

FCC TEST REPORT

FCC ID: SY4-A02048

On Behalf of Shanghai Huace Navigation Technology Ltd. Surveying System Model No.: RS10

Prepared for	: Shanghai Huace Navigation Technology Ltd.	
Address	: 577 Songying Road, Qingpu District, 201706 Shanghai, China	ł

Prepared By	:	Shenzhen Alpha Product Testing Co., Ltd.
Address	:	Building i, No.2, Lixin Road, Fuyong Street, Bao'an District, 518103, Shenzhen, Guangdong, China

Result		Pass
Version Number	:	V0
Date of Report	:	March 16, 2024
Date of Test	:	January 9, 2024 - March 16, 2024
Date of Receipt	:	January 9, 2024
Report Number	:	A2401095-C01-R08

TABLE OF CONTENTS

	Description Pa	ge
1	TEST SUMMARY	. 5
1.	MEASUREMENT UNCERTAINTY	. 5
2	GENERAL INFORMATION	. 6
2. 2. 2. 2. 2. 2. 2.	Test mode Test Facility Description of Support Units Deviation from Standards Abnormalities from Standard Conditions Other Information Requested by the Customer	.7 .7 .7 .7 .7 .7
3	TEST INSTRUMENTS LIST	. 8
4	TEST RESULTS AND MEASUREMENT DATA	. 9
4. 4. 4. 4. 4. 4.	 CONDUCTED EMISSIONS	10 13 15 17 19 22

TEST REPORT DECLARATION

Applicant	:	Shar	Shanghai Huace Navigation Technology Ltd.				
Address	:	577 \$	577 Songying Road, Qingpu District, 201706 Shanghai, China				
Manufacturer	:	Shar	Shanghai Huace Navigation Technology Ltd.				
Address	:	577 \$	577 Songying Road, Qingpu District, 201706 Shanghai, China				
EUT Description	:	Surv	Surveying System				
		(A)	Model No.	:	RS10		
		(B)	Trademark	:	CHCNAV		

Measurement Standard Used:

FCC Rules and Regulations Part 15 Subpart E

ANSI C63.4:2014, ANSI C63.10:2013

The device described above is tested by Shenzhen Alpha Product Testing Co., Ltd. to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart E limits both conducted and radiated emissions. The test results are contained in this test report and Shenzhen Alpha Product Testing Co., Ltd. is assumed of full responsibility for the accuracy and completeness of these tests.

After the test, our opinion is that EUT compliance with the requirement of the above standards.

This report applies to above tested sample only. This report shall not be reproduced in parts without written approval of Shenzhen Alpha Product Testing Co., Ltd.

Tested by (name + signature):	Yannis Wen	Vannis wen
	Project Engineer	1
Approved by (name + signature):	Reak Yang Project Manager	Rr. 45

Date of issue.....

March 16, 2024

Revision History

Revision	Issue Date	Revisions	Revised By
V0	March 16, 2024	Initial released Issue	Yannis Wen

1 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	Section 15.203 Section 7.1.4 RSS-Gen Issue 5	PASS
AC Power Line Conducted Emission	Section 15.207 Section 7.2.4 RSS-Gen Issue 5, ANSI C63.10	PASS
Peak Transmit Power	Section 15.407(a), RSS-247 Issue 2	PASS
Power Spectral Density	Section 15.407(a), RSS-247 Issue 2	PASS
Undesirable Emission	Section 15.407(b), RSS-247 Issue 2	PASS
26dB/6dB&99% Bandwidth	Section 15.407, RSS-Gen Issue 5	PASS
Radiated Emission	Section 15.407(b)&15.209 Section 5.5 RSS-Gen Issue 5, RSS-247 Issue 2, ANSI C63.10	PASS
Band Edge	15.205, RSS-247 Issue 2,, ANSI C63.10	PASS
Frequency Stability	15.407(f), RSS-GEN(6.11)	PASS

Remark:

