

RADIO PERFORMANCE TEST REPORT

Test Report No.	: OT-19O-RWD-077
AGR No.	: A199A-208
Applicant	: Continental Automotive Systems Corporation
Address	: 45-29, Saeum-ro, Icheon-City, Gyeonggi-Do, Korea
Manufacturer	: Continental Automotive Systems Corporation
Address	: 45-29, Saeum-ro, Icheon-City, Gyeonggi-Do, Korea
Type of Equipment	: Smart Key Fob
FCC ID	: SY5MQ4FGE05
Model No.	: SVI-MQ4FGE05
Serial number	: N/A
Total page of Report	: 22 pages (including this page)
Date of Incoming	: September 20, 2019
Date of issuing	: October 28, 2019

SUMMARY

The equipment complies with the regulation; *FCC PART 15 SUBPART C Section 15.209 and Section 15.231* This test report only contains the result of a single test of the sample supplied for the examination. It is not a generally valid assessment of the features of the respective products of the mass-production.

Approved by:

hh

Reviewed by:

Ha-Ram Lee / Assistant Manager ONETECH Corp.

Tachafu

Jae-Ho Lee / Chief Engineer ONETECH Corp.

It should not be reproduced except in full, without the written approval of ONETECH.

EMC-003 (Rev.2)

CONTENTS

	PAGE
1. VERIFICATION OF COMPLIANCE	5
2. TEST SUMMARY	
2.1 TEST ITEMS AND RESULTS	6
2.2 Additions, deviations, exclusions from standards	6
2.3 RELATED SUBMITTAL(S) / GRANT(S)	6
2.4 PURPOSE OF THE TEST	6
2.5 TEST METHODOLOGY	6
2.6 TEST FACILITY	6
3. GENERAL INFORMATION	7
3.1 PRODUCT DESCRIPTION	7
3.2 ALTERNATIVE TYPE(S)/MODEL(S); ALSO COVERED BY THIS TEST REPORT	7
4. EUT MODIFICATIONS	
5. SYSTEM TEST CONFIGURATION	
5.1 JUSTIFICATION	
5.2 Peripheral equipment	
5.3 MODE OF OPERATION DURING THE TEST	
5.4 Configuration of Test System	
5.5 ANTENNA REQUIREMENT	
6. PRELIMINARY TEST	
6.1 AC POWER LINE CONDUCTED EMISSIONS TESTS	
6.2 GENERAL RADIATED EMISSIONS TESTS	11
7. BANDWIDTH MEASUREMENT	
7.1 OPERATING ENVIRONMENT	
7.2 TEST SET-UP	
7.3 TEST EQUIPMENT USED	
7.4 TEST DATA	
8. TRANSMISSION TIME	
8.1 OPERATING ENVIRONMENT	
8.2 TEST SET-UP	
8.3 TEST EQUIPMENT USED	
8.4 TEST DATA	
9. RADIATED EMISSION TEST	
It should not be reproduced except in full, without the written approval of ONETECH.	EMC-003 (Rev.2)

ONETECH Corp.: 43-14, Jinsaegol-gil, Chowol-eup, Gwangju-si, Gyeonggi-do, 12735, Korea (TEL: 82-31-799-9500, FAX: 82-31-799-9599)

ONETECH

<u> </u>	Page 3 of 22	Report No.: OT-19O-RWD-077
9.2 TEST SET-UP		
9.3 TEST EQUIPMENT USED		
9.4 TEST DATA		
9.4.1 Field Strength of Fundamental		
9.4.2 Spurious Emission Test		
9.5 RESTRICTED BAND TEST		

REVISION HISTORY

Issued Report No.	Issued Date	Revisions	Effect Section
OT-19O-RWD-077	October 28, 2019	Initial Issue	All

It should not be reproduced except in full, without the written approval of ONETECH.

