

RF REPORT

FCC ID: SY4-A02045

On Behalf of

Shanghai Huace Navigation Technology Ltd.

Geodetic GNSS Receiver

Model No.: i89

Prepared for Address	: Shanghai Huac : 577 Songying R	e Navigation Technology Ltd. toad, Qingpu District, 201706 Shanghai, China
Prepared By Address	: Shenzhen Alpha Building i, No Shenzhen, Gua	a Product Testing Co., Ltd .2, Lixin Road, Fuyong Street, Bao'an District, 518103, ngdong, China
	Report Number Date of Receipt Date of Test Date of Report Version Number	 A2306175-C01-R03 August 1, 2023 August 1, 2023 to August 30, 2023 August 30, 2023 V0

ALPHA's reports is using a digital certificate that is trusted on Adobe's official server. If there is no digital certificate or the digital certificate shows damaged in your report. Please do not accept the report. E-mail: service@a-lab.cn Tel: 4008-3008-95Website:http://www.a-lab.cn

TABLE OF CONTENTS

Description Page

1	Gene	ral Info	rmation	. 5
	1.1 1.2	Descri Test L	iption of Device (EUT) ab information	. 5 . 5
2	Sum	nary of	test	. 6
	2.1 2.2 2.3 2.4 2.5	Test S Summ Test M Measu Test E	tandard description: hary of test lode Description irement Uncertainty (95% confidence levels, k=2) quipment	. 6 . 6 . 7 . 7 . 8
3	Evalu	uation F	Results (Evaluation)	. 9
	3.1	Anten	na requirement	. 9
		3.1.1	Conclusion:	. 9
4	Radio	o Spect	rum Matter Test Results (RF)	10
	4.1	Condu	ucted Emission at AC power line	10
		4.1.1 4.1.2 4.1.3	E.U.T. Operation: Test Setup Diagram: Test Result:	10 10 11
	4.2	Maxim	num conducted output power	13
		4.2.1 4.2.2	E.U.T. Operation: Test Result:	14 15
	4.3	Power	spectral density	16
		4.3.1 4.3.2	E.U.T. Operation: Test Result:	17 18
	4.4	Emiss	ion bandwidth and occupied bandwidth	19
		4.4.1 4.4.2	E.U.T. Operation: Test Result:	20 21
	4.5	Band	edge emissions (Radiated)	22
		4.5.1 4.5.2 4.5.3	E.U.T. Operation: Test Setup Diagram: Test Result:	23 24 25
	4.6	Undes	sirable emission limits (below 1GHz)	26
		4.6.1 4.6.2 4.6.3	E.U.T. Operation: Test Setup Diagram: Test Result:	27 28 29
	4.7	Undes	irable emission limits (above 1GHz)	31
		4.7.1 4.7.2	E.U.T. Operation: Test Result:	32 33
5 6	Test EUT	Setup F Constru	Photos uctional Details (EUT Photos)	34 36

TEST REPORT DECLARATION

Applicant	:	Shanghai Huace Navigation Technology Ltd.				
Address	:	577 Songying Road, Qingpu District, 201706 Shanghai, China				
Manufacturer	:	Shanghai Huace Navigation Technology Ltd.				
Address	:	577 Songying Road, Qingpu District, 201706 Shanghai, China				
EUT Description :		Geodetic GNSS Receiver				
(A	()	Model No. : i89				

Measurement Standard Used:

(B)

FCC Rules and Regulations Part 15 Subpart E

Trademark

The device described above is tested by Shenzhen Alpha Product Testing Co., Ltd. to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The test results are contained in this test report and Shenzhen Alpha Product Testing Co., Ltd. is assumed full responsibility for the accuracy and completeness of test. Also, this report shows that the EUT is technically compliant with above listed standard(s) requirements.

This report applies to above tested sample only. This report shall not be reproduced in parts without written approval of Shenzhen Alpha Product Testing Co., Ltd.

Tested by (name + signature)

Yannis Wen Project Engineer

lonnis wen

Approved by (name + signature): Reak Yang Project Manager Pr. G

Date of issue: August 30, 2023

Revision History

Revision	Issue Date	Revisions	Revised By
V0	August 30, 2023	Initial released Issue	Yannis Wen

1 General Information

1.1 Description of Device (EUT)

Product Name	:	Geodetic GNSS Receiver
Model Number	:	i89
DIFF	:	N/A
Operation Frequency	:	802.11ac80: U-NII Band 1: 5210MHz;
Number of Channels	:	Single channel
Modulation Type	:	802.11ac: OFDM(BPSK, QPSK, 16QAM, 64QAM)
Antenna Type	•••	Internal antenna
Antenna Gain	:	0dBi (Max)

1.2 Test Lab information

Shenzhen Alpha Product Testing Co., Ltd Building i, No.2, Lixin Road, Fuyong Street, Bao'an District, 518103, Shenzhen, Guangdong, China

June 21, 2018 File on Federal Communication Commission Registration Number: 293961 Designation Number: CN1236

