

Report Number: F690501/RF-RTL005211-1

Page: 1

23

TEST REPORT

OF

FCC Part 15 Subpart C §15.209, §15.231 / IC RSS-210, Issue 8: 2010

FCC ID / IC Certification : SY5DMFNA04 / 8325A-DMFNA04

Equipment Under Test

: Smart Key Fob

Model Name

SVI-DMFNA04

Serial No.

N/A

Applicant

Continental Automotive Systems Corporation

Manufacturer

: Continental Automotive Systems Corporation

Date of Test(s)

: 2011.12.13 ~ 2011.12.19

Date of Issue

2012.02.15

In the configuration tested, the EUT complied with the standards specified above.

Tested By:	Oul	Date	2012.02.15	
	Duke Ko			
Approved By	3	Date	2012.02.15	
· ·	Feel Jeong	da di di didingga da sana da	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	and the second second second second

Report Number: F690501/RF-RTL005211-1 Page: 2 of 23

INDEX

TABLE OF CONTENTS	Page
1. General Information	3
2. Field Strength of Fundamental	6
3. Spurious Emission	11
4. Receiver Spurious Emission (Radiated)	14
5. Bandwidth of Operation Frequency	16
6. Transmission Time	18
7. Occupied Bandwidth	20

Report Number: F690501/RF-RTL005211-1 Page: 3 of 23

1. General Information

1.1. Testing Laboratory

SGS Korea Co., Ltd. (Gunpo Laboratory)

Wireless Div. 2FL, 18-34, Sanbon-dong, Gunpo-si, Gyeonggi-do, Korea 435-040

www.ee.sgs.com/korea

Telephone : +82 +31 428 5700 FAX : +82 +31 427 2371

1.2. Details of Applicant

Applicant : Continental Automotive Systems Corporation

Address : 29, Siemens-Road, Icheon-City, Gyeonggi-Do, 467-080, Korea

Contact Person : Jang, Sung-Min Phone No. : +82 +31 645 4864 Fax No. : +82 +31 637 0371

1.3. Description of EUT

Kind of Product	Smart Key Fob
Model Name	SVI-DMFNA04
Serial Number	N/A
Power Supply	DC 3 V
Frequency Range	315 MHz(Tx), 125 kHz(Rx)
Modulation Technique	FSK
Number of Channels	1
Antenna Type	Integral Type (PCB Antenna)

1.4. Details of Modification

-N/A

Report Number: F690501/RF-RTL005211-1 Page: 4 of 23

1.5. Test Equipment List

EQUIPMENT	MANUFACTURER	MODEL	S/N	CAL DUE.
Signal Generator	R&S	SMJ100A	100882	Nov. 25, 2012
Spectrum Analyzer	R&S	FSV30	100768	Jul. 14, 2012
Preamplifier	H.P.	8447F	2944A03909	Jul. 04, 2012
Preamplifier	Agilent	8449B	3008A01932	Mar. 31, 2012
Attenuator	Agilent	8494B	MY42141937	Apr. 01, 2012
Test Receiver	R&S	ESU 26	100109	Feb. 21, 2012
Bilog Antenna	SCHWARZBECK MESSELEKTRONIK	VULB9163	396	Apr. 27, 2013
Horn Antenna	R&S	HF 906	100326	Oct. 08, 2012
DC Power Supply	Agilent	U8002A	MY49030063	Jan. 05, 2012
Anechoic Chamber	SY Corporation	L × W × H (9.6 m × 6.4 m × 6.6 m)	N.C.R.	N.C.R.