1. Pass: The EUT complies with the essential requirements in the standard.

2. Frequency Stability: The manufacturer stated in the user's manual.

3. The conclusion of this test report is judged by actual test data without considering measurement uncertainty.

1.1 Measurement Uncertainty

Item	Uncertainty
Uncertainty for Power point Conducted Emissions Test	1.63dB
Uncertainty for Radiation Emission test in 3m chamber (below 30MHz)	3.5dB
Uncertainty for Radiation Emission test in 3m chamber	3.74dB(Polarize: V)
(30MHz to 1GHz)	3.76dB(Polarize: H)
Uncertainty for Radiation Emission test in 3m chamber	3.77dB(Polarize: V)
(1GHz to 25GHz)	3.80dB(Polarize: H)
Uncertainty for radio frequency	5.06×10⁻ ⁸ GHz
Uncertainty for conducted RF Power	0.40dB
Uncertainty for temperature	0.2 ℃
Uncertainty for humidity	1%
Uncertainty for DC and low frequency voltages	0.06%

2 General Information

2.1

General Description of EUT				
EUT Name	: Surveying System			
Model No.	: RS10			
DIFF.	: N/A			
Power supply	: DC 7.2V from battery, DC 9-20V from Type-C.			

Radio Technology	: 5G WIFI
Operation Frequency	: 802.11ac80: 5210MHz
Channel separation Modulation technology	:80MHz for 802.11ac80 :IEEE 802.11ac: OFDM (64QAM, 16QAM,QPSK,BPSK)
Antenna Type	: Internal antenna, Maximum Gain is 4.46dBi. (Antenna information is provided by applicant.)
Coaxial cable loss	Max coaxial cable loss:0.5dB (Cable lossvalue is provided by applicant.)
Software version	: V1.0.20
Hardware version	: V1.0
Intend use environment	: Residential, commercial and light industrial environment

2.2 Test mode

Transmitting mode Keep the EUT in transmitting with modulation. EUT was test with 99% duty cycle at its maximum power control level.

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

2.3 Test Facility

Shenzhen Alpha Product Testing Co., Ltd Building i, No.2, Lixin Road, Fuyong Street, Bao'an District, 518103, Shenzhen, Guangdong, China

June 21, 2018 File on Federal Communication Commission Registration Number: 293961

July 25, 2017 Certificated by IC Registration Number: 12135A

2.4 Description of Support Units

Accessories 1	: /
Manufacturer	: /
Model	: /
Ratings	: /

- 2.5 Deviation from Standards None.
- 2.6 Abnormalities from Standard Conditions None.
- 2.7 Other Information Requested by the Customer None.

