
REPORT NO: ER/2006/80004 DATE: Aug. 15, 2006 Page: 1 of 57

ELECTROMAGNETIC EMISSIONS COMPLIANCE REPORT

INTENTIONAL RADIATOR CERTIFICATION TO FCC PART 15 SUBPART C REQUIREMENT

OF

Product Name:	Car Kit Bluetooth
Brand Name:	GoerTek Electronics
Model Name:	GCK801
Model Differences:	N/A
FCC ID:	SZG-GCK801
Report No.:	ER/2006/80004
Issue Date:	Aug. 15, 2006
FCC Rule Part:	§15.247
Prepared for:	GoerTek Electronics
	Chuangye Building, Hi-Tech Industrial Park, Qingdao, Shandong 266061, China
Prepared by:	SGS Taiwan Ltd.
	No. 134, Wu Kung Rd., Wuku Industrial Zone, Taipei County, Taiwan.

REPORT NO: ER/2006/80004 DATE: Aug. 15, 2006 Page: 2

VERIFICATION OF COMPLIANCE

Applicant:	GoerTek Electronics
	Chuangye Building, Hi-Tech Industrial Park, Qingdao, Shandong 266061, China
Equipment Under Test:	Car Kit Bluetooth
Brand Name:	GoerTek Electronics
FCC ID Number:	SZG-GCK801
Model No.:	GCK801
Model Difference:	N/A
File Number:	ER/2006/80004
Date of test:	Aug. 01, 2006 ~ Aug. 12, 2006
Date of EUT Received:	Aug. 01, 2006

We hereby certify that:

The above equipment was tested by SGS Taiwan Ltd. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.4 (2003) and the energy emitted by the sample EUT tested as described in this report is in compliance with conducted and radiated emission limits of FCC Rules Part 15.247.

The test results of this report relate only to the tested sample identified in this report.

Test By:		Date	Aug. 15, 2006
_	Danny Yeh		
Prepared By:	Elise Chen	Date	Aug. 15, 2006
_	Elisa Chen		
Approved By:	Timent du	Date	Aug. 15, 2006

Vincent Su

REPORT NO: ER/2006/80004 DATE: Aug. 15, 2006 Page: 3

Version

Version No.	Date
00	Aug. 15, 2006

Table of Contents

1.	GEN	ERAL INFORMATION	7
	1.1.	Product Description	7
	1.2.	Related Submittal(s) / Grant (s)	7
	1.3.	Test Methodology	7
	1.4.	Test Facility	7
	1.5.	Special Accessories	7
	1.6.	Equipment Modifications	7
2.	SYST	FEM TEST CONFIGURATION	8
	2.1.	EUT Configuration	8
	2.2.	EUT Exercise	8
	2.3.	Test Procedure	8
	2.4.	Configuration of Tested System	9
3.	SUM	MARY OF TEST RESULTS	10
4.	DES	CRIPTION OF TEST MODES	10
5.	CON	DUCTED EMISSION TEST	11
	5.1.	Standard Applicable	11
	5.2.	EUT Setup	11
	5.3.	Measurement Procedure	11
	5.4.	Measurement Equipment Used:	12
	5.5.	Measurement Result	12
6.	PEA]	K OUTPUT POWER MEASUREMENT	19
	6.1.	Standard Applicable	19
	6.2.	Measurement Procedure	19
	6.3.	Measurement Result	19
	6.4.	Measurement Equipment Used:	19
7.	20dB	BAND WIDTH	22
	7.1.	Standard Applicable	22
	7.2.	Measurement Procedure	22
	7.3.	Measurement Result	22
	7.4.	Measurement Equipment Used:	22

8.	100K	Hz BANDWIDTH OF BAND EDGES MEASUREMENT	25
	8.1.	Standard Applicable	25
	8.2.	Measurement Procedure	25
	8.3.	Measurement Result	25
	8.4.	Measurement Equipment Used:	25
9.	SPUR	RIOUS RADIATED EMISSION TEST	
	9.1.	Standard Applicable	
	9.2.	EUT Setup	
	9.3.	Measurement Procedure	
	9.4.	Test SET-UP (Block Diagram of Configuration)	
	9.5.	Measurement Equipment Used:	31
	9.6.	Field Strength Calculation	31
	9.7.	Measurement Result	31
10.	FREG	QUENCY SEPARATION	
	10.1.	Standard Applicable	
	10.2.	Measurement Procedure	44
	10.3.	Measurement Result	44
	10.4.	Measurement Equipment Used:	44
11.	NUM	BER OF HOPPING FREQUENCY	
	11.1.	Standard Applicable	
	11.2.	Measurement Procedure	46
	11.3.	Measurement Result	46
	11.4.	Measurement Equipment Used:	46
12.	TIME	E OF OCCUPANCY (DWELL TIME)	
	12.1.		
	12.2.	Measurement Procedure	48
	12.3.	Measurement Result	48
	12.4.	Measurement Equipment Used:	49
13.	Peak	Power Spectral Density	
	13.1.	Standard Applicable	
	13.2.	Measurement Procedure	54
	13.3.	Measurement Result	54
	13.4.	Measurement Equipment Used:	54

REPORT NO: ER/2006/80004 DATE: Aug. 15, 2006 Page: 6

14.	ANTE	INNA REQUIREMENT	.57
	14.1.	Standard Applicable	.57
	14.2.	Antenna Connected Construction	.57

1. GENERAL INFORMATION

1.1. Product Description

The GoerTek Electronics, Model: GCK801 is a Bluetooth Car Kit.

The EUT is compliance with Bluetooth Standard.

A major technical descriptions of EUT is described as following:

A). Operation Frequency: 2402 – 2480Hz, 79 channels

- B). Rated output power: 2.12 dBm
- C). Modulation type: Frequency Hopping Spread Spectrum (FHSS)
- D). Antenna Designation: Trace Antenna, -4.88dBi, Non-User Replaceable (Fixed)
- E). Power Supply: 3.7V from re-chargeable battery or

5Vdc from AC/DC power supply, model: TESA5-0500700dV-B, TESA5-0500700d-B or 12V from car battery

1.2. Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for FCC ID: <u>SZG-GCK801</u> filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules. The composite system (digital device) is compliance with Subpart B is authorized under a Doc procedure.

1.3. Test Methodology

Both conducted and radiated testing were performed according to the procedures in ANSI C63.4 (2003). Radiated testing was performed at an antenna to EUT distance 3 meters.

1.4. Test Facility

The open area test site and conducted measurement facility used to collect the radiated data is located on the address of SGS Taiwan Ltd. No. 134, Wu Kung Rd., Wuku Industrial Zone, Taipei Country, Taiwan. The Open Area Test Sites and the Line Conducted labs are constructed and calibrated to meet the FCC requirements in documents ANSI C63.4: 2003 and CISPR 22/EN 55022 requirements. Site No. 1(3 &10 meters) Registration Number: 94644, Both OATS and Anechoic chamber (3 meters) was accredited by CNLA (0513).

1.5. Special Accessories

Not available for this EUT intended for grant.

1.6. Equipment Modifications

Not available for this EUT intended for grant.

This Test Report is issued by the Company subject to its General Conditions of Service printed overleaf. Attention is drawn to the limitations of liability, indemnification, and Jurisdictional issued defined therein. The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. 此報告是遵循本公司訂定之通用服務條款所製作發放。請注意此條款列印於背面,將本公司之義務,免責,管轄權皆明確規範之。此報告結果除非另有說明僅對檢驗之樣品負責。本報告未經本公司書面許可,不可部份複製。

2. SYSTEM TEST CONFIGURATION

2.1. EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

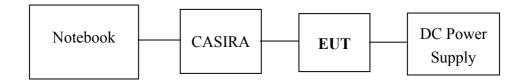
2.2. EUT Exercise

The EUT (Transmitter) was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements.

2.3. Test Procedure

2.3.1 Conducted Emissions

The EUT is a placed on as turn table which is 0.8 m above ground plane. According to the requirements in Section 7 and 13 of ANSI C63.4-2003.Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-Peak and Average detector mode.


2.3.2 Radiated Emissions

The EUT is a placed on as turn table which is 0.8 m above ground plane. The turn table shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the max. emission, the relative positions of this hand-held transmitter(EUT) was rotated through three orthogonal axes according to the requirements in Section 8 and 13 of ANSI C63.4-2003.

2.4. Configuration of Tested System

Fig. 2-1 Configuration of Tested System

Item	tem Equipment Mfr/Brand		Model/ Type No.	Series No.	Data Cable	Power Cord
1.	Notebook	Toshiba	PAS10L-3V1JDP	Z306268	N/A	Un-shielding
2.	CASIRA	CSR	BCES301199	7383070403	N/A	Un-shielding
3.	DC Power Supply	Topward	3303D	981327	N/A	Un-shielding
4.	Test Software	CSR	BlueSuite 1.22	Version 1.22	N/A	N/A

3. SUMMARY OF TEST RESULTS

FCC Rules	Description Of Test	Result
§15.207(a)	Conducted Emission	Compliant
§15.247(b)(1)	Peak Output Power	Compliant
§15.247(a)	20dB Bandwidth	Compliant
§15.247(c)	100 KHz Bandwidth Of Fre-	Compliant
	quency Band Edges	
§15.209(a) (f)	Spurious Emission	Compliant
§15.247(a)(1)	Frequency Separation	Compliant
§15.247(a)(1)(iii)	Number of hopping frequency	Compliant
§15.247(a)(1)(iii)	47(a)(1)(iii) Time of Occupancy	
§15.247	§15.247 Peak Power Density	
§15.203,	Antenna Requirement	Compliant
§15.247(b)(4)(i)		

4. DESCRIPTION OF TEST MODES

The EUT has been tested under operating condition.

Test program used to control the EUT for staying in continuous transmitting and receiving mode is programmed.

Channel low (2402MHz) \cdot mid (2441MHz) and high (2480MHz) with highest data rate are chosen for full testing.

5. CONDUCTED EMISSION TEST

5.1. Standard Applicable

According to §15.207. frequency within 150KHz to 30MHz shall not exceed the limit table as below.

E.	Limits		
Frequency range	dB(uv)	
MHz	Quasi-peak	Average	
0.15 to 0.50	66 to 56	56 to 46	
0.50 to 5	56	46	
5 to 30	60	50	
Note			

1. The lower limit shall apply at the transition frequencies

2. The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

5.2. EUT Setup

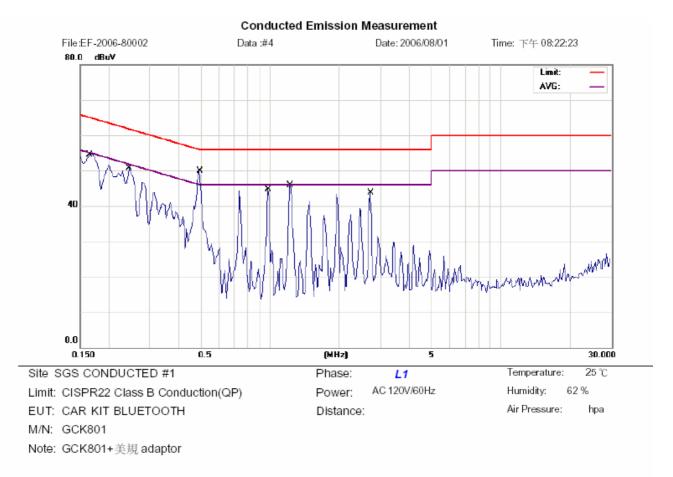
- 1. The conducted emission tests were performed in the test site, using the setup in accordance with the ANSI C63.4-2003.
- 2. The EUT was plug-in the AC/DC Power adapter. The host system was placed on the center of the back edge on the test table. The peripherals was placed on the side of the host PC system. The rear of the EUT and peripherals were placed flushed with the rear of the tabletop.
- 3. The spacing between the peripherals was 10 centimeters.
- 4. External I/O cables were draped along the edge of the test table and bundle when necessary.
- 5. The host system was connected with 110Vac/60Hz power source.