July 15, 2019 Certificated by IC Registration Number: CN0085

1.3 Accessories of Device (EUT)

EDACPOWER ELEC.	
-	

1.4 Tested Supporting System Details

No.	Description	Manufacturer	Model	Serial Number	Certification or SDOC	
1.	Notebook PC	Lenovo	ThinkPad E14	N/A	N/A	

1.5 Block Diagram of connection between EUT and simulators

Supporting	FUT
Supporting	EUT

The sample was placed 0.8m & 1.5m for the measurement below & above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

2 Summary of test

2.1 Test Standard description:

The tests were performed according to following standards:

FCC Part 15E: Unlicensed National Information Infrastructure Devices

2.2 Summary of test

Item	Requirement	Method	Result
Antenna requirement	Part 15.203		Pass
Conducted Emission at AC power line	FCC Part 15.207(a)	ANSI C63.10-2013 section 6.2	Pass
Maximum conducted output power	FCC Part 15.407(a)(1)(i) FCC Part 15.407(a)(1)(ii) FCC Part 15.407(a)(1)(iii) FCC Part 15.407(a)(1)(iv) FCC Part 15.407(a)(3)(i)	ANSI C63.10-2013, section 12.3	Pass
Power spectral density	FCC Part 15.407(a)(1)(i) FCC Part 15.407(a)(1)(ii) FCC Part 15.407(a)(1)(iii) FCC Part 15.407(a)(1)(iv) FCC Part 15.407(a)(3)(i)	ANSI C63.10-2013, section 12.5	Pass
Emission bandwidth and occupied bandwidth	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use. FCC Part 15.407(e)	ANSI C63.10-2013, section 6.9.3 & 12.4 KDB 789033 D02, Clause C.2	Pass
Band edge emissions (Radiated)	FCC Part 15.407(b)(1) FCC Part 15.407(b)(4) FCC Part 15.407(b)(10)	ANSI C63.10-2013, section 12.7.4, 12.7.5, 12.7.6	Pass
Undesirable emission limits (below 1GHz)	FCC Part 15.407(b)(9)	ANSI C63.10-2013, section 12.7.4, 12.7.5, 12.7.6	Pass
Undesirable emission limits (above 1GHz)	FCC Part 15.407(b)(1) FCC Part 15.407(b)(4) FCC Part 15.407(b)(10)	ANSI C63.10-2013, section 12.7.4, 12.7.5, 12.7.6	Pass

2.3 Test Mode Description

No	Title	Description
TM1	802.11ac80 mode	Keep the EUT works in continuously transmitting mode with 802.11ac80 modulation type. All data rates has been tested and found the data rate @ 433Mbps is the worst case. Only the data of worst case is recorded in the report.

2.4 Measurement Uncertainty (95% confidence levels, k=2)

Item	Uncertainty
Uncertainty for Power point Conducted Emissions Test	1.63dB
Uncertainty for Radiation Emission test in 3m chamber (below 30MHz)	3.5dB
Uncertainty for Radiation Emission test in 3m chamber	3.74dB(Polarize: V)
(30MHz to 1GHz)	3.76dB(Polarize: H)
Uncertainty for Radiation Emission test in 3m chamber	3.77dB(Polarize: V)
(1GHz to 25GHz)	3.80dB(Polarize: H)
Uncertainty for radio frequency	5.06×10 ⁻⁸ GHz
Uncertainty for conducted RF Power	0.40dB
Uncertainty for temperature	0.2°C
Uncertainty for humidity	1%
Uncertainty for DC and low frequency voltages	0.06%

Equipment	Manufacture	Model No.	Firmware version	Serial No.	Last cal.	Cal Interval
9*6*6 anechoic chamber	CHENYU	9*6*6	/	N/A	2022.05.17	3Year
Spectrum analyzer	ROHDE&SCHWARZ	FSV40-N	2.3	102137	2023.08.16	1Year
Spectrum analyzer	Agilent	N9020A	A.14.16	MY499100060	2023.08.16	1Year
Receiver	ROHDE&SCHWARZ	ESR	2.28 SP1	1316.3003K03- 102082-Wa	2023.08.16	1Year
Receiver	R&S	ESCI	4.42 SP1	101165	2023.08.16	1Year
Bilog Antenna	Schwarzbeck	VULB 9168	/	VULB 9168#627	2023.08.28	1Year
Horn Antenna	SCHWARZBECK	BBHA 9120 D	/	2106	2023.08.19	1Year
Loop Antenna	SCHWARZBECK	FMZB 1519B	/	00128	2023.08.19	1Year
RF Cable	Resenberger	Cable 1	/	RE1	2023.08.16	1Year
RF Cable	Resenberger	Cable 2	/	RE2	2023.08.16	1Year
RF Cable	Resenberger	Cable 3	/	CE1	2023.08.16	1Year
Pre-amplifier	HP	HP8347A	/	2834A00455	2023.08.16	1Year
Pre-amplifier	Agilent	8449B	/	3008A02664	2023.08.16	1Year
L.I.S.N.#1	Schwarzbeck	NSLK8126	/	8126-466	2023.08.16	1Year
L.I.S.N.#2	ROHDE&SCHWARZ	ENV216	/	101043	2023.08.16	1Year
Horn Antenna	SCHWARZBECK	BBHA 9170	/	00946	2023.08.19	1Year
Preamplifier	SKET	LNPA_1840 -50	/	SK2018101801	2023.08.16	1 Year
Power Meter	Agilent	E9300A	/	MY41496628	2023.08.16	1 Year
Power Sensor	DARE	RPR3006W	/	15100041SNO91	2023.08.16	1 Year
Temp. & Humid. Chamber	Teelong	TL-HW408S	/	TL-20191205-01	2023.07.25	1 Year
Switching Mode Power Supply	JUNKE	JK12010S	/	20140927-6	2023.08.16	1 Year
Adjustable attenuator	MWRFtest	N/A	/	N/A	N/A	N/A
10dB Attenuator	Mini-Circuits	DC-6G	/	N/A	N/A	N/A

