


# **WIFI Module Hardware Specification**

Document Type: WIFI Module Hardware SpecificationDocument Number: GOC-RG440-WZ Document Version: V1.4 Release Date: 2020/08/13

#### NOTE:

**1.** The module must use ladder steel net, and recommend ladder steel net thickness **0.16--0.20mm**. The adaptability of the products is adjusted accordingly.

2. Before the use of the module, bake at 60 degrees centigrade and bake for 12 hours.

# **Release Record**

| Version Number | Release Date | Comments                                         |
|----------------|--------------|--------------------------------------------------|
| V1.0           | 2018/08/31   | Initial draft                                    |
| V1.1           | 2019/04/19   | Update Module height                             |
| V1.2           | 2019/08/30   | Increase packing methods and performance         |
|                |              | parameters, Cancel reference design              |
| V1.3           | 2020/06/20   | Update Pin Diagram and Electrical Characteristic |
| V1.4           | 2020/08/13   | Update Bluetooth Standard                        |
|                |              |                                                  |
|                |              |                                                  |
|                |              |                                                  |

# Contents

| 1. Introduction                                      | 4    |
|------------------------------------------------------|------|
| 2. Block Diagram                                     | 4    |
| 3. Features                                          |      |
| 4. WIFI Features                                     | 5    |
| 5. Specification                                     |      |
| 6. Pin Diagram And Description                       | 6    |
| 6.1 Pin Diagram                                      | 6    |
| 6.2 Pin Description                                  | 6    |
| 6.3 PCB Layout Footprint                             | 8    |
| 6.4 Module Package                                   |      |
| 7. Echo Cancellation Principle                       | 9    |
| 8. Power Management Handshake Interface Signal Level |      |
| 8.1 System Power On Sequence                         |      |
| 9. UART Interface                                    | 11   |
| 10. PCM Interface                                    |      |
| 11. Electrical Characteristic                        |      |
| 11.1 Absolute Maximum Ratings                        |      |
| 11.2 Recommended Operating Conditions                | . 12 |
| 12. Recommended Reflow Profile                       | . 12 |
| 13. PCB Layout Recommendation                        | 13   |
| 13.1 Antenna                                         |      |
| 13.2 HCI UART Lines Layout Guideline                 |      |
| 13.3 PCM Lines Layout Guideline                      | 13   |
| 13.4 Power Trace Lines Layout Guideline              |      |
| 13.5 Ground Lines Layout Guideline                   |      |
| 14. Module Part Number Description                   |      |
| 15. Ordering Information                             | 13   |
| 16. Packaging Information                            | . 14 |
| 16.1 Net Weight                                      | 14   |
| 16.2 Package                                         | . 14 |
| 16.3 Storage Requirements                            |      |
| 16.4 Humidity Sensitive Characteristic               | 14   |
|                                                      |      |

## 1. Introduction

GOC-RG440-WZ is a highly integrated module that support 802.11b/g/n, SDIO (SDIO 1.1/2.0/3.0) interface, and HS-UART mixed interface. It combines a WLAN MAC, a 1T1R capableWLAN baseband, and RF in s single chip. The RTL8821CS provides a complete solution for a high- performance integrated wireless device.

GOC-RG440-WZ baseband implements Or thogonal Frequency Division Multiplexing (OFDM) STA mode with one transmit and one receive path (1T1R). Features include one spatial stream transmission, short Guard Interval (GI) of 400ns, spatial spreading, and support for variant channel bandwidth. Moreover, GOC-RG440-WZ provides one spatial stream space-time block code (STBC), Transmit Low Density Parity Check (LDPC) to extend the range of transmission. As the recipient, the RTL8821CS also supports explicit sounding packetfeedback that helps senders capability. For legacy compatibility, Direct Sequence Spread Spectrum (DSSS), Complementary Code Keying (CCK) and OFDM baseband processing are included to support all IEEE 802.11b, 802.11g and 802.11n data rates. Differential phase shift keying modulation schemes, DBPSK and DQPSK with data scrambling capability are available, and CCK provides support for legacy data rates, with long or short preamble. The high speed FFT/IFFT paths, combined with BPSK, QPSK, 16QAM, 64QAM and 256QAM modulation of the individual subcarriers, and rate compatiblecoding rate of 1/2, 2/3, 3/4, and 5/6,.

GOC-RG440-WZ it supports scatterrnet topology and allows active links in slave mode, and active links in master mode.