5.3. Measurement Procedure

- 1. The EUT was placed on a table which is 0.8m above ground plane.
- 2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 3. Repeat above procedures until all frequency measured were complete.

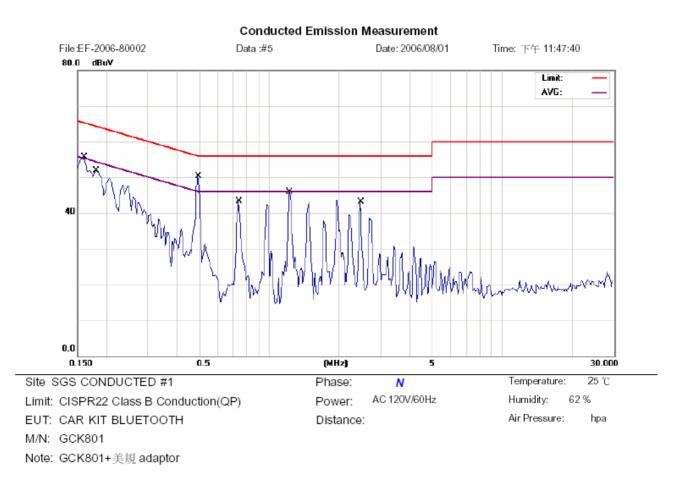
This Test Report is issued by the Company subject to its General Conditions of Service printed overleaf. Attention is drawn to the limitations of liability, indemnification, and Jurisdictional issued defined therein. The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. 此報告是遵循本公司訂定之通用服務條款所製作發放。請注意此條款列印於背面,將本公司之義務,免責,管 轄權皆明確規範之。此報告結果除非另有說明僅對檢驗之樣品負責。本報告未經本公司書面許可,不可部份複製。

5.4. Measurement Equipment Used:

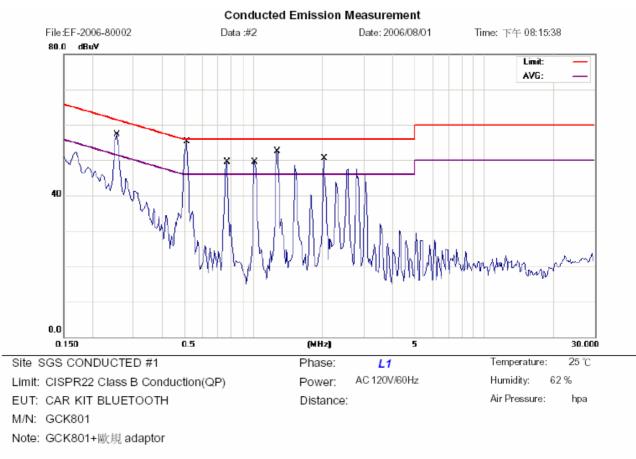

Conducted Emission Test Site					
EQUIPMENT MFR		MODEL	SERIAL	LAST	CAL DUE.
ТҮРЕ		NUMBER	NUMBER	CAL.	
EMC Analyzer	HP	8594EM	3624A00203	09/02/2005	09/03/2006
EMI Test Receiver	R&S	ESCS30	828985/004	06/09/2006	06/10/2007
Transient Limiter	HP	11947A	3107A02062	09/02/2005	09/03/2006
LISN	Rolf-Heine	NNB-2/16Z	99012	12/31/2005	12/30/2006
LISN	Rolf-Heine	NNB-2/16Z	99013	12/24/2005	12/23/2006
Coaxial Cables	N/A	No. 3, 4	N/A	12/01/2005	12/01/2006

5.5. Measurement Result

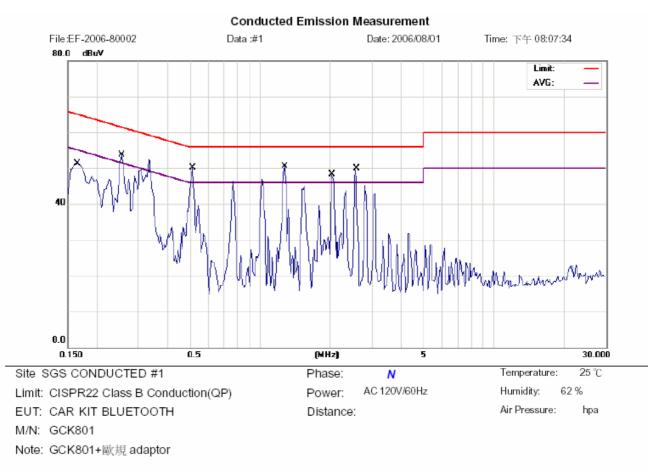
Refer to next page.


REPORT NO: ER/2006/80004 DATE: Aug. 15, 2006 Page: 13

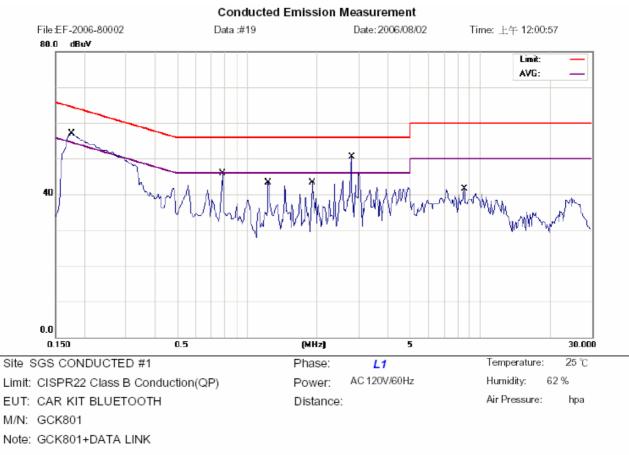
No. Mk.	Freq.	Reading Level	Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1631	44.15	0.70	44.85	65.30	-20.45	QP	
2	0.1631	24.90	0.70	25.60	55.30	-29.70	AVG	
3	0.2450	49.57	0.77	50.34	61.92	-11.58	QP	
4	0.2450	44.00	0.77	44.77	51.92	-7.15	AVG	
5	0.4902	48.23	0.88	49.11	56.16	-7.05	QP	
6 *	0.4902	42.67	0.88	43.55	46.16	-2.61	AVG	
7	0.9800	42.53	0.59	43.12	56.00	-12.88	QP	
8	0.9800	34.10	0.59	34.69	46.00	-11.31	AVG	
9	1.2200	44.47	0.60	45.07	56.00	-10.93	QP	
10	1.2200	34.13	0.60	34.73	46.00	-11.27	AVG	
11	2.7200	35.27	0.69	35.96	56.00	-20.04	QP	
12	2.7200	17.29	0.69	17.98	46.00	-28.02	AVG	


REPORT NO: ER/2006/80004 DATE: Aug. 15, 2006 Page: 14

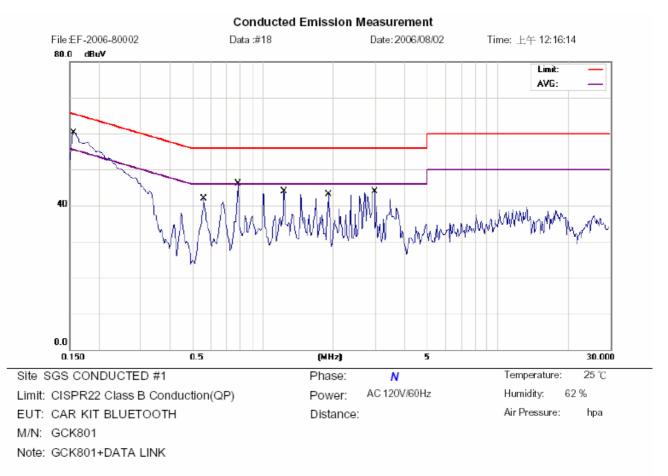
No. Mk.	Freq.	Reading Level	Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1600	46.50	0.69	47.19	65.46	-18.27	QP	
2	0.1600	29.00	0.69	29.69	55.46	-25.77	AVG	
3	0.1825	41.60	0.73	42.33	64.37	-22.04	QP	
4	0.1825	20.00	0.73	20.73	54.37	-33.64	AVG	
5 *	0.4950	45.30	0.88	46.18	56.08	-9.90	QP	
6	0.4950	35.20	0.88	36.08	46.08	-10.00	AVG	
7	0.7400	42.30	0.74	43.04	56.00	-12.96	QP	
8	0.7400	29.10	0.74	29.84	46.00	-16.16	AVG	
9	1.2200	42.40	0.60	43.00	56.00	-13.00	QP	
10	1.2200	28.70	0.60	29.30	46.00	-16.70	AVG	
11	2.4500	41.20	0.68	41.88	56.00	-14.12	QP	
12	2.4500	26.45	0.68	27.13	46.00	-18.87	AVG	


REPORT NO: ER/2006/80004 DATE: Aug. 15, 2006 Page: 15

No. N	Иk.	Freq.	Reading Level	Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.2550	55.59	0.77	56.36	61.59	-5.23	QP	
2		0.2550	48.17	0.77	48.94	51.59	-2.65	AVG	
3		0.5129	51.70	0.87	52.57	56.00	-3.43	QP	
4 *	*	0.5129	42.50	0.87	43.37	46.00	-2.63	AVG	
5		0.7701	45.79	0.72	46.51	56.00	-9.49	QP	
6		0.7701	33.02	0.72	33.74	46.00	-12.26	AVG	
7		1.0135	48.66	0.58	49.24	56.00	-6.76	QP	
8		1.0135	37.72	0.58	38.30	46.00	-7.70	AVG	
9		1.2699	51.04	0.60	51.64	56.00	-4.36	QP	
10		1.2699	39.26	0.60	39.86	46.00	-6.14	AVG	
11		2.0333	47.61	0.65	48.26	56.00	-7.74	QP	
12		2.0333	34.29	0.65	34.94	46.00	-11.06	AVG	


REPORT NO: ER/2006/80004 DATE: Aug. 15, 2006 Page: 16

	Mk.	Freq.	Reading Level	Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1650	43.20	0.70	43.90	65.21	-21.31	QP	
2		0.1650	24.80	0.70	25.50	55.21	-29.71	AVG	
3		0.2550	52.30	0.77	53.07	61.59	-8.52	QP	
4	*	0.2550	46.70	0.77	47.47	51.59	-4.12	AVG	
5		0.5150	48.00	0.87	48.87	56.00	-7.13	QP	
6		0.5150	37.60	0.87	38.47	46.00	-7.53	AVG	
7		1.2839	48.23	0.60	48.83	56.00	-7.17	QP	
8		1.2839	34.09	0.60	34.69	46.00	-11.31	AVG	
9		2.0300	43.60	0.65	44.25	56.00	-11.75	QP	
10		2.0300	31.20	0.65	31.85	46.00	-14.15	AVG	
11		2.5550	44.61	0.68	45.29	56.00	-10.71	QP	
12		2.5550	30.18	0.68	30.86	46.00	-15.14	AVG	