2.8 Additional instructions

Software (Used for test) from client

Channel	Power level
Lowest	Default
Middle	Default
Highest	Default

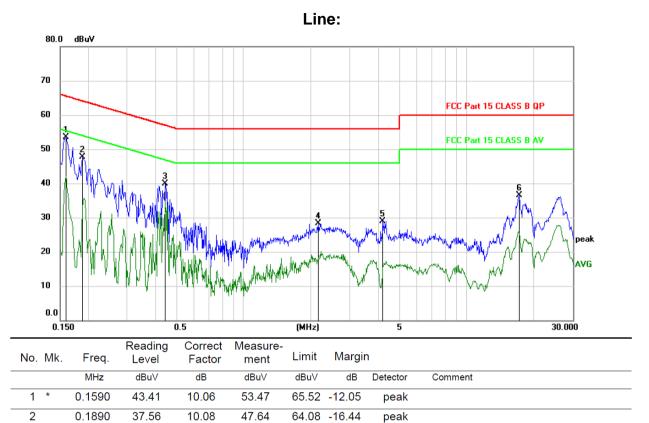
3 Test Instruments list

Equipment	Manufacture	Model No.	Firmware version	Serial No.	Last cal.	Cal Interval
9*6*6 anechoic chamber	CHENYU	9*6*6	/	N/A	2022.05.17	3Year
Spectrum analyzer	ROHDE&SCHWARZ	FSV40-N	2.3	102137	2023.08.16	1Year
Spectrum analyzer	Agilent	N9020A	A.14.16	MY499100060	2023.08.16	1Year
Receiver	ROHDE&SCHWARZ	ESR	2.28 SP1	1316.3003K03- 102082-Wa	2023.08.16	1Year
Receiver	R&S	ESCI	4.42 SP1	101165	2023.08.16	1Year
Bilog Antenna	Schwarzbeck	VULB 9168	/	VULB 9168#627	2023.08.28	1Year
Horn Antenna	SCHWARZBECK	BBHA 9120 D	/	2106	2023.08.19	1Year
Loop Antenna	SCHWARZBECK	FMZB 1519B	/	00128	2023.08.19	1Year
RF Cable	Resenberger	Cable 1	/	RE1	2023.08.16	1Year
RF Cable	Resenberger	Cable 2	/	RE2	2023.08.16	1Year
RF Cable	Resenberger	Cable 3	/	CE1	2023.08.16	1Year
Pre-amplifier	HP	HP8347A	/	2834A00455	2023.08.16	1Year
Pre-amplifier	Agilent	8449B	/	3008A02664	2023.08.16	1Year
L.I.S.N.#1	Schwarzbeck	NSLK8126	/	8126-466	2023.08.16	1Year
L.I.S.N.#2	ROHDE&SCHWARZ	ENV216	/	101043	2023.08.16	1Year
Horn Antenna	SCHWARZBECK	BBHA 9170	1	00946	2023.08.19	1Year
Preamplifier	SKET	LNPA_1840 -50	/	SK2018101801	2023.08.16	1 Year
Power Meter	Agilent	E9300A	/	MY41496628	2023.08.16	1 Year
Power Sensor	DARE	RPR3006W	/	15100041SNO91	2023.08.16	1 Year
Temp. & Humid. Chamber	Teelong	TL-HW408S	/	TL-20191205-01	2023.07.25	1 Year
Switching Mode Power Supply	JUNKE	JK12010S	/	20140927-6	2023.08.16	1 Year
Adjustable attenuator	MWRFtest	N/A	/	N/A	N/A	N/A
10dB Attenuator	Mini-Circuits	DC-6G	/	N/A	N/A	N/A

Software Information								
Test Item	Software Name	Manufacturer	Version					
RE	EZ-EMC	EZ	Alpha-3A1					
CE	EZ-EMC	EZ	Alpha-3A1					
RF-CE	MTS 8310	MW	V2.0.0.0					

4 Test results and Measurement Data

4.1 Antenna requirement:


Standard requirement:	nent: FCC Part15 C Section 15.203						
15.203 requirement:	15.203 requirement:						
	An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an						
so that a broken antenna ca	antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.						
E.U.T Antenna:	E.U.T Antenna:						
he antenna is Internal antenna. The best case gain of the antenna is 4.46dBi, for 5180~5240MHz.							

4.2 Conducted Emissions

Test Requirement:	FCC Part15 C Section 15.207					
Test Method:	ANSI C63.10:2013					
Test Frequency Range:	150KHz to 30MHz					
Class / Severity: Class B	/ Class B					
Receiver setup:	RBW=9KHz, VBW=30KHz					
Limit:		Limit (d	BuV)			
	Frequency range (MHz)	Quasi-peak	Average			
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
	* Decreases with the logarithm	n of the frequency.				
Test procedure	The E.U.T and simulators are connected to the main power through a line impedance stabilization network(L.I.S.N.). The provide a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refers to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement.					
Test setup:	Refere	nce Plane				
	Test table/Insulation pla		er — AC power			
	LISN: Line Impedence Stabilizatio Test table height=0.8m	n Network				
Test Instruments:	Refer to section 5.10 for detail	S				
Test mode:	Refer to section 5.3 for details					
Test results:	N/A					

Measurement Data

An initial pre-scan was performed on the line and neutral lines with peak detector. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

56.99 -17.17

56.00 -27.69

56.00 -27.13

60.00 -23.44

peak

peak

peak

peak

*:Maximum data	x:Over limit	!:over margin	〈Reference Only
Note: Measureme	nt=Reading Le [,]	/el+Correc Factor.	Factor=(LISN or ISN or PLC or Current Probe)Factor+Cable

