FCC/ IC TEST REPORT

Test report No:	EMC- FCC- R0064
-----------------	------------------------

FCC ID: SY5XMFNA04

IC Certification: 8325A-XMFNA04

Type of equipment: Smart Key Fob

Model Name: SVI-XMFNA04

Applicant: Continental Automotive Systems Corporation

FCC Rule Part(s): FCC Part 15 Subpart C

Section 15.209, Section 15.231

IC RSS-210, Issue 8: 2010

Frequency Range: 315 MHz

Test result: Complied

The above equipment was tested by EMC compliance Testing Laboratory for compliance with the requirements of FCC Rules and Regulations.

The results of testing in this report apply to the product/system which was tested only. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Date of test: May 16, 2012 ~ May 18, 2012

Issued date: May 23, 2012

Tested by:

trun

SON, MIN GI

Approved by:

KIM, CHANG MIN

[Contents]

1. Client information	3
2. Laboratory information	
3. Description of E.U.T.	5
3.1 Basic description	5
3.2 General description	5
3.3 Test frequency	<i>6</i>
3.4 Test Voltage	<i>6</i>
4. Summary of test results	7
4.1 Standards & results	
4.2 Uncertainty	7
5. Test results	8
5.1 Field strength of Fundamental	8
5.2 Spurious Emission	
5.3 Receiver Spurious Emission	. 13
5.4 Bandwidth of Operation Frequency	. 15
5.5 Transmission Time	. 16
5.6 Occupied Bandwidth	. 17
6. Test equipment used for test	. 18

Appendix 1 Test setup photos

Appendix 2 External photos of EUT

Appendix 3 Internal photos of EUT

Appendix 4 Block diagram

Appendix 5 Schematics

Appendix 6 User manual

Appendix 7 Part list

Appendix 8 Layout diagram

Appendix 9 Antenna Specification

1. Client information

Applicant: Continental Automotive Systems Corporation

Address: 29, Siemens-Road, Icheon-City, Gyeonggi-Do, 467-080,

Korea

Telephone number: +82-31-645-4864 **Facsimile number:** +82-31-637-0371

Contact person: SungMin Jang/Manager

Manufacturer: Continental Automotive Systems Corporation

Address: 29, Siemens-Road, Icheon-City, Gyeonggi-Do, 467-080,

Korea

2. Laboratory information

Address

EMC Compliance Ltd.

480-5 Shin-dong, Yeongtong-gu, Suwon-city, Gyunggi-do, 443-390, Korea, Telephone Number: 82 31 336 9919 Facsimile Number: 82 31 336 4767


Certificate

CBTL Testing Laboratory, KOLAS NO.: 231

FCC Filing No.: 508758 IC Filing No.: 8035A

VCCI Registration No.: C-1713, R-1606, T-258

SITE MAP

3. Description of E.U.T.

3.1 Basic description

Applicant :	Continental Automotive Systems Corporation	
Address of Applicant:	29, Siemens-Road, Icheon-City, Gyeonggi-Do, 467-080, Korea	
Manufacturer:	Continental Automotive Systems Corporation	
Address of Manufacturer:	29, Siemens-Road, Icheon-City, Gyeonggi-Do, 467-080, Korea	
Type of equipment:	Smart Key Fob	
Basic Model:	SVI-XMFNA04	
Serial number:	N/A	

3.2 General description

Frequency Range	315 MHz
Type of Modulation	FSK
Number of Channels	1 channel
Type of Antenna	PCB Antenna
Antenna Gain	-24.14 dBi
Transmit Power	72.3 dBuV/m
Power supply	DC 3 V
Dimension	35 x 70 x 10 (mm)

3.3 Test frequency

	Frequency
Low frequency	-
Middle frequency	315 MHz
High frequency	-

3.4 Test Voltage

mode	Voltage
Norminal voltage	DC 3 V

4. Summary of test results

4.1 Standards & results

Section in FCC 15 Subpart C §15.209	Section in RSS-210, Issue 8 : 2010	Parameter	Test Result
15.209(a) 15.231(b)	RSS-210, Issue 8, Table B	Radiated emission, Spurious Emission and Field Strength of Fundamental	C
-	RSS-Gen, Issue 3,6	Receiver Spurious Emission (Radiated)	С
15.231(c)	RSS-210, Issue 8, A1.1.3	Bandwidth of Operation frequency	С
15.231(a)	RSS-210, Issue 8, A1.1.1	Transmission Time	С
-	RSS-Gen, Issue 3, 4.6.1	Occupied Bandwidth	C

Note: C=complies

NC= Not complies NT=Not tested NA=Not Applicable

4.2 Uncertainty

Measurement Item	Combined Standard Uncertainty Uc	Expanded Uncertainty U = KUc (K = 2)	
Conducted RF power	± 0.29 dB	± 0.58 dB	
Radiated disturbance	+ 2.97 dB / - 2.975 dB	+ 5.94 dB / - 5.95 dB	
Conducted disturbance	9 ~ 150 kHz: ± 1.975 [dB] 150 kHz ~ 30 kHz: ± 1.775 [dB]	9 kHz ~ 150 kHz: ± 3.95 [dB] 150 kHz ~ 30 MHz: ± 3.55 [dB]	

^{*}The test is not applicable since the EUT is not the device that is designed to be connected to the public utility(AC) power line.