1. VERIFICATION OF COMPLIANCE

Applicant	: Continental Automotive Systems Corporation
Address	: 45-29, Saeum-ro, Icheon-City, Gyeonggi-Do, Korea
Contact Person	: S. M. Jang / Representative
Telephone No.	: 82-31-645-4864
FCC ID	: SY5MQ4FGE05
Model Name	: SVI-MQ4FGE05
Brand Name	: N/A
Serial Number	: N/A
Date	: October 28, 2019

EQUIPMENT CLASS	DSC - Part 15, Security/Remote Control Transmitter
E.U.T. DESCRIPTION	Smart Key Fob
THIS REPORT CONCERNS	Original Grant
MEASUREMENT PROCEDURES	ANSI C63.10: 2013
TYPE OF EQUIPMENT TESTED	Pre-Production
KIND OF EQUIPMENT AUTHORIZATION REQUESTED	Certification
EQUIPMENT WILL BE OPERATED UNDER IC RULES PART(S)	FCC PART 15 SUBPART C Section 15.209 and Section 15.231
MODIFICATIONS ON THE EQUIPMENT TO ACHIEVE COMPLIANCE	None
FINAL TEST WAS CONDUCTED ON	3 m, Semi Anechoic Chamber

The above equipment was tested by ONETECH Corp. for compliance with the requirement set forth in the FCC Rules and Regulations. This said equipment in the configuration described in this report, shows the maximum emission levels emanating from equipment are within the compliance requirements.

2. TEST SUMMARY

2.1 Test items and results

SECTION	TEST ITEMS	RESULTS		
15.231(c)	Bandwidth Measurement	Met the Limit / PASS		
15.231(a)	Transmission Time	Met the Limit / PASS		
15.231(b) 15.209(a)	Field Strength of Fundamental and Spurious Emission	Met the Limit / PASS		
15.205	Restricted Band	Met the Limit / PASS		
15.207	AC Conducted Emissions	N / A (See Note)		

Note: This test is not applicable because the EUT uses battery and it's not to be connected to the public utility (AC) power line.

2.2 Additions, deviations, exclusions from standards

No additions, deviations or exclusions have been made from standard.

2.3 Related Submittal(s) / Grant(s)

Original submittal only

2.4 Purpose of the test

To determine whether the equipment under test fulfills the requirements of the regulation stated in section 2.1.

2.5 Test Methodology

Both conducted and radiated testing was performed according to the procedures in ANSI C63.10: 2013. Radiated testing was performed at a distance of 3 m from EUT to the antenna.

2.6 Test Facility

The Onetech Corp. has been designated to perform equipment testing in compliance with ISO/IEC 17025.

The Electromagnetic compatibility measurement facilities are located at 43-14, Jinsaegol-gil, Chowol-eup, Gwangju-si,

Gyeonggi-do, 12735, Korea

-. Site Filing:

VCCI (Voluntary Control Council for Interference) – Registration No. R-4112/ C-14617/ G-10666 / T-1842

-. Lab Accreditation:

KOLAS (Korea Laboratory Accreditation Scheme) - Accreditation NO. KT085

ISED (Innovation, Science and Economic Development Canada) - Registration No. Site# 3736A-3

FCC (Federal Communications Commission) - Accreditation No. KR0013

RRA (Radio Research Agency) - Designation No. KR0013

3. GENERAL INFORMATION

3.1 Product Description

The Continental Automotive Systems Corporation, Model: SVI-MQ4FGE05 (referred to as the EUT in this report) is a Transmitter that it controls locking and unlocking the door of a vehicle. Product specification information described herein was obtained from product data sheet or user's manual.

CHASSIS TYPE	Plastic
TX FREQUENCY	433.92 MHz
RX FREQUENCY	125 kHz
MODULATION	FSK
LIST OF EACH OSC. OR CRY. FREQ.(FREQ.>= 1 MHz)	27.6 MHz
DUTY CYCLE FACTOR	-9.68 dB (Duty Cycle : 32.8 %)
ANTENNA TYPE	Built-in on the PCB in EUT
ANTEENA GAIN	-21.63 dBi
RATED SUPPLY VOLTAGE	DC 3 V from a battery

3.2 Alternative type(s)/model(s); also covered by this test report.

-. None

4. EUT MODIFICATIONS

-. None

5. SYSTEM TEST CONFIGURATION

5.1 Justification

This device was configured for testing in a typical way as a normal customer is supposed to be used. During the test, the following components were installed inside of the EUT.