## 2. WIFI Features

- Support IEEE 802.11b/g/n
- Maximum PHY data rate up to 86.7Mbps using 20MHz bandwidth, 200Mbps using
- 40MHz bandwidth, and 433.3Mbps
- Backward compatible with 802.11b/g/n devices while operating at 802.11n data rates
- G-SPI interface for configurable endian for WLAN
- Complies with HS-UART with configurable baud rate
- IEEE 802.11b/g/n/ compatible WLAN
- IEEE 802.11e QoS Enhancement (WMM)
- IEEE 802.11i (WPA, WPA2). Open, shared key, and pair-wise key authentication services
- IEEE 802.11k Radio Resource Measurement
- WAPI (Wireless Authentication Privacy Infrastructure) certified.
- Cisco Compatible Extensions (CCX) for WLAN devices MAC Features

## 3. Specification

| Feature               | Description     |  |
|-----------------------|-----------------|--|
| Model Name            | GOC-RG440-WZ    |  |
| WIFI                  |                 |  |
| Frequency Band        | 2.4GHz          |  |
| Interface             | SDIO1.1/2.0/3.0 |  |
| Size                  | 17mm*17mm*2.4mm |  |
| Operating temperature | -40°C~+85°C     |  |

| Storage Temperature | -55°C~+125°C                                 |
|---------------------|----------------------------------------------|
| VBAT                | 3.3V                                         |
| VDD_PIO             | 1.8V or 3.3V                                 |
| Working current     | 350mA                                        |
| Max current         | <700mA                                       |
| Humidity            | Operating Humidity 60% to 85% Non-Condensing |

Table 1: Specifications

## 4. Pin Diagram And Description

## 6.1 Pin Diagram

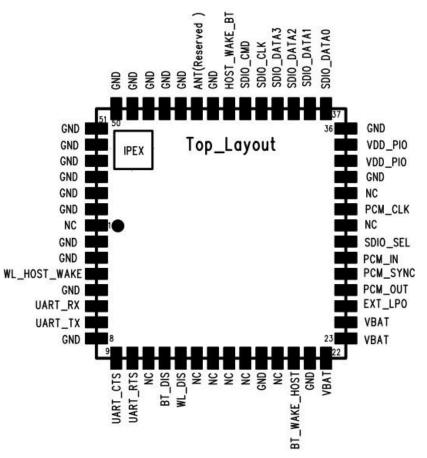



Figure 2: GOC-RG440-WZ Pin

#### 6.2 Pin Description

| Pin          | Pin Name                    | Туре   | Description             |
|--------------|-----------------------------|--------|-------------------------|
| 1            | NC                          | NC     | NC                      |
| 2 GND Ground |                             | Ground | Ground                  |
| 3            | GND                         | Ground | Ground                  |
| 4            | 4 WL_HOST_WAKE Input/Output |        | WL_HOST_WAKE            |
| 5            | GND                         | Ground | Ground                  |
| 6            | UART_RX                     | Input  | High-Speed UART Data In |

