Shenzhen Toby Technology Co., Ltd.

Report No.: TB-FCC160710 Page: 1 of 22

FCC Radio Test Report FCC ID: SY4-B01011

Report No.	:	TB-FCC160710
Applicant	:	Shanghai Huace Navigation Technology LTD.
Equipment Under	Tes	t (EUT)
EUT Name	:	Handheld GNSS Data Collector
Model No.	•	LT50
Serial Model No.	•	N/A
Trade Mark	:	CHCNAV
Receipt Date	:	2018-01-25
Test Date	:	2018-01-25 to 2018-06-23
Issue Date	:	2018-06-23
Conclusions	:	PASS
		In the configuration tested, the EUT complied with the standards specified above, The EUT technically complies with the FCC requirements

TOBY

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

1A/F., Bldg.6, Yusheng Industrial Zone, The National Road No.107 Xixiang Section 467, Xixiang, Bao'an, Shenzhen, China

TABLE OF CONTENT

Description

Page

1.	GENERAL INFORMATION	5
	1.1.Description of Device (EUT)	5
	1.2. Accessories of Device (EUT)	
	1.3. Tested Supporting System Details	6
	1.4.Block Diagram of connection between EUT and simulators	6
2.	EMC EQUIPMENT LIST	7
3.	SUMMARY OF MEASUREMENT	8
	3.1.Summary of test result	8
	3.2.Equipment Type	
	3.3.Channel list	
	3.4. Test Conditions and channel	11
	3.5.Measurement Uncertainty (95% confidence levels, k=2)	
4.	DFS PARAMETERS	12
	4.1.DFS Parameters	12
	4.2.DFS Test Results	
5.	Test Setup photos	

TEST REPORT DECLARATION

Applicant	:	Shanghai Huace Navigation Technology LTD.				
Address	:	Building C,599 Gaojing Road, Qingpu District, Shanghai, China				
Manufacturer	:	Shanghai Huace Navigation Technology LTD.				
Address	:	Building C,599 Gaojing Road, Qingpu District, Shanghai, China				
EUT Description	:	Handheld GNSS Data Collector				
		(A) Model No. : LT50				
		(B) Trademark : CHCNAV				

Measurement Standard Used:

FCC KDB 905462 D02

The device described above is tested by Shenzhen Toby Technology Co., Ltd. to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC KDB 905462 D02 limits both conducted and radiated emissions. The test results are contained in this test report and Shenzhen Toby Technology Co., Ltd. is assumed of full responsibility for the accuracy and completeness of these tests.

After the test, our opinion is that EUT compliance with the requirement of the above standards.

This report applies to above tested sample only. This report shall not be reproduced in parts without written approval of Shenzhen Toby Technology Co., Ltd.

Tested by (name + signature).....:

Ivan Su Project Engineer

Approved by (name + signature).....:

Ray Lai Project Manager

Date of issue.....: June 13, 2018

Revision History

Revision	Issue Date	Revisions	Revised By
00	June 13, 2018	Initial released Issue	Ray Lai

1. GENERAL INFORMATION

1.1.Description of Device (EUT)

Trade Name	- CHCNAV
EUT	: Handheld GNSS Data Collector
Model No.	: LT50
DIFF.	: N/A
Antenna Type	PIFA Antenna : 0.46dBi For 5.25~5.35GHz 0.65dBi For 5.47~5.725GHz
Operation Frequency Modulation type	 IEEE 802.11n HT20: 5260MHz-5320MHz,5500MHz-5700MHz IEEE 802.11n HT40: 5260MHz-5320MHz,5500MHz-5700MHz IEEE 802.11a: 5260MHz-5320MHz,5500MHz-5700MHz IEEE 802.11 ac-20/40/80MHz: 5260MHz-5320MHz, 5500MHz-5700MHz IIEEE 802.11n :OFDM(64QAM, 16QAM, QPSK, BPSK) IEEE 802.11a :OFDM(64QAM, 16QAM, QPSK, BPSK)
woodulation type	IEEE 802.11a : OFDM(04QAM, 10QAM, 01 SK, DI SK) IEEE 802.11ac: OFDM(256 QAM)
Power Supply	: DC 3.8V by battery or DC 5V from adapter input AC 120V, 60Hz