DEVICE TYPE	MANUFACTURER	MODEL/PART NUMBER	FCC ID
MAIN BOARD	N/A	N/A	-

5.2 Peripheral equipment

Defined as equipment needed for correct operation of the EUT, but not considered as tested:

Model	Manufacturer	Description	Connected to	
-	-	-	-	
-	_	-	-	

5.3 Mode of operation during the test

Software was programmed into the EUT to maintain continuous transfer mode. The EUT was set at 433.92 MHz. To get a maximum radiated emission levels from the EUT, the EUT was moved throughout the XY, XZ, and YZ planes and the worst case is "XY" axis. So, the worst data was recorded in this test report.

-. Duty Cycle

Mode	Tx On Time	Tx Off Time	Duty Cycle	Duty Cycle Factor
Widde	[ms]	[ms]	[%]	[dB]
1 Mbps (DH5)	32.8	67.2	32.8	-9.68

Note - Duty Cycle : (Tx On Time / (Tx On Time + Tx Off Time)) * 100

Duty Cycle Factor : 20 * Log(1 / (Duty Cycle / 100))

-. Test Plot

Ref Level	-10.00 de	3m	👄 RBW 100 kHz				
👄 Att	20	dB 👄 SWT 120 ms	👄 VBW 300 kHz				
TRG: VID							
⊖1Pk Clrw							
				D2[1]			1.75 dB
+20 dBm		51		M1[1]		D2	99.760 ms -25.45 dBm
Ė		D1		WILTI		-	0.000000 s
-30 dBm						1	0.0000003
-40 dBm							
-50 dBm							
60 JB							
-60 dBm	TRG -60.00	JO dBm					
-70 dBm							
-70 ubiii		Way Markadan	her and the second states and the second sec	Manual data mana like	and the second	u dam	
-80 dBm		. Pollowite	eddleandla is lft ch casa koarre	. I di si cancullati accede a	hou add aber to the add add aber	Alteration	
-90 dBm							
-100 dBm							
CF 433.92	MHz		1001 p	ts			12.0 ms/
Marker			•				
Type Ref	f Trc	X-value	Y-value	Function	Fund	ction Res	sult
M1	1	0.0 s					
D1 M		32.8 ms					
D2 M	1 1	99.76 ms	1.75 dB				

The average field strength may be found by measuring the peak pulse amplitude (in log equivalent units) and determining the duty cycle correction factor (in dB) associated with the pulse modulation as shown in Equation. (ANSI C63.10: 2013)

5.4 Configuration of Test System

Radiated Emission Test:Preliminary radiated emissions test were conducted using the procedure in ANSI C63.10:
2013 to determine the worse operating conditions. Final radiated emission tests were
conducted at 3 m Semi Anechoic Chamber.
The turntable was rotated through 360 degrees and the EUT was tested by positioned three
orthogonal planes to obtain the highest reading on the field strength meter. Once
maximum reading was determined, the search antenna was raised and lowered in both

5.5 Antenna Requirement

For intentional device, according to section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

Antenna Construction:

The transmitter antenna of the EUT is PCB Antenna, so no consideration of replacement by the user.

vertical and horizontal polarization.

6. PRELIMINARY TEST

6.1 AC Power line Conducted Emissions Tests

- It is not need to test this requirement, because the power of the EUT is supplied from a DC battery.

6.2 General Radiated Emissions Tests

During Preliminary Test, the following operating mode was investigated.

Operation Mode	The Worse operating condition (Please check one only)
Transmitting Mode	Х

7. Bandwidth Measurement

7.1 Operating environment

Temperature	:24 °C
Relative humidity	: 54 % R.H.

7.2 Test set-up

The antenna output of the EUT was connected to the spectrum analyzer. The resolution bandwidth is set to 3 kHz, and peak detection was used. The bandwidth of fundamental frequency was measured and recorded.