2.5 Test Equipment

Software Information						
Test Item	Software Name	Version				
RE	EZ-EMC	farad	Alpha-3A1			
CE	EZ-EMC	farad	Alpha-3A1			
RF-CE	MTS 8310	MWRFtest	2.0.0.0			

3 Evaluation Results (Evaluation)

3.1 Antenna requirement

3.1.1 Conclusion:

The antenna is internal antenna. The best case gain of the antenna is 0dBi.

4 Radio Spectrum Matter Test Results (RF)

4.1 Conducted Emission at AC power line

Test Requirement:	FCC Part 15.207(a)					
Test Limit:	Frequency of emission (MHz) Conducted limit (dBµV)					
		Quasi-peak	Average			
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
	*Decreases with the logarithm of the	e frequency.				
Test Method:	Refer to ANSI C63.10-2013 section 6.2, standard test method for ac power-line conducted emissions from unlicensed wireless devices					

4.1.1 E.U.T. Operation:

Operating Environment:							
Temperature: 23.8 °C Humidity: 54.2 % Atmospheric Pressur				Atmospheric Pressure:	101.6 kPa		
Pre test mode:		TM1					
Final test mode: TM1							

4.1.2 Test Setup Diagram:

4.1.3 Test Result:

Line: Line / Band: U-NII Band 1 ac / BW: 80 / CH: L

No. Mk.	Freq.	Level	Factor	ment	Limit	Margir	n	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1890	40.82	9.83	50.65	64.08	-13.43	peak	
2	0.2519	38.49	9.83	48.32	61.69	-13.37	peak	
3 *	0.3930	35.65	9.83	45.48	58.00	-12.52	peak	
4	0.9959	32.24	9.84	42.08	56.00	-13.92	peak	
5	2.4119	25.78	9.77	35.55	56.00	-20.45	peak	
6	8.3940	26.11	9.95	36.06	60.00	-23.94	peak	

*:Maximum data x:Over limit !:over margin (Reference Only Note: Measurement=Reading Level+Correc Factor. Factor=(LISN or ISN or PLC or Current Probe)Factor+Cable

Line: Neutral / Band: U-NII Band 1 ac / BW: 80 / CH: L 80.0 dBuV

*:Maximum data x:Over limit !:over margin

(Reference Only

Note: Measurement=Reading Level+Correc Factor. Factor=(LISN or ISN or PLC or Current Probe)Factor+Cable

This Report only show the test plots of the worst case (U-NII-1).

4.2 Maximum conducted output power

Test Requirement:	FCC Part 15.407(a)(1)(i) FCC Part 15.407(a)(1)(ii) FCC Part 15.407(a)(1)(iii) FCC Part 15.407(a)(1)(iv) FCC Part 15.407(a)(3)(i)
Test Limit:	For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).
	For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
	For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W.
	23 dBi without any corresponding reduction in the maximum conducted output
	For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power is required for each 1 dB of antenna gain in excess of 23 dBi.
	Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to- point operations.
	For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi.
	maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
	For the band 5.725-5.850 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W.
	maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
	However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any
	corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collected transmitters transmitting the same
	information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high
	gain directional antennas are used exclusively for fixed, point-to-point operations.
Lest Method:	ANDI 603.10-2013, SECTION 12.3

Procedure:	Method SA-1
	a) Satishan to ancompass the entire 26 dB EBW or 0.00% OBW of the signal
	a) Set span to encompass the entire 20 of EDVV of 33% ODVV of the signal.
	c) Set VBW >= 3 MHz.
	d) Number of points in sweep >= [2 × span / RBW]. (This gives bin-to-bin spacing <= RBW / 2, so
	that narrowband signals are not lost between frequency bins.) e) Sweep time = auto.
	f) Detector = RMS (i.e. nower averaging) if available. Otherwise, use sample
	detector mode.
	g) If transmit duty cycle $< 98\%$, use a video trigger with the trigger level set to
	enable triggering
	only on full power pulses. The transmitter shall operate at maximum power control
	level for the
	entire duration of every sweep. If the EUT transmits continuously (i.e., with no
	OFF intervals) or
	at duty cycle >= 98%, and if each transmission is entirely at the maximum power control level,
	then the trigger shall be set to "free run."
	h) Trace average at least 100 traces in power averaging (rms) mode.
	i) Compute power by integrating the spectrum across the 26 dB EBW or 99%
	using the instrument's band power measurement function, with band limits set
	EDW or ODW hand addres. If the instrument does not have a hand newer function
	then sum the
	spectrum levels (in power unite) at 1 MHz intervals extending across the 26 dP
	BRW or 00%
	ORW of the spectrum