REPORT NO: ER/2006/80004 DATE: Aug. 15, 2006 Page: 17

No. Mk.	Freq.	Reading Level	Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1750	54.10	0.71	54.81	64.72	-9.91	QP	
2	0.1750	37.00	0.71	37.71	54.72	-17.01	AVG	
3	0.7850	42.00	0.71	42.71	56.00	-13.29	QP	
4 *	0.7850	41.00	0.71	41.71	46.00	-4.29	AVG	
5	1.2350	40.00	0.60	40.60	56.00	-15.40	QP	
6	1.2350	39.40	0.60	40.00	46.00	-6.00	AVG	
7	1.9100	41.80	0.64	42.44	56.00	-13.56	QP	
8	1.9100	40.00	0.64	40.64	46.00	-5.36	AVG	
9	2.7950	37.00	0.70	37.70	56.00	-18.30	QP	
10	2.7950	22.00	0.70	22.70	46.00	-23.30	AVG	
11	8.5400	35.40	0.81	36.21	60.00	-23.79	QP	
12	8.5400	29.50	0.81	30.31	50.00	-19.69	AVG	

REPORT NO: ER/2006/80004 DATE: Aug. 15, 2006 Page: 18

No. Mk.	Freq.	Reading Level	Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1550	45.00	0.69	45.69	65.73	-20.04	QP	
2	0.1550	29.10	0.69	29.79	55.73	-25.94	AVG	
3	0.5600	37.70	0.84	38.54	56.00	-17.46	QP	
4	0.5600	34.30	0.84	35.14	46.00	-10.86	AVG	
5	0.7850	42.50	0.71	43.21	56.00	-12.79	QP	
6 *	0.7850	40.70	0.71	41.41	46.00	-4.59	AVG	
7	1.2350	41.00	0.60	41.60	56.00	-14.40	QP	
8	1.2350	38.60	0.60	39.20	46.00	-6.80	AVG	
9	1.9100	39.50	0.64	40.14	56.00	-15.86	QP	
10	1.9100	37.50	0.64	38.14	46.00	-7.86	AVG	
11	2.9900	40.00	0.71	40.71	56.00	-15.29	QP	
12	2.9900	35.00	0.71	35.71	46.00	-10.29	AVG	

6. PEAK OUTPUT POWER MEASUREMENT

6.1. Standard Applicable

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 hopping channels, and all frequency hopping systems in the 5725-5850MHz band: 1Watt. For all other frequency hopping systems in the 2400 - 2483.5MHz band: 0.125 Watts.

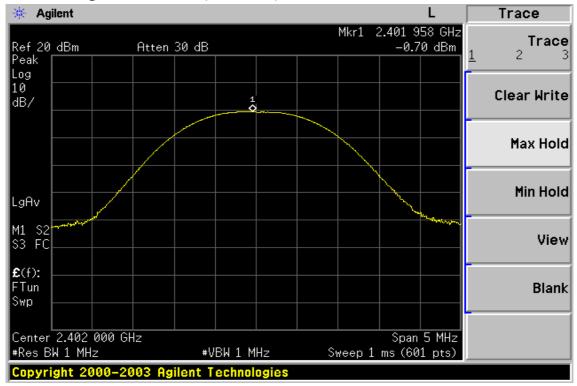
6.2. Measurement Procedure

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the power meter or spectrum. (Channel power function, RBW, VBW = 1MHz)
- 3. Record the max. reading.
- 4. Repeat above procedures until all frequency measured were complete.

СН	Frequency (MHz)	Reading Power dBm	Cable Loss	Output Power dBm	Output Power W	Limit (W)
LOW	2402.0	-0.70	0.10	-0.60	0.00087	1
MID	2441.0	0.67	0.10	0.77	0.00119	1
HIGH	2480.0	2.02	0.10	2.12	0.00163	1

6.3. Measurement Result

6.4. Measurement Equipment Used:

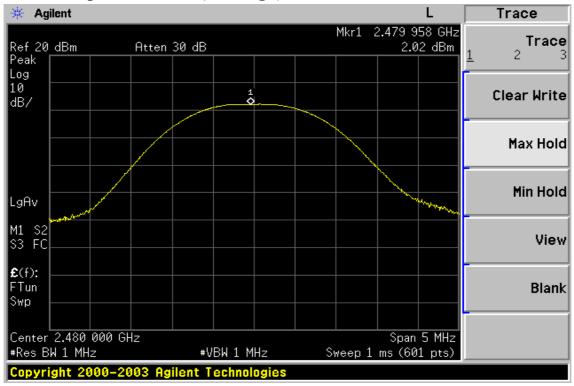

EQUIPMENT	MFR	MODEL	SERIAL	LAST	CAL DUE.
ТҮРЕ		NUMBER	NUMBER	CAL.	
Spectrum Analyzer	R&S	FSP 40	100034	05/27/2006	05/26/2007
Spectrum Analyzer	Agilent	E7405A	US41160416	08/27/2005	08/27/2006
Spectrum Analyzer	Agilent	E4446A	MY43360126	01/22/2006	01/21/2007
Low Loss Cable	HUBER+SUHNER	SUCOFLEX 104PEA	N/A	N/A	N/A
Attenuator	Mini-Circult	BW-S6W5	N/A	10/07/2005	10/06/2006

This Test Report is issued by the Company subject to its General Conditions of Service printed overleaf. Attention is drawn to the limitations of liability, indemnification, and Jurisdictional issued defined therein. The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. 此報告是遵循本公司訂定之通用服務條款所製作發放。請注意此條款列印於背面,將本公司之義務,免責,管轄權皆明確規範之。此報告結果除非另有說明僅對檢驗之樣品負責。本報告未經本公司書面許可,不可部份複製。



REPORT NO: ER/2006/80004 DATE: Aug. 15, 2006 Page: 20

Peak Power Output Data Plot (CH Low)


Peak Power Output Data Plot (CH Mid)

REPORT NO: ER/2006/80004 DATE: Aug. 15, 2006 Page: 21

Peak Power Output Data Plot (CH High)

7. 20dB BAND WIDTH

7.1. Standard Applicable

For frequency hopping systems operating in the 2400MHz-2483.5 MHz no limit for 20dB bandwidth.

7.2. Measurement Procedure

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set the spectrum analyzer as RBW=10KHz (1 % of Bandwidth.), Span= 3MHz, Sweep=auto
- 4. Mark the peak frequency and –20dB (upper and lower) frequency.
- 5. Repeat above procedures until all frequency measured were complete.

7.3. Measurement Result

СН	Bandwidth
	(kHz)
Lower	781.857
Mid	729.373
Higher	781.222

7.4. Measurement Equipment Used:

EQUIPMENT	MFR	MODEL	SERIAL	LAST	CAL DUE.
ТҮРЕ		NUMBER	NUMBER	CAL.	
Spectrum Analyzer	R&S	FSP 40	100034	05/27/2006	05/26/2007
Spectrum Analyzer	Agilent	E7405A	US41160416	08/27/2005	08/27/2006
Spectrum Analyzer	Agilent	E4446A	MY43360126	01/22/2006	01/21/2007
Low Loss Cable	HUBER+SUHNER	SUCOFLEX 104PEA	N/A	N/A	N/A
Attenuator	Mini-Circult	BW-S6W5	N/A	10/07/2005	10/06/2006

This Test Report is issued by the Company subject to its General Conditions of Service printed overleaf. Attention is drawn to the limitations of liability, indemnification, and Jurisdictional issued defined therein. The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. 此報告是遵循本公司訂定之通用服務條款所製作發放。請注意此條款列印於背面,將本公司之義務,免責,管轄權皆明確規範之。此報告結果除非另有說明僅對檢驗之樣品負責。本報告未經本公司書面許可,不可部份複製。

REPORT NO: ER/2006/80004 DATE: Aug. 15, 2006 Page: 23

20dB Band Width Test Data CH-Low

20dB Band Width Test Data CH-Mid

REPORT NO: ER/2006/80004 DATE: Aug. 15, 2006 Page: 24

20dB Band Width Test Data CH-High

8. 100KHz BANDWIDTH OF BAND EDGES MEASUREMENT

8.1. Standard Applicable

According to §15.247(c), in any 100 KHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100KHz bandwidth within the band that contains the highest level of the desired power, In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in15.209(a).

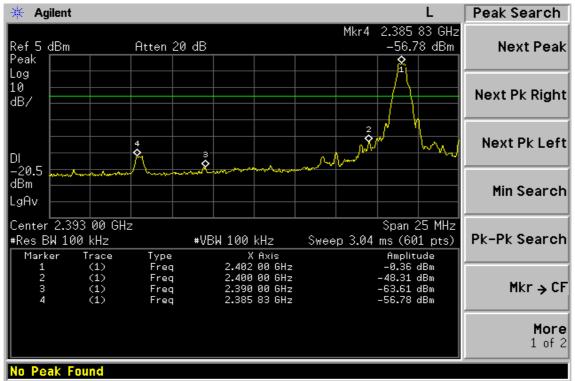
8.2. Measurement Procedure

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set center frequency of spectrum analyzer = operating frequency.
- 4. Set the spectrum analyzer as RBW, VBW=100KHz, Span=25MHz, Sweep = auto
- 5. Mark Peak, 2.390GHz and 2.488GHz and record the max. level.
- 6. Repeat above procedures until all frequency measured were complete.
- 7. Radiated Emission refer to section 9.

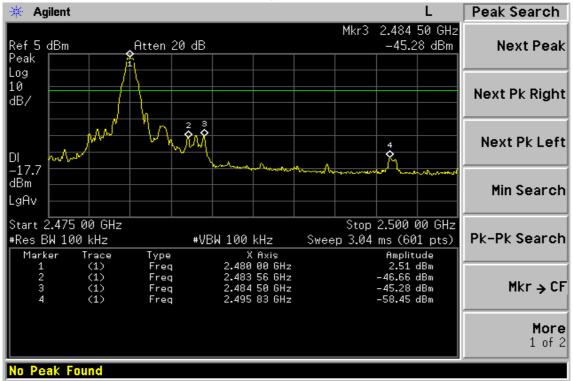
8.3. Measurement Result

Refer to attach spectrum analyzer data chart.

EQUIPMENT	MFR	MODEL	SERIAL	LAST	CAL DUE.
ТҮРЕ		NUMBER	NUMBER	CAL.	
Spectrum Analyzer	R&S	FSP 40	100034	05/27/2006	05/26/2007
Spectrum Analyzer	Agilent	E7405A	US41160416	08/27/2005	08/26/2006
Spectrum Analyzer	Agilent	E4446A	MY43360126	01/22/2006	01/21/2007
Low Loss Cable	HUBER+SUHNER	SUCOFLEX 104PEA	N/A	N/A	N/A
Attenuator	Mini-Circult	BW-S6W5	N/A	10/07/2005	10/06/2006


8.4. Measurement Equipment Used:

Note: Measurement Equipment for radiated emission refers to section 9.



REPORT NO: ER/2006/80004 DATE: Aug. 15, 2006 Page: 26

Conducted Emission: Test Data CH-Low

Conducted Emission: Test Data CH-High

Radiated Emission:

Operation Mode	TX CH Low	Test Date	Aug. 07, 2006
Fundamental Frequency	2402 MHz	Test By	Danny
Temperature	25 °C	Pol	Ver.
Humidity	65 %		

Peak	AV	Actu	al FS	Peak	AV	
Freq. Reading Re	ading Ant./CL	Peak	AV	Limit	Limit	Margin Remark
(MHz) (dBuV) (d	BuV) CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/n	n) (dB)
2385.8				74.00	54.00	Peak
2390.0				74.00	54.00	Peak
Operation Mode Fundamental Frequency Temperature Humidity	TX CH Low 2402 MHz 25 °C 65 %			Test Test Pol	By	Aug. 07, 2006 Danny Hor.

