetry in strong gradient fields Compliance tests of Mobile Phones
Compatibility	DASY3, DASY4, DASY52 SAR and higher, EASY4/MRI

Isotropic E-Field Probe

The isotropic E-Field probe has been fully calibrated and assessed for isotropicity, and boundary effect within a controlled environment. Depending on the frequency for which the probe is calibrated the method utilized for calibration will change.

The E-Field probe utilizes a triangular sensor arrangement as detailed in the diagram below:

6.3. Phantoms

The phantom used for all tests i.e. for both system checks and device testing, was the twin-headed "SAM Phantom", manufactured by SPEAG. The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region, where shell thickness increases to 6mm).

System checking was performed using the flat section, whilst Head SAR tests used the left and right head profile sections. Body SAR testing also used the flat section between the head profiles.

SAM-Twin Phantom

6.4. Device Holder

The device was placed in the device holder (illustrated below) that is supplied by SPEAG as an integral part of the DASY system.

The DASY device holder is designed to cope with the different positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

Device holder supplied by SPEAG

7. SAR Test Procedure

7.1. Scanning Procedure

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. Measure the local SAR at a test point within 8 mm of the phantom inner surface that is closest to the DUT. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE Standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly.

Area Scan Resolutions per FCC KDB Publication 865664 D01v04

	\leq 3 GHz	> 3 GHz	
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	$5 \text{ mm} \pm 1 \text{ mm}$	$\frac{1}{2} \cdot \hat{\delta} \cdot \ln(2) \operatorname{mm} \pm 0.5 \operatorname{mm}$	
Maximum probe angle from probe axis to phantom surface normal at the measurement location	$30^{\circ} \pm 1^{\circ}$	$20^{\circ} \pm 1^{\circ}$	
	\leq 2 GHz: \leq 15 mm 2 - 3 GHz: \leq 12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm	
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.		

Step 3: Zoom Scan

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1g and 10g of simulated tissue. The Zoom Scan measures points (refer to table below) within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 g and 10 g and displays these values next to the job's label.

Maximum zoom scan	spatial res	olution: Δx_{Zoom} , Δy_{Zoom}	$\leq 2 \text{ GHz:} \leq 8 \text{ mm}$ 2 - 3 GHz: $\leq 5 \text{ mm}^*$	$\begin{array}{l} 3-4 \; \mathrm{GHz:} \leq 5 \; \mathrm{mm}^* \\ 4-6 \; \mathrm{GHz:} \leq 4 \; \mathrm{mm}^* \end{array}$		
Maximum zoom scan spatial resolution, normal to phantom surface	uniform	grid: $\Delta z_{Zoom}(n)$	\leq 5 mm	$3 - 4 \text{ GHz:} \le 4 \text{ mm}$ $4 - 5 \text{ GHz:} \le 3 \text{ mm}$ $5 - 6 \text{ GHz:} \le 2 \text{ mm}$		
	graded grid	$\Delta z_{Z_{com}}(1)$: between 1 st two points closest to phantom surface	\leq 4 mm	$3 - 4 \text{ GHz:} \le 3 \text{ mm}$ $4 - 5 \text{ GHz:} \le 2.5 \text{ mm}$ $5 - 6 \text{ GHz:} \le 2 \text{ mm}$		
	gna	$\Delta z_{Zoom}(n>1)$: between subsequent points	$\leq 1.5 \cdot \Delta z_{Z_{OC}}$	m(n-1) mm		
Minimum zoom scan volume	x, y, z		\geq 30 mm	$\begin{array}{l} 3-4 \text{ GHz:} \geq 28 \text{ mm} \\ 4-5 \text{ GHz:} \geq 25 \text{ mm} \\ 5-6 \text{ GHz:} \geq 22 \text{ mm} \end{array}$		
A						

Note: \hat{o} is the penetration depth of a plane-wave at normal incidence to the tissue medium; see IEEE Std 1528-2013 for details.

* When zoom scan is required and the <u>reported</u> SAR from the *area scan based 1-g SAR estimation* procedures of KDB Publication 447498 is \leq 1.4 W/kg, \leq 8 mm, \leq 7 mm and \leq 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

Step 4: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1. The SAR drift shall be kept within ± 5 %.

7.2. Data Storage and Evaluation

Data Storage

The DASY5 software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors),s together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension ".DA4". The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [W/kg], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

Data Evaluation

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters:	Sensitivity:	Normi, ai0, ai1, ai2
	Conversion factor:	ConvFi
	Diode compression point:	Dcpi
Device parameters:	Frequency:	f
	Crest factor:	cf
Media parameters:	Conductivity:	σ
	Density:	ρ

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY5 components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

Vi: compensated signal of channel (i = x, y, z)

Ui: input signal of channel (i = x, y, z)

cf: crest factor of exciting field (DASY parameter)

dcpi: diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E – fieldprobes :
$$E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$$

H – fieldprobes : $H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f}$

Vi:	compensated signal of channel ($i = x, y, z$)
Normi:	sensor sensitivity of channel ($i = x, y, z$),
	[mV/(V/m)2] for E-field Probes
ConvF:	sensitivity enhancement in solution
aij:	sensor sensitivity factors for H-field probes
f:	carrier frequency [GHz]
Ei:	electric field strength of channel i in V/m
Hi:	magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

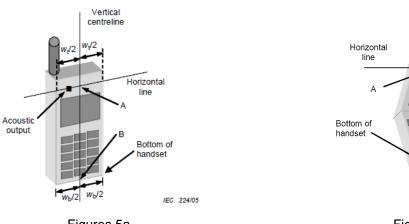
$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1'000}$$

- SAR: local specific absorption rate in W/kg
- Etot: total field strength in V/m
- σ: conductivity in [mho/m] or [Siemens/m]
- ρ: equivalent tissue density in g/cm3

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid.