3

4

5

6

0.4440

2.1629

4.2179

17.2227

29.62

17.88

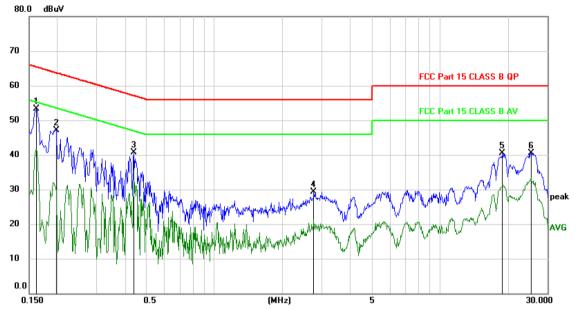
18.28

25.56

10.20

10.43

10.59


11.00

39.82

28.31

28.87

36.56

neutral.	Neutral:	
----------	----------	--

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margir	ı		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment	
1 *	0.1620	43.33	10.06	53.39	65.36	-11.97	peak		
2	0.1980	37.10	10.09	47.19	63.69	-16.50	peak		
3	0.4380	30.53	10.19	40.72	57.10	-16.38	peak		
4	2.7629	18.88	10.48	29.36	56.00	-26.64	peak		
5	18.9900	29.52	11.04	40.56	60.00	-19.44	peak		
6	25.4400	29.60	11.00	40.60	60.00	-19.40	peak		

*:Maximum data x:Over limit !:over margin

 $\langle \text{Reference Only} \;$

Note: Measurement=Reading Level+Correc Factor. Factor=(LISN or ISN or PLC or Current Probe)Factor+Cable

Test Requirement: FCC Part15 E Section 15.407 Test Method: KDB 789033 D02 General UNII Test Procedures New Rules v02r01 Limit: N/A Test setup: Spectrum Analyzer E.U.T Non-Conducted Table **Ground Reference Plane** According to KDB 789033 D02 General UNII Test Procedures New Rules Test procedure: v02r01. Test Instruments: Refer to section 5.10 for details Test mode: Refer to section 5.3 for details Pass Test results:

4.3 Emission Bandwidth and 99% Occupied Bandwidth

Measurement Data:

Band 1 (5150-5250 MHz):

-26dB Bandwidth

Condition	Mode	Frequency (MHz)	Antenna	-26 dB Bandwidth (MHz)
NVNT	ac80	5210	Ant1	79.44

	_	-26dB Band	lwidth NVNT	ac80 5210	MHz Ant1		_
Spectrum							▽
Ref Level	20.00 dBr	n Offset 11.50 d	B 👄 RBW 300 kHz				
Att	30 d	В SWT 50.6 µ	s 👄 🛛 VBW 🛛 1 MHz	Mode Auto F	FT		
SGL Count 1	00/100						
∎1Pk Max							
				M1[1]		-	8.05 dBm
10 dBm						5.21	5870 GHz
				M2[1]		-3	4.02 dBm
						5.17	0160 GHz
				M1		1 1	
-10 dBm			M PORMANNA MAN	M. Wunderson			
	ţ.	all and a property and		Owner any www	~mon when	with	
-20 dBm							
						11 1	
-30 dBm	MZ					- Ma	
						1 7 1	
40 dBm may						here	www.pm
wwwww.Juna							www.qww
-50 dBm —						+ +	
						1 1	
-60 dBm —						+ +	
						1 1	
-70 dBm —							
						1 1	
CF 5.21 GHz	2		1001 pt	s		Span 12	20.0 MHz
larker							
Type Ref	Trc	X-value	Y-value	Function	Eun	ction Result	
M1	1	5.21587 GHz	-8.05 dBm	- anotion	i un	otion nosuit	
M2	1	5.17016 GHz	-34.02 dBm				
M3	1	5.2496 GHz	-33.94 dBm				
) (