Report Number: F690501/RF-RTL005211-1 Page: 5 of 23

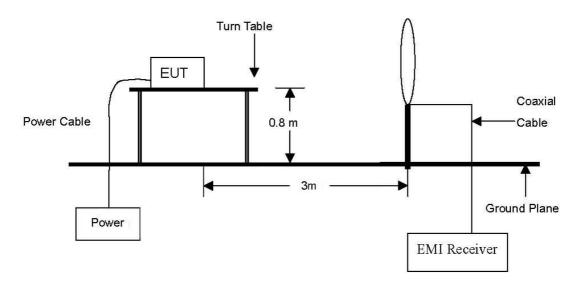
1.6. Summary of Test Results

The EUT has been tested according to the following specifications:

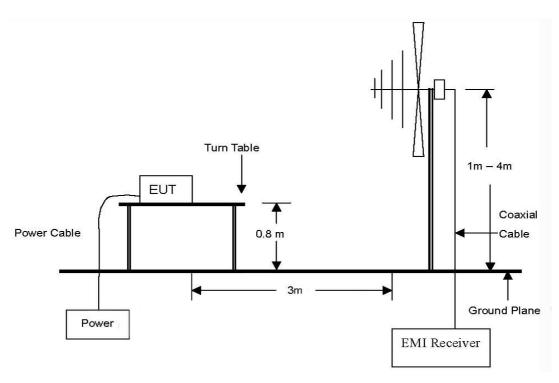
	APPLIED STANDARD							
Section in FCC 15 Subpart C §15.209	Section in RSS-210, Issue 8 : 2010	Test Item	Result					
15.209(a) 15.231(b)	RSS-210, Issue 8, Table B	Radiated emission, Spurious Emission and Field Strength of Fundamental	Complied					
-	RSS-Gen, Issue 3, 6	Receiver Spurious Emission (Radiated)	Complied					
15.231(c)	RSS-210, Issue 8, A1.1.3	Bandwidth of Operation frequency	Complied					
15.231(a)	RSS-210, Issue 8, A1.1.1	Transmission Time	Complied					
-	RSS-Gen, Issue 3, 4.6.1	Occupied Bandwidth	Complied					

1.7 Test Report Revision

Revision	Report number	Description
0	F690501/RF-RTL005211	Initial
1	F690501/RF-RTL005211-1	Add Duty Cycle Correction Factor and peak emission measurements

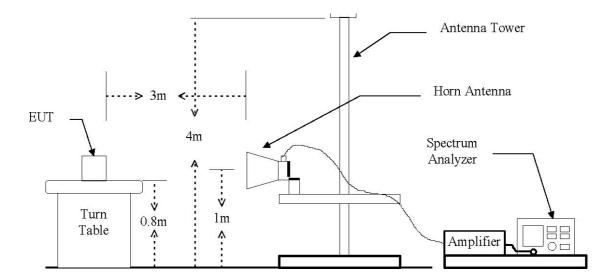


Report Number: F690501/RF-RTL005211-1 Page: 6 of 23


2. Field Strength of Fundamental

2.1. Test Setup

The diagram below shows the test setup that is utilized to make the measurements for emission from 9 kHz to 30 MHz Emissions.


The diagram below shows the test setup that is utilized to make the measurements for emission from 30 Mz to 1 Gz Emissions.

Report Number: F690501/RF-RTL005211-1 Page: 7 of 23

The diagram below shows the test setup that is utilized to make the measurements for emission from 1 \times to 18 \times Emissions.

Report Number: F690501/RF-RTL005211-1 Page: 8 of 23

2.2. Limit

2.2.1. Radiated emission limits, general requirements

Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (쌘)	Field Strength (microvolts/meter)	Measurement Distance (meter)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 -88	100**	3
88 -216	150**	3
216 - 960	200**	3
Above 960	500	3

^{**} Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 Mb, 76-88 Mb, 174-216 Mb or 470-806 Mb. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241

2.2.2. Periodic operation in the band 40.66-40.70 Mb and above 70 Mb

In addition to the provisions of Section 15.205, the field strength of emissions from intentional radiators operated under this Section shall not exceed the following:

Fundamental Frequency (싼)	Field Strength of Fundamental (microvolts/meter)	Field Strength of Spurious Emissions (microvolts/meter)
40.66 - 40.70	2,250	225
70 - 130	1,250	125
130 – 174	1,250 to 3,750 **	125 to 375 **
174 – 260	3,750	375
260 – 470	3,750 to 12,500 **	375 to 1,250 **
Above 470	12,500	1,250