8. Position of the wireless device in relation to the phantom

8.1. Head Position


The wireless device define two imaginary lines on the handset, the vertical centreline and the horizontal line, for the handset in vertical orientation as shown in Figures 5a and 5b.

The vertical centreline passes through two points on the front side of the handset: the midpoint of the width W_t of the handset at the level of the acoustic output (point A in Figures 5a and 5b), and the midpoint of the width W_b of the bottom of the handset (point B).

The horizontal line is perpendicular to the vertical centreline and passes through the centre of the acoustic output (see Figures 5a and 5b). The two lines intersect at point A.

Note that for many handsets, point A coincides with the centre of the acoustic output. However, the acoustic output may be located elsewhere on the horizontal line. Also note that the vertical centreline is not necessarily parallel to the front face of the handset (see Figure 5b), especially for clam-shell handsets,

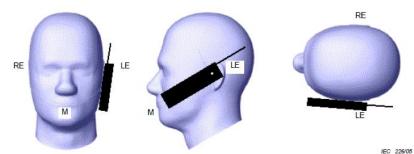
handsets with flip cover pieces, and other irregularly shaped handsets.

Figures 5a

Vertical

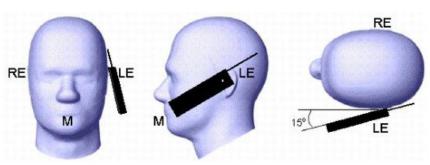
centreline

Acoustic


output

IEC 225/05

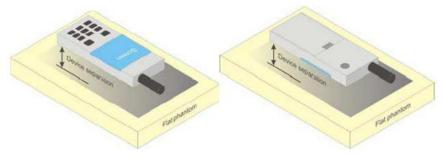
R


- W_t Width of the handset at the level of the acoustic
- W_b Width of the bottom of the handset
- A Midpoint of the widthwt of the handset at the level of the acoustic output
- B Midpoint of the width wb of the bottom of the handset

Cheek position

Picture 2 Cheek position of the wireless device on the left side of SAM

Tilt position



Picture 3 Tilt position of the wireless device on the left side of SAM

8.2. Body Position

Devices that support transmission while used with body-worn accessories must be tested for body-worn accessory SAR compliance, typically according to the smallest test separation distance required for the group of body-worn accessories with similar operating and exposure characteristics.

Devices that are designed to operate on the body of users using lanyards and straps or without requiring additional body-worn accessories must be tested for SAR compliance using a conservative minimum test separation distance \leq 5mm to support compliance.

Picture 4 Test positions for body-worn devices

9. Dielectric Property Measurements & System Check

9.1. Tissue Dielectric Parameters

The temperature of the tissue-equivalent medium used during measurement must also be within 18°C to 25°C

and within $\pm 2^{\circ}$ C of the temperature when the tissue parameters are characterized.

The dielectric parameters must be measured before the tissue-equivalent medium is used in a series of SAR measurements. The parameters should be re-measured after each 3-4 days of use; or earlier if the dielectric parameters can become out of tolerance; for example, when the parameters are marginal at the beginning of the measurement series.

The dielectric constant (ε_r) and conductivity (σ) of typical tissue-equivalent media recipes are expected to be within \pm 5% of the required target values; but for SAR measurement systems that have implemented the SAR error compensation algorithms documented in IEEE Std 1528-2013, to automatically compensate the measured SAR results for deviations between the measured and required tissue dielectric parameters, the tolerance for ε_r and σ may be relaxed to \pm 10%. This is limited to frequencies \leq 3 GHz.

Tissue Dielectric Parameters

FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz

Tissue dielectric parameters for Head and Body										
Target Frequency	He	ad	Body							
(MHz)	٤ _r	σ(S/m)	٤ _r	σ(S/m)						
2450	39.2	1.80	52.7	1.95						

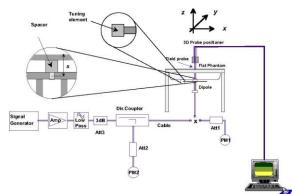
IEEE Std 1528-2013

Refer to Table 3 within the IEEE Std 1528-2013

Dielectric Property Measurements Results:

	Dielectric performance of Head tissue simulating liquid														
Frequency		٤ _r	σ(S/m)		Delta	Delta	Limit	Temp	Date						
(MHz)	Target	Measured	Target	Measured	(ε _r)	ε _r) (σ)		(°C)							
2400	39.30	40.43	1.750	1.761	2.88%	0.63%	±5%	22.3	2020-12-29						
2450	39.20	40.34	1.800	1.796	2.91%	-0.22%	±5%	22.3	2020-12-29						
2480	39.16	40.28	1.890	1.819	2.86%	-3.76%	±5%	22.3	2020-12-29						

9.2. System Check


SAR system verification is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device. The same SAR probe(s) and tissue-equivalent media combinations used with each specific SAR system for system verification must be used for device testing. When multiple probe calibration points are required to cover substantially large transmission bands, independent system verifications are required for each probe calibration point and tissue-equivalent medium. Additional system verification should be considered according to the conditions of the tissue-equivalent medium and measured tissue dielectric parameters, typically every three to four days when the liquid parameters are re-measured or sooner when marginal liquid parameters are used at the beginning of a series of measurements.