7.3 Test equipment used

Model Number	Model Number Manufacturer		Serial Number	Last Cal.	
■ - FSV30	Rohde & Schwarz	Signal Analyzer	101200	Jul. 24, 2019 (1Y)	

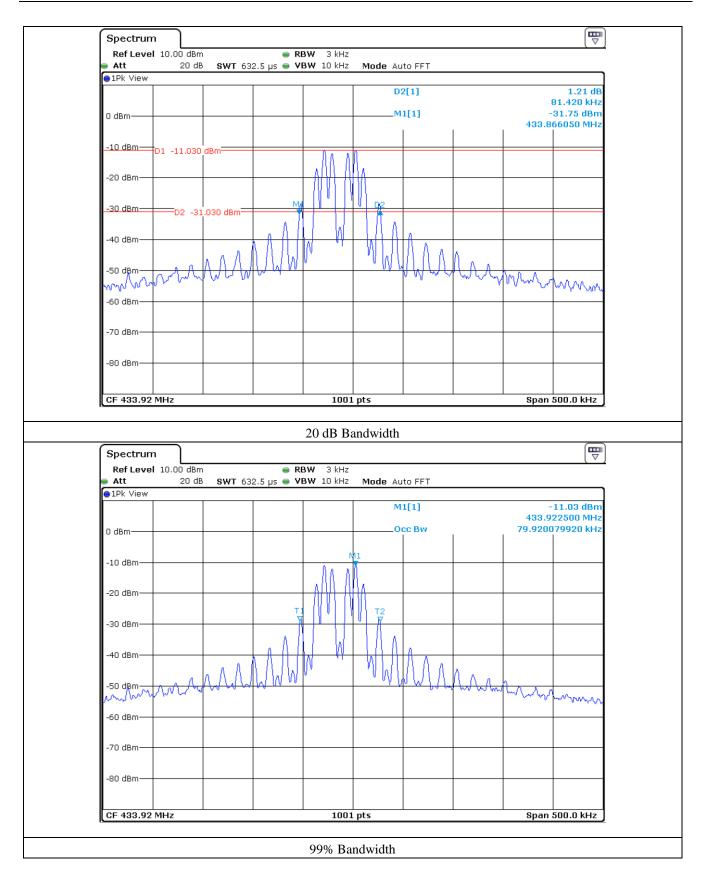
All test equipment used is calibrated on a regular basis.

7.4 Test data

- -. Test Date : September 23, 2019 ~ October 15, 2019
- -. Test Result : Pass

Frequency	20 dB Bandwidth	99 % Bandwidth	Limit
(MHz)	(MHz)	(MHz)	(MHz)
433.92	0.081	0.080	1.085

Remark: See next page for measurement data.


Jutto

Tested by: Sieon Lee / Assistant Manager

Page 13 of 22

Report No.: OT-19O-RWD-077

It should not be reproduced except in full, without the written approval of ONETECH.

8. Transmission Time

8.1 Operating environment

Temperature	:24 °C
Relative humidity	: 54 % R.H.

8.2 Test set-up

The antenna output of the EUT was connected to the spectrum analyzer. The resolution bandwidth is set to 100 kHz, and peak detection was used. The bandwidth of fundamental frequency was measured and recorded.

8.3 Test equipment used

	Model Number Manufacturer		Description	Serial Number	Last Cal.	
-	FSV30	Rohde & Schwarz	Signal Analyzer	101200	Jul. 24, 2019 (1Y)	

All test equipment used is calibrated on a regular basis.

8.4 Test data

-. Test Date : September 23, 2019 ~ October 15, 2019

: Pass

-. Test Result

-. Test Applies

: 15.231 (a) (1)

requency (MHz)	Transmission Time (s)	Limit (s)	Result
433.92	0.320	5.0	Pass
SGL	Bm e RBW 100 kHz dB e SWT 5 s e VBW 300 kHz		
 ● 1Pk View -20 dBm -30 dBm -40 dBm 		D2[1] M1[1]	-0.33 dB 320.00 ms -27.41 dBm 230.00 ms
-50 cBm -60 cBm -70 cBm			
-80 cBm	myndsqiimhangiiselfendiulingaanjiselfendiuling	สู่ในสะให้ปุ่มที่มีคนไปรายเกมาะเป็นหาราย	-dityabrilitikasaantartartartart
-100 dBm CF 433.92 MHz	1001 pt		500.0 ms/