1.2.Accessories of Device (EUT)	1.2	2.Accesso	ories o	f Dev	vice (EUT)	
---------------------------------	-----	-----------	---------	-------	--------	------	--

Accessories1	:	AC Adapter
Manufacturer	:	EDAC Power Electronics Co., Ltd.
Model	:	EA1012AVRU-050
Input	:	100-240V~, 50/60Hz, 1.0A
Output	:	DC 5V, 2.4A

1.3.Tested Supporting System Details

No.	Description	Manufacturer	Model	Serial Number	Certification or DOC		
1	Adapter	Huntkey	EA1012AVRU-050	N/A	N/A		
2RouterCisco Systems IncAir-CAP3702E- A-K9N/AFCC ID (FCC ID 							
Note: N	Note: Master ping IP 192.168.1.3 for salve.						

1.4.Block Diagram of connection between EUT and simulators

AC Mains 🔶	Adapter		EUT
------------	---------	--	-----

2. EMC EQUIPMENT LIST

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 20, 2017	Jul. 19, 2018
Spectrum Analyzer	Rohde & Schwarz	ESCI	100010/007	Jul. 20, 2017	Jul. 19, 2018
MXA Signal Analyzer	Agilent	N9020A	MY49100060	Oct. 26, 2017	Oct. 25, 2018
Vector Signal Generator	Agilent	N5182A	MY50141294	Oct. 26, 2017	Oct. 25, 2018
Analog Signal Generator	Agilent	N5181A	MY50141953	Oct. 26, 2017	Oct. 25, 2018
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO26	Oct. 26, 2017	Oct. 25, 2018
RF Power Sensor	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO29	Oct. 26, 2017	Oct. 25, 2018
KI'I Üwel Selisü	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO31	Oct. 26, 2017	Oct. 25, 2018
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO33	Oct. 26, 2017	Oct. 25, 2018
Signal analyzer	Agilent	N9020A	MY499100060	Sep. 23. 2017	Sep. 22. 2017
Vector signal generator	Agilent	N5182A	MY49060042	Sep. 22. 2017	Sep. 21. 2017

3. SUMMARY OF MEASUREMENT

3.1.Summary of test result

Tost Itom	Operation	on Mode	Result	
Test Item	Master	Client	Result	
Non-Occupancy Period	N/A	Yes	Compliance	
DFS Detection Threshold	N/A	N/A	Compliance	
Channel Availability Check Time	N/A	N/A	Compliance	
Channel Closing Transmission Time	N/A	Yes	Compliance	
Channel Move Time	N/A	Yes	Compliance	
U-NII Detection Bandwidth	N/A	N/A	Compliance	

3.2.Equipment Type

Master Device

Client Device(No Ad-Hoc mode, without radar detection function and TPC)

	For IEEE 802.11 a							
Channel	Frequency (MHz)	Channel	Frequency (MHz)					
CH52	5260	CH56	5280					
CH60	5300	CH64	5320					
CH100	5500	CH104	5520					
CH108	5540	CH112	5560					
CH116	5580	CH120	5600					
CH124	5620	CH128	5640					
CH132	5660	CH136	5680					
CH140	5700							

3.3.Channel list

For IEEE 802.11 n/HT20			
Channel	Frequency (MHz)	Channel	Frequency (MHz)
CH52	5260	CH56	5280
CH60	5300	CH64	5320
CH100	5500	CH104	5520
CH108	5540	CH112	5560
CH116	5580	CH120	5600
CH124	5620	CH128	5640
CH132	5660	CH136	5680
CH140	5700		

For IEEE 802.11 n/HT40				
Channel	Frequency (MHz)	Channel	Frequency (MHz)	
CH102	5510	CH134	5670	
CH110	5550	CH151	5755	
CH118	5590	CH159	5795	
CH126	5630			