4.2.1 E.U.T. Operation:

Operating Environment:							
Temperature: 23.8 °C			Humidity:	54.2 %	Atmospheric Pressure:	101.6 kPa	
Pre test mode:		TM1					
Final test mode: TM1							

4.2.2 Test Result:

Band 1

Condition	Mode	Frequency (MHz)	Duty Cycle	Antenna	Conducted Power (dBm)	Duty Factor (dB)	Total Power (dBm)	Limit (dBm)	Verdict
			(70)			(uD)	(ubiii)		
NVNT	ac80	5210	100	Ant1	16.035	0	16.035	24	Pass

Duty Cycle NVNT ac80 5210MHz Ant1

Date: 16.AUG.2023 06:32:04

Test Requirement:	FCC Part 15.407(a)(1)(i) FCC Part 15.407(a)(1)(ii) FCC Part 15.407(a)(1)(iii) FCC Part 15.407(a)(1)(iv) FCC Part 15.407(a)(3)(i)
Test Limit:	For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
	For an indoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
	For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band.
	 Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point-to-point-to-point-to-point-to-point-to-point-to-point-to-point operations.
	For client devices in the 5.15-5.25 GHz band, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
	For the band 5.725-5.850 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems
Toot Mothod	point operations.
Proceaure:	a) Create an average power spectrum for the EUT operating mode being tested by following the instructions in 12.3.2 for measuring maximum conducted output power using a spectrum analyzer or EMI receiver: that is, select the appropriate test method (SA-1, SA-2,

4.3 Power spectral density

SA-3, or their
respective alternatives) and apply it up to, but not including, the step labeled, "Compute
power" (This procedure is required even if the maximum conducted output power
measurement was performed using the power meter method PM.) b) Use the peak search function on the instrument to find the peak of the spectrum.
 . Make the following adjustments to the peak value of the spectrum, if applicable: 1) If method SA-2 or SA-2A was used, then add [10 log (1 / D)], where D is the duty
cycle, to the peak of the spectrum. 2) If method SA-3A was used and the linear mode was used in step h) of 12.3.2.7, add
1 dB to the final result to compensate for the difference between linear averaging and
power averaging. d) The result is the PPSD.
e) The procedure in item a) through item c) requires the use of 1 MHz resolution bandwidth to
satisfy the 1 MHz measurement bandwidth specified by some regulatory authorities. This
requirement also permits use of resolution bandwidths less than 1 MHz "provided that the
measured power is integrated to show the total power over the measurement bandwidth" (i.e.,
1 MHz). If measurements are performed using a reduced resolution bandwidth and integrated
over 1 MHz bandwidth, the following adjustments to the procedures apply: 1) Set RBW >= 1 / T, where T is defined in 12.2 a). 2) Set VBW >= $[3 \times RBW]$.
3) Care shall be taken such that the measurements are performed during a period of continuous transmission or are corrected upward for duty cycle.

4.3.1 E.U.T. Operation: Onenatio

Operating Environment:							
Temperature: 23.8 °C			Humidity:	54.2 %	Atmospheric Pressure:	101.6 kPa	
Pre test mode:		TM1					
Final test mode: TM1							

4.3.2 Test Result:

Condition	Mode	Frequency (MHz)	Antenna	Max PSD (dBm)	Limit (dBm)	Verdict						
NVNT	ac80	5210	Ant1	1.146	11	Pass						
	PSD NVNT ac80 5210MHz Ant1											
ſ	Spectrum 🕎											
	Ref Level	20.00 dBm Offset 11.50 d	B 👄 RBW 1 MHz									
	Att	30 dB 👄 SWT 🛛 100 m	is 👄 VBW 3 MHz	Mode Auto Sweep								
	SGL Count 1	.00/100										
	⊖1Pk Max											
				M1[1]	1.1	5 dBm						
	10 dBm				3.20904	U GHZ						
			м									
	0 dBm			L								
		mandown	and have been a	and makes marked and and and and and and and and and an								
	-10 dBm											
	-20 dBm				- <u></u>							
	philosophiandlewoodland	what we			and the second	ويهاده والمساو						
	-30 dBm											
	-40 dBm											
	-50 dBm											
	-60 dBm											
	-70 dBm											
	CE 5.21 GHz	,	1001 r			MHz						
<u>r</u>	5. 0.21 012	-	1301	Deady (1111	16.08.20	23						
l		Л			ages -							