	Peak	AV		Actu	al FS	Peak	AV		
Freq.	Reading	Reading	Ant./CL	Peak	AV	Limit	Limit	Margin	Remark
(MHz)	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m) (dBuV/m)((dBuV/m)	(dB)	
2385.8						74.00	54.00		Peak
2390.0						74.00	54.00		Peak

Remark:

- (1) Datas of measurement within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (2) Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column °
- (3) Spectrum Peak Setting : 1GHz- 26GHz, RBW= 1MHz, VBW= 3MHz, Sweep time= 200 ms.
- (4) Spectrum AV Setting : 1GHz- 26GHz, RBW= 1MHz, VBW= 10Hz, Sweep time= 200 ms.

REPORT NO: ER/2006/80004 DATE: Aug. 15, 2006 Page: 28

Radiated Emission:

Operation Mode	TX CH High	Test Date	Aug. 07, 2006
Fundamental Frequency	2480 MHz	Test By	Danny
Temperature	25 °C	Pol	Ver.
Humidity	65 %		

	Peak	AV		Actu	al FS	Peak	AV		
Freq.	Reading	Reading	Ant./CL	Peak	AV	Limit	Limit	Margin	Remark
(MHz)	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m) (dB)	
2483.6						74.00	54.00		Peak
2484.5						74.00	54.00		Peak
2495.8						74.00	54.00		Peak
Operation Fundamen Temperatu Humidity	tal Freque					Test Test Pol	By	Aug. 07, 2 Danny Hor.	006

	Peak	AV	Actu	al FS	Peak	AV		
Freq.	Reading	Reading Ant./CL	Peak	AV	Limit	Limit	Margin	Remark
(MHz)	(dBuV)	(dBuV) CF(dB)	(dBuV/m)	(dBuV/m)) (dBuV/m)	(dBuV/m)	(dB)	
2483.6					74.00	54.00		Peak
2484.5					74.00	54.00		Peak
2495.8					74.00	54.00		Peak

Remark:

- (1) Datas of measurement within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (2) Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column °
- (3) Spectrum Peak Setting : 1GHz- 26GHz, RBW= 1MHz, VBW= 3MHz, Sweep time= 200 ms.
- (4) Spectrum AV Setting : 1GHz- 26GHz, RBW= 1MHz, VBW= 10Hz, Sweep time= 200 ms.

This Test Report is issued by the Company subject to its General Conditions of Service printed overleaf. Attention is drawn to the limitations of liability, indemnification, and Jurisdictional issued defined therein. The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. 此報告是遵循本公司訂定之通用服務條款所製作發放。請注意此條款列印於背面,將本公司之義務,免責,管 轄權皆明確規範之。此報告結果除非另有說明僅對檢驗之樣品負責。本報告未經本公司書面許可,不可部份複製。

9. SPURIOUS RADIATED EMISSION TEST

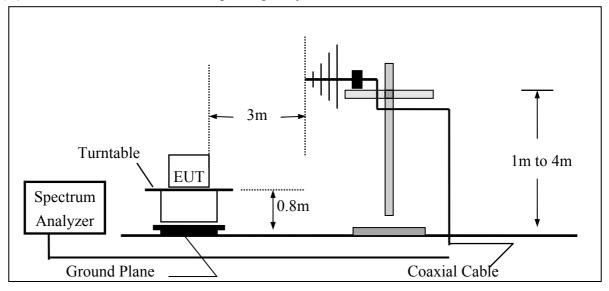
9.1. Standard Applicable

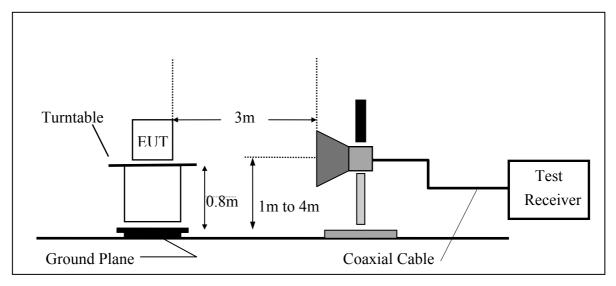
According to \$15.247(c), all other emissions outside these bands shall not exceed the general radiated emission limits specified in \$15.209(a). And according to \$15.33(a)(1), for an intentional radiator operates below 10GHz, the frequency range of measurements: to the tenth harmonic of the highest fundamental frequency or to 40GHz, whichever is lower.

9.2. EUT Setup

- 1. The radiated emission tests were performed in the 3 meter open-test site, using the setup in accordance with the ANSI C63.4-2003.
- 2. The EUT was put in the front of the test table. The peripherals was placed on the side of the host system. The rear of the EUT and peripherals were placed flushed with the rear of the tabletop.
- 3. The spacing between the peripherals was 10 centimeters.
- 4. External I/O cables were draped along the edge of the test table and bundle when necessary.
- 5. The host PC system was connected with 110Vac/60Hz power source.

9.3. Measurement Procedure


- 1. The EUT was placed on a turn table which is 0.8m above ground plane.
- 2. The turn table shall rotate 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna which varied from 1m to 4m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until all frequency measured were complete.


REPORT NO: ER/2006/80004 DATE: Aug. 15, 2006 Page: 30

9.4. Test SET-UP (Block Diagram of Configuration)

(A) Radiated Emission Test Set-Up, Frequency Below 1GHz

(B) Radiated Emission Test Set-UP Frequency Over 1 GHz

9.5. Measurement Equipment Used:

966 Chamber										
EQUIPMENT TYPE	MFR	MODEL NUMBER	SERIAL NUMBER	LAST CAL.	CAL DUE.					
Spectrum Analyzer	R&S	FSP 40	100034	05/27/2006	05/26/2007					
Spectrum Analyzer	Agilent	E7405A	US41160416	08/27/2005	08/26/2006					
Bilog Antenna	SCHWAZBECK	VULB9163	152	06/03/2006	06/02/2007					
Horn antenna	Schwarzbeck	BBHA 9120D	309/320	08/16/2005	08/15/2006					
Horn antenna	Schwarzbeck	BBHA 9170	184/185	07/04/2006	07/03/2007					
Pre-Amplifier	HP	8447D	2944A09469	07/19/2006	07/18/2007					
Pre-Amplifier	HP	8494B	3008A00578	02/26/2006	02/25/2007					
Turn Table	HD	DT420	N/A	N.C.R	N.C.R					
Antenna Tower	HD	MA240-N	240/657	N.C.R	N.C.R					
Controller	HD	HD100	N/A	N.C.R	N.C.R					
Low Loss Cable	HUBER+SUHNER	SUCOFLEX 104PEA-10M	10m	10/09/2005	10/08/2006					
Low Loss Cable	HUBER+SUHNER	SUCOFLEX 104PEA-3M	3m	10/09/2005	10/08/2006					
Site NSA	SGS	966 chamber	N/A	11/17/2005	11/16/2006					

9.6. Field Strength Calculation

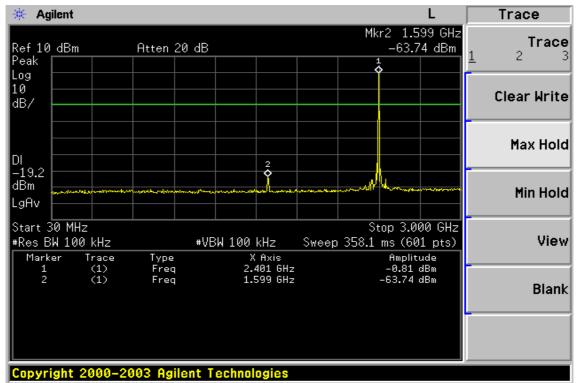
The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

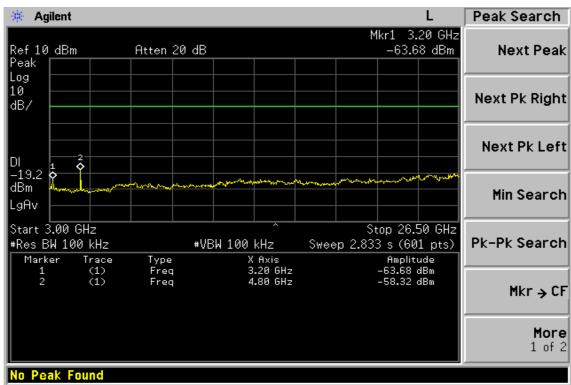
FS = RA + AF + CL - AG

Where	FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
	RA = Reading Amplitude	AG = Amplifier Gain
	AF = Antenna Factor	

9.7. Measurement Result

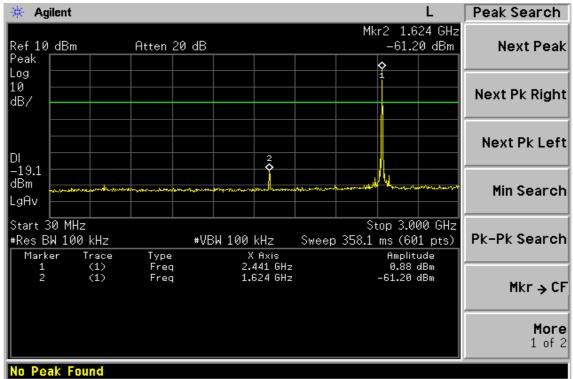
Refer to attach tabular data sheets.

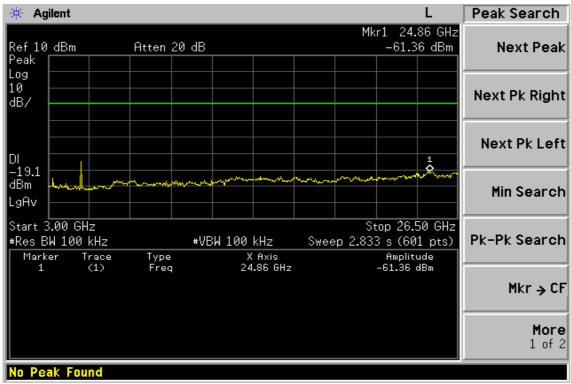

This Test Report is issued by the Company subject to its General Conditions of Service printed overleaf. Attention is drawn to the limitations of liability, indemnification, and Jurisdictional issued defined therein. The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. 此報告是遵循本公司訂定之通用服務條款所製作發放。請注意此條款列印於背面,將本公司之義務,免責,管轄權皆明確規範之。此報告結果除非另有說明僅對檢驗之樣品負責。本報告未經本公司書面許可,不可部份複製。



REPORT NO: ER/2006/80004 DATE: Aug. 15, 2006 Page: 32

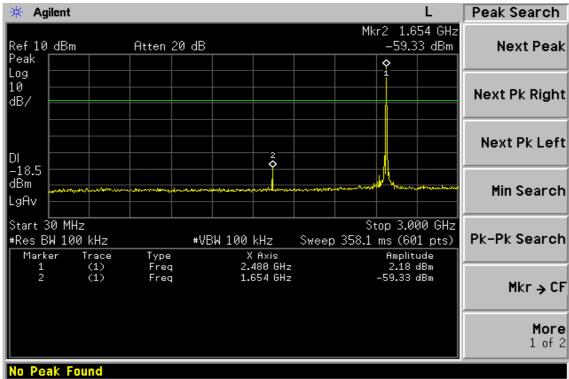
Conducted Spurious Emission Measurement Result Ch Low 30MHz – 3GHz