System Performance Check Measurement Conditions:

- The measurements were performed in the flat section of the TWIN SAM or ELI phantom, shell thickness: 2.0±0.2 mm (bottom plate) filled with Body or Head simulating liquid of the following parameters.
- The depth of tissue-equivalent liquid in a phantom must be ≥ 15.0 cm for SAR measurements ≤ 3 GHz

and \geq 10.0 cm for measurements > 3 GHz.

- The DASY system with an E-Field Probe was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10 mm (above 1 GHz) and 15 mm (below 1 GHz) from dipole center to the simulating liquid surface.
- The coarse grid with a grid spacing of 15 mm was aligned with the dipole.
 For 5 GHz band The coarse grid with a grid spacing of 10 mm was aligned with the dipole.
- Special 7x7x7 (below 3 GHz) and/or 8x8x7 (above 3 GHz) fine cube was chosen for the cube.
- Special 77777 (below 5 GHz) and/of 6x677 (above 5 GHz) inf
 The results are normalized to 1 W input power.
- The results are normalized to 1 W input power.

System Performance Check Setup

Photo of Dipole Setup

System Check Result:

The 1-g and 10-g SAR measured with a reference dipole, using the required tissue-equivalent medium at the test frequency, must be within ±10% of the manufacturer calibrated dipole SAR target.

	Head												
Frequency (MHz)	1g SAR			10g SAR			Delta	Delta	Limit	Temp	Date		
	Target 1W	Normalize to 1W	Measured 250mW	Target 1W	Normalize to 1W	Measured 250mW	(1g)	(10g)		(°C)	Date		
2450	51.50	54.00	13.50	24.10	25.24	6.31	4.85%	4.73%	±10%	22.3	2020-12-29		

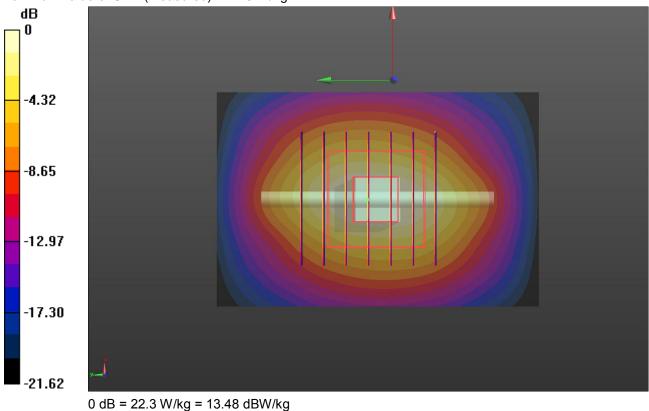
Plots of System Performance Check

SystemPerformanceCheck-Head 2450MHz

DUT: D2450V2; Type: D2450V2; Serial: 1009 Date: 2020-12-29 Communication System: UID 0, CW (0); Frequency: 2450 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 2450 MHz; $\sigma = 1.796$ S/m; $\epsilon r = 40.338$; $\rho = 1000$ kg/m3 Phantom section: Flat Section Ambient Temperature:22.4 °C;Liquid Temperature:22.2 °C;

DASY5 Configuration:

- Probe: EX3DV4 SN7494; ConvF(7.91, 7.91, 7.91) @ 2450 MHz; Calibrated: 4/1/2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1549; Calibrated: 4/4/2020
- Phantom: Twin-SAM V8.0 ; Type: QD 000 P41 AA; Serial: 1974
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)


Head/d=10mm,Pin=250mW/Area Scan (41x61x1): Interpolated grid: dx=1.200 mm,

dy=1.200 mm

Maximum value of SAR (interpolated) = 23.0 W/kg

Head/d=10mm,Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm Reference Value = 117.7 V/m; Power Drift = -0.13 dB Peak SAR (extrapolated) = 27.9 W/kg SAR(1 g) = 13.5 W/kg; SAR(10 g) = 6.31 W/kg Maximum value of SAR (measured) = 22.3 W/kg

10. SAR Exposure Limits

SAR assessments have been made in line with the requirements of FCC 47 CFR § 2.1093.

	Limit (W/kg)						
Type Exposure	General Population/ Uncontrolled Exposure Environment	Occupational/ Controlled Exposure Environment					
Spatial Average SAR (whole body)	0.08	0.4					
Spatial Peak SAR (1g cube tissue for head and trunk)	1.6	8.0					
Spatial Peak SAR (10g for limb)	4.0	20.0					

Population/Uncontrolled Environments: are defined as locations where there is the exposure of individual who have no knowledge or control of their exposure.

Occupational/Controlled Environments: are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure (i.e. as a result of employment or occupation).

11. Conducted Power Measurement Results

11.1. Bluetooth

	Bluetooth									
Mode	Channel	Frequency (MHz)	Conducted Average Power (dBm)							
	0	2402	12.52							
GFSK	39	2441	12.40							
	78	2480	12.21							
	0	2402	11.50							
π/4QPSK	39	2441	11.30							
	78	2480	11.00							
	0	2402	11.40							
8DPSK	39	2441	11.30							
	78	2480	11.10							
	0	2402	11.21							
BLE	19	2440	11.10							
	39	2480	10.70							

12. <u>Maximum Tune-up Limit</u>

	Bluetooth										
Mode	Channel	Maximum Tune-up (dBm) Conducted Average Power									
	0	13.50									
GFSK	39	13.50									
	78	12.50									
	0	11.50									
π/4 QPSK	39	11.50									
	78	11.00									
	0	11.50									
8DPSK	39	11.50									
	78	11.50									
	0	11.50									
BLE	19	11.50									
	39	11.00									

13. Measured and Reported SAR Results

SAR Test Reduction criteria are as follows:

- Reported SAR(W/kg) for WWAN = Measured SAR *Tune-up Scaling Factor
- Reported SAR(W/kg) for Wi-Fi and Bluetooth = Measured SAR * Tune-up scaling factor * Duty Cycle scaling factor
- Duty Cycle scaling factor = 1 / Duty cycle (%)

KDB 447498 D01 General RF Exposure Guidance:

Testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is:

- ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz
- ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
- \leq 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \geq 200 MHz

To determine the initial test position, Area Scans were performed to determine the position with the Maximum Value of SAR (measured). The position that produced the highest Maximum Value of SAR is considered the worst case position; thus used as the initial test position.