| 7              | UART_TX      | Output           | High-Speed UART Data Out                           |
|----------------|--------------|------------------|----------------------------------------------------|
| 8              | GND          | Ground           | Ground                                             |
| 9              | UART CTS     | Input            | High-Speed UART CTS                                |
| 10             | UART RTS     | Output           | High-Speed UART RTS                                |
| 11             | NC           | NC               | NC                                                 |
| 12             | BT_DIS       | Input            |                                                    |
| 13             | WL DIS       | Input            | WIFI enable                                        |
| 14             | NC           | NC               | NC                                                 |
| 15             | NC           | NC               | NC                                                 |
| 16             | NC           | NC               | NC                                                 |
| 17             | NC           | NC               | NC                                                 |
| 18             | GND          | Ground           | Ground                                             |
| 19             | NC           | NC               | NC                                                 |
| 20             | WAKE_HOST    | Input/Output     | device to wake-up HOST                             |
| 21             | GND          | Ground           | Ground                                             |
| 22             | VBAT         | POWER            | 3.3V Supply Voltage                                |
| 23             | VBAT         | POWER            | 3.3V Supply Voltage                                |
| 24             | VBAT         | POWER            | 3.3V Supply Voltage                                |
| 25             | EXT LPO      | Output           | External sleep clock input (32.768 kHz)(Reserved ) |
| 26             | PCM OUT      | Output           | PCM data Output                                    |
| 27             | PCM_SYNC     | Output           | PCM Synchronization control                        |
| 28             | PCM_IN       | Input            | PCM data Input                                     |
| 29             | SDIO_SEL     | Input/Output     | General Purpose Input/ Output Pin(Reserved )       |
| 30             | NC           | NC               | NC                                                 |
| 31             | PCM_CLK      | Input/Output     | PCM clock                                          |
| 32             | NC           | NC               | NC                                                 |
| 33             | GND          | Ground           | Ground                                             |
| 34             | VDD PIO      | POWER            | 1.8V~3.3V Supply Voltage                           |
| 35             | VDD_PIO      | POWER            | 1.8V~3.3V Supply Voltage                           |
| 36             | GND          | Ground           | Ground                                             |
| 37             | SDIO DATA0   | Input/Output     | SDIO Data Line 0                                   |
| 38             | SDIO_DATA1   | Input/Output     | SDIO Data Line 0                                   |
| 39             | SDIO_DATA2   | Input/Output     | SDIO Data Line 1                                   |
| 40             | SDIO_DATA2   | Input/Output     | SDIO Data Line 3                                   |
| 41             | SDIO_DATAS   | Input            | SDIO Clock Input                                   |
| 42             | SDIO_CMD     | Input/Output     | SDIO Command Input                                 |
| 43             | HOST_WAKE_BT | Input/Output     | HOST WAKE BT                                       |
| 44             | GND          | Ground           | Ground                                             |
| 45             | ANT          | RF               | WIFI(2.4G) Antenna(Reserved )                      |
| 46             | GND          | Ground           | Ground                                             |
| 47             | GND          | Ground           | Ground                                             |
| 48             | GND          | Ground           | Ground                                             |
| 49             | GND          | Ground           | Ground                                             |
| 50             | GND          | Ground           | Ground                                             |
| 51             | GND          | Ground           | Ground                                             |
|                | GND          | Ground           | Ground                                             |
| 50             |              |                  |                                                    |
| 52<br>53       | GND          | Ground           | Ground                                             |
| 52<br>53<br>54 | GND<br>GND   | Ground<br>Ground | Ground<br>Ground                                   |

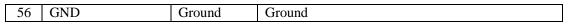



Table 2: Pin Description

## 6.3 PCB Layout Footprint

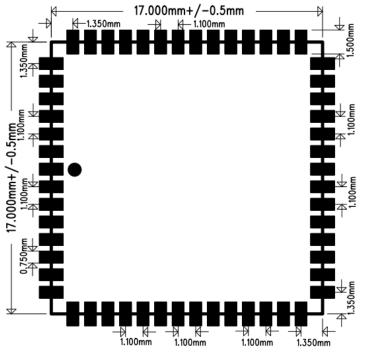



Figure 3: PCB Layout Footprint



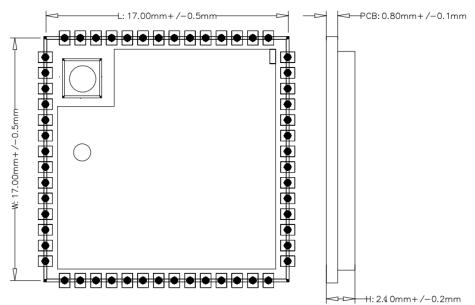



Figure 4: Module Package

## 5. Echo Cancellation Principle

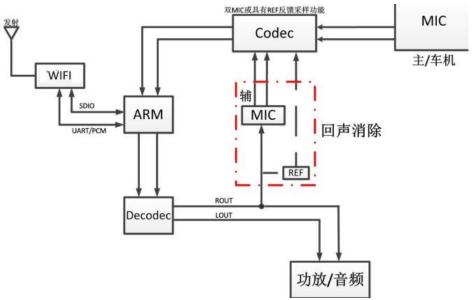



Figure 5: Echo Cancellation Principle

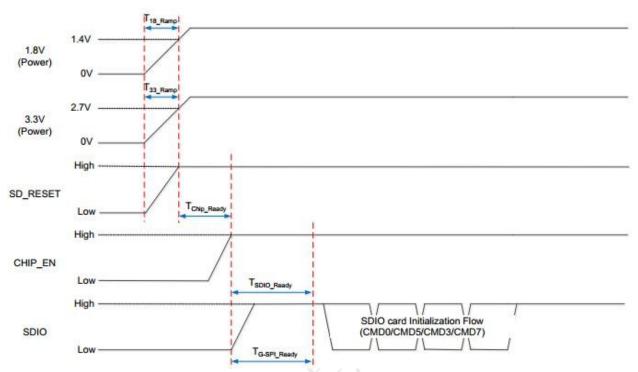
The left picture is a schematic diagram of the echo cancellation principle. After Decodec decoding of the leftand right channel sound, after data sampling and master MIC data comparison, echo cancellation can be processed. The right picture is a reference example, which can be designed according to the actual plan. Flying echo cancellation design, priority to use the echo cancellation design of IFLYTEK.