Date: 16.AUG.2023 06:33:02

4.4 Emission bandwidth and occupied bandwidth

	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use.
Test Requirement:	U-NII 3, U-NII 4: FCC Part 15.407(e)
Test Limit:	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use.
	U-NII 3, U-NII 4: Within the 5.725-5.850 GHz and 5.850-5.895 GHz bands, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.
Test Method:	ANSI C63.10-2013, section 6.9.3 & 12.4 KDB 789033 D02, Clause C.2
Procedure:	Emission bandwidth: a) Set RBW = approximately 1% of the emission bandwidth. b) Set the VBW > RBW. c) Detector = peak. d) Trace mode = max hold. e) Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the instrument. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.
	Occupied bandwidth: a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW
	b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW
	and VBW shall be approximately three times the RBW, unless otherwise specified by the
	applicable requirement. c) Set the reference level of the instrument as required, keeping the signal from exceeding the
	maximum input mixer level for linear operation. In general, the peak of the spectral envelope
	guidance is given
	d) Step a) through step c) might require iteration to adjust within the specified
	e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode
	shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be
	f) Use the 99% power bandwidth function of the instrument (if available) and report the measured
	g) If the instrument does not have a 99% power bandwidth function, then the trace data points are
	recovered and directly summed in linear power terms. The recovered amplitude data points,
	beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached;
	that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the
	total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is

the difference between these two frequencies.
h) The occupied bandwidth shall be reported by providing plot(s) of the measuring
display: the plot axes and the scale units per division shall be clearly labeled
Tabular data may
be reported in addition to the plot(s).
6 dB emission bandwidth:
a) Set RBW = 100 kHz.
b) Set the video bandwidth (VBW) ≥ 3 >= RBW.
c) Detector = Peak.
d) Trace mode = max hold.
e) Sweep = auto couple.
f) Allow the trace to stabilize.
g) Measure the maximum width of the emission that is constrained by the
frequencies associated with the two outermost amplitude points (upper and lower
frequencies) that are attenuated by 6 dB relative to the maximum level measured
in the fundamental emission.

4.4.1 E.U.T. Operation:

Operating Environment:								
Temperature:	Temperature: 23.8 °C		Humidity:	54.2 %	Atmospheric Pressure:	101.6 kPa		
Pre test mode:		TM1						
Final test mode: TM1								

4.4.2 Test Result:

Band 1 (5210 MHz)

-26dB Bar	ndwidth					
Condition	Mode	Frequency	Antenna	-26 dB Bandwidth	Limit -26 dB Bandwidth	Verdict
		(MHz)		(MHz)	(MHz)	
NVNT	ac80	5210	Ant1	112.8	0.5	Pass

		-26dB Ba	Indwidth	NVNT	ac80	5210M	Hz Ant1		
Spectrun	n								₽
Ref Leve	L 20.00	dBm Offset 11.5	50 dB 👄 RB	W 300 kHz					
Att	3	0 dB SWT 50	.6 µs 👄 VB	W 1 MHz	Mode	Auto FFT			
SGL Count	100/10	0							
⊖1Pk Max									
					M	1[1]		-8.	.77 dBm
10 48								5.214	920 GHz
10 dBm-					M	2[1]		-34.	.00 dBm
0 dBm								5.150	840 GHz
0 ubiii					M1				
-10 dBm		s i s Jelsko	canadala adaran	PR AST IN STATE	Martin Ar	tal Atra			
		10 mar and and	Darmed diversion of	, v. manul has	2 and blocks	myroww	mon month	~	
-20 dBm								1	
🗠 dBm —	ы. <u>М</u> .							h	мэ
mann	wwww	~						manulan	Marin
-40 dBm—									· · · · · · · ·
-50 dBm									
-60 dBm									
70 48-									
-70 aBm									
CF 5.21 G	Hz			1001 pt	s			Span 120	.0 MHz
Marker									
Type Re	fTrc	X-value	Y	-value	Func	ion	Funct	ion Result	
M1	1	5.21492	GHz	-8.77 dBm					
M2	1	5.15084	GHz -	-34.00 dBm					
M3	1	5.26364	GHz -	34.46 dBm					
						eady		16.08	.2023

Date: 16.AUG.2023 06:32:43

Occupied Channel Bandwidth

	Cond	dition	Mode	Frequ	uency (MH	lz)	Antenna	a 99%	OBW (MHz)	
	NV	'NT	ac80		5210		Ant1		75.285	
_			С	BW N	VNT ac80	521	0MHz A	nt1		_
Spe	ectrum									Ē
Re	flevel	20.00 dBm	Offset 1	1.50 dB 🧉	RBW 1 MHz					UV.
Ati	t	30 dE	SWT	17 µs	VBW 3 MHz	Mode	e Auto FFT			
SGL	. Count 1	.00/100								
😑 1 Pk	с Мах									
							M1[1]		-32.47	dBm
10 d	Bm—								5.270000) GHz
							OCC BW	1	/3.204/13203	
0 dB	m			_					T.0.	
-10 (X	mm	- mar	many	100	many h	mm	× X	
10 .		ľ	r' I		1				r\	
-20 0	dBm ──									
		·							had	
∿eb∿	aBu Art	r ~							2 . A March	$\sqrt{3}$
-40 (dBm				_					
-50 c	dBm —									
60.	10									
-60 (
-70 0	dBm—									
CF 5	5.21 GHz	z			1001	pts			Span 120.0	MHz
Mark	er									
Тур	e Ref	Trc	X-value		Y-value	Fu	Inction	Fun	ction Result	
N N	/1	1	5.2	27 GHz	-32.47 dBn	1	0 D		75 004745005	
<u> </u>	T2	1	5.17223	2 GHz	-9.74 dBn -9.29 dBn	1	OCC BW		75.284715285	MHZ
_) <u>*</u>	0.27102		5125 001	• 1			15.08.202	
		Л							i juli	