^{**} linear interpolations

Where F is the frequency in Mz, the formulas for calculating the maximum permitted fundamental field strengths are as follows: for the band 130-174 Mz, uV/m at 3 meters = 56.81818(F)-6136.3636; for the band 260-470 Mz, uV/m at 3 meters = 41.6667(F)-7083.333. The maximum permitted unwanted emission level is 20 dB below the maximum permitted fundamental level.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

Report Number: F690501/RF-RTL005211-1 Page: 9 23

2.3. Test Procedures

Radiated emissions from the EUT were measured according to the dictates of ANSI C63.4:2003

2.3.1. Test Procedures for emission from 9 kHz to 30 Mb

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter anechoic chamber test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. Then antenna is a loop antenna is fixed at one meter above the ground to determine the maximum value of the field strength. Both parallel and perpendicular of the antenna are set to make the measurement.
- c. For each suspected emission, the EUT was arranged to its worst case and then the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- d. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

2.3.2. Test Procedures for emission from 30 Mb to 1000 Mb

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter anechoic chamber test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. During performing radiated emission below 1 GHz, the EUT was set 3 meters away from the interference receiving antenna, which was mounted on the top of a variable-height antenna tower. During performing radiated emission above 1 GHz, the EUT was set 3 meter away from the interference-receiving antenna.
- c. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Report Number: F690501/RF-RTL005211-1 Page: 10 of 23

2.4. Test Result

Ambient temperature : (23 ± 2) °C Relative humidity : 46 % R.H.

The following table shows the highest levels of radiated emissions on both polarizations of horizontal and vertical

Freg.	Ant.	Reading	Correction	Result	Duty Cycle	Result		mit uV/m)		rgin IB)	Detect
(MHz)	Pol	(dBuV)	Factor (dB/m)	(dBuV/m)	Correction Factor (dBuV)	(dBuV/m)	AVG	Peak	AVG	Peak	Mode
315.00	Н	53.40	15.25	68.65	0	68.65	75.62	95.62	6.97	26.97	AVG

Remark:

To get a maximum emission level from the EUT, the EUT was moved throughout the X-axis, Y-axis and Z-axis. Worst case is X-axis.

Note:

- 1. $3 \text{m Limit}(dBuV/m) = 20 \log[41.6667(F_{\text{(Miz)}})-7083.3333] = 75.62$
- 2. Duty Cycle Correction Factor: 20log(T_{on} / T_{on+off}) = 20log(1) = 0
 - Duty Cycle: 100%
- 3. Correction Factor = Antenna Factor + Cable Loss
- 4. Result of peak and average is the same due to the duty cycle is 100%

Report Number: F690501/RF-RTL005211-1 Page: 11 of 23

3. Spurious Emission

3.1. Test Setup

Same as section 2.1 of this report

3.2. **Limit**

Same as section 2.2 of this report

3.3. Test Procedures

Radiated emissions from the EUT were measured according to the dictates of ANSI C63.4:2003

3.3.1. Test Procedures for emission from 9 km to 30 km

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter anechoic chamber test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. Then antenna is a loop antenna is fixed at one meter above the ground to determine the maximum value of the field strength. Both parallel and perpendicular of the antenna are set to make the measurement.
- c. For each suspected emission, the EUT was arranged to its worst case and then the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- d. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

3.3.2. Test Procedures for emission from 30 Mb to 1000 Mb

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter anechoic chamber test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. During performing radiated emission below 1 \times , the EUT was set 3 meters away from the interference receiving antenna, which was mounted on the top of a variable-height antenna tower. During performing radiated emission above 1 \times , the EUT was set 3 meter away from the interference-receiving antenna.
- c. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Report Number: F690501/RF-RTL005211-1 Page: 12 of 23

3.3.3. Test Procedures for emission above 1 @

a. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1 Mb for Peak detection and frequency above 1 Gb.

b. The resolution bandwidth of test receiver/spectrum analyzer is 1 Mb and the video bandwidth is 10 Hz for Average detection (AV) at frequency above 1 Gb.