Refer to **KDB 248227** for reduced testing and select only the maximum power mode for testing in all Bluetooth specifications

	Bluetooth												
	Test	Frequ	uency	Conducte d Power	Tune up	Tune up	Duty	Duty Cycle Scalin	Power Drift	Measurd	Report SAR(1g	Plo t	
Mode	Position	СН	MHz	(dBm)	limit (dBm)	scaling factor	Cycle	g Factor	(dB)	IB) (W/kg) (W/kg) No.	No.		
		0	2402	12.52	13.50	1.253	58.05%	1.72	-0.07	0.069	0.15	-	
EDR	Left Touch	39	2441	12.40	13.50	1.288	58.05%	1.72	-0.18	0.069	0.15	1	
	rouch	78	2480	12.21	12.50	1.069	58.05%	1.72	-0.15	0.072	0.13	-	
		0	2402	11.21	11.50	1.069	86.53%	1.16	-0.09	0.048	0.06	-	
BLE	BLE Left Touch	19	2440	11.10	11.50	1.096	86.53%	1.16	-0.13	0.047	0.06	-	
	rodon	39	2480	10.70	11.00	1.072	86.53%	1.16	-0.11	0.050	0.06	2	

13.1. Head SAR

13.2. Body SAR

	Bluetooth											
Mode	Test	Frequency		Conducte d Power	Tune up	Tune up	Duty	Duty Cycle Scalin	Power Drift	Measurd SAR(1g)	Report SAR(1g	Plo t
Mode	Position	СН	MHz	(dBm)	limit (dBm)	scaling factor	Cycle	g Factor	(dB)	(W/kg)) (W/kg)	No.
		0	2402	12.52	13.50	1.253	58.05%	1.72	-0.06	0.186	0.40	-
	Left Front	39	2441	12.40	13.50	1.288	58.05%	1.72	-	-	-	-
		78	2480	12.21	12.50	1.069	58.05%	1.72	-	-	-	-
		0	2402	12.52	13.50	1.253	58.05%	1.72	-0.07	0.111	0.24	-
EDR	Left Rear	39	2441	12.40	13.50	1.288	58.05%	1.72	-	-	-	-
		78	2480	12.21	12.50	1.069	58.05%	1.72	-	-	-	-
		0	2402	12.52	13.50	1.253	58.05%	1.72	-0.16	0.198	0.43	-
	Left Bottom	39	2441	12.40	13.50	1.288	58.05%	1.72	0.04	0.206	0.46	3
	Dottom	78	2480	12.21	12.50	1.069	58.05%	1.72	0.06	0.200	0.37	-
		0	2402	11.21	11.50	1.069	86.53%	1.16	0.17	0.159	0.20	-
	Left Front	19	2440	11.10	11.50	1.096	86.53%	1.16	-	-	-	-
		39	2480	10.70	11.00	1.072	86.53%	1.16	-	-	-	-
		0	2402	11.21	11.50	1.069	86.53%	1.16	-0.08	0.086	0.11	-
BLE	Left Rear	19	2440	11.10	11.50	1.096	86.53%	1.16	-	-	-	-
		39	2480	10.70	11.00	1.072	86.53%	1.16	-	-	-	-
		0	2402	11.21	11.50	1.069	86.53%	1.16	0.13	0.162	0.20	-
	Left Bottom	19	2440	11.10	11.50	1.096	86.53%	1.16	-0.05	0.183	0.23	-
	Dottom	39	2480	10.70	11.00	1.072	86.53%	1.16	-0.12	0.180	0.22	4

SAR Test Data Plots to the Appendix A

14. SAR Measurement Variability

In accordance with published RF Exposure KDB 865664 D01 SAR measurement 100 MHz to 6 GHz. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

1) Repeated measurement is not required when the original highest measured SAR is <0.8 or 2 W/kg (1-g or 10-g respectively); steps 2) through 4) do not apply.

2) When the original highest measured SAR is \geq 0.8 or 2 W/kg (1-g or 10-g respectively), repeat that measurement once.

3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is \geq 1.45 or 3.6 W/kg (~ 10% from the 1-g or 10-g respective SAR limit).