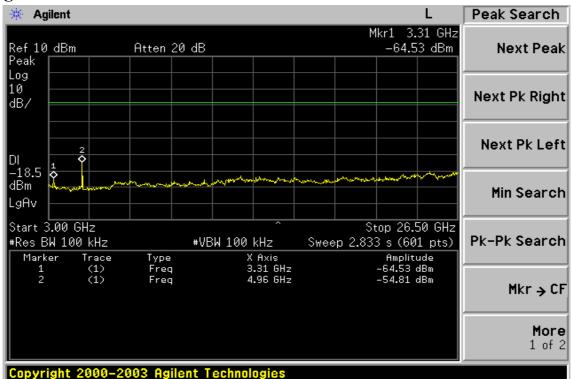

Ch Low 3GHz - 26.5GHz



REPORT NO: ER/2006/80004 DATE: Aug. 15, 2006 Page: 33

Ch Mid 30MHz – 3GHz





REPORT NO: ER/2006/80004 DATE: Aug. 15, 2006 Page: 34

Ch High 30MHz – 3GHz

Ch High 3GHz – 26.5GHz

REPORT NO: ER/2006/80004 DATE: Aug. 15, 2006 Page: 35

Radiated Spurious Emission Measurement Result (below 1GHz)

Operation Mode	TX CH Low	Test Date	Aug. 07, 2006
Fundamental Frequency	2402MHz	Test By	Jazz
Temperature	25 °C	Pol	Ver./Hor.
Humidity	65 %		

Ant.Pol.	Detector Mode	Reading	Factor	Actual FS	Limit3m	Safe Margin
H/V	(PK/QP)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)
V	Peak	39.59	-14.70	24.89	40.00	-15.11
V	Peak	40.35	-16.74	23.61	43.50	-19.89
V	Peak	45.47	-16.47	29.00	43.50	-14.50
V	Peak	34.56	-7.12	27.44	46.00	-18.56
V	Peak	33.46	-4.44	29.02	46.00	-16.98
Н	Peak	46.00	-14.70	31.30	40.00	-8.70
Н	Peak	49.31	-16.02	33.29	46.00	-12.71
Н	Peak	45.69	-13.41	32.28	46.00	-13.72
Н	Peak	37.81	-8.04	29.77	46.00	-16.23
Н	Peak	44.94	-7.12	37.82	46.00	-8.18
Н	Peak	35.09	-4.44	30.65	46.00	-15.35
	H/V V V V V V H H H H H	Ant.Pol.ModeH/V(PK/QP)VPeakVPeakVPeakVPeakVPeakHPeakHPeakHPeakHPeakHPeakHPeakHPeakHPeakHPeakHPeakHPeakHPeakHPeakHPeak	Ant.Pol. Mode Reading H/V (PK/QP) (dBuV) V Peak 39.59 V Peak 40.35 V Peak 45.47 V Peak 34.56 V Peak 33.46 H Peak 46.00 H Peak 49.31 H Peak 45.69 H Peak 37.81 H Peak 44.94	Ant.Pol. Mode Reading Factor H/V (PK/QP) (dBuV) (dB) V Peak 39.59 -14.70 V Peak 40.35 -16.74 V Peak 45.47 -16.47 V Peak 34.56 -7.12 V Peak 33.46 -4.44 H Peak 46.00 -14.70 H Peak 46.00 -14.70 H Peak 46.00 -14.70 H Peak 46.00 -14.70 H Peak 45.69 -13.41 H Peak 37.81 -8.04 H Peak 44.94 -7.12	Ant.Pol.ModeReadingFactorActual FSH/V(PK/QP)(dBuV)(dB)(dBuV/m)VPeak39.59-14.7024.89VPeak40.35-16.7423.61VPeak45.47-16.4729.00VPeak34.56-7.1227.44VPeak33.46-4.4429.02HPeak46.00-14.7031.30HPeak45.69-13.4132.28HPeak37.81-8.0429.77HPeak44.94-7.1237.82	Ant.Pol.ModeReadingFactorActual FSLimit3mH/V(PK/QP)(dBuV)(dB)(dBuV/m)(dBuV/m)VPeak39.59-14.7024.8940.00VPeak40.35-16.7423.6143.50VPeak45.47-16.4729.0043.50VPeak34.56-7.1227.4446.00VPeak33.46-4.4429.0246.00HPeak46.00-14.7031.3040.00HPeak45.69-13.4132.2846.00HPeak37.81-8.0429.7746.00HPeak44.94-7.1237.8246.00

Remark :

- 1 Measuring frequencies from 30 MHz to the 1GHz \circ
- 2 Radiated emissions measured in frequency range from 30 MHz to 1000MHz were made with an instrument using Peak/QP detector mode.
- 3 Datas of measurement within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4 The IF bandwidth of SPA between 30MHz to 1GHz was 100KHz.

REPORT NO: ER/2006/80004 DATE: Aug. 15, 2006 Page: 36

Radiated Spurious Emission Measurement Result (below 1GHz)

Operation Mode	TX CH Mid	Test Date	Aug. 07, 2006
Fundamental Frequency	2441MHz	Test By	Jazz
Temperature	25 °C	Pol	Ver./Hor.
Humidity	65 %		

Freq.	Ant.Pol.	Detector Mode	Reading	Factor	Actual FS	Limit3m	Safe Margin
(MHz)	H/V	(PK/QP)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)
39.70	V	Peak	38.68	-14.70	23.98	40.00	-16.02
105.66	V	Peak	39.87	-16.74	23.13	43.50	-20.37
191.02	V	Peak	45.61	-16.01	29.60	43.50	-13.90
622.67	V	Peak	35.30	-7.12	28.18	46.00	-17.82
750.71	V	Peak	33.37	-4.44	28.93	46.00	-17.07
39.70	Н	Peak	44.03	-14.70	29.33	40.00	-10.67
224.00	Н	Peak	50.31	-16.02	34.29	46.00	-11.71
304.51	Н	Peak	46.15	-13.26	32.89	46.00	-13.11
622.67	Н	Peak	43.78	-7.12	36.66	46.00	-9.34
750.71	Н	Peak	34.81	-4.44	30.37	46.00	-15.63

Remark :

- 1 Measuring frequencies from 30 MHz to the 1GHz \circ
- 2 Radiated emissions measured in frequency range from 30 MHz to 1000MHz were made with an instrument using Peak/QP detector mode.
- 3 Datas of measurement within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4 The IF bandwidth of SPA between 30MHz to 1GHz was 100KHz.

This Test Report is issued by the Company subject to its General Conditions of Service printed overleaf. Attention is drawn to the limitations of liability, indemnification, and Jurisdictional issued defined therein. The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. 此報告是遵循本公司訂定之通用服務條款所製作發放。請注意此條款列印於背面,將本公司之義務,免責,管轄權皆明確規範之。此報告結果除非另有說明僅對檢驗之樣品負責。本報告未經本公司書面許可,不可部份複製。

REPORT NO: ER/2006/80004 DATE: Aug. 15, 2006 Page: 37

Radiated Spurious Emission Measurement Result (below 1GHz)

Operation Mode	TX CH High	Test Date	Aug. 07, 2006
Fundamental Frequency	2480MHz	Test By	Jazz
Temperature	25 °C	Pol	Ver./Hor.
Humidity	65 %		

Ant.Pol.	Detector Mode	- Reading		Actual FS	Limit3m	Safe Margin	
H/V	(PK/QP)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
V	Peak	45.37	-14.70	30.67	40.00	-9.33	
V	Peak	37.90	-16.74	21.16	43.50	-22.34	
V	Peak	44.77	-16.47	28.30	43.50	-15.20	
V	Peak	36.14	-7.12	29.02	46.00	-16.98	
V	Peak	33.05	-4.44	28.61	46.00	-17.39	
Н	Peak	41.24	-14.70	26.54	40.00	-13.46	
Н	Peak	49.82	-15.78	34.04	46.00	-11.96	
Н	Peak	46.76	-13.41	33.35	46.00	-12.65	
Н	Peak	44.36	-7.12	37.24	46.00	-8.76	
Н	Peak	35.41	-4.44	30.97	46.00	-15.03	
	H/V V V V V V H H H H	Ant.Pol.Mode ModeH/V(PK/QP)VPeakVPeakVPeakVPeakVPeakHPeakHPeakHPeakHPeakHPeakHPeakHPeakHPeak	Ant.Pol. Mode Mode Reading H/V (PK/QP) (dBuV) V Peak 45.37 V Peak 37.90 V Peak 44.77 V Peak 36.14 V Peak 33.05 H Peak 49.82 H Peak 46.76 H Peak 44.36	Ant.Pol. Mode Mode Reading Factor H/V (PK/QP) (dBuV) (dB) V Peak 45.37 -14.70 V Peak 37.90 -16.74 V Peak 44.77 -16.47 V Peak 36.14 -7.12 V Peak 33.05 -4.44 H Peak 49.82 -15.78 H Peak 46.76 -13.41 H Peak 44.36 -7.12	Ant.Pol.Docker ModeReadingFactorActual FSH/V(PK/QP)(dBuV)(dB)(dBuV/m)VPeak45.37-14.7030.67VPeak37.90-16.7421.16VPeak44.77-16.4728.30VPeak36.14-7.1229.02VPeak33.05-4.4428.61HPeak41.24-14.7026.54HPeak49.82-15.7834.04HPeak46.76-13.4133.35HPeak44.36-7.1237.24	Ant.Pol.Divide ModeReadingFactorActual FSLimit3mH/V(PK/QP)(dBuV)(dB)(dBuV/m)(dBuV/m)VPeak45.37-14.7030.6740.00VPeak37.90-16.7421.1643.50VPeak44.77-16.4728.3043.50VPeak36.14-7.1229.0246.00VPeak33.05-4.4428.6146.00HPeak41.24-14.7026.5440.00HPeak49.82-15.7834.0446.00HPeak46.76-13.4133.3546.00HPeak44.36-7.1237.2446.00	

- 1 Measuring frequencies from 30 MHz to the 1GHz \circ
- 2 Radiated emissions measured in frequency range from 30 MHz to 1000MHz were made with an instrument using Peak/QP detector mode.
- 3 Datas of measurement within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4 The IF bandwidth of SPA between 30MHz to 1GHz was 100KHz.