## 6. Power Management Handshake Interface Signal Level

#### 1) SD\_RESET Signal Level

The SD\_RESET signal level ranges from 1.8V to 3.3V. The host provides the power source with the targeted power level to the GOC-RG440-WZ via the VDD\_IO pin.

2) BT\_DIS Signal Level


The BT\_DIS signal level ranges from 1.8V to 3.3V. The host provides the power source with the targeted power level to the GOC-RG440-WZ via the VDD\_IO\_1 pin.

3) WL\_DIS\_N Signal Level

The WL\_DIS\_N signal level ranges from 1.8V to 3.3V. The host provides the power source with the targeted power level to the RTL8821CS via the VDD\_IO pin.

4) VBAT\_EN Signal Level

The VBAT\_EN signal level ranges from 1.8V to 3.3V



#### 8.1 System Power On Sequence

Figure 6: System Power-On Sequence

|                         | Min | Typical | Max | Unit | Description                                                                                                                                                                                                   |
|-------------------------|-----|---------|-----|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| T <sub>18_Ramp</sub>    | 0.1 | 0.5     | 2.5 | ms   | The 1.8V main power ramp up duration.                                                                                                                                                                         |
| T3 <sub>3_Ramp</sub>    | 0.1 | 0.5     | 2.5 | ms   | The 3.3V main power ramp up duration.                                                                                                                                                                         |
| T <sub>Chip_Ready</sub> | 0   | 10      | Х   | ms   | CHIP_EN pull high timing                                                                                                                                                                                      |
| T <sub>SDIO_Ready</sub> | 1   | 2       | 10  | ms   | SDIO Not Ready Duration.<br>In this state, the RTL8821CS may respond to commands<br>without the ready bit being set. After the ready bit is set, the<br>host will initiate complete card detection procedure. |

Table 3: System Power On Timing Parameters

NOTE:

1) SDIO Interface Power On Sequence

After power-on, the SDIO interface is selected by the RTL8821CS automatically when a valid SDIO command is received. To attain better SDIO host compatibility, the following power-on sequence is recommended.

We recommend that the card detection procedures are divided into two phases: A 3.3V/1.8V power pre-charge phase and a formal power-up phase.

After main 3.3V ramp up and 1.8V ramp up, the power management unit is enabled by the power ready detection circuit. The power management unit enables the SDIO block. eFUSE is then autoloaded to SDIO circuits during the TSDIO\_Ready duration and then SDIO pins are pulled up.

After CMD5/5/3/7 procedures, card detection is executed.

2) SD\_RESET Power On Sequence

To attain SD\_RESET capability, the following power sequence is recommended. After main 3.3V/1.8V ramp up, the power management unit is enabled by the power ready detection circuit.

The power management unit enables the SD\_RESET function. After power management unit being enabled, SD\_RESET needs to keep high for ensuring WLAN and SDIO/G-SPI function being alive.

3) CHIP\_EN Power On Sequence

To attain CHIP\_EN capability, the following power sequence is recommended.

After main 3.3V/1.8V ramp up, the power management unit is enabled by the power ready detection circuit.

The power management unit enables the CHIP\_EN function. After power management unit being enabled, CHIP\_EN needs to keep high for ensuring RTL8821CS function being alive.

## 7. UART Interface

GOC-RG440-WZ UART interface is a standard 4-wire interface with RX, TX, CTS, and RTS. The interfacesupports the UART HCI H4 and H5 specifications. The default baud rate is 115.2 kbaud. In order to support high and low speed baud rate, the GOC-RG440-WZ provides multiple UART clocks.