4) Perform a third repeated measurement only if the original, first, or second repeated measurement is \geq 1.5 or 3.75 W/kg (1-g or 10-g respectively) and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

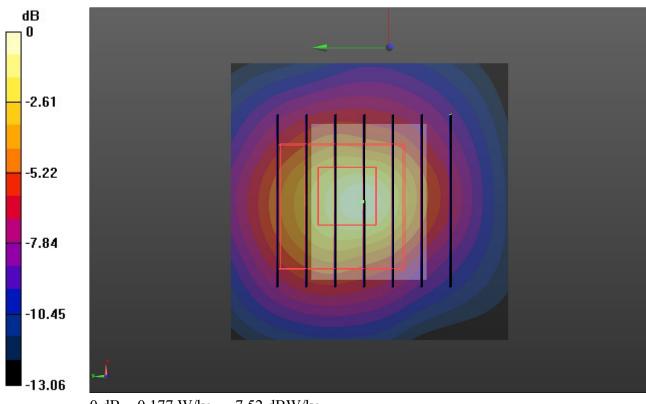
	Test	Frequ	Jency	Highest Measured	Fii Repe		Sec Repe	
Band	Position	СН	MHz	SAR (W/kg)	Measured SAR(W/kg)	Largest to Smallest SAR Ratio	Measured SAR(W/kg)	Largest to Smallest SAR Ratio
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

-----End of Report-----

BT-Left Touch

Communication System: UID 0, Generic BT (0); Frequency: 2441 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 2441 MHz; $\sigma = 1.79$ S/m; $\varepsilon_r = 40.353$; $\rho = 1000$ kg/m³ Phantom section: Flat Section

Ambient Temperature:22.4°C;Liquid Temperature:22.2°C;


DASY Configuration:

- Probe: EX3DV4 SN7494; ConvF(7.91, 7.91, 7.91) @ 2441 MHz; Calibrated: 4/1/2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1549; Calibrated: 4/4/2020
- Phantom: Twin-SAM V8.0 ; Type: QD 000 P41 AA; Serial: 1974
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Left Touch/CH 39/Area Scan (41x41x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.172 W/kg

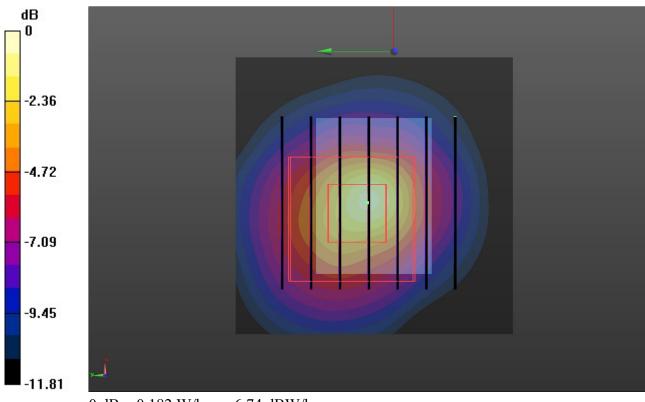
Left Touch/CH 39/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 9.927 V/m; Power Drift = -0.18 dB

Peak SAR (extrapolated) = 0.262 W/kg SAR(1 g) = 0.069 W/kg; SAR(10 g) = 0.029 W/kg Maximum value of SAR (measured) = 0.177 W/kg

0 dB = 0.177 W/kg = -7.52 dBW/kg

BLE-Left Touch

Communication System: UID 0, Generic BT (0); Frequency: 2480 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2480 MHz; $\sigma = 1.819$ S/m; $\varepsilon_r = 40.284$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Ambient Temperature:22.4°C;Liquid Temperature:22.2°C;


DASY Configuration:

- Probe: EX3DV4 SN7494; ConvF(7.91, 7.91, 7.91) @ 2480 MHz; Calibrated: 4/1/2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1549; Calibrated: 4/4/2020
- Phantom: Twin-SAM V8.0; Type: QD 000 P41 AA; Serial: 1974
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Left Touch/CH 39/Area Scan (41x41x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.162 W/kg

Left Touch/CH 39/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 8.59 V/m; Power Drift = -0.11 dB

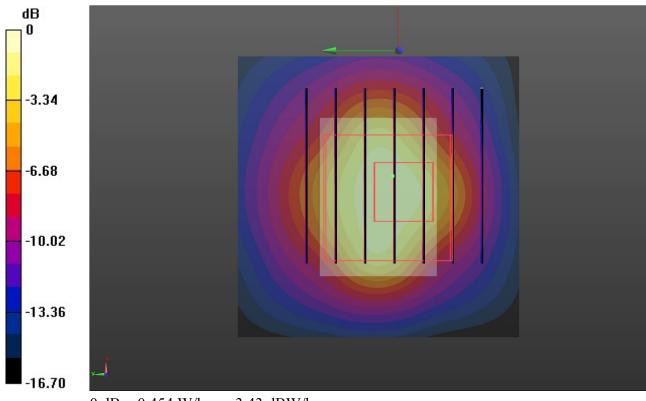
Reference Value = 8.59 V/m; Power Drift = -0.11 dB Peak SAR (extrapolated) = 0.304 W/kg SAR(1 g) = 0.050 W/kg; SAR(10 g) = 0.013 W/kg Maximum value of SAR (measured) = 0.182 W/kg

0 dB = 0.182 W/kg = -6.74 dBW/kg

BT-Left Bottom

Communication System: UID 0, Generic BT (0); Frequency: 2441 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 2441 MHz; $\sigma = 1.79$ S/m; $\varepsilon_r = 40.353$; $\rho = 1000$ kg/m³ Phantom section: Flat Section

Ambient Temperature:22.5°C;Liquid Temperature:22.3°C;


DASY Configuration:

- Probe: EX3DV4 SN7494; ConvF(7.91, 7.91, 7.91) @ 2441 MHz; Calibrated: 4/1/2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1549; Calibrated: 4/4/2020
- Phantom: Twin-SAM V8.0; Type: QD 000 P41 AA; Serial: 1974
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Left Bottom/CH 39/Area Scan (41x41x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.313 W/kg