Date: 16.AUG.2023 06:32:32

4.5 Band edge emissions (Radiated)

Test Requirement:	FCC Part 15.407(b)(1) FCC Part 15.407(b)(4)								
Toot Limit	FCC Part 15.407(b)(10)								
lest Limit.	For transmitters operating 5.15-5.35 GHz band sha	ng in the 5.15-5.25 GF all not exceed an e.i.r.	Iz band: All em o. of −27 dBm/l	issions outside of the MHz.					
	For transmitters operation	ng solely in the 5.725-	5.850 GHz ban	d:					
	All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above								
	or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or								
	linearly to a level of 15 f	6 dBm/MHz at 5 MHz a	above or below	the band edge increasing					
	from 5 MHz above or be dBm/MHz at the band e	elow the band edge inc	creasing linearly	y to a level of 27					
	MHz	MHz	MHz	GHz					
	0.090-0.110	16.42-16.423	399.9-410	4.5-5.15					
	¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46					
	2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75					
	4.125-4.128	25.5-25.67	1300-1427	8.025-8.5					
	4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2					
	4.20725-4.20775	73-74.6	1645.5- 1646.5	9.3-9.5					
	6.215-6.218	74.8-75.2	1660-1710	10.6-12.7					
	6.26775-6.26825	108-121.94	1718.8- 1722.2	13.25-13.4					
	6.31175-6.31225	123-138	2200-2300	14.47-14.5					
	8.291-8.294	149.9-150.05	2310-2390	15.35-16.2					
	8.362-8.366	156.52475- 156.52525	2483.5-2500	17.7-21.4					
	8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12					
	8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0					
	12.29-12.293	167.72-173.2	3332-3339	31.2-31.8					
	12.51975-12.52025	240-285	3345.8-3358	36.43-36.5					
	12.57675-12.57725	322-335.4	3600-4400	(2)					
	13.36-13.41								
	¹ Until February 1, 1999, ² Above 38.6 The field strength of em exceed the limits shown MHz, compliance with th measurement instrumer 1000 MHz, compliance based on the average v 15.35apply to these me	this restricted band sl issions appearing with in § 15.209. At freque he limits in § 15.209sh ntation employing a Cl with the emission limit alue of the measured asurements.	nall be 0.490-0. in these freque encies equal to all be demonst SPR quasi-pea s in § 15.209sh emissions. The	510 MHz. ency bands shall not or less than 1000 rated using k detector. Above all be demonstrated provisions in §					
	Except as provided else radiator shall not excee	where in this subpart, d the field strength leve	the emissions els specified in	from an intentional the following table:					
	Frequency (MHz) Field strength Measurement								
	(microvolts/meter) distance								
				(meters)					
	0.009-0.490	2400/F(kHz)		300					
	0.490-1.705	24000/F(kHz)		30					
	1.705-30.0	30		30					
	30-88	100 **		3					

	88-216	150 **	3	
	216-960	200 **	3	
	Above 960	500	3	
Test Method:	ANSI C63.10-2013, section	12.7.4, 12.7.5, 12.7.6		
Procedure:	Above 1GHz: a. For above 1GHz, the EU above the ground at a 3 me degrees to determine the po b. The EUT was set 3 meter was mounted on the top of a c. The antenna height is var determine the maximum val polarizations of the antenna d. For each suspected emiss the antenna was tuned to he of below 30MHz, the antenna table was turned from 0 deg e. The test-receiver system Bandwidth with Maximum H f. If the emission level of the specified, then testing could reported. Otherwise the emit tested one by one using pea- in a data sheet. g. Test the EUT in the lowes h. The radiation measureme Transmitting mode, and four i. Repeat above procedures Remark: 1. Level= Read Level+ Cabl 2. Scan from 18GHz to 40G points marked on above plo testing, so only above points emissions from the radiator need not be reported. 3. As shown in this section, are based on average limits shall not exceed the maximum than 20 dB under any condir level is lower than the averar report. 4. The disturbance above 18 highest point could be found displayed.	T was placed on the top of a rota ter fully-anechoic chamber. The position of the highest radiation. It is away from the interference-rece a variable-height antenna tower. ied from one meter to four meter ue of the field strength. Both hor are set to make the measurement sion, the EUT was arranged to it eights from 1 meter to 4 meters (a was tuned to heights 1 meter) rees to 360 degrees to find the r was set to Peak Detect Function old Mode. EUT in peak mode was 10dB lo be stopped and the peak values ssions that did not have 10dB m ak or average method as specifie at channel, the middle channel, the ents are performed in X, Y, Z axis and the X axis positioning which it until all frequencies measured v e Loss+ Antenna Factor- Pream Hz, the disturbance above 18GH ts are the highest emissions cou s had been displayed. The ampli which are attenuated more than for frequencies above 1GHz, the . However, the peak field strengt um permitted average limits spec- tion of modulation. For the emissi- ge limit, only the peak measurer BGHz were very low and the hard when testing, so only the above	ting table 1.5 meters table was rotated 36 ceiving antenna, which is above the ground izontal and vertical ent. s worst case and the for the test frequence and the rotatable maximum reading. and Specified ower than the limit s of the EUT would be re- ed and then reported the Highest channel. s positioning for t is the worst case. vas complete. p Factor 1z was very low. The ld be found when tude of spurious 20dB below the limit e field strength limits th of any emission cified above by more sions whose peak ment is shown in the monics were the e harmonics had bee	silo ch to en y be t it