For IEEE 802.11ac20			
Channel	Frequency (MHz)	Channel	Frequency (MHz)
CH52	5260	CH56	5280
CH60	5300	CH64	5320
CH100	5500	CH104	5520
CH108	5540	CH112	5560
CH116	5580	CH120	5600
CH124	5620	CH128	5640
CH132	5660	CH136	5680
CH140	5700		

For IEEE 802.11ac40				
Channel	Frequency (MHz)	Frequency (MHz)		
CH102	5510	CH134	5670	
CH110	5550	CH151	5755	
CH118	5590	CH159	5795	
CH126	5630			

For IEEE 802.11ac80					
ChannelFrequency (MHz)ChannelFrequency (MHz)					
CH58 5290 CH106 5530					

RF power

Band 2				
Max power		Min power		
5270.00MHz	270.00MHz 21.48dBm 5310.00MHz 20.26dBm			
Band 3				
Max power Min powe			power	
5700.00MHz	19.88dBm	5510.00MHz	18.14dBm	

3.4. Test Conditions	and channel
----------------------	-------------

Temperature range	21-25°C
Humidity range	40-75%
Pressure range	86-106kPa

Channel List for 802.11ac(HT80)			
Band Frequency	EUT Channel	Test Frequency (MHz)	
Band II	CH58	5290	
Band III	CH106	5530	

Note: (1) The measurements are performed at the lowest available channels.

3.5.Measurement Uncertainty (95% confidence levels, k=2)

Item	MU	Remark
Uncertainty for conducted RF Power	0.16dB	

4. **DFS PARAMETERS**

4.1.DFS Parameters

Table 1: Applicability of DFS Requirements Prior to Use of a Channel

Requirement	Operational Mode			
	Master	Client Without Radar Detection	Client With Radar Detection	
Non-Occupancy Period	Yes	Not required	Yes	
DFS Detection Threshold	Yes	Not required	Yes	
Channel Availability Check Time	Yes	Not required	Not required	
U-NII Detection Bandwidth	Yes	Not required	Yes	

Table 2: Applicability of DFS requirements during normal operation

Requirement	Operational	Mode		
	Master Device or Client	Client Without		
	with Radar Detection	Radar Detection		
DFS Detection Threshold	Yes	Not required		
Channel Closing Transmission Time	Yes	Yes		
Channel Move Time	Yes	Yes		
U-NII Detection Bandwidth	Yes	Not required		
Additional requirements for devices	Master Device or Client	Client Without		
with multiple bandwidth modes	with Radar Detection	Radar Detection		
U-NII Detection Bandwidth and	All BW modes must be	Not required		
Statistical Performance Check	tested			
Channel Move Time and Channel	Test using widest BW mode	Test using the widest		
Closing Transmission Time	available	BW mode available		
		for the link		
All other tests	Ill other tests Any single BW mode Not required			
Note: Frequencies selected for statistical performance check (Section 7.8.4) should include				
several frequencies within the radar detection bandwidth and frequencies near the edge of				
the radar detection bandwidth. For 802.11 devices it is suggested to select frequencies in				
each of the bonded 20 MHz channels and the channel center frequency.				

Table 3: DFS Detection Thresholds for Master Devices and Client	Devices With Radar Detection
---	------------------------------

Maximum Transmit Power	Value
	(See Notes 1, 2, and 3)
$EIRP \ge 200 milliwatt$	-64 dBm
EIRP < 200 milliwatt and	-62 dBm
power spectral density < 10 dBm/MHz	
EIRP < 200 milliwatt that do not meet the power spectral	-64 dBm
density requirement	
Note 1: This is the level at the input of the receiver assuming a 0 dB	
Note 2: Throughout these test procedures an additional 1 dB has bee transmission waveforms to account for variations in measurement eq	
test signal is at or above the detection threshold level to trigger a DF	-
Note3: EIRP is based on the highest antenna gain. For MIMO device	
D01.	