Report Number: F690501/RF-RTL005211-1 Page: 13 of 23

3.4. Test Result

Ambient temperature : (23 \pm 2) $^{\circ}$ C Relative humidity : 46 $^{\circ}$ R.H.

The following table shows the highest levels of radiated emissions on both polarizations of horizontal and vertical

Radiated Emissions		Ant	Correction	on Factors	Total	FCC L	imit	
Frequency (脈)	Reading (dBuV)	Detect Mode	Pol.	AF (dB/m)	Amp Gain +CL (dB)	Actual (dBuV/m)	Limit (dBuV/m)	Margin (dB)
630.15	35.50	Peak	Н	18.10	-24.40	29.20	46.00	16.80
945.00	25.70	Peak	Н	12.10	-22.90	14.90	46.00	31.10
2 520.73	45.92	Peak	Н	28.81	-38.44	36.29	74.00	37.71
2 834.91	55.43	Peak	Н	29.72	-38.58	46.57	74.00	27.43
*2 834.91	55.43	Peak	Н	29.72	-38.58	46.57	74.00	27.43
*2 834.91	52.53	Average	Н	29.72	-38.58	43.67	54.00	10.33
Above 2 900.00	Not Detected	-	-	-	-	-	-	-

Remark:

^{1.} To get a maximum emission level from the EUT, the EUT was moved throughout the X-axis, Y-axis and Z-axis. Worst case is X-axis.

^{2. &}quot;*" means the restricted band.

Report Number: F690501/RF-RTL005211-1 Page: 14 of 23

4. Receiver Spurious Emission (Radiated)

4.1. Test Setup

Same as section 2.1 of this report

4.2. Limit

See below for references

Spurious Frequency (쌘)	Field Strength (microvolt/m at 3 meters)
30 – 88	100
88 – 216	150
216 -960	200
Above 960	500

4.3. Test Procedures

Radiated emissions from the EUT were measured according to the dictates of ANSI C63.4:2003

Report Number: F690501/RF-RTL005211-1 Page: 15 of 23

4.4. Test Result

Ambient temperature : (23 \pm 2) $^{\circ}$ C Relative humidity : 46 $^{\circ}$ R.H.

The following table shows the highest levels of radiated emissions on both polarizations of horizontal and vertical

Radiated Emissions		Ant	Correction Factors		Total	IC Limit		
Frequency (雌)	Reading (dBuV)	Detect Mode	Pol.	AF/CL (dB/m)/(dB)	Amp Gain (dB)	Actual (dBuV/m)	Limit (dBuV/m)	Margin (dB)
Above 30.000	Not Detected	-	-	-	-	-	-	-

Remark:

To get a maximum emission level from the EUT, the EUT was moved throughout the X-axis, Y-axis and Z-axis. Worst case is X-axis.

Note:

1. Other spurious frequencies were not detected up to 1 000 Mb

Report Number: F690501/RF-RTL005211-1 Page: 16 of 23

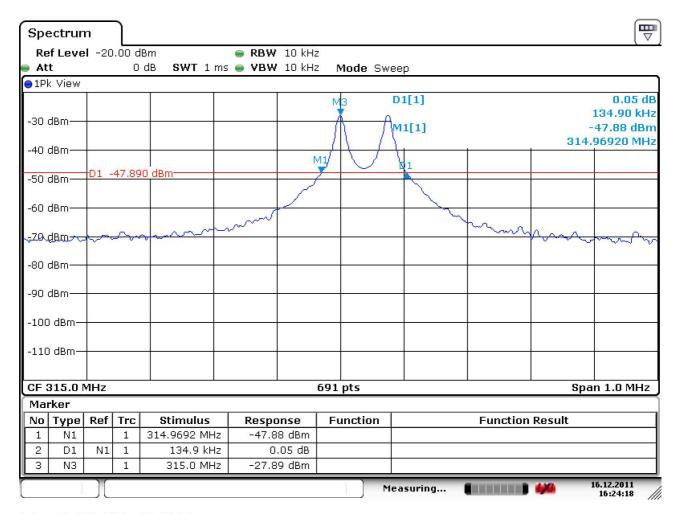
5. Bandwidth of Operation Frequency

5.1. Test Setup

5.2. Limit

The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 Mb and below 900 Mb. Bandwidth is determined at the points 20 dB down from the modulated carrier.

5.3. Test Procedure


- 1. The transmitter output is connected to the spectrum analyzer.
- 2. The bandwidth of the fundamental frequency was measured with the spectrum analyzer using RBW=10 $\,\mathrm{kHz}$, VBW=10 $\,\mathrm{kHz}$ and Span=1 $\,\mathrm{MHz}$.
- 3. The bandwidth of fundamental frequency was measured and recorded.

Report Number: F690501/RF-RTL005211-1 Page: 17 of 23

5.4. Test Result

Carrier Frequency (쌘)	Bandwidth of the emission (쌦)	Limit (㎞)	Remark
313.85	134.9	787.50	The point 20 dB down from the modulated carrier

Date: 16.DEC.2011 16:24:18

Report Number: F690501/RF-RTL005211-1 Page: 18 of 23

6. Transmission Time

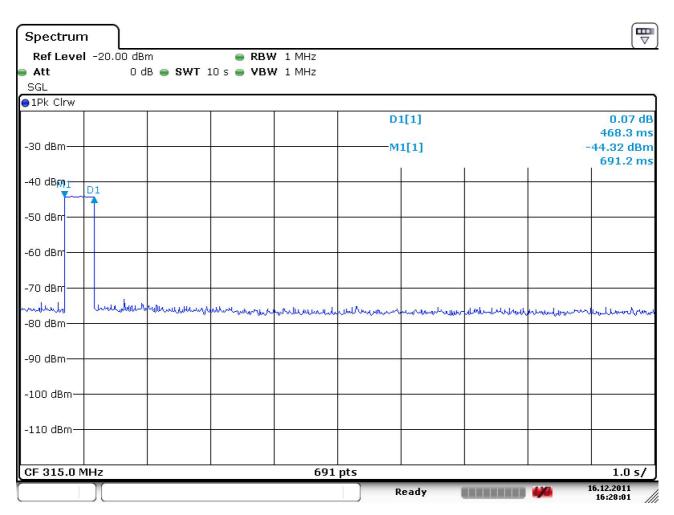
6.1. Test Setup

6.2. Limit

A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.

6.3. Test Procedure

- 1. The transmitter output is connected to the spectrum analyzer.
- 2. The bandwidth of the fundamental frequency was measured with the spectrum analyzer using RBW=1 MHz, VBW=1 MHz, Span=0 Hz, Sweep Time=10 sec
- 3. The bandwidth of fundamental frequency was measured and recorded.



Report Number: F690501/RF-RTL005211-1 Page: 19 of 23

6.4. Test Result

Ambient temperature : (23 \pm 2) $^{\circ}$ C Relative humidity : 46 $^{\circ}$ R.H.