5. Test results

5.1 Field strength of Fundamental

5.1.1 Regulation

According to §15.209(a),

Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table: 83

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100 **	3
88 - 216	150**	3
216 - 960	200**	3
Above 960	500	3

^{**} Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241...

According to §15.231(b)

In addition to the provisions of Section 15.205, the field strength of emissions from intentional radiators operated under this Section shall not exceed the following:

Fundamental Fraguence	Field Strength of	Field Strength of Spurious	
Fundamental Frequency	Fundamental	Emissions	
(MHz)	(microvolts/meter)	(microvolts/meter)	
40.66 - 40.70	2,250	225	
70 - 130	1,250	125	
130 - 174	1,250 to 3,750 **	125 to 375 **	
174 - 260	3,750	375	
260 - 470	3,750 to 12,500 **	375 to 1,250 **	
Above 470	12,500	1,250	

^{**} linear interpolations

Where F is the frequency in MHz, the formulas for calculating the maximum permitted fundamental field strengths are as follows: for the band 130-174 MHz, μ V/m at 3 meters = 56.81818(F) - 6136.3636; for the band 260-470 MHz, μ V/m at 3 meters = 41.6667(F) - 7083.3333. The maximum permitted unwanted emission level is 20 dB below the maximum permitted fundamental level.

5.1.2 Test procedure

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter anechoic chamber test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. During performing radiated emission below 1 GHz, the EUT was set 3 meters away from the interference receiving antenna, which was mounted on the top of a variable-height antenna tower. During performing radiated emission above 1 GHz, the EUT was set 3 meter away from the interference-receiving antenna.
- c. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

5.1.2 Test Result

-Complied

	quency MHz]	Receiver Bandwidth [kHz]	Detector	Pol. [V/H]	Reading [dB(μV)]	Factor (Amp Gain + Attenuator + AF + CL)	Result [dB(μV/m)]	Limit [dB(μV/m)]	Margin [dB]
3	315	120	Quasi – Peak	Н	84.1	-11.8	72.3	75.62	3.32

NOTE:

1. Limit = $20\log(41.6667(F)-7083.3333) = 75.62$

5.2 Spurious Emission

5.2.1 Regulation

According to §15.209(a),

Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table: 83

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100 **	3
88 - 216	150**	3
216 - 960	200**	3
Above 960	500	3

^{**} Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241..

According to §15.231(b)

In addition to the provisions of Section 15.205, the field strength of emissions from intentional radiators operated under this Section shall not exceed the following:

Fundamental Frequency (MHz)	Field Strength of Fundamental (microvolts/meter)	Field Strength of Spurious Emissions (microvolts/meter)
40.66 - 40.70	2,250	225
70 - 130	1,250	125
130 - 174	1,250 to 3,750 **	125 to 375 **
174 - 260	3,750	375
260 - 470	3,750 to 12,500 **	375 to 1,250 **
Above 470	12,500	1,250

^{**} linear interpolations

Where F is the frequency in MHz, the formulas for calculating the maximum permitted fundamental field strengths are as follows: for the band 130-174 MHz, $\mu V/m$ at 3 meters = 56.81818(F) - 6136.3636; for the band 260-470 MHz, $\mu V/m$ at 3 meters = 41.6667(F) - 7083.3333. The maximum permitted unwanted emission level is 20 dB below the maximum permitted fundamental level.

5.2.2 Measurement Procedure

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter anechoic chamber test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