Table 4: DFS Response Requirement Values

Parameter	Value
Non-occupancy period	Minimum 30 minutes
Channel Availability Check Time	60 seconds
Channel Move Time	10 seconds
	See Note 1.
Channel Closing Transmission Time	200 milliseconds + an
	aggregate of 60
	milliseconds over
	remaining 10 second
	period.
	See Notes 1 and 2.
U-NII Detection Bandwidth	Minimum 100% of the U-
	NII 99% transmission
	power bandwidth. See
	Note 3.

Note 1: *Channel Move Time* and the *Channel Closing Transmission Time* should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.

Note 2: The *Channel Closing Transmission Time* is comprised of 200 milliseconds starting at the beginning of the *Channel Move Time* plus any additional intermittent control signals required to facilitate a *Channel* move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Note 3: During the *U-NII Detection Bandwidth* detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

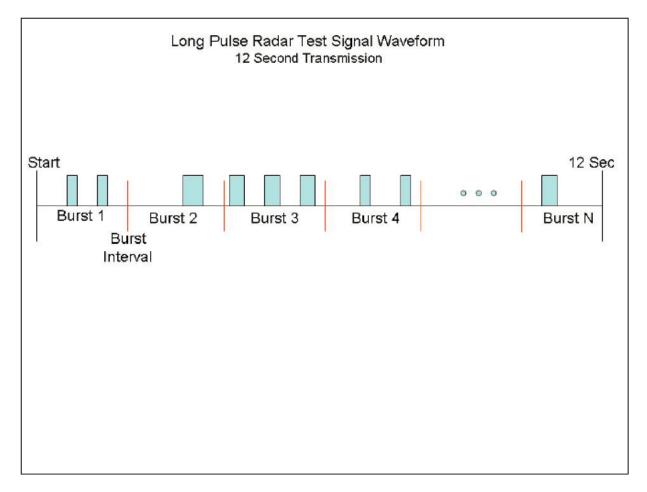
 Table 5 – Short Pulse Radar Test Waveforms

Radar	Pulse	PRI	Number of Pulses	Minimum	Minimum
Туре	Width	(µsec)	ranioer of raises	Percentage of	Number
Type	(µsec)	(µsee)		Successful	of
	(µ300)			Detection	Trials
0	1	1428	18	See Note 1	See Note
v	1	1420	10	See Note 1	1
1	1	Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 5a Test B: 15 unique PRI values randomly selected within the range of 518-3066 µsec, with a minimum increment of 1 µsec, excluding PRI values	$\operatorname{Roundup} \left\{ \begin{pmatrix} \frac{1}{360} \end{pmatrix} \cdot \\ \begin{pmatrix} \frac{19 \cdot 10^6}{\text{PRI}_{\mu \text{sec}}} \end{pmatrix} \right\}$	60%	30
2	1-5	selected in Test A 150-230	23-29	60%	30
2					
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
	Radar Types			80%	120
			used for the detection ba	ndwidth test, ch	annel move
time, and ch	annel closing	time tests.			

Table 5a - Pulse Repetition Intervals Values for Test A

Pulse Repetition Frequency Number	(Pulses Per Second) Interv (Microsoft) 1930.5 1930.5 1858.7 1792.1 1730.1 1672.2 1618.1 1567.4 1519.8 1474.9 1432.7 1392.8 1319.3 1319.3	Pulse Repetition Interval (Microseconds)
1	1930.5	518
2	1858.7	538
3	1792.1	558
4	1730.1	578
5	1672.2	598
6	1618.1	618
7	1567.4	638
8	1519.8	658
9	1474.9	678
10	1432.7	698
11	1392.8	718
12	1355	738
13	1319.3	758
14	1285.3	778
15	1253.1	798
16	1222.5	818
17	1193.3	838
18	1165.6	858
19	1139	878
20	1113.6	898
21	1089.3	918
22	1066.1	938
23	326.2	3066

The aggregate is the average of the percentage of successful detections of Short Pulse Radar Types 1-4. For example, the following table indicates how to compute the aggregate of percentage of successful detections.