4.5.1 E.U.T. Operation:

Operating Environment:								
Temperature: 23.8 °C		С	Humidity:	54.2 %	Atmospheric Pressure:	101.6 kPa		
Pre test mode: TM								
Final test mode: TM1								

4.5.2 Test Setup Diagram:

Report No.: A2306175-C01-R03

4.5.3 Test Result: Band1 Band1

Мо	de:	802.1	1ac80	Frequ	iency:	5210	MHz
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector
Н	5150.00	33.17	17.18	50.35	68.20	-17.85	PK
V	5150.00	34.85	17.18	52.03	68.20	-16.17	PK
Мо	de:	802.11ac80		Frequency:		5210MHz	
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector
Н	5150.00	23.49	17.18	40.67	54.00	-13.33	AV
V	5150.00	24.04	17.18	41.22	54.00	-12.78	AV

Мо	de:	802.1	1ac80	Frequency:		5210MHz	
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector
Н	5350.00	37.86	17.18	55.04	68.20	-13.16	PK
V	5350.00	36.15	17.18	53.33	68.20	-14.87	PK
Мо	de:	802.11ac80		Frequency:		5210MHz	
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector
Н	5350.00	25.76	17.18	42.94	54.00	-11.06	AV
V	5350.00	23.63	17.18	40.81	54.00	-13.19	AV

4.6 Undesirable emission limits (below 1GHz)

Test Requirement:	FCC Part 15.407(b)(9)					
Test Limit:	Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in § 15.209.					
	Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:					
	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance			
			(meters)			
	0.009-0.490	2400/F(kHz)	300			
	0.490-1.705	24000/F(kHz)	30			
	1.705-30.0	30	30			
	30-88	100 **	3			
	88-216	150 **	3			
	216-960	200 **	3			
			3			
Test Method:	ANSI C63.10-2013, section	12.7.4, 12.7.5, 12.7.6				
Procedure:	0.490-1.705 24000/F(kHz) 30 1.705-30.0 30 30 30-88 100 ** 3 88-216 150 ** 3 216-960 200 ** 3 Above 960 500 3 ANSI C63.10-2013, section 12.7.4, 12.7.5, 12.7.6 Eleow 1GHz: a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 me above the ground at a 3 meter semi-anechoic chamber. The table was rotate degrees to determine the position of the highest radiation. b. The EUT was set 3 or 10 meters away from the interference-receiving ante which was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meetro to four meters above the ground etermine the maximum value of the field strength. Both horizontal and vertice polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading e. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. If the emission level of the EUT in peak mode was 10dB lower than the limi specified, then testing could be stopped and the peak values of the EUT wou reported. Otherwise the emissions that did not have 10dB margin would be r trasted one by one using quasi-peak method as specified and then reported it da					

 determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be retested one by one using peak or average method as specified and then reported in a data sheet. g. Test the EUT in the lowest channel, the middle channel, the Highest channel. h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
 Remark: 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor 2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported. 3. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report. 4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

4.6.1 E.U.T. Operation:

г

Operating Environment:								
Temperature:	23.8 °C		Humidity:	54.2 %	Atmospheric Pressure:	101.6 kPa		
Pre test mode:		TM1						
Final test mode: TM1								

4.6.2 Test Setup Diagram:

4.6.3 Test Result:

3

4 * 5

6

152.7712

207.7529

361.6716

716.8496

43.50

43.50

46.00

46.00

-13.09

-3.05

-19.72

-12.01

peak

QP

peak

peak

Polarization: Horizontal / Band: U-NII Band 1 ac / BW: 80 / CH: L CH: L

Note:1. *:Maximum data; x:Over limit; !:over margin.

15.36

29.42

10.82

12.02

15.05

11.03

15.46

21.97

30.41

40.45

26.28

33.99

2.Measurement=Reading Level+Correct Factor; Correct Factor=Antenna Factor+Cable Loss.