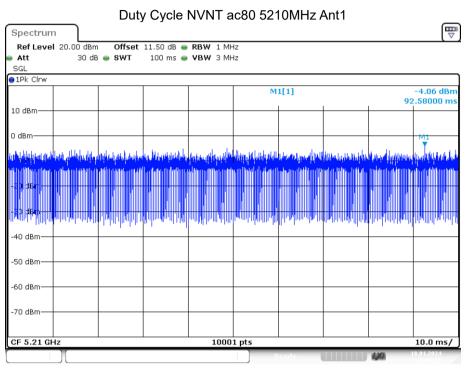
Date: 18.JAN.2024 15:09:03

Occupied Channel Bandwidth

		, i	Jecup	neu Chan	ner	Sanuwiu	.n		
C	Condition	Mode	Freq	uency (MH	IZ)	Antenna	99% (OBW (M	Hz)
	NVNT	ac80		5210		Ant1		75.165	
OBW NVNT ac80 5210MHz Ant1									
Spect	rum								
	evel 20.00 d	in offerst	1 50 40	RBW 1 MHz					(v
Att		dB SWT		SOW 1 MHZ	Mod	le Auto FFT			
	ount 100/100		11 25		1100	ie Autorri			
⊖1Pk M	ax								
						M1[1]			36.17 dBm
10 dBm									70000 GHz
						Occ Bw	1	75.16483	5165 MHz
0 dBm-		T1 ~ 00			~ ~	0.0			
-10 dBn		* m	ww		16 0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	my	T2	
-10 000	"	/						1 1	
-20 dBn	n							+	
-30 dBn	. /								
-30 aBh	"Λ <i>[</i>								
-40 dBh	mprv ·							hours	hav
-50 dBn	n								
-60 dBn									
00 00.									
-70 dBn	n						+		
CF 5.2	1 GHz			1001	pts			Span 1	20.0 MHz
Marker									
Туре		X-value		Y-value		unction	Fun	ction Result	
M1 T1	1	5.1722	27 GHz	-36.17 dBm -8.75 dBm		Occ Bw		75.16483	5165 MHz
T2	1	5.2474		-9.66 dBm					
						Ready		120	3.01.2024

Date: 18.JAN.2024 15:08:52

4.4 Peak Transmit Power


Test Requirement:	FCC Part15 E Section 15.407
Test Method:	KDB 789033 D02 General UNII Test Procedures New Rules v02r01
Limit:	For the band 5.15-5.25GHz, 5.25-5.35GHz, 5.47-5.725GHz, the maximum conducted output power over the frequency bands of operation shall not exceed 250mW. For the band 5.725-5.85GHz, the maximum conducted output power over the frequency bands of operation shall not exceed 1W.
Test setup:	Power Meter E.U.T Non-Conducted Table Ground Reference Plane
Test procedure:	 Measurement using an RF average power meter (i) Measurements may be performed using a wideband RF power meter with a thermocouple detector or equivalent if all of the conditions listed below are satisfied a) The EUT is configured to transmit continuously or to transmit with a constant duty cycle. b) At all times when the EUT is transmitting, it must be transmitting at its maximum power control level. c) The integration period of the power meter exceeds the repetition period of the transmitted signal by at least a factor of five. (ii) If the transmitter does not transmit continuously, measure the duty cycle, x, of the transmitter output signal as described in section B). (iii) Measure the average power of the transmitter. This measurement is an average over both the on and off periods of the transmitter. (iv) Adjust the measurement in dBm by adding 10 log(1/x) where x is the duty cycle (e.g., 10log(1/0.25) if the duty cycle is 25 percent).
Test Instruments:	Refer to section 5.10 for details
Test mode:	Refer to section 5.3 for details
Test results:	Pass

Measurement Data Band 1 (5150-5250 MHz)

Condition	Mode	Frequency	Antenna Conducted Power		EIRP	Limit	Verdict
		(MHz)		(dBm)	(dBm)	(dBm)	
NVNT	ac80	5210	Ant1	9.447	13.907	24	Pass

Duty Cycle

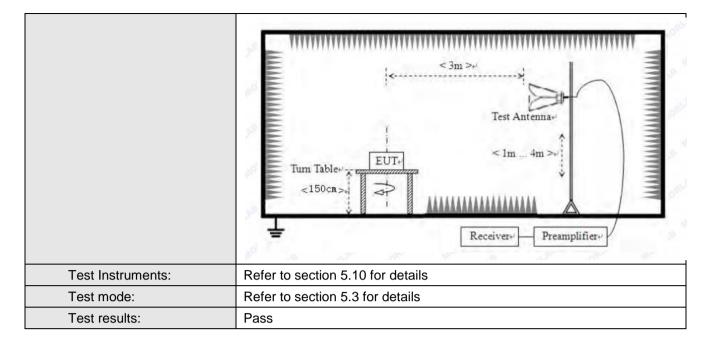
Condition	Mode	Frequency (MHz)	Frequency (MHz) Antenna	
NVNT	ac80	5210	Ant1	100