| Desired BaudRate | Error  | Desired Baud Rate | Error  |
|------------------|--------|-------------------|--------|
| 1200             | 0%     | 1382400           | -0.22% |
| 9600             | 0%     | 1444400           | -0.20% |
| 14400            | 0%     | 1500000           | -0.31% |
| 19200            | 0.01%  | 1843200           | -0.22% |
| 28800            | 0.01%  | 2000000           | 0%     |
| 38400            | 0.04%  | 2100000           | 0.25%  |
| 57600            | 0.01%  | 2500000           | 0%     |
| 76800            | 0.04%  | 2764800           | -0.22% |
| 115200           | -0.08% | 3000000           | -0.31% |
| 128000           | 0%     | 3250000           | 0.47%  |
| 153600           | -0.08% | 3692300           | -0.38% |
| 230400           | -0.08% | 3710000           | 0.29%  |
| 460800           | -0.08% | 3750000           | 0.39%  |
| 500000           | 0%     | 3800000           | 0.25%  |
| 921600           | -0.22% | 4000000           | 0%     |
| 1000000          | 0%     |                   |        |

Table 4: UART Interface Power-On Timing Parameters

## 8. PCM Interface

GOC-RG440-WZ supports a PCM digital audio interface that is used for transmitting digital audio/voicedata to/from the Audio Codec. Features are supported as below:

- Supports Master and Slave mode
- Programmable long/short Frame Sync
- Supports 8-bit A-law/µ-law, and 13/16-bit linear PCM formats
- Supports sign-extension and zero-padding for 8-bit and 13-bit samples
- Supports padding of Audio Gain to 13-bit samples
- PCM Master Clock Output: 64, 128, 256, or 512kHz
- Supports SCO/ESCO link

## 9. Electrical Characteristic

## **11.1 Absolute Maximum Ratings**

| Maximum Ratings | Min   | Typical | Max   |
|-----------------|-------|---------|-------|
| VBAT            | 3.0V  | 3.3V    | 3.6V  |
| VDD PIO         | 1.71V | 1.8V    | 1.89V |
| VDD_FIO         | 3.16V | 3.3V    | 3.46V |

Table 5: Absolute Maximum Ratings

## **11.2 Recommended Operating Conditions**

| <b>Operating Conditions</b> | Min    | Typical | Max     |
|-----------------------------|--------|---------|---------|
| Operating Temperature       | -40 °C | /       | +85 °C  |
| Storage Temperature         | -55 °C | /       | +125 °C |
| VBAT                        | 3.16V  | 3.3V    | 3.46V   |
| VDD BIO                     | 1.71V  | 1.8V    | 1.89V   |
| VDD_PIO                     | 3.16V  | 3.3V    | 3.46V   |

Table 6: Recommended Operating Conditions

## **10. Recommended Reflow Profile**

Referred to IPC/JEDEC standard.

Peak package body temperature :<260  $^{\circ}$ C.

Time of peak temperature for Pb-free assembly : 5~10sec.

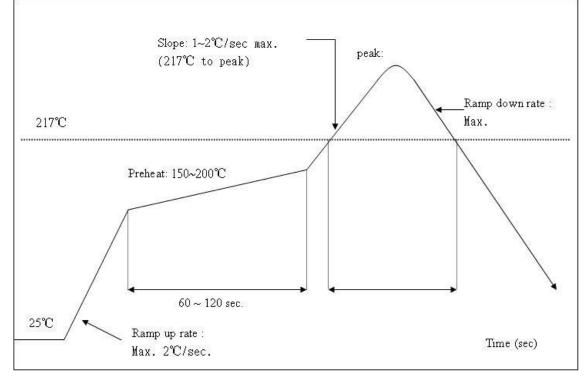



Figure 7 : Recommended Reflow Profile

## **11. PCB Layout Recommendation**

#### 13.1 Antenna

The module have own fixed antenna with max 5.54dBi gain.

#### 13.2 HCI UART Lines Layout Guideline

The following HCI line routing must obey the following rule to prevent overshoot/undershoot, as these lines drive  $4 \sim 8$ mA.

UART\_RX UART\_TX UART\_CTS UART\_RTS The route length of these signals be less than 15 cm and the line impedance be less than  $50\Omega$ .

#### 13.3 PCM Lines Layout Guideline

The following HCI line routing must obey the following rule to prevent overshoot/undershoot, as these lines drive 4 mA.

PCM\_SYNC PCM\_CLK PCM\_OUT PCM\_IN The route length of these signals be less than 15 cm and the line impedance be less than  $50\Omega$ .

#### **13.4 Power Trace Lines Layout Guideline**

VBAT Trace Width: 30mil VDD\_PIO Trace Width: 25mil

#### **13.5 Ground Lines Layout Guideline**

A Complete Ground in Ground Layer. Add Ground Through Holes to GOC-RG440-WZ Module Ground Pads. Decoupling Capacitors close to GOC-RG440-WZ Module Power and Ground Pads.