5.2.3 Test Result

-complied

Frequency [MHz]	Receiver Bandwidth [kHz]	Pol. [V/H]	Reading [dB(μV)]	Factor (Amp Gain + Attenuator + AF + CL)	Result [dB(μV/m)]	Limit [dB(µV/m)]	Margin [dB]	
Quasi-Peak I	Quasi-Peak DATA. Emissions below 30MHz							
		Not detected (In the noise floor)						
Quasi-Peak I	OATA. Emission	s below 1G	Hz					
106.099	120	V	33.7	-17.6	16.1	55.6	39.5	
Above 150.00	Not Detected	-	-	-	-	1	-	
Peak DATA.	Emissions abov	e 1GHz						
1260.225	1000	Н	49.1	-5.3	43.8	75.6	31.8	
1575.295	1000	Н	48.6	-2.9	45.7	74.0	28.3	
2205.560	1000	Н	49.0	0.3	49.3	74.0	24.7	
2835.170	1000	Н	48.8	1.9	50.7	74.0	23.3	
3465.895	1000	V	47.7	4.1	51.8	75.6	23.8	
Above 3500.00	Not Detected	-	-	-	-	-	-	
Average DA	TA. Emissions	above 1GH	z					
1260.225	1000	Н	39.7	-5.3	34.4	55.6	21.2	
1575.295	1000	Н	35.7	-2.9	32.8	54.0	21.2	
2205.560	1000	Н	42.3	0.3	42.6	54.0	11.4	
2835.170	1000	Н	35.8	1.9	37.7	54.0	16.3	
3465.895	1000	V	37.8	4.1	41.9	55.6	13.7	
Above 3500.00	Not Detected	-	-	-	-	-	-	

NOTE:

- 1. Factor(dB) = ANT Factor+ Amp Gain + Cable Loss
- 2. Margin (dB) = Limit Result [Result = Reading - Factor]

H = Horizontal, V = Vertical Polarization

ATT = Attenuation (10dB pad and/or Insertion Loss of HPF), AF/CL = Antenna Factor and Cable Loss

All emissions not reported were more than 20 dB below the specified limit or in the noise floor.

^{*} The spurious emission at the frequency does not fall in the restricted bands.

^{**} The measured result is within the test standard limit by a margin less than the measurement uncertainty; it is therefore not possible to state compliance based on the 95 % level of confidence. However, the result indicates that compliance is more probable than non-compliance.

5.3 Receiver Spurious Emission

5.3.1 Regulation

According to §15.209(a),

Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table: 83

Frequency (MHz)	Field Strength (microvolts/m at 3 meters)		
30 – 88	100		
88 – 216	150		
216 -960	200		
Above 960	500		

5.3.2 Measurement Procedure

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter anechoic chamber test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. During performing radiated emission below 1 GHz, the EUT was set 3 meters away from the interference receiving antenna, which was mounted on the top of a variable-height antenna tower. During performing radiated emission above 1 GHz, the EUT was set 3 meter away from the interference-receiving antenna.
- c. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

5.3.3 Test Result

-complied

Frequency [MHz]	Receiver Bandwidth [kHz]	Pol. [V/H]	Reading [dB(μV)]	Factor (Amp Gain + Attenuator + AF + CL)	Result [dB(µV/m)]	Limit [dB(μV/m)]	Margin [dB]
Quasi-Peak	DATA. Emission	ns below 30	OMHz				
				ot detected e noise floor)			
Quasi-Peak	DATA. Emission	ns below 10	GHz				
103.145	120	V	34.4	-17.6	16.8	43.5	26.7
Above 150.00	Not Detected	-	-	-	-	-	-
Average DA	TA. Emissions a	bove 1GH	z		I		
		Not detected (In the noise floor)					

NOTE:

- 3. Factor(dB) = ANT Factor+Amp Gain + Cable Loss
- 4. Margin (dB) = Limit Result [Result = Reading Factor]

H = Horizontal, V = Vertical Polarization

ATT = Attenuation (10dB pad and/or Insertion Loss of HPF), AF/CL = Antenna Factor and Cable Loss

- * The spurious emission at the frequency does not fall in the restricted bands.
- ** The measured result is within the test standard limit by a margin less than the measurement uncertainty; it is therefore not possible to state compliance based on the 95 % level of confidence. However, the result indicates that compliance is more probable than non-compliance.

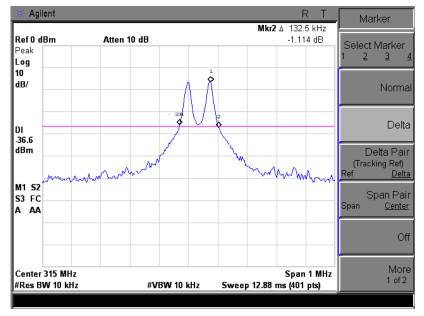
All emissions not reported were more than 20 dB below the specified limit or in the noise floor.

5.4 Bandwidth of Operation Frequency

5.4.1 Regulation

The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 Mz and below 900 Mz. Bandwidth is determined at the points 20 dB down from the modulated carrier.

5.4.2 Measurement Procedure


- 1. The transmitter output is connected to the spectrum analyzer.
- 2. The bandwidth of the fundamental frequencywas measured with the spectrum analyzer using RBW=10 kHz,VBW=10 kHz and Span=1 MHz.
- 3. The bandwidth of fundamental frequency was measured and recorded.