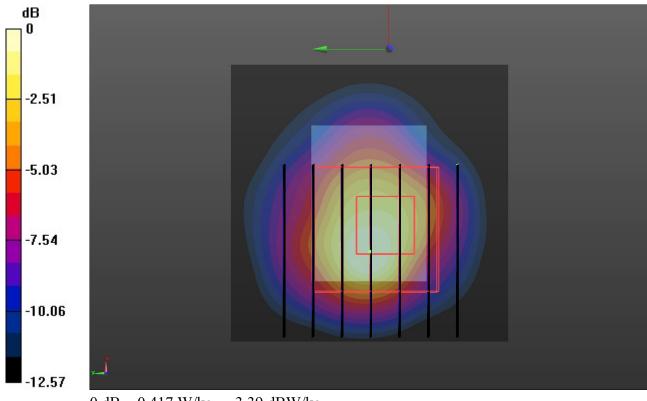
Left Bottom/CH 39/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 13 25 V/m: Power Drift = 0.04 dB

Reference Value = 13.25 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 0.710 W/kg SAR(1 g) = 0.206 W/kg; SAR(10 g) = 0.084 W/kg Maximum value of SAR (measured) = 0.454 W/kg

0 dB = 0.454 W/kg = -3.43 dBW/kg

BLE-Left Bottom

Communication System: UID 0, Generic BT (0); Frequency: 2480 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2480 MHz; $\sigma = 1.819$ S/m; $\varepsilon_r = 40.284$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Ambient Temperature:22.5°C;Liquid Temperature:22.3°C;


DASY Configuration:

- Probe: EX3DV4 SN7494; ConvF(7.91, 7.91, 7.91) @ 2480 MHz; Calibrated: 4/1/2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1549; Calibrated: 4/4/2020
- Phantom: Twin-SAM V8.0 ; Type: QD 000 P41 AA; Serial: 1974
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Left Bottom/CH 39/Area Scan (41x41x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.487 W/kg

Left Bottom/CH 39/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 11.29 V/m; Power Drift = -0.12 dB

Reference Value = 11.29 V/m; Power Drift = -0.12 dB Peak SAR (extrapolated) = 0.654 W/kg SAR(1 g) = 0.180 W/kg; SAR(10 g) = 0.064 W/kg Maximum value of SAR (measured) = 0.417 W/kg

0 dB = 0.417 W/kg = -3.39 dBW/kg

1.1. DAE4 Calibration Certificate

Tel: +86-10-6230 E-mail: cttl@chim	04633-2512 Fa nattl.com <u>H</u>	District, Beijing, 100191, China ax: +86-10-62304633-2504 ttp://www.chinattl.cn	- dulum.	700 00101	CNAS L057
Client : HTV		ATE	Certificate N	lo: Z20-60131	
Object		E4 - SN: 1549			
Calibration Procedure(s)		Z11-002-01 bration Procedure for the Ex)	Data Acquisiti	ion Electronics	
Calibration date:	Apri	il 04, 2020		- Maria	
measurements(SI). The n pages and are part of the All calibrations have be	neasurements a certificate.	he traceability to national s and the uncertainties with co in the closed laboratory f	onfidence probal	bility are given on	the following
measurements(SI). The n pages and are part of the All calibrations have be humidity<70%. Calibration Equipment us	neasurements a certificate. en conducted ed (M&TE critic	and the uncertainties with co in the closed laboratory f al for calibration)	onfidence probal acility: environr	bility are given on nent temperature	the following (22±3) [°] C and
measurements(SI). The n pages and are part of the All calibrations have be humidity<70%. Calibration Equipment us	neasurements a certificate. en conducted ed (M&TE critic	and the uncertainties with co in the closed laboratory f	onfidence probal acility: environr	bility are given on	the following (22±3)°C and
measurements(SI). The n bages and are part of the All calibrations have be numidity<70%. Calibration Equipment us Primary Standards	neasurements a certificate. en conducted ed (M&TE critic	and the uncertainties with co in the closed laboratory f al for calibration)	nfidence probal acility: environr	bility are given on nent temperature	the following e(22±3)℃ and bration
measurements(SI). The n pages and are part of the All calibrations have be humidity<70%. Calibration Equipment us Primary Standards	neasurements a certificate. en conducted ed (M&TE critic ID #	and the uncertainties with co in the closed laboratory f al for calibration) Cal Date(Calibrated by, Cel	nfidence probal acility: environr	bility are given on nent temperature Scheduled Cali	the following e(22±3)℃ and bration
measurements(SI). The n bages and are part of the All calibrations have be numidity<70%. Calibration Equipment us Primary Standards Process Calibrator 753	neasurements a certificate. en conducted ed (M&TE critic ID # 1971018	and the uncertainties with co in the closed laboratory f cal for calibration) Cal Date(Calibrated by, Cer 24-Jun-19 (CTTL, No.J ² Function	nfidence probal acility: environn rtificate No.) 19X05126)	bility are given on ment temperature Scheduled Cali Jun-20	the following e(22±3)℃ and bration
measurements(SI). The n pages and are part of the	neasurements a certificate. en conducted ed (M&TE critic ID # 1971018	in the closed laboratory f ral for calibration) Cal Date(Calibrated by, Cer 24-Jun-19 (CTTL, No.J ² Function	nfidence probal acility: environn rtificate No.) 19X05126)	bility are given on ment temperature Scheduled Cali Jun-20	the following e(22±3)℃ and bration

Certificate No: Z20-60131

Page 1 of 3

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

Glossary: DAE Connector angle

data acquisition electronics information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters:

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- *Connector angle*: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The report provide only calibration results for DAE, it does not contain other performance test results.