Tested by: Sieon Lee / Assistant Manager

9. Radiated Emission Test

9.1 Regulation

According to \$15.209(a), for an intentional device, the general requirement of field strength of radiated emissions from intentional radiators at a distance of 3 meters shall not exceed the following values:

Frequency [MHz]	Field strength [µ V/m]	Field strength [dBµ V/m]	Measurement distance [m]
0.009 ~ 0.490	2 400 / F (kHz)	-	300
0.490 ~ 1.705	24 000 / F (kHz)	-	30
1.705 ~ 30	30	29.50	30
30 ~ 88	*100	40.00	3
88 ~ 216	*150	43.52	3
216 ~ 960	*200	46.02	3
Above 960	500	53.98	3

*Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54 ~ 72 MHz, 76 ~ 88 MHz, 174 ~ 216 MHz or 470 ~ 806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

According to \$15.231(b), for an intentional device, the general requirement of field strength of radiated emissions from intentional radiators at a distance of 3 meters shall not exceed the following values:

Frequency [MHz]	Field strength of Fundamental [µ V/m]	Field strength of Spurious Emissions [µ V/m]
40.66 ~ 40.70	2 250	225
70 ~ 130	1 250	125
130 ~ 174	1 250 ~ 3 750 **	125 ~ 375 **
174 ~ 260	3 750	375
260 ~ 470	3 750 ~ 12 500 **	375 ~ 1 250 **
Above 470	12 500	1 250

** Linear interpolations

9.2 Test set-up

The radiated emissions measurements were on the 3 m semi anechoic chamber. The EUT and other support equipment were placed on a non-conductive turntable above the ground plane. The interconnecting cables from outside test site were inserted into ferrite clamps at the point where the cables reach the turntable.

The frequency spectrum from 30 kHz to 1 GHz was scanned and maximum emission levels at each frequency recorded. The system was rotated 360° , and the antenna was varied in the height between 1.0 m and 4.0 m in order to determine the maximum emission levels. This procedure was performed for horizontal and vertical polarization of the receiving antenna.

	Model Number	Manufacturer	Description	Serial Number	Last Cal.(Interval)
□ -	ESCI	Rohde & Schwarz	EMI Test Receiver	101012	Oct. 22, 2018 (1Y)
■ -	ESW	Rohde & Schwarz	EMI Test Receiver	101851	Aug. 07, 2018 (1Y)
□ -	FSP	Rohde & Schwarz	Spectrum Analyzer	100017	Jul. 25, 2019 (1Y)
■ -	310N	Sonoma Instrument	AMPLIFIER	312545	Mar. 18, 2019 (1Y)
■ -	FSV30	Rohde & Schwarz	Signal Analyzer	101200	Jul. 24, 2019 (1Y)
□ -	BBV 9718 B	Schwarzbeck	Pre-Amplifier	009	Mar. 20, 2019 (1Y)
■ -	MA-4640-XPET	Innco Systems GmbH	Antenna Master	MA4640/652	N/A
□ -	HD100	HD GmbH	Position Controller	N/A	N/A
■ -	DT2000-2t	Innco Systems GmbH	Turn Table	N/A	N/A
■ -	FMZB 1513	Schwarzbeck	LOOP ANTENNA	1513-235	May. 13, 2018 (2Y)
■ -	VULB9163	Schwarzbeck	TRILOG Broadband Antenna	9163-419	Aug. 09, 2018 (2Y)
■ -	BBHA9120D	Schwarzbeck	Horn Antenna	BBHA9120D295	Jul. 16, 2019 (2Y)
□ -	BBHA9170	Schwarzbeck	Horn Antenna	BBHA91700179	Jan. 16, 2019 (2Y)
- 1	SCU18F	Rohde & Schwarz	Pre-Amplifier	180117	July 11, 2019 (1Y)

9.3 Test equipment used

All test equipment used is calibrated on a regular basis

9.4 Test data

9.4.1 Field Strength of Fundamental

The following table shows the highest levels of radiated emissions on both polarizations of horizontal and vertical.