## **12. Module Part Number Description**

|                 | GC | <u>)C-R</u> | <u>G</u> 4 | 4 ( | ] |
|-----------------|----|-------------|------------|-----|---|
|                 |    |             |            |     |   |
| Company Name –  |    |             |            |     |   |
| The chip code – |    |             |            |     |   |
| Package –       |    |             |            |     |   |
| Reserved -      |    |             |            |     |   |

Figure 8: Module Part Number Description

For a list of available options (e.g. package, packing) and orderable part numbers or for further information on any aspect of this device, please go to *www.goodocom.com* or contact the GOODOCOM Sales Office nearest to you.

## **13. Ordering Information**

| Part Number | Description    | Remark       |
|-------------|----------------|--------------|
| GOC-RG440-  | 2.4 GHz module | PIFA Antenna |
| WZ          |                |              |

Table 7: Ordering Information

## 14. Packaging Information

## 16.1 Net Weight

The module net weight:  $1.3g \pm 0.1g$ 

## 16.2 Package



72pcs module in one tray2000pcs modules into one pack4000pcsModules One BoxCarton size:270mm\*275mm\*220mmTray size:225mm\*205mm\*7mm

## **16.3 Storage Requirements**

- 1) Temperature: 22~28 °C;
- 2 ) Humidity: <70% (RH);

Vacuum packed and sealed in good condition to ensure 12 months of welding.

## **16.4 Humidity Sensitive Characteristic**

1) MSL: 3 level

2) Once opened, SMT within 168 hours in the condition of temperature:  $22 \sim 28$  °C and humidity<60% (RH).

3) Handling, storage, and processing should follow IPC/JEDECJ-STD-033

#### §15.19 Labeling requirements.

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

#### §15.21 Information to user.

Any Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

#### §15.105 Information to the user.

Note: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures: -Reorient or relocate the receiving antenna.

-Increase the separation between the equipment and receiver.

-Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.

-Consult the dealer or an experienced radio/TV technician for help.

This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment. This equipment should be installed and operated withminimum distance 20cm between the radiator & your body.

#### 2.2 List of applicable FCC rules

Module applicable FCC Part 15.247

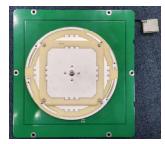
#### 2.3 Summarize the specific operational use conditions

The module must be installed in the host equipment such that at least 20cm is maintained between the antenna and users' body. The host manufacturer installing this module into their product must ensure that the final composit product complies with the FCC requirements by a technical assessment or evaluation to the FCC rules, including the transmitter operation. The host manufacturer has to be aware not to provide information to the end user regarding how to install or remove this RF module in the user's manual of the end product which integrates this module. The end user manual shall include all required regulatory information/warning as show in this manual.

#### 2.4 Limited module procedures

Single module approval

#### 2.5 Trace antenna designs


The module have own fixed antenna with max 5.54dBi gain(see below photo)

#### 2.6 RF exposure considerations

The module must be installed in the host equipment such that at least 20cm is maintained between the antenna and users' body; and if RF exposure statement or module layout is changed, then the host product manufacturer required to take responsibility of the module through a change in FCC ID or new application. The FCC ID of the module cannot be used on the final product. In these circumstances, the host manufacturer will be responsible for re-evaluating the end product (including the transmitter) and obtaining a separate FCC authorization.

#### 2.7 Antennas

The module have own fixed antenna with max 5.54dBi gain(see below photo)



#### 2.8 Label and compliance information

The host system using this module, should have label in a visible area indicated the following texts: "Contains FCC ID: SY4-RG440".

#### 2.9 Information on test modes and additional testing requirements

Host manufacturer must perfom test of radiated & conducted emission and spurious emission, etc according to the actual test modes for a stand-alone modular transmitter in a host, as well as for multiple simultaneously transmitting modules or other transmitters in a host product. Only when all the test results of test modes comply with FCC requirements, then the end product can be sold legally.

#### 2.10 Additional testing, Part 15 Subpart B disclaimer

The modular transmitter is only FCC authorized for FCC Part 15 Subpart C 15.247 & 15.207 & 15.209 and that the host product manufacturer is responsible for compliance to any other FCC rules that apply to the host not covered by the modular transmitter grant of certification. If the grantee markets their product as being Part 15 Subpart B compliant (when it also contains unintentional-radiator digital circuity), then the grantee shall provide a notice stating that the final host product still requires Part 15 Subpart B compliance testing with the modular transmitter installed.