This Test Report is issued by the Company subject to its General Conditions of Service printed overleaf. Attention is drawn to the limitations of liability, indemnification, and Jurisdictional issued defined therein. The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. 此報告是遵循本公司訂定之通用服務條款所製作發放。請注意此條款列印於背面,將本公司之義務,免責,管轄權皆明確規範之。此報告結果除非另有說明僅對檢驗之樣品負責。本報告未經本公司書面許可,不可部份複製。

REPORT NO: ER/2006/80004 DATE: Aug. 15, 2006 Page: 38

Radiated Spurious Emission Measurement Result (above 1GHz)

Operation Mode	TX CH Low	Test Date	Aug. 07, 2006
Fundamental Frequency	2402 MHz	Test By	Jazz
Temperature	25 °C	Pol	Ver.
Humidity	65 %		

	Peak	AV		Act	ual FS	Peak	AV		
Freq.	Reading	Reading	Ant./CL	Peak	AV	Limit	Limit	Margin	
(MHz)	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)(dBuV/m)(dBuV/m])(dBuV/m)	(dB)	Remarl
1052.0	40.89		-9.25	31.64		74.00	54.00	-22.36	Peak
1201.5	41.33		-8.55	32.78		74.00	54.00	-21.22	Peak
1604.5	56.33		-6.73	49.60		74.00	54.00	-4.40	Peak
4804.0						74.00	54.00		
7206.0						74.00	54.00		
9608.0						74.00	54.00		
12010.0						74.00	54.00		
14412.0						74.00	54.00		
16814.0						74.00	54.00		
19216.0						74.00	54.00		
21618.0						74.00	54.00		
24020.0						74.00	54.00		

- (1) Measuring frequencies from 1GHz to the 10th harmonic of highest fundamental frequency \circ
- (2) Datas of measurement within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (3) Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column \circ
- (4) Spectrum Peak Setting : 1GHz- 26GHz, RBW= 1MHz, VBW= 3MHz, Sweep time= 200 ms.
- (5) Spectrum AV Setting : 1GHz- 26GHz, RBW= 1MHz, VBW= 10Hz, Sweep time= 200 ms.

This Test Report is issued by the Company subject to its General Conditions of Service printed overleaf. Attention is drawn to the limitations of liability, indemnification, and Jurisdictional issued defined therein. The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. 此報告是遵循本公司訂定之通用服務條款所製作發放。請注意此條款列印於背面,將本公司之義務,免責,管轄權皆明確規範之。此報告結果除非另有說明僅對檢驗之樣品負責。本報告未經本公司書面許可,不可部份複製。

REPORT NO: ER/2006/80004 DATE: Aug. 15, 2006 Page: 39

Radiated Spurious Emission Measurement Result (above 1GHz)

Operation Mode	TX CH Low	Test Date	Aug. 07, 2006
Fundamental Frequency	2402 MHz	Test By	Jazz
Temperature	25 °C	Pol	Hor.
Humidity	65 %		

	Peak	AV		Actu	al FS	Peak	AV		
Freq. (MHz)	Reading (dBuV)	Reading (dBuV)	Ant./CL CF(dB)	Peak (dBuV/m)	AV (dBuV/m)	Limit (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
1344.5	42.73		-7.87	34.86		74.00	54.00	-19.14	Peak
1604.5	57.58		-6.73	50.85		74.00	54.00	-3.15	Peak
4804.0						74.00	54.00		
7206.0						74.00	54.00		
9608.0						74.00	54.00		
12010.0						74.00	54.00		
14412.0						74.00	54.00		
16814.0						74.00	54.00		
19216.0						74.00	54.00		
21618.0						74.00	54.00		
24020.0						74.00	54.00		

- (1) Measuring frequencies from 1GHz to the 10th harmonic of highest fundamental frequency \circ
- (2) Data of measurement within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (3) Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column \circ
- (4) Spectrum Peak Setting : 1GHz- 26GHz, RBW= 1MHz, VBW= 3MHz, Sweep time= 200 ms.
- (5) Spectrum AV Setting : 1GHz- 26GHz, RBW= 1MHz, VBW= 10Hz, Sweep time= 200 ms.

This Test Report is issued by the Company subject to its General Conditions of Service printed overleaf. Attention is drawn to the limitations of liability, indemnification, and Jurisdictional issued defined therein. The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. 此報告是遵循本公司訂定之通用服務條款所製作發放。請注意此條款列印於背面,將本公司之義務,免責,管轄權皆明確規範之。此報告結果除非另有說明僅對檢驗之樣品負責。本報告未經本公司書面許可,不可部份複製。

Radiated Spurious Emission Measurement Result (above 1GHz)

Operation Mode	TX CH Mid	Test Date	Aug. 07, 2006
Fundamental Frequency	2441 MHz	Test By	Jazz
Temperature	25 °C	Pol	Ver.
Humidity	65 %		

	Peak	AV		Actu	al FS	Peak	AV		
Freq.	Reading	Reading	Ant./CL	Peak	AV	Limit	Limit	Margin	
(MHz)	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)	Remark
1201.5	40.96		-8.55	32.41		74.00	54.00	-21.59	Peak
1624.0	54.19		-6.70	47.49		74.00	54.00	-6.51	Peak
4874.0	45.16		3.18	48.34		74.00	54.00	-5.66	Peak
4882.0						74.00	54.00		
7323.0						74.00	54.00		
9764.0						74.00	54.00		
12205.0						74.00	54.00		
14646.0						74.00	54.00		
17087.0						74.00	54.00		
19528.0						74.00	54.00		
21969.0						74.00	54.00		
24410.0						74.00	54.00		

- (1) Measuring frequencies from 1GHz to the 10th harmonic of highest fundamental frequency \circ
- (2) Data of measurement within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (3) Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column \circ
- (4) Spectrum Peak Setting : 1GHz- 26GHz, RBW= 1MHz, VBW= 3MHz, Sweep time= 200 ms.
- (5) Spectrum AV Setting : 1GHz- 26GHz, RBW= 1MHz, VBW= 10Hz, Sweep time= 200 ms.

This Test Report is issued by the Company subject to its General Conditions of Service printed overleaf. Attention is drawn to the limitations of liability, indemnification, and Jurisdictional issued defined therein. The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. 此報告是遵循本公司訂定之通用服務條款所製作發放。請注意此條款列印於背面,將本公司之義務,免責,管轄權皆明確規範之。此報告結果除非另有說明僅對檢驗之樣品負責。本報告未經本公司書面許可,不可部份複製。

REPORT NO: ER/2006/80004 DATE: Aug. 15, 2006 Page: 41

Radiated Spurious Emission Measurement Result (above 1GHz)

Operation Mode	TX CH Mid	Test Date	Aug. 07, 2006
Fundamental Frequency	2441 MHz	Test By	Jazz
Temperature	25 °C	Pol	Hor.
Humidity	65 %		

	Peak	AV		Actu	al FS	Peak	AV		
Freq.	Reading	Reading	Ant./CL	Peak	AV	Limit	Limit	Margin	
(MHz)	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)	Remark
1344.5	43.64		-7.87	35.77		74.00	54.00	-18.23	Peak
1624.0	53.39		-6.70	46.69		74.00	54.00	-7.31	Peak
4874.0	40.51		3.18	43.69		74.00	54.00	-10.31	Peak
4882.0						74.00	54.00		
7323.0						74.00	54.00		
9764.0						74.00	54.00		
12205.0						74.00	54.00		
14646.0						74.00	54.00		
17087.0						74.00	54.00		
19528.0						74.00	54.00		
21969.0						74.00	54.00		
24410.0						74.00	54.00		

- (1) Measuring frequencies from 1GHz to the 10th harmonic of highest fundamental frequency \circ
- (2) Datas of measurement within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (3) Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column \circ
- (4) Spectrum Peak Setting : 1GHz- 26GHz, RBW= 1MHz, VBW= 3MHz, Sweep time= 200 ms.
- (5) Spectrum AV Setting : 1GHz- 26GHz, RBW= 1MHz, VBW= 10Hz, Sweep time= 200 ms.

This Test Report is issued by the Company subject to its General Conditions of Service printed overleaf. Attention is drawn to the limitations of liability, indemnification, and Jurisdictional issued defined therein. The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. 此報告是遵循本公司訂定之通用服務條款所製作發放。請注意此條款列印於背面,將本公司之義務,免責,管轄權皆明確規範之。此報告結果除非另有說明僅對檢驗之樣品負責。本報告未經本公司書面許可,不可部份複製。

Radiated Spurious Emission Measurement Result (above 1GHz)

Operation Mode	TX CH High	Test Date	Aug. 07, 2006
Fundamental Frequency	2480 MHz	Test By	Jazz
Temperature	25 °C	Pol	Ver.
Humidity	65 %		

		Peak	AV		Actu	al FS	Peak	AV		
	Freq.	Reading	Reading	Ant./CL	Peak	AV	Limit	Limit	Margin	
_	(MHz)	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)	Remark
-	1052.0	40.27		-9.25	31.02		74.00	54.00	-22.98	Peak
	1650.0	53.13		-6.60	46.53		74.00	54.00	-7.47	Peak
	4960.0	46.67		3.40	50.07		74.00	54.00	-3.93	Peak
	7440.0						74.00	54.00		
	9920.0						74.00	54.00		
	12400.0						74.00	54.00		
	14880.0						74.00	54.00		
	17360.0						74.00	54.00		
	19840.0						74.00	54.00		
	22320.0						74.00	54.00		
	24800.0						74.00	54.00		

- (1) Measuring frequencies from 1GHz to the 10th harmonic of highest fundamental frequency \circ
- (2) Datas of measurement within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (3) Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column \circ
- (4) Spectrum Peak Setting : 1GHz- 26GHz, RBW= 1MHz, VBW= 3MHz, Sweep time= 200 ms.
- (5) Spectrum AV Setting : 1GHz- 26GHz, RBW= 1MHz, VBW= 10Hz, Sweep time= 200 ms.

This Test Report is issued by the Company subject to its General Conditions of Service printed overleaf. Attention is drawn to the limitations of liability, indemnification, and Jurisdictional issued defined therein. The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. 此報告是遵循本公司訂定之通用服務條款所製作發放。請注意此條款列印於背面,將本公司之義務,免責,管轄權皆明確規範之。此報告結果除非另有說明僅對檢驗之樣品負責。本報告未經本公司書面許可,不可部份複製。

Radiated Spurious Emission Measurement Result (above 1GHz)

Operation Mode	TX CH High	Test Date	Aug. 07, 2006
Fundamental Frequency	2480 MHz	Test By	Jazz
Temperature	25 °C	Pol	Hor.
Humidity	65 %		