Certificate No: Z20-60131

Page 2 of 3

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

DC Voltage Measurement

A/D - Converter Res	solution nomin	al		
High Range:	1LSB =	6.1µV,	full range =	-100+300 mV
Low Range:	1LSB =	61nV ,	full range =	-1+3mV
DASY measuremen	t parameters:	Auto Zero	Time: 3 sec; Meas	suring time: 3 sec

Calibration Factors	x	Y	Z
High Range	406.283 ± 0.15% (k=2)	$405.977 \pm 0.15\%$ (k=2)	406.124 \pm 0.15% (k=2)
Low Range	$3.98484 \pm 0.7\%$ (k=2)	$3.99178 \pm 0.7\%$ (k=2)	$3.99281 \pm 0.7\%$ (k=2)

Connector Angle

Connector Angle to be used in DASY system	19° ± 1 °
Connector Angle to be docum briter of stern	

Certificate No: Z20-60131

Page 3 of 3

1.2. Probe Calibration Certificate

1	TL	In Collaboration		中国认可 国际互认 校准 CALIBRAT
Add: No.51 X Tel: +86-10-6 E-mail: cttl@o	2304633-251		Beijing, 100191, China -62304633-2504 chinattl.cn	CNAS LOS
Client H	TW		Certificate No: Z20	0-60109
CALIBRATION	CERT	IFICAT		
Object		EX3DV4 - S	N : 7494	
Calibration Procedure(s	5)			
	· /	FF-Z11-004-		
		Calibration	Procedures for Dosimetric E-field Probes	
Calibration date:		April 01, 202	20	
All calibrations have b numidity<70%.	been cond	ducted in the o	closed laboratory facility: environment temp	erature(22±3)℃ and
	used (M&1			hadulad Calibration
Primary Standards		ID #	Cal Date(Calibrated by, Certificate No.) Sc	heduled Calibration
Primary Standards Power Meter NRP2		ID # 101919	Cal Date(Calibrated by, Certificate No.) Sc 18-Jun-19(CTTL, No.J19X05125)	Jun-20
Primary Standards Power Meter NRP2 Power sensor NRP-2	Z91	ID # 101919 101547	Cal Date(Calibrated by, Certificate No.) Sc 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125)	Jun-20 Jun-20
Primary Standards Power Meter NRP2 Power sensor NRP-2 Power sensor NRP-2	Z91 Z91	ID # 101919 101547 101548	Cal Date(Calibrated by, Certificate No.) Sc 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125)	Jun-20 Jun-20 Jun-20
Primary Standards Power Meter NRP2 Power sensor NRP-2 Power sensor NRP-2 Reference 10dBAtte	Z91 Z91 nuator	ID # 101919 101547 101548 18N50W-10dB	Cal Date(Calibrated by, Certificate No.) Sc 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125) 10-Feb-20(CTTL, No.J20X00525)	Jun-20 Jun-20 Jun-20 Feb-22
Primary Standards Power Meter NRP2 Power sensor NRP-2 Power sensor NRP-2 Reference 10dBAtte Reference 20dBAtte	Z91 Z91 nuator nuator	ID # 101919 101547 101548 18N50W-10dB 18N50W-20dB	Cal Date(Calibrated by, Certificate No.) Sc 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125) 10-Feb-20(CTTL, No.J20X00525) 10-Feb-20(CTTL, No.J20X00526) 10-Feb-20(CTTL, No.J20X00526)	Jun-20 Jun-20 Jun-20 Feb-22 Feb-22
Primary Standards Power Meter NRP2 Power sensor NRP-2 Power sensor NRP-2 Reference 10dBAtte	Z91 Z91 nuator nuator (3DV4	ID # 101919 101547 101548 18N50W-10dB	Cal Date(Calibrated by, Certificate No.) Sc 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125) 10-Feb-20(CTTL, No.J20X00525)	Jun-20 Jun-20 Jun-20 Feb-22 Feb-22 May-20
Primary Standards Power Meter NRP2 Power sensor NRP-2 Power sensor NRP-2 Reference 10dBAtte Reference 20dBAtte Reference Probe EX DAE4	Z91 Z91 nuator nuator (3DV4	ID # 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 7307	Cal Date(Calibrated by, Certificate No.) Sc 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125) 10-Feb-20(CTTL, No.J20X00525) 10-Feb-20(CTTL, No.J20X00526) 24-May-19(SPEAG, No.EX3-7307_May19/2) 26-Aug-19(SPEAG, No.DAE4-1525_Aug19)	Jun-20 Jun-20 Jun-20 Feb-22 Feb-22 May-20
Primary Standards Power Meter NRP2 Power sensor NRP-2 Power sensor NRP-2 Reference 10dBAtte Reference 20dBAtte Reference Probe EX DAE4 Secondary Standards	Z91 Z91 nuator nuator (3DV4	ID # 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 7307 SN 1525	Cal Date(Calibrated by, Certificate No.) Sc 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125) 10-Feb-20(CTTL, No.J20X00525) 10-Feb-20(CTTL, No.J20X00526) 24-May-19(SPEAG, No.EX3-7307_May19/2) 26-Aug-19(SPEAG, No.DAE4-1525_Aug19)	Jun-20 Jun-20 Jun-20 Feb-22 Feb-22 May-20 Aug-20