Radar Type	Number of Trials	Number of Successful Detections	Minimum Percentage of Successful
		Detections	
			Detection
1	35	29	82.9%
2	30	18	60%
3	30	27	90%
4	50	44	88%
Aggregate (82.9% + 6	60% + 90% + 88%)/4 = 8	0.2%	

Long Pulse Radar Test Waveform

	ing ruise R		averonn	~			
Radar	Pulse	Chirp	PRI	Number	Number	Minimum	Minimum
Туре	Width	Width	(µsec)	of Pulses	of Bursts	Percentage of	Number of
	(µsec)	(MHz)		per Burst		Successful	Trials
				-		Detection	
5	50-100	5-20	1000-	1-3	8-20	80%	30
			2000				

Table 6 – Long Pulse Radar Test Waveform

Figure 1 provides a graphical representation of the Long Pulse Radar Test Waveform.

Table 7	Fraguance	Honning	Radar	Test 1	Waveform
	riequency	порршg	Rauai	rest	wavelolill

		11 0		A V A			
Radar	Pulse	PRI	Pulses	Hopping	Hopping	Minimum	Minimum
Type	Width	(µsec)	per	Rate	Sequence	Percentage of	Number of
	(µsec)		Hop	(kHz)	Length	Successful	Trials
			- 1		(msec)	Detection	
6	1	333	9	0.333	300	70%	30

4.2.DFS Test Results

FCC Part 15.407 Client Device Test Result Summary Description Radar Measured Requirement Test Data Result Radar Frequency Value Type Channel closing 0 5290 7ms <260ms 4.2.4 Pass transmission time Channel move 0 5290 0.903s <10s 4.2.4 Pass time

4.2.1 IESI	RESULIS-	- FCC Part 15.4	07 CLIENT DEVICE	-

	FCC Pa	art 15.407 C	lient Device T	est Result Su	mmary	
Description	Radar Type	Radar Frequency	Measured Value	Requirement	Test Data	Result
Channel closing transmission time	0	5530	7ms	<260ms	4.2.4	Pass
Channel move time	0	5530	0.903s	<10s	4.2.4	Pass

4.2.2 DFS MEASUREMENT METHODS

a. DFS - CHANNEL CLOSING TRANSMISSION TIME AND CHANNEL MOVE TIME

Channel Move Time and the Channel Closing Transmission Time should be performed with RadarType 0. The measurement timing begins at the end of the Radar Type 0 burst. The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any \ dditional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

b. DFS – CHANNEL NON-OCCUPANCY AND VERIFICATION OF PASSIVE SCANNING Non-occupancy Period. A channel that has been flagged as containing a radar system, either by a channel availability check or in-service monitoring, is subject to a non-occupancy period of at least 30 minutes. The non-occupancy period starts at the time when the radar system is detected.

c. CHANNEL AVAILABILITY CHECK TIME

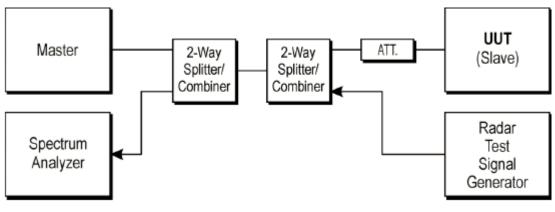
Channel Availability Check Time. A U-NII device shall check if there is a radar system already operating on the channel before it can initiate a transmission on a channel and when it has to move to a new channel. The U-NII device may start using the channel if no radar signal with a power level greater than the interference threshold values listed in paragraph (h)(2) of this section, is detected within 60 seconds.

d. CONTROL (TPC)

Compliance with the transmit power control requirements for devices is demonstrated through measurements showing multiple power levels and manufacturer statements explaining how the power control is implemented.