Peak	AV		Actu	al FS	Peak	AV		
Reading	Reading	Ant./CL	Peak	AV	Limit	Limit	Margin	
(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)	Remar
43.58		-7.87	35.71		74.00	54.00	-18.29	Peak
53.45		-6.60	46.85		74.00	54.00	-7.15	Peak
41.45		3.40	44.85		74.00	54.00	-9.15	Peak
					74.00	54.00		
					74.00	54.00		
					74.00	54.00		
					74.00	54.00		
					74.00	54.00		
					74.00	54.00		
					74.00	54.00		
					74.00	54.00		
	Reading (dBuV) 43.58 53.45 41.45 	Reading Reading (dBuV) (dBuV) 43.58 53.45 41.45	ReadingReadingAnt./CL(dBuV)(dBuV)CF(dB)43.587.8753.456.6041.453.40 <td>Reading Reading Ant./CL Peak (dBuV) (dBuV) CF(dB) (dBuV/m) 43.58 -7.87 35.71 53.45 -6.60 46.85 41.45 3.40 44.85 </td> <td>Reading Reading Ant./CL Peak AV (dBuV) (dBuV) CF(dB) (dBuV/m) (dBuV/m) 43.58 -7.87 35.71 53.45 -6.60 46.85 41.45 3.40 44.85 </td> <td>Reading Reading Ant./CL Peak AV Limit (dBuV) (dBuV) CF(dB) (dBuV/m) (dBuV/m) (dBuV/m) 43.58 -7.87 35.71 74.00 53.45 -6.60 46.85 74.00 41.45 3.40 44.85 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 </td> <td>ReadingReadingAnt./CLPeakAVLimit$(dBuV)$$(dBuV)$$(dBuV/m)$$(dBuV/m)$$(dBuV/m)$$(dBuV/m)$$(dBuV/m)$$43.58$$-7.87$$35.71$$74.00$$54.00$$53.45$$-6.60$$46.85$$74.00$$54.00$$41.45$$3.40$$44.85$$74.00$$54.00$$54.00$$54.00$$$$74.00$$54.00$$74.00$$54.00$$74.00$$54.00$$74.00$$54.00$$74.00$$54.00$$74.00$$54.00$$74.00$$54.00$$74.00$$54.00$$74.00$$54.00$$74.00$$54.00$$74.00$$54.00$$74.00$$54.00$$74.00$$54.00$</td> <td>ReadingReadingAnt./CLPeakAVLimitLimitMargin$(dBuV)$$(dBuV)$$(dBuV/m)$$(duv/m)$$(duv/m)$$(duv/m)$$(duv/m)$$(duv/m)$$(duv/m)$$(duv/m)$$(duv/m)$$(duv/m)$<td< td=""></td<></td>	Reading Reading Ant./CL Peak (dBuV) (dBuV) CF(dB) (dBuV/m) 43.58 -7.87 35.71 53.45 -6.60 46.85 41.45 3.40 44.85	Reading Reading Ant./CL Peak AV (dBuV) (dBuV) CF(dB) (dBuV/m) (dBuV/m) 43.58 -7.87 35.71 53.45 -6.60 46.85 41.45 3.40 44.85	Reading Reading Ant./CL Peak AV Limit (dBuV) (dBuV) CF(dB) (dBuV/m) (dBuV/m) (dBuV/m) 43.58 -7.87 35.71 74.00 53.45 -6.60 46.85 74.00 41.45 3.40 44.85 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00	ReadingReadingAnt./CLPeakAVLimit $(dBuV)$ $(dBuV)$ $(dBuV/m)$ $(dBuV/m)$ $(dBuV/m)$ $(dBuV/m)$ $(dBuV/m)$ 43.58 -7.87 35.71 74.00 54.00 53.45 -6.60 46.85 74.00 54.00 41.45 3.40 44.85 74.00 54.00 54.00 54.00 $$ 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00	ReadingReadingAnt./CLPeakAVLimitLimitMargin $(dBuV)$ $(dBuV)$ $(dBuV/m)$ (duv/m) (duv/m) (duv/m) (duv/m) (duv/m) (duv/m) (duv/m) (duv/m) (duv/m) <td< td=""></td<>

- (1) Measuring frequencies from 1GHz to the 10th harmonic of highest fundamental frequency \circ
- (2) Data of measurement within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (3) Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column \circ
- (4) Spectrum Peak Setting : 1GHz- 26GHz, RBW= 1MHz, VBW= 3MHz, Sweep time= 200 ms.
- (5) Spectrum AV Setting : 1GHz- 26GHz, RBW= 1MHz, VBW= 10Hz, Sweep time= 200 ms.

This Test Report is issued by the Company subject to its General Conditions of Service printed overleaf. Attention is drawn to the limitations of liability, indemnification, and Jurisdictional issued defined therein. The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. 此報告是遵循本公司訂定之通用服務條款所製作發放。請注意此條款列印於背面,將本公司之義務,免責,管轄權皆明確規範之。此報告結果除非另有說明僅對檢驗之樣品負責。本報告未經本公司書面許可,不可部份複製。

10. FREQUENCY SEPARATION

10.1. Standard Applicable

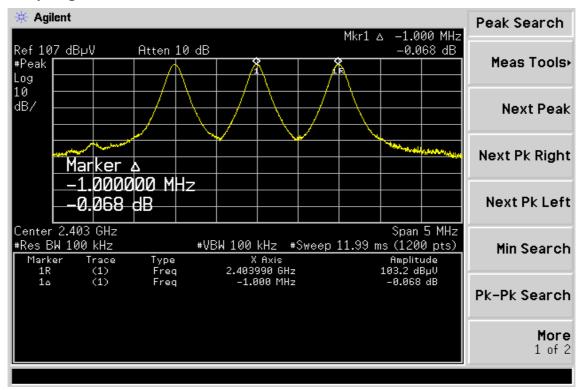
According to §15.247(a)(1), Frequency hopping systems shall have hopping channel carrier frequencies separated by minimum of 25KHz or the 2/3*20dB bandwidth of the hopping channel, whichever is greater.

10.2. Measurement Procedure

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set center frequency of spectrum analyzer = middle of hopping channel.
- 4. Set the spectrum analyzer as RBW,VBW=100KHz, Adjust Span to 5 MHz, Sweep = auto.
- 5. Max hold. Mark 3 Peaks of hopping channel and record the 3 peaks frequency.

10.3. Measurement Result

Channel separation	Limit	Result
MHz	kHz	
1	>=25KHz or 2/3* 20 dB bandwidth	PASS


10.4. Measurement Equipment Used:

EQUIPMENT	MFR	MODEL	SERIAL	LAST	CAL DUE.
ТҮРЕ		NUMBER	NUMBER	CAL.	
Spectrum Analyzer	R&S	FSP 40	100034	05/27/2006	05/26/2007
Spectrum Analyzer	Agilent	E7405A	US41160416	08/27/2005	08/26/2006
Spectrum Analyzer	Agilent	E4446A	MY43360126	01/22/2006	01/21/2007
Low Loss Cable	HUBER+SUHNER	SUCOFLEX 104PEA	N/A	N/A	N/A
Attenuator	Mini-Circult	BW-S6W5	N/A	10/07/2005	10/06/2006

REPORT NO: ER/2006/80004 DATE: Aug. 15, 2006 Page: 45

Frequency Separation Test Data

11. NUMBER OF HOPPING FREQUENCY

11.1. Standard Applicable

According to §15.247(a)(1)(iii), Frequency hopping systems operating in the 2400MHz-2483.5 MHz bands shall use at least 15 hopping frequencies.

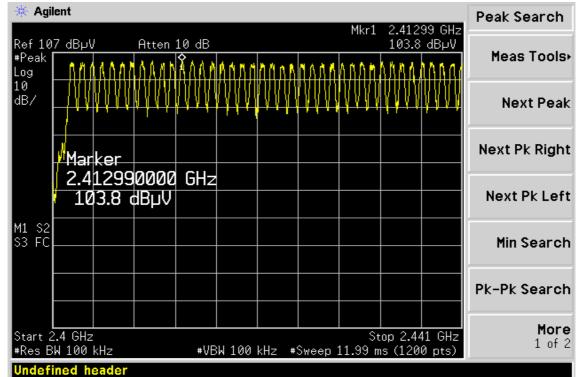
11.2. Measurement Procedure

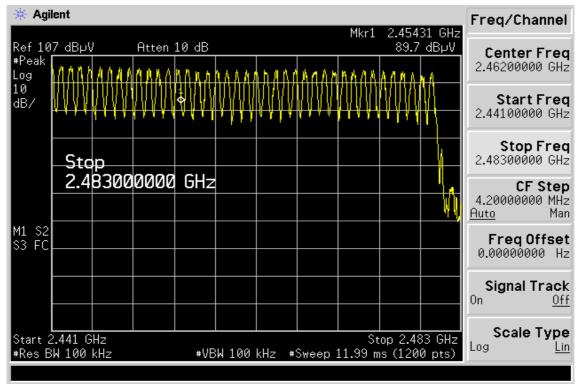
- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set spectrum analyzer Start=2400MHz, Stop = 2483.5MHz, Sweep = auto.
- 4. Set the spectrum analyzer as RBW, VBW=100KHz,
- 5. Max hold, view and count how many channel in the band.

11.3. Measurement Result

Total No of	Limit (CH)	Measurement result (CH)	Result
hopping channel	15	79	Pass

11.4. Measurement Equipment Used:


EQUIPMENT	MFR	MODEL	SERIAL	LAST	CAL DUE.
ТҮРЕ		NUMBER	NUMBER	CAL.	
Spectrum Analyzer	R&S	FSP 40	100034	05/27/2006	05/26/2007
Spectrum Analyzer	Agilent	E7405A	US41160416	08/27/2005	08/26/2006
Spectrum Analyzer	Agilent	E4446A	MY43360126	01/22/2006	01/21/2007
Low Loss Cable	HUBER+SUHNER	SUCOFLEX 104PEA	N/A	N/A	N/A
Attenuator	Mini-Circult	BW-S6W5	N/A	10/07/2005	10/06/2006


REPORT NO: ER/2006/80004 DATE: Aug. 15, 2006 Page: 47

Channel Number

2.4 GHz – 2.441GHz

2.441 GHz – 2.4835GHz

12. TIME OF OCCUPANCY (DWELL TIME)

12.1. Standard Applicable

According to \$15.247(a)(1)(iii), Frequency hopping systems operating in the 2400MHz-2483.5 MHz. The average time of occupancy on any frequency shall not greater than 0.4 s within period of 0.4 seconds multiplied by the number of hopping channel employed.

12.2. Measurement Procedure

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set center frequency of spectrum analyzer = operating frequency.
- 4. Set the spectrum analyzer as RBW, VBW=100KHz, Span = 0Hz, Adjust Sweep = 30s.
- 5. Repeat above procedures until all frequency measured were complete.

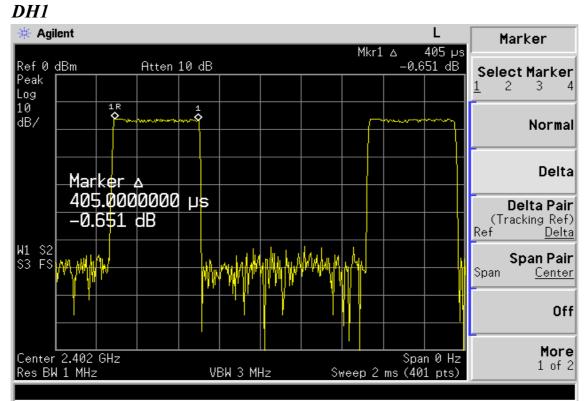
12.3. Measurement Result

A period time = 0.4 (ms) * 79 = 31.6 (s)

CH Low: DH1 time slot =
$$0.405 \text{ (ms)} * (1600/(1*79)) * 31.6 = 259.1 \text{ (ms)}$$

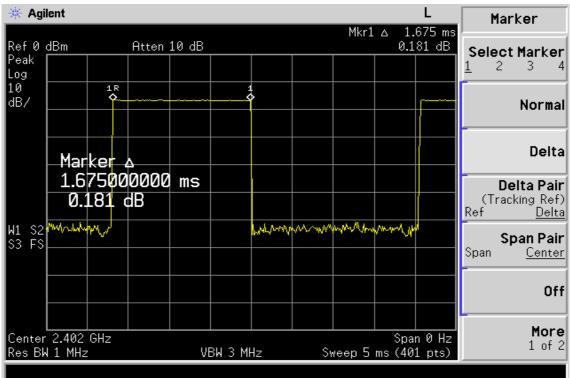
DH3 time slot = $1.675 \text{ (ms)} * (1600/(3*79)) * 31.6 = 357.2 \text{ (ms)}$
DH5 time slot = $2.925 \text{ (ms)} * (1600/(5*79)) * 31.6 = 374.3 \text{ (ms)}$