Primary Standards Power Meter NRP2 Power sensor NRP-2 Power sensor NRP-2 Reference 10dBAtte Reference 20dBAtte Reference Probe EX DAE4 Secondary Standards SignalGenerator MG	Z91 Z91 nuator nuator (3DV4	ID # 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 7307 SN 1525 ID #	Cal Date(Calibrated by, Certificate No.) Sc 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125) 10-Feb-20(CTTL, No.J20X00525) 10-Feb-20(CTTL, No.J20X00526) 24-May-19(SPEAG, No.EX3-7307_May19/2) 26-Aug-19(SPEAG, No.DAE4-1525_Aug19) Cal Date(Calibrated by, Certificate No.)	Jun-20 Jun-20 Jun-20 Feb-22 Feb-22 May-20 Aug-20
Primary Standards Power Meter NRP2 Power sensor NRP-2 Power sensor NRP-2 Reference 10dBAtte Reference 20dBAtte Reference Probe EX DAE4 Secondary Standards SignalGenerator MG	Z91 Z91 nuator nuator 3DV4	ID # 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 7307 SN 1525 ID # 6201052605 MY46110673	Cal Date(Calibrated by, Certificate No.) Sc 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125) 10-Feb-20(CTTL, No.J20X00525) 10-Feb-20(CTTL, No.J20X00526) 24-May-19(SPEAG, No.EX3-7307_May19/2) 26-Aug-19(SPEAG, No.DAE4-1525_Aug19) Sch 18-Jun-19(CTTL, No.J19X05127) 10-Feb-20(CTTL, No.J19X05127)	Jun-20 Jun-20 Jun-20 Feb-22 Feb-22 May-20 Aug-20 Jun-20
Primary Standards Power Meter NRP2 Power sensor NRP-2 Power sensor NRP-2 Reference 10dBAtte Reference 20dBAtte Reference Probe EX DAE4 Secondary Standards SignalGenerator MG Network Analyzer E5	Z91 Z91 nuator nuator (3DV4 33700A 5071C Name	ID # 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 7307 SN 1525 ID # 6201052605 MY46110673	Cal Date(Calibrated by, Certificate No.) Sc 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125) 10-Feb-20(CTTL, No.J20X00525) 10-Feb-20(CTTL, No.J20X00526) 24-May-19(SPEAG, No.EX3-7307_May19/2) 26-Aug-19(SPEAG, No.DAE4-1525_Aug19) Sch 18-Jun-19(CTTL, No.J19X05127) 10-Feb-20(CTTL, No.J19X05127)	Jun-20 Jun-20 Jun-20 Feb-22 Feb-22 May-20 Aug-20 Meduled Calibration Jun-20 Feb-21
Power sensor NRP-2 Power sensor NRP-2 Reference 10dBAtte Reference 20dBAtte Reference Probe EX DAE4 Secondary Standards SignalGenerator MG	Z91 Z91 nuator nuator (3DV4 33700A 5071C Name	ID # 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 7307 SN 1525 ID # 6201052605 MY46110673 e Zongying	Cal Date(Calibrated by, Certificate No.) Sc 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125) 10-Feb-20(CTTL, No.J20X00525) 10-Feb-20(CTTL, No.J20X00526) 24-May-19(SPEAG, No.EX3-7307_May19/2) 26-Aug-19(SPEAG, No.DAE4-1525_Aug19) Sch Cal Date(Calibrated by, Certificate No.) Sch 18-Jun-19(CTTL, No.J19X05127) 10-Feb-20(CTTL, No.J20X00515)	Jun-20 Jun-20 Jun-20 Feb-22 Feb-22 May-20 Aug-20 Meduled Calibration Jun-20 Feb-21
Primary Standards Power Meter NRP2 Power sensor NRP-2 Power sensor NRP-2 Reference 10dBAtte Reference 20dBAtte Reference Probe EX DAE4 Secondary Standards SignalGenerator MG Network Analyzer E5 Calibrated by:	Z91 Z91 nuator nuator 33700A 5071C Name Yu Z Lin H	ID # 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 7307 SN 1525 ID # 6201052605 MY46110673 e Zongying	Cal Date(Calibrated by, Certificate No.) Sc 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125) 10-Feb-20(CTTL, No.J20X00525) 10-Feb-20(CTTL, No.J20X00526) 24-May-19(SPEAG, No.EX3-7307_May19/2) 26-Aug-19(SPEAG, No.DAE4-1525_Aug19) Sch 18-Jun-19(CTTL, No.J19X05127) 10-Feb-20(CTTL, No.J19X05127) Sch Sch 18-Jun-19(CTTL, No.J19X05127) Sch SAR Test Engineer Sch	Jun-20 Jun-20 Jun-20 Feb-22 Feb-22 May-20 Aug-20 Meduled Calibration Jun-20 Feb-21
Primary Standards Power Meter NRP2 Power sensor NRP-2 Power sensor NRP-2 Reference 10dBAtte Reference 20dBAtte Reference Probe EX DAE4 Secondary Standards SignalGenerator MG Network Analyzer E5 Calibrated by: Reviewed by:	Z91 Z91 nuator nuator 33700A 5071C Name Yu Z Lin H	ID # 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 7307 SN 1525 ID # 6201052605 MY46110673 e Congying Hao	Cal Date(Calibrated by, Certificate No.) Sc 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125) 10-Feb-20(CTTL, No.J20X00525) 10-Feb-20(CTTL, No.J20X00526) 24-May-19(SPEAG, No.EX3-7307_May19/2) 26-Aug-19(SPEAG, No.DAE4-1525_Aug19) Sch Cal Date(Calibrated by, Certificate No.) Sch 18-Jun-19(CTTL, No.J19X05127) 10-Feb-20(CTTL, No.J19X05127) 10-Feb-20(CTTL, No.J20X00515) Function SAR Test Engineer SAR Test Engineer	Jun-20 Jun-20 Jun-20 Feb-22 Feb-22 May-20 Aug-20 Meduled Calibration Jun-20 Feb-21 Signature

Certificate No: Z20-60109

Page 1 of 9