Humidity I	Level	: <u>54 %</u>	: <u>54 % R.H.</u> Temperature: <u>24 °C</u>							
Limits app	ly to	: <u>FCC</u>	: FCC CFG 47, PART 15, SUBPART C, SECTION 15.231(b)							
Result		: PASS	PASSED							
EUT: Smart Key FobDate: September 23, 2019 ~ October 15, 2019										
Operating	Operating Condition : TX mode									
Distance	istance : 3 m									
Frequenc	Reading	Detector	Ant. Pol.	Ant.	Cable	Amp	Duty	Total	Limits	Margin
У	(dBµV)	Mode	(H / V)	Factor	Loss	Gain	Factor	(dBµV/m)	(dBµV/m)	(dB)
(MHz)								-		
	99.28	Peak	Н				-	85.28	100.83	15.55
	98.88	Avg	Н				9.68	75.20	80.83	5.63
433.92				16.40	2.00	32.40				

Remark : "H": Horizontal, "V": Vertical

75.26

74.44

Total $(dB\mu V/m) = \text{Reading} (dB\mu V) + \text{Ant Factor} (dB) + \text{Cable Loss} (dB) - \text{Amp Gain} (dB) - \text{Duty Factor} (dB)$

Margin (dB) = Limits (dB μ V/m) - Total (dB μ V/m)

Peak

Avg

V

V

_

9.68

61.26

50.76

100.83

80.83

39.57

30.07

Tested by: Sieon Lee / Assistant Manager

9.4.2 Spurious Emission Test

9.4.2.1 Test data for 9 kHz to 30 MHz

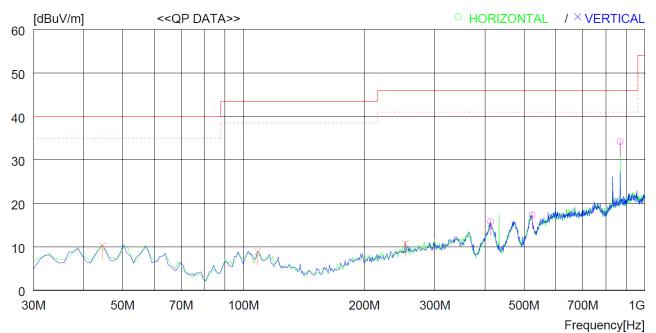
-. Test Date : September 23, 2019 ~ October 15, 2019

-. Resolution bandwidth : 200 Hz (from 9 kHz to 0.15 MHz), 9 kHz (from 0.15 MHz to 30 MHz)

-. Frequency range : 9 kHz ~ 30 MHz

-. Measurement distance : 3 m

Frequency	Reading	Ant. Pol.	Ant.	Angle	Ant. Factor	Cable	Emission	Limits	Margin
(MHz)	(dBµV)	(H/V)	Height (m)	(°)	(dB/m)	Loss	Level(dBµV/m)	(dBµV/m)	(dB)
(MHZ) (dBμV) (H/V) Height (m) () (dB/m) Loss Level(dBμV/m) (dBμV/m) (dB) All emissions observed were 20 dB below the limit.									


hoth

Tested by: Sieon Lee / Assistant Manager

9.4.2.2 Test data for 30 MHz to 1 000 MHz

- -. Test Date : September 23, 2019 ~ October 15, 2019
- -. Resolution bandwidth : 120 kHz
- -. Frequency range : 30 MHz ~ 1 000 MHz
- -. Measurement distance : 3 m

No.	FREQ	READING QP F	ANT ACTOR	LOSS	GAIN	RESULT	LIMIT	MARGIN	ANTENNA	TABLE
	[MHz]	[dBuV]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[DEG]
H	orizontal -									
1 2 3	413.151 523.730 868.070	30.0 30.1 41.7	16.3 17.8 21.8	2.0 2.2 2.6	32.5 32.7 31.9	15.8 17.4 34.2	46.0 46.0 46.0	30.2 28.6 11.8	200 400 400	359 1 359
Ve	ertical									
4 5 6	44.550 108.570 253.100	28.0 28.5 29.3	14.1 11.9 12.4	0.6 1.0 1.5	32.5 32.5 32.4	10.2 8.9 10.8	40.0 43.5 46.0	29.8 34.6 35.2	400 300 200	145 359 0

hith

Tested by: Sieon Lee / Assistant Manager

It should not be reproduced except in full, without the written approval of ONETECH.