Polarization: Vertical / Band: U-NII Band 1 ac / BW: 80 / CH: L CH: L

Note:1. *:Maximum data; x:Over limit; !:over margin. 2.Measurement=Reading Level+Correct Factor; Correct Factor=Antenna Factor+Cable Loss.

Note:

1. The test trace is same as the ambient noise (the test frequency range: 18GHz~40GHz), therefore no data appear in the report.

2. This limit applies for using average detector, if the test result on peak is lower than average limit, then average measurement needn't be performed.

3. This Report only show the test plots of the worst case (U-NII-1).

4.7 Undesirable emission limits (above 1GHz)

Test Requirement:	FCC Part 15.407(b)(1) FCC Part 15.407(b)(4) FCC Part 15.407(b)(10)						
Test Limit:	For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.							
	For transmitters operating solely in the 5.725-5.850 GHz band: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge							
	MHz	MHz	MHz	GHz				
	0.090-0.110	16 42-16 423	399 9-410	4 5-5 15				
	10.495-0.505	16 69475-16 69525	608-614	5 35-5 46				
	2 1735-2 1905	16 80425-16 80475	960-1240	7 25-7 75				
	4 125-4 128	25 5-25 67	1300-1427	8.025-8.5				
	A 17725-A 17775	37 5-38 25	1/35-1626 5	0.020 0.0				
	4 20725-4 20775	73-74 6	1645 5-	0.0 0.2				
	4.20725-4.20775	75-74.0	1646.5	3.3-3.3				
	6.215-6.218	74.8-75.2	1660-1710	10.6-12.7				
	6.26775-6.26825	108-121.94	1718.8- 1722.2	13.25-13.4				
	6.31175-6.31225	123-138	2200-2300	14.47-14.5				
	8.291-8.294	149.9-150.05	2310-2390	15.35-16.2				
	8.362-8.366	156.52475- 156.52525	2483.5-2500	17.7-21.4				
	8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12				
	8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0				
	12.29-12.293	167.72-173.2	3332-3339	31.2-31.8				
	12.51975-12.52025	240-285	3345.8-3358	36.43-36.5				
	12.57675-12.57725	322-335.4	3600-4400	(2)				
	13.36-13.41							
	¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. ² Above 38.6 The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in § 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in § 15.209shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209shall be demonstrated based on the average value of the measured emissions. The provisions in § 15.25 apply to these measurements							
	Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:							
		(microvolts/mete	(microvolts/meter)					
	0.009-0.490	2400/F(kHz)		300				
	0.490-1.705	24000/F(kHz)		30				
	1.705-30.0	30		30				
	30-88	100 **		3				
	88-216	150 **		3				

	216-960	200 **	3	1			
	Above 960	500	3	-			
Test Method:	ANSI C63.10-2013, section 12.7.4, 12.7.5, 12.7.6						
Procedure:	216-960 200 ** 3 ANSI C63.10-2013, section 12.7.4, 12.7.5, 12.7.6 ANSI C63.10-2013, section 12.7.4, 12.7.5, 12.7.6 Above 1GHz: a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 36 degrees to determine the position of the highest radiation. b. The EUT was set 3 meters away from the interference-receiving antenna, whi was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the ground determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and the the antenna was tuned to heights from 1 meter to 4 meters (for the test frequence of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be retested one by one using peak or average method as specified and then reported in a data sheet. g. Test the EUT in the lowest channel, the middle channel, the Highest channel. h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning whic						

4.7.1 E.U.T. Operation:

Operating Environment:							
Temperature:	23.8 °C		Humidity:	54.2 %	Atmospheric Pressure:	101.6 kPa	
Pre test mode:		TM1					
Final test mode: TM1							

4.7.2 Test Result: Above 1GHz:

Frequency	Read	Antenna	Cable	Preamp	l evel	l imit l ine	Over	
(MHz) Lev	Level	Factor	Loss	Factor	(dBuV/m)	(dBuV/m)	Limit	polarization
	(dBuV)	(dB/m)	(dB)	(dB)			(dB)	
10420.10	26.20	39.67	14.62	32.65	47.84	74.00	-26.16	Vertical
15630.11	30.42	38.60	17.66	34.46	52.22	74.00	-21.78	Vertical
10420.10	30.16	39.67	14.62	32.65	51.80	74.00	-22.20	Horizontal
15630.11	32.02	38.60	17.66	34.46	53.82	74.00	-20.18	Horizontal

802.11ac80 5210MHz

Note:

1. Level = Read Level + Antenna Factor+ Cable loss- Preamp Factor.

2. The test trace is same as the ambient noise (the test frequency range: 18GHz~40GHz), therefore no data appear in the report.

3. This limit applies for using average detector, if the test result on peak is lower than average limit, then average measurement needn't be performed.

4. This Report only show the test plots of the worst case (U-NII-1).

5 Test Setup Photos

Conducted Emission at AC power line

Band edge emissions (Radiated) Undesirable emission limits (above 1GHz)

Undesirable emission limits (below 1GHz)

6 EUT Constructional Details (EUT Photos)

Please refer to the report A2306175-C01-R02. ----- END OF REPORT------