5.4.3 Test Result

-complied

Frequency [MHz]	Bandwidth of the emission [kHz]	Limit [kHz]	
315	132.500	787.500	

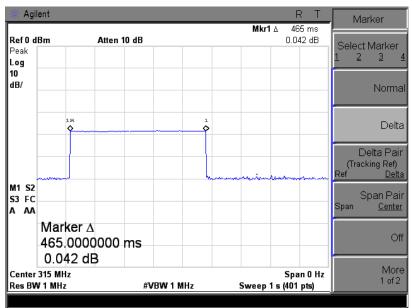
5.4.4 Test plot

5.5 Transmission Time

5.5.1 Regulation

A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.

5.5.2 Measurement Procedure


- 1. The transmitter output is connected to the spectrum analyzer.
- 2. The bandwidth of the fundamental frequencywas measured with the spectrum analyzer using RBW=1 MHz, VBW=1 MHz, Span=0 Hz, Sweep Time=10 sec
- 3. The bandwidth of fundamental frequency was measured and recorded.

5.5.3 Test Result

-complied

Frequency [MHz]	Transmission Time [s]	Limit [s]	
315	0.465	5	

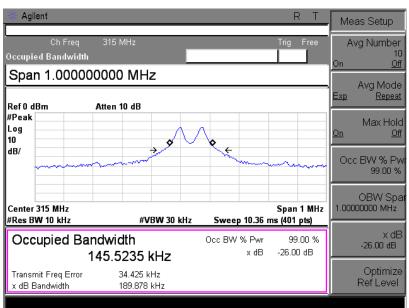
5.5.4 Test plot

5.6 Occupied Bandwidth

5.3.1 Regulation

None; for reporting purposed only

5.3.2 Measurement Procedure


- 1. The transmitter output is connected to the spectrum analyzer.
- 2. The bandwidth of the fundamental frequency was measured with the spectrum analyzer using RBW≥1 % of Span,VBW to 3 times RBW.
- 3. The bandwidth of fundamental frequency was measured and recorded.

5.3.3 Test Result

-complied

Frequency [MHz]	Occupied Bandwidth [kHz]	Limit [kHz]	Remark
315	145.524	-	99% Occupied Bandwidth

5.3.3 Test plot

6. Test equipment used for test

Description	Manufacture	Model No.	Serial No.	Next Cal Date.
Temp & humidity chamber	taekwang	TK-04	TK001	12.12.10
Temp & humidity chamber	taekwang	TK-500	TK002	12.09.05
Power Meter	Agilent	E4416A	GB41292365	12.10.26
Frequency Counter	HP	53150A	US39250565	12.09.07
Spectrum Analyzer	Agilent	E4407B	US39010142	12.10.26
Spectrum Analyzer	R & S	FSP40	100209	12.10.26
Signal Generator	R & S	SMR40	100007	15.04.18
Modulation Analyzer	HP	8901B	3538A05527	12.10.26
Audio Analyzer	HP	8903B	3729A19213	13.01.11
AC Power Supply	KIKUSUI	PCR2000W	GB001619	12.10.25
DC Power Supply	Tektronix	PS2520G	TW50517	13.02.06
DC Power Supply	Tektronix	PS2521G	TW53135	12.10.25
Dummy Load	BIRD	8141	7560	12.09.16
Dummy Load	BIRD	8401-025	799	12.09.16
EMI Test Receiver	R&S	ESCI	100001	12.07.11
Attenuator	HP	8494A	2631A09825	12.10.26
Attenuator	HP	8496A	3308A16640	12.10.26
Attenuator	R&S	RBS1000	D67079	12.10.26
WIDEBAND POWER SENSOR	R & S	NRP-Z81	100677	13.05.04
LOOP Antenna	EMCO	EMCO6502	9205-2745	13.05.23
BILOG Antenna	Schwarzbeck	VULB 9160	3228	12.09.13
BILOG Antenna	Schwarzbeck	VULB 9168	440	13.07.08
HORN Antenna	ETS	3115	00086706	13.11.21
HORN Antenna	ETS	3115	00062589	13.09.06
HORN Antenna	ETS	3116	00086632	13.11.15
HORN Antenna	ETS	3116	00086632	13.11.15
Synthesized sweeper	HP	83630A	3420A00728	12.10.26
Power Divider	Weinschel	1580-1	NX375	12.10.26
Power Divider	Weinschel	1580-1	NX380	12.09.14
Power Divider	Weinschel	1594	671	12.09.14
Test Receiver	R&S	ESHS30	844827/011	12.08.16
LISN	R&S	ESH3-Z5	846125/024	12.08.04
LISN	PMM	L3-32	0120J20305	-