Carrier Frequency (쌘)	Transmission Time (sec)	Limit (sec)	Remark
313.85	0.468	Same or less than 5 s	Pass

Date: 16.DEC.2011 16:28:01

Report Number: F690501/RF-RTL005211-1 Page: 20 of 23

7. Duty Cycle Correction Factor

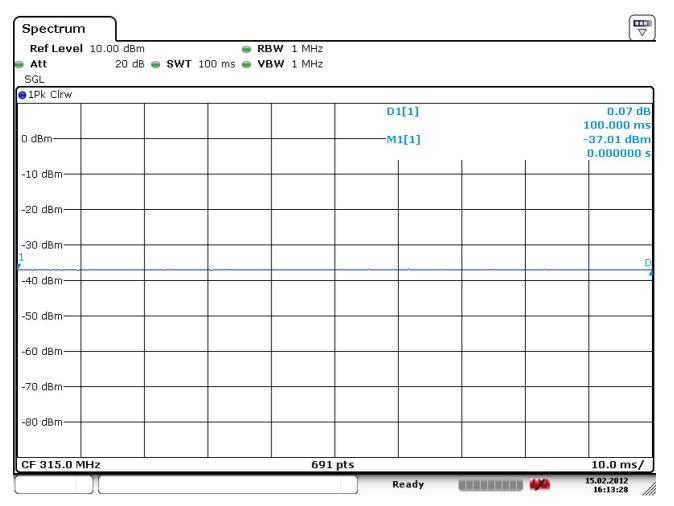
7.1. Test Setup

7.2. Limit

Nil (No dedicated Limit specified in the Rules)

7.3. Test Procedure

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set center frequency of spectrum analyzer = operating frequency.
- 4. Set the spectrum analyzer as RBW=1 Mb, VBW=1 Mb, Span=0 Hz, Sweep Time=100 ms.
- 5. Repeat above procedures until all frequency measured were complete.


Report Number: F690501/RF-RTL005211-1 Page: 21 of 23

7.4. Test Result

Ambient temperature : (23 ± 2) °C Relative humidity : 46 % R.H.

 $\begin{array}{ll} T_{on+off} & = 100ms \\ T_{on} = 100ms > T_{on} \end{array}$

Duty Cycle Correction Factor = $20log(T_{on} / T_{on+off}) = 20log(1) = 0 dB$

Date: 15.FEB.2012 16:13:28

Report Number: F690501/RF-RTL005211-1 Page: 22 of 23

8. Occupied Bandwidth

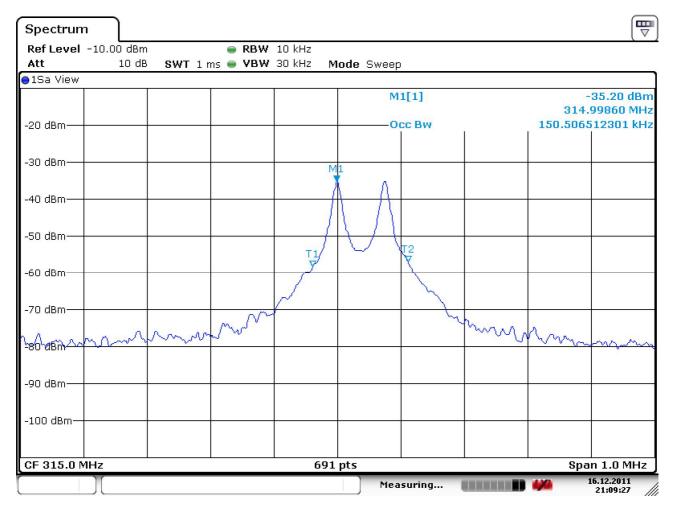
8.1. Test Setup

8.2. Limit

None; for reporting purposed only

8.3. Test Procedure

- 1. The transmitter output is connected to the spectrum analyzer.
- The bandwidth of the fundamental frequency was measured with the spectrum analyzer using RBW≥1 % of Span, VBW to 3 times RBW.
- 3. The bandwidth of fundamental frequency was measured and recorded.



Report Number: F690501/RF-RTL005211-1 Page: 23 of 23

8.4. Test Result

Ambient temperature : (23 \pm 2) $^{\circ}$ C Relative humidity : 46 $^{\circ}$ R.H.

Carrier Frequency (쌘)	Occupied Bandwidth (紀)	Limit (㎞)	Remark
313.85	151	-	99 % Occupied bandwidth

Date: 16.DEC.2011 21:09:28