Date: 18.JAN.2024 15:08:22

Test Requirement: FCC Part15 E Section 15.407 KDB 789033 D02 General UNII Test Procedures New Rules v02r01 Test Method: ≤11.00dBm/MHz for 5150MHz-5250MHz, 5250-5350MHz and 5470-5725 Limit: MHz ≤30.00dBm/500KHz for 5725MHz-5850MHz Test setup: Spectrum Analyzer E.U.T a Non-Conducted Table **Ground Reference Plane** Create an average power spectrum for the EUT operating mode Test procedure: 1) being tested by following the instructions in section E)2) for measuring maximum conducted output power using a spectrum analyzer or EMI receiver: select the appropriate test method (SA-1, SA-2, SA-3, or alternatives to each) and apply it up to, but not including, the step labeled, "Compute power...". 2) Use the peak search function on the instrument to find the peak of the spectrum. Make the following adjustments to the peak value of the spectrum, if 3) applicable: a) If Method SA-2 or SA-2 Alternative was used, add 10 log(1/x), where x is the duty cycle, to the peak of the spectrum. b) If Method SA-3 Alternative was used and the linear mode was used in step E)2)g)(viii), add 1 dB to the final result to compensate for the difference between linear averaging and power averaging. 4) The result is the PSD. **Test Instruments:** Refer to section 5.10 for details Test mode: Refer to section 5.3 for details Pass Test results:

4.5 Power Spectral Density

Measurement Data Band 1 (5150-5250 MHz)


Condition	Mode	Frequency (MHz)	Antenna	Conducted PSD (dBm)	Limit (dBm)	Verdict
NVNT	ac80	5210	Ant1	-2.129	11	Pass

PSD I	NVNT ac80 5210MHz Ant1	
Spectrum		
	B 👄 RBW 1 MHz	
	ns 🖶 VBW 3 MHz 🛛 Mode Auto Sweep	
SGL Count 100/100		
	M1[1]	-2.13 dBm
		5.214560 GHz
10 dBm		
	M1	
0 dBm		
per user under	and and the second an	man
-10 dBm		
-20 dBm		
-30 dBm		Jacon and the second and the second
-30 dBm		
-40 dBm		
-40 0811		
-50 dBm		
-So ubin		
-60 dBm		
-70 dBm		
	1001	0
CF 5.21 GHz	1001 pts	Span 120.0 MHz
Л	Ready	

Date: 18.JAN.2024 15:09:23

4.6 Band Edge

Test Requirement:	FCC Part15 E Section 15.407 and 15.205					
· ·	ANSI C63.10:2013					
Test Method:						
Test site:	Measurement Distance: 3m (Semi-Anechoic Chamber)					
Receiver setup:	Frequency 30MHz-1GHz Above 1GHz	Detector Quasi-peak Peak AV	RBW 100KHz 1MHz 1MHz	VBW 300KHz 3MHz 3MHz	Remark Quasi-peak Value Peak Value Average Value	
Limit:	Frequen 30MHz-88 88MHz-216 216MHz-96 960MHz-1 Above 16 Undesirable emis (1) For transmitte outside of th dBm/MHz. (2) For transmitte outside of th dBm/MHz. D emissions in technical rec (including ind EIRP limit of (3) For transmitte outside of the dBm/MHz. a. The EUT was ground at a 3 determine the b. The EUT was antenna, white tower. c. The antenna ground to det horizontal an- the measurer d. For each sus case and the meters	cy I MHz 0 MHz 0 GHz 0	Limit (dBuV/ 40.0 43.8 46.0 54.0 54.0 54.0 68.2 in the 5.15 Hz band sh in the 5.25 Hz band sh in the 5.25 Hz band sh in the 5.25 GHz bad r operation alternatively in the 5.15 n the 5.47-5 GHz band sh e top of a ro or. The table he highest ra away from ed on the to ad from one aximum valu rizations of on, the EUT was tuned e was tuned in reading. as set to Pe	 (m @3m) (m motion of a state) (m motion of a state)	Remark Quasi-peak Value Quasi-peak Value Quasi-peak Value Quasi-peak Value Quasi-peak Value Peak Value Peak Value band: all emissions seed an EIRP of -27 band: all emissions seed an EIRP of -27 z band that generate meet all applicable 15-5.25 GHz band ut-of-band emission band: all emissions seed an EIRP of -27 z band that generate meet all applicable 15-5.25 GHz band ut-of-band emission band: all emissions seed an EIRP of -27 e 1.5 m above the d 360 degrees to ence-receiving able-height antenna ur meters above the eld strength. Both a are set to make ged to its worst rom 1 meter to 4 agrees to 360	
	f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi- peak or average method as specified and then reported in a data sheet.					
Test setup:	Above 1GHz					

Remark:

According to KDB 789033 D02 v02r01 section G) 1) (d), for For measurements above 1000 MHz @ 3m distance, the limit of field strength is computed as follows:

E[dBuV/m] = EIRP[dBm] + 95.2,

For example, if EIRP = -27dBm

E[dBuV/m] = -27 + 95.2 = 68.2dBuV/m.