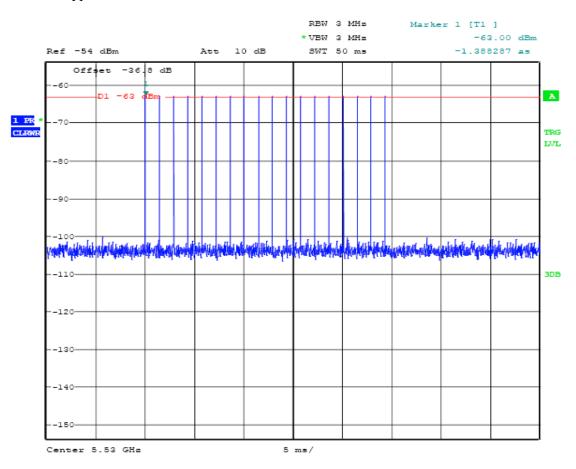
e. DETECTION PROBABILITY / SUCCESS RATE

During the U-NII Detection Bandwidth detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic. Minimum 100% of the U-NII 99% transmission power bandwidth.


f. NON- OCCUPANCY PERIOD

During the 30 minutes observation time, UUT did not make any transmissions on a channel after a radar signal was detected on that channel by either the Channel Availability Check or the In-Service Monitoring

4.2.3 DFS CONDUCTION TEST METHOD


a. The signal level of the simulated waveform is set to a reference level equal to the threshold level (plus 1dB if testing against FCC requirements). Lower levels may also be applied on request of the manufacturer. The signal level is verified by measuring the CW signal level at the coupling point to the RDD antenna port. The radar signal level is calculated from the measured level, R (dBm) and the lowest gain antenna assembly intended for use with the RDD If both master and client devices have radar detection capability then the radar level at the non RDD is verified to be at least 20dB below the threshold level to ensure that any responses are due to the RDD detecting radar.

The antenna connected to the channel monitoring subsystem is positioned to allow both master and client transmissions to be observed, with the level of the EUT's transmissions between 6 and 10dB higher than those from the other device.

b.Set-upB is a set-up whereby the UUT is an RLAN device operating in slave mode, with or without Radar Interference Detection function. This set-up also contains an RLAN device operating in master mode. The radar test signals are injected into the master device. The UUT (slave device) is associated with the master device. Figure 5 shows an example for Set-up B. The set-up used shall be documented in the test report. Channel Availability Check Time. A U-NII device shall check if there is a radar system already operating on the channel before it can initiate a transmission on a channel and when it has to move to a new channel. The U-NII device may start using the channel if no radar signal with a power level greater than the interference threshold values listed in paragraph (h)(2) of this section, is detected within 60 seconds.

4.2.4 DFS Test Data

Radar Type 0 Calibration

Marker		ALIGNAUTO	NSE:INT		RF 50 Q AC CORR	L
warker	TRACE 1 2 3 4 5 6	'ype: Log-Pwr	y:-5.000 ms Avg			
Select Marke	DET P N N N N			NO: Fast 🕞 Trig: Vi Gain:High #Atten:		
	r1 200.0 ms -63.01 dB	ΔΜΙ			Ref -45.00 dBm	B/div
					Radar Signal	
Nori						
	TRIG LVL			ission	EUT Transsmiss	(
				Transmission Time	Channel Clasing T	
De				g mansmission mine	Channel Closing 1	
					×	
Fixe						
					2	1∆
	waxayardaharaadaha —	agan dhalana anna an an	alla harada inda dalaya karana	www.warehousever.	and the second second second second	- Apple
				hannel move time	Cha	
Propertie						
M	Chan 0 H-				290000000 GHz	
1	Span 0 Hz 01 s (1001 pts) -	Sweep 10		#VBW 3.0 MH	290000000 GHZ .0 MHz	
		STATUS				

VHT80 Channel move time & Channel Closing Transmission Time for Type 0 radar.

Note:

Dwell (1 ms)= Sweep Time (1001 ms) / Sweep Point Bins (1001)

Channel Closing Transmission Time (200 + 7 ms) = 200 + Number (7) X Dwell (1 ms) < 260 ms

HT80 Channel move time & Channel Closing Transmission Time for Type 0 radar.

Note:

Dwell (10 ms)= Sweep Time (10010 ms) / Sweep Point Bins (1001)

Channel Closing Transmission Time (200 + 60 ms) = 200 + Number (6) X Dwell (10 ms) < 260ms

5. TEST SETUP PHOTOS

-----END OF THE REPORT------