9.4.2.3 Test data for above 1 GHz

- -. Test Date : September 23, 2019 ~ October 15, 2019
- -. Resolution bandwidth : 1 MHz for Peak and Average Mode
- -. Video bandwidth : 1 MHz for Peak and Average Mode
- -. Frequency range : 1 GHz ~ 40 GHz
- -. Measurement distance : 3 m
- -.Operating mode : Transmitting mode

Frequency	Reading	Detector	Ant. Pol.	Ant.	Cable	Amp	Total	Limits	Margin
(GHz)	(dBµV)	Mode	(H/V)	Factor	Loss	Gain	(dBµV/m)	$(dB\mu V/m)$	(dB)
1735.68	48.38	Peak	Н		4.30	40.10	37.68	80.83	43.15
1735.68	46.23	Average	Н				35.53	60.83	25.30
1735.68	42.92	Peak	V	25.10			32.22	80.83	48.61
1735.68	34.84	Average	V				24.14	60.83	36.69
3905.28	43.58	Peak	Н	29.60	6.50	41.10	38.58	80.83	42.25
3905.28	40.37	Average	Н				35.37	60.83	25.46
3905.28	39.18	Peak	V				34.18	80.83	46.65
3905.28	30.56	Average	V				25.56	60.83	35.27
4773.12	46.54	Peak	Н	31.30	7.10	41.20	43.74	80.83	37.09
4773.12	43.81	Average	Н				41.01	60.83	19.82
4773.12	40.44	Peak	V				37.64	80.83	43.19
4773.12	34.56	Average	V				31.76	60.83	29.07

Remark : "H": Horizontal, "V": Vertical

Total $(dB\mu V/m) = Reading (dB\mu V) + Ant Factor (dB) + Cable Loss (dB) - Amp Gain (dB)$

Margin (dB) = Limits (dB μ V/m) - Total (dB μ V/m)

9.5 Restricted Band Test

Test Date	: September 23, 2019 ~ October 15, 2019
-----------	---

- -. Resolution bandwidth 21 MHz for Peak and Average Mode
- -. Video bandwidth : 1 MHz for Peak and Average Mode
- -. Frequency range : 1 GHz ~ 40 GHz
- -. Measurement distance : 3 m
- -.Operating mode : Transmitting mode

Frequency (GHz)	Reading (dBµV)	Detector Mode	Ant. Pol. (H/V)	Ant. Factor	Cable Loss	Amp Gain	Total (dBµV/m)	Limits (dBµV/m)	Margin (dB)
1310.97			· /		2000		32.79	• • •	. ,
1510.97	43.19	Peak	Н		3.70	40.10	52.17	74.00	41.21
1301.97	32.55	Average	Н	26.00			22.15	54.00	31.85
1303.87	42.97	Peak	V	26.00			32.57	74.00	41.43
1308.94	32.03	Average	V				21.63	54.00	32.37
3905.69	46.59	Peak	Н	30.40	7.00	41.20	42.79	74.00	31.21
3905.69	38.57	Average	Н				34.77	54.00	19.23
3905.69	39.77	Peak	V				35.97	74.00	38.03
3904.90	29.78	Average	V				25.98	54.00	28.02
4773.05	47.38	Peak	Н	31.30	7.10	41.20	44.58	74.00	29.42
4773.05	44.07	Average	Н				41.27	54.00	12.73
4773.05	40.68	Peak	V				37.88	74.00	36.12
4773.05	34.30	Average	V				31.50	54.00	22.50

Remark : "H": Horizontal, "V": Vertical

Total $(dB\mu V/m) = Reading (dB\mu V) + Ant Factor (dB) + Cable Loss (dB) - Amp Gain (dB)$

Margin (dB) = Limits (dB μ V/m) - Total (dB μ V/m)

Tested by: Sieon Lee / Assistant Manager