Measurement Data: Band1

M	ode:	802.11a	c(HT80)	Frequ	iency:	5210	MHz	
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector	
н	5150.00	36.59	17.18	53.77	68.20	-14.43	PK	
V	5150.00	33.60	17.18	50.78	68.20	-17.42	PK	
		[[
M	ode:	802.11a	c(HT80)	Frequ	iency:	5210	MHz	
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector	
н	5150.00	27.79	17.18	44.97	54.00	-9.03	AV	
V	5150.00	26.68	17.18	43.86	54.00	-10.14	AV	
M	ode:	802.11a	c(HT80)	Frequ	iency:	5210MHz		
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector	
Н	5350.00	36.15	17.18	53.33	68.20	-14.87	PK	
V	5350.00	33.66	17.18	50.84	68.20	-17.36	PK	
Mode:		802.11a	c(HT80)	Frequ	iency:	5210	MHz	
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector	
Н	5350.00	26.21	17.18	43.39	54.00	-10.61	AV	
V	5350.00	24.54	17.18	41.72	54.00	-12.28	AV	

4.7 Radiated Emission

Test Method:	ANSI C63.10:20				FCC Part15 C Section 15.209 and 15.205				
	ANSI C63.10:2013								
Test Frequency Range:	30MHz to 40GHz								
Test site:	Measurement Distance: 3m (Semi-Anechoic Chamber)								
	Frequency	Detector	RBW	VBW	Value				
Receiver setup:	30MHz-	Quasi-pea		300KHz	Quasi-peak Value				
	1GHz	Quadr pour		0001412					
	Above 1GHz	Peak	1MHz	3MHz	Peak Value				
	Above TGHZ	AV	1MHz	3MHz	Average Value				
Limit:	Freque		Limit (dBuV		Remark				
	30MHz-8		40.0		Quasi-peak Value				
	88MHz-2		43.		Quasi-peak Value				
	216MHz-9		46.0		Quasi-peak Value				
	960MHz-	1GHz	54.0		Quasi-peak Value				
	Above 1	GHz	74.0 54.0		Peak Value				
Test Procedure:	Substitution me				Average Value				
	 emission levels The following ter 1>.Below 1GHz 1. The EUT wind GHz and meter camposition of the second seco	of the EUT. st procedure test procedure as placed on 1.5 meters for ber. The table the highest ra- vas set 3 mer which was more over. In a height is w to determine ontal and ver measuremen suspected err hen the ante d the rotable find the max- eceiver system 3 andwidth wi sion level of becified, then he EUT woul ve 10dB marg si-peak or ave heet. test procedure the as test set port on the tu- ed by the pro- nna shall be en to corresp test antenna	as below: Ire: the top of a ro r above 1GHz was rotated a adiation. ters away from ounted on the free raried from one tical polarization table was turned table on the EU the EUT in pea- testing could be reage method ure: tup graph above printable and in ovider. oriented initial ond to the free shall be conned witched on, if p	btating table) above the 360 degrees in the interfe top of a vari e meter to fin ons of the a IT was arrand to heights ed from 0 d Peak Detect fold Mode. ak mode was be stopped Otherwise e-tested ond as specified we,the EUT the position ly for vertica quency of the ected to the possible, with	e (0.8m for below ground at a 3 s to determine the rence-receiving iable-height our meters above he field strength. intenna are set to nged to its worst from 1 meter to 4 legrees to 360 Function and as 10dB lower than and the peak the emissions that e by one using d and then reported shall be placed at n closest to normal al polarization and he transmitter.The				