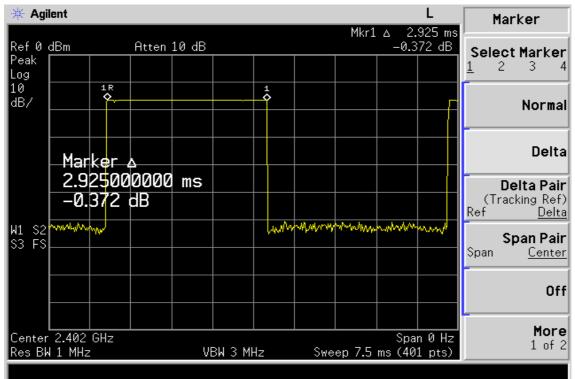
CH Mid:	DH1 time slot = $0.405 \text{ (ms)} * (1600/(1*79)) * 31.6 = 259.1 \text{ (ms)}$
	DH3 time slot = 1.675 (ms) * $(1600/(3*79))$ * $31.6 = 357.2$ (ms)
	DH5 time slot = $2.906 \text{ (ms)} * (1600/(5*79)) * 31.6 = 371.9 \text{ (ms)}$


CH High: DH1 time slot = 0.416 (ms) * (1600/(1*79)) * 31.6 = 266.1 (ms)DH3 time slot = 1.662 (ms) * (1600/(3*79)) * 31.6 = 354.5 (ms)DH5 time slot = 2.906 (ms) * (1600/(5*79)) * 31.6 = 371.9 (ms)

12.4. Measurement Equipment Used:

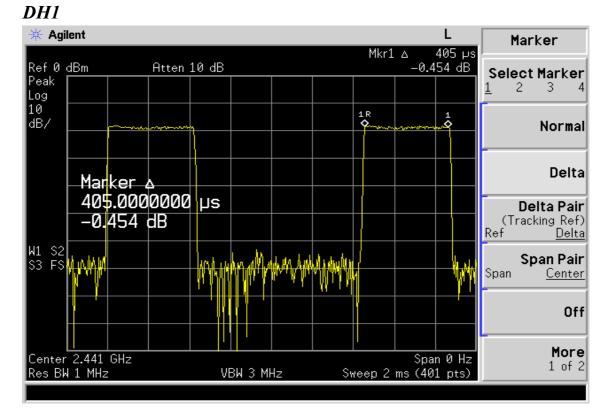
EQUIPMENT	MFR	MODEL	SERIAL	LAST	CAL DUE.
ТҮРЕ		NUMBER	NUMBER	CAL.	
Spectrum Analyzer	R&S	FSP 40	100034	05/27/2006	05/26/2007
Spectrum Analyzer	Agilent	E7405A	US41160416	08/27/2005	08/27/2006
Spectrum Analyzer	Agilent	E4446A	MY43360126	03/29/2006	03/28/2007
Low Loss Cable	HUBER+SUHNER	SUCOFLEX 104PEA	N/A	N/A	N/A
Attenuator	Mini-Circult	BW-S6W5	N/A	10/07/2005	10/06/2006

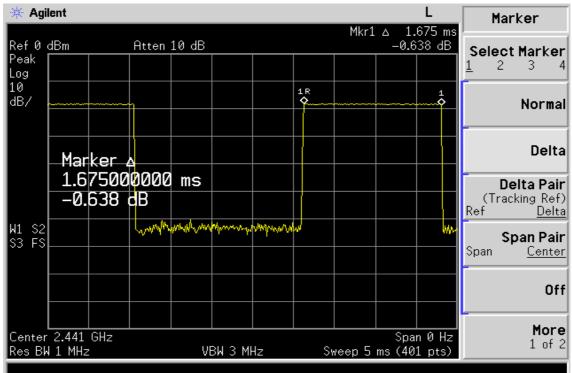

Dwell Time Test Data *CH-Low*



REPORT NO: ER/2006/80004 DATE: Aug. 15, 2006 Page: 50

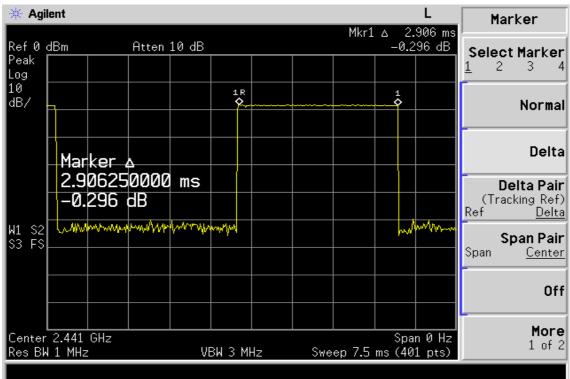
DH3

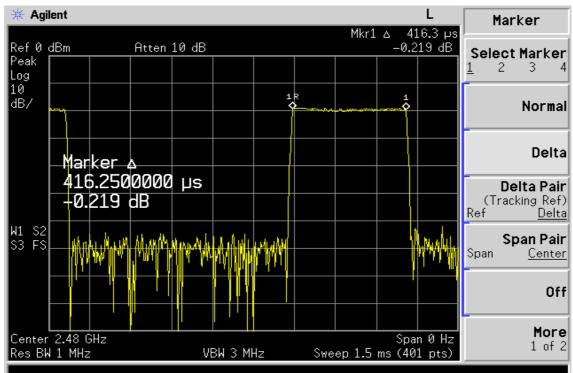

DH5



REPORT NO: ER/2006/80004 DATE: Aug. 15, 2006 Page: 51

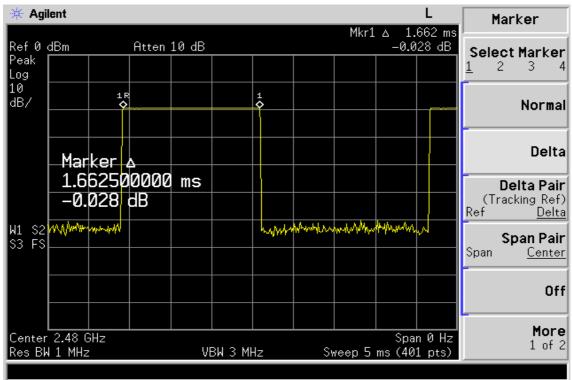
CH-Mid

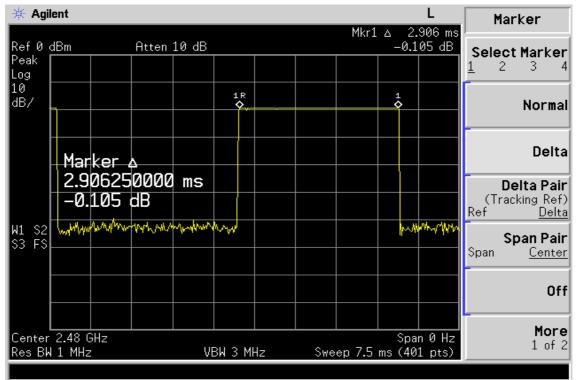

DH3


REPORT NO: ER/2006/80004 DATE: Aug. 15, 2006 Page: 52

DH5

CH-High





REPORT NO: ER/2006/80004 DATE: Aug. 15, 2006 Page: 53

DH3

DH5

13. Peak Power Spectral Density

13.1. Standard Applicable

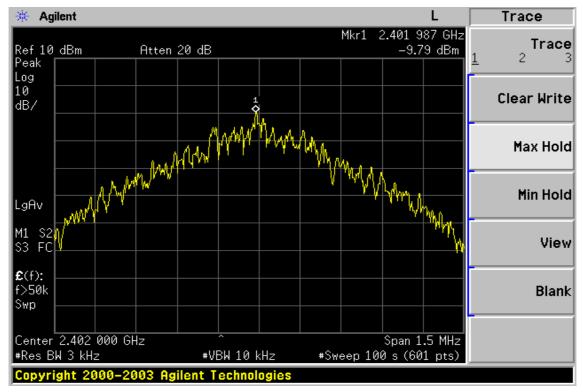
According to §15.247(d), for direct sequence systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3kHz band during any time interval of continuous transmission.

13.2. Measurement Procedure

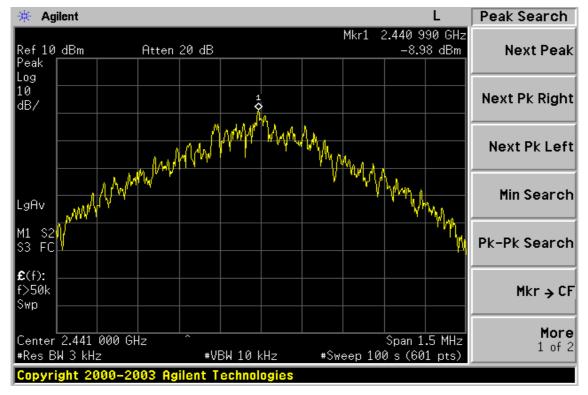
- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set the spectrum analyzer as RBW = 3KHz, VBW = 10KHz, Span = 1.5MHz, Sweep=100s
- 4. Record the max. reading.
- 5. Repeat above procedures until all frequency measured were complete.

13.3. Measurement Result

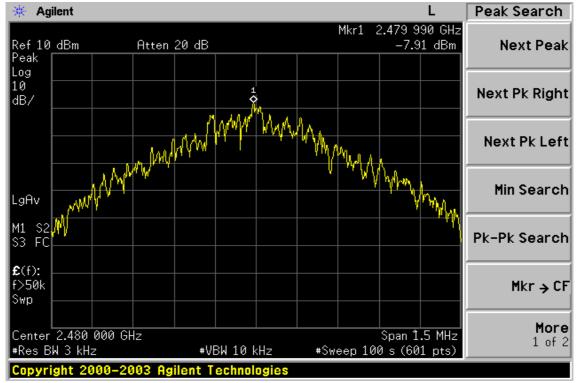
СН	RF Power Density	Cable loss	RF Power Density	Maximum Limit
	Reading (dBm)	(dB)	Level (dBm)	(dBm)
Low	-9.79	0.10	-9.69	8
Mid	-8.98	0.10	-8.88	8
High	-7.91	0.10	-7.81	8


13.4. Measurement Equipment Used:

EQUIPMENT	MFR	MODEL	SERIAL	LAST	CAL DUE.
ТҮРЕ		NUMBER	NUMBER	CAL.	
Spectrum Analyzer	R&S	FSP 40	100034	05/27/2006	05/26/2007
Spectrum Analyzer	Agilent	E7405A	US41160416	08/27/2005	08/26/2006
Low Loss Cable	HUBER+SUHNER	SUCOFLEX 104PEA	N/A	N/A	N/A
Attenuator	Mini-Circult	BW-S6W5	N/A	10/07/2005	10/06/2006


This Test Report is issued by the Company subject to its General Conditions of Service printed overleaf. Attention is drawn to the limitations of liability, indemnification, and Jurisdictional issued defined therein. The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. 此報告是遵循本公司訂定之通用服務條款所製作發放。請注意此條款列印於背面,將本公司之義務,免責,管轄權皆明確規範之。此報告結果除非另有說明僅對檢驗之樣品負責。本報告未經本公司書面許可,不可部份複製。

Power Spectral Density Test Plot (CH-Low)


Power Spectral Density Test Plot (CH-Mid)

REPORT NO: ER/2006/80004 DATE: Aug. 15, 2006 Page: 56

Power Spectral Density Test Plot (CH-High)

14. ANTENNA REQUIREMENT

14.1. Standard Applicable

For intentional device, according to §15.203, an intentional radiator shall be designed to ensure that no antenna other than furnished by the responsible party shall be used with the device.

And according to §15.247(4)(1), system operating in the 2400-2483.5MHz bands that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum peak output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

14.2. Antenna Connected Construction

The directional gains of antenna used for transmitting is -4.88dBi, and the antenna connector is designed with permanent attachment and no consideration of replacement. Please see EUT photo for details.