	 4. The test antenna shall be raised and lowered from 1m to 4m until a maximum signal level is detected by the measuring receiver. Then the turntable should be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver. 5. Repeat step 4 for test frequency with the test antenna polarized horizontally. 6. Remove the transmitter and replace it with a substitution antenna 7. Feed the substitution antenna at the transmitter end with a signal generator connected to the antenna by means of a nonradiating cable. With the antennas at both ends vertically polarized, and with the signal generator tuned to a particular test frequency, raise and lower the test antenna to obtain a maximum reading at the spectrum analyzer. Adjust the level of the signal generator output until the previously recorded maximum reading for this set of conditions is obtained. This should be done carefully repeating the adjustment of the test antenna and generator output. 8. Repeat step 7 with both antennas horizontally polarized for each test frequency. 9. Calculate power in dBm into a reference ideal half-wave dipole antenna by reducing the readings obtained in steps 7 and 8 by the power loss in the cable between the generator and the antenna, and further corrected for the gain of the substitution antenna used relative to an ideal half-wave dipole antenna by the following formula: EIRP(dBm) = Pg(dBm) – cable loss (dB) + antenna gain (dBi) where:
Test setup:	Pg is the generator output power into the substitution antenna. Below 1GHz

	Image: Signature Image: Signature
Test Instruments:	Refer to section 5.10 for details
Test mode:	Refer to section 5.3 for details
Test results:	Pass

Measurement Data:

Below 1GHz

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
33.11	47.88	11.25	0.59	30.08	29.64	40	-10.36	Vertical
55.10	41.18	11.93	0.81	29.96	23.96	40	-16.04	Vertical
120.30	46.37	9.4	1.36	29.57	27.56	43.5	-15.94	Vertical
172.36	43.47	8.5	1.7	29.31	24.36	43.5	-19.14	Vertical
440.53	37.59	16.29	3.05	29.41	27.52	46	-18.48	Vertical
860.59	33.49	21.83	4.69	29.14	30.87	46	-15.13	Vertical
64.43	35.66	8.73	0.9	29.89	15.40	40	-24.60	Horizontal
100.31	33.76	11.73	1.19	29.7	16.98	43.5	-26.52	Horizontal
269.94	45.69	12.53	2.22	29.79	30.65	46	-15.35	Horizontal
350.76	36.82	14.5	2.62	29.73	24.21	46	-21.79	Horizontal
627.37	35.72	19.43	3.83	29.27	29.71	46	-16.29	Horizontal
956.33	41.11	22.54	5.06	29.1	39.61	46	-6.39	Horizontal

			802.11a	c(HT40) 523	0MHz			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10420.27	67.27	11.25	14.62	32.65	60.49	74	-13.51	Vertical
15630.51	62.80	11.93	17.66	34.46	57.93	74	-16.07	Vertical
10420.45	65.12	9.4	14.62	32.65	56.49	74	-17.51	Horizontal
15630.55	68.24	8.5	17.66	34.46	59.94	74	-14.06	Horizontal
			802.11a	c(HT80) 521	0MHz			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10420.59	67.96	16.29	14.62	32.65	66.22	74	-7.78	Vertical
15630.98	54.75	21.83	17.66	34.46	59.78	74	-14.22	Vertical
10420.16	64.76	8.73	14.62	32.65	55.46	74	-18.54	Horizontal
15630.11	68.42	11.73	17.66	34.46	63.35	74	-10.65	Horizontal

Above 1GHz:

Note:

1. Level = Read Level + Antenna Factor+ Cable loss- Preamp Factor.

2. The test trace is same as the ambient noise (the test frequency range: 18GHz~40GHz), therefore no data appear in the report.

3. This limit applies for using average detector, if the test result on peak is lower than average limit, then average measurement needn't be performed.

4.8 Frequency stability

Test limit	Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.
Test results:	Pass

Measurement Data:				
Mode	Voltage	FHL	Deviation	
	(V)	(5180MHz)	(KHz)	
Band 1	DC 6.48V	5209.989	11	
(5150-5250	DC 7.2V	5209.989	11	
MHz)	DC 7.92V	5209.991	9	

Mode	Temperature (°C)	FHL (5180MHz)	Deviation (KHz)
Band 1 (5150-5250 MHz)	0 °C	5209.992	8
	+10℃	5209.986	14
	+20 ℃	5209.992	8
	+30 ℃	5209.987	13
	+40 ℃	5209.988	12
	+50 ℃	5209.991	9
	+60 ℃	5209.988	12
	+70 ℃	5209.991	9

-----END OF REPORT------