

FCC TEST REPORT FCC ID: SY4-A02026

On Behalf of

Shanghai Huace Navigation Technology LTD.

Geodetic GNSS Receiver

Model No.: i50

Prepared for : Shanghai Huace Navigation Technology LTD.

Address : 599 Gaojing Road, Building D, Shanghai 201702, China

Prepared By : Shenzhen Alpha Product Testing Co., Ltd.

Address : Building i, No.2, Lixin Road, Fuyong Street, Bao'an District, 518103,

Shenzhen, Guangdong, China

Report Number : A2006165-C01-R02

Date of Receipt : June 18, 2020

Date of Test : June 18, 2020 – July 13, 2020

Date of Report : July 14, 2020

Version Number : V0

TABLE OF CONTENTS

De	escription	Page
1.	Summary Of Standards And Results	6
	1.1. Description of Standards and Results	6
2.	General Information	
	2.1. Description of Device (EUT)	
	2.2. Accessories of Device (EUT)	
	2.3. Tested Supporting System Details	
	2.4. Block Diagram of connection between EUT and simulators	8
	2.5. Test Mode Description	
	2.6. Test Conditions	
	2.7. Test Facility	9
	2.8. Measurement Uncertainty	9
	2.9. Test Equipment List	10
3.	Spurious Emission	11
	3.1. Test Limits	11
	3.2. Test Procedure	11
	3.3. Test Setup	
	3.4. Test Results	13
4.	Power Line Conducted Emission	16
	4.1. Test Limits	_
	4.2. Test Procedure	
	4.3. Test Setup	16
	4.4. Test Results	
5.	Conducted Maximum Output Power	18
	5.1. Test limits	_
	5.2. Test Procedure	_
	5.3. Test Setup	
	5.4. Test Results	_
6.	ı v	
	6.1. Test limits	-
	6.2. Test Procedure	
	6.3. Test Setup	
	6.4. Test Results	
7.		
	7.1. Test limits	
	7.2. Test Procedure	
	7.3. Test Setup	
_	7.4. Test Results	
8.		
	8.1. Test limits	
	8.2. Test Procedure	
	8.3. Test Setup	
•	8.4. Test Results	
9.		
	9.1. Standard Requirement	
	9.2. Antenna Connected Construction	30

	9.3.	Results	30
10.	Test S	Setup Photo	31
11.	Photo	ographs Of The EUT	31

TEST REPORT DECLARATION

Applicant : Shanghai Huace Navigation Technology LTD.

Address : 599 Gaojing Road, Building D, Shanghai 201702, China

Manufacturer : Shanghai Huace Navigation Technology LTD.

Address : 599 Gaojing Road, Building D, Shanghai 201702, China

EUT Description : Geodetic GNSS Receiver

(A) Model No. : i50

(B) Trademark : **CHCNOV**

Measurement Standard Used:

FCC Rules and Regulations Part 15 Subpart C Section 15.247 ANSI C63.10-2013

The device described above is tested by Shenzhen Alpha Product Testing Co., Ltd. to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart C limits both conducted and radiated emissions. The test results are contained in this test report and Shenzhen Alpha Product Testing Co., Ltd. is assumed of full responsibility for the accuracy and completeness of these tests.

After the test, our opinion is that EUT compliance with the requirement of the above standards.

This report applies to above tested sample only. This report shall not be reproduced in parts without written approval of Shenzhen Alpha Product Testing Co., Ltd.

Tested by (name + signature)...... Reak Yang
Project Engineer

Approved by (name + signature)...... Simple Guan
Project Manager

Date of issue...... July 14, 2020

Revision History

Revision Issue Date		Revisions	Revised By
V0	July 14, 2020	Initial released Issue	Simple Guan

1. Summary Of Standards And Results

1.1.Description of Standards and Results

The EUT have been tested according to the applicable standards as referenced below:

Test Item	Standards Paragraph	Result		
Conducted Emission	FCC PART 15: 15.207 ANSI C63.10 :2013	P		
6dB Bandwidth	FCC PART 15: 15.247 (a)(2) ANSI C63.10 :2013	P		
Output Power	FCC PART 15: 15.247 (b)(3) ANSI C63.10:2013	P		
Radiated Spurious Emission	FCC PART 15: 15.247 (c) ANSI C63.10 :2013	P		
Conducted Spurious & Band Edge Emission	FCC PART 15: 15.247 (d) ANSI C63.10:2013	P		
Power Spectral Density	FCC PART 15: 15.247 (e) ANSI C63.10:2013	P		
Radiated Band Edge Emission	FCC PART 15: 15.205 ANSI C63.10 :2013	P		
Antenna Requirement	FCC PART 15: 15.203 ANSI C63.10 :2013	P		
Note:	1. P is an abbreviation for Pass.			
2. F is an abbreviation for Fail.				
3. N/A is an abbreviation for Not Applicable.				

Report No.: A2006165-C01-R02

2. General Information

2.1.Description of Device (EUT)

EUT Description : Geodetic GNSS Receiver

Trademark : CHCNOV

Model Number : 150 DIFF. : N/A

Test Voltage DC 12-36V, 2A (for DC port)

or DC 7.4V, 3400mAh (for replaceable lithium battery)

BT

Radio Technology : Bluetooth (LE)

Operation : 2402-2480MHz

Channel No. : 40 Channels

Modulation type : GFSK

Antenna Type : Composite antenna, Maximum Gain is 1dBi

Software version : V1.0

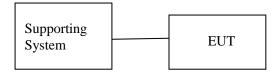
Hardware version : i50_MAIN_V2.1

2.2.Accessories of Device (EUT)

Accessories 1 : /

Manufacturer : /

Model : /


Input : /

Output : /

2.3.Tested Supporting System Details

No.	Description Manufacturer		Description Manufacturer Model		Certification or DOC	
/	/	/	/	/	/	

2.4.Block Diagram of connection between EUT and simulators

2.5.Test Mode Description

Tested mode, channel, and data rate information						
Mode	Channel	Frequency (MHz)				
	Low :CH1	2402				
GFSK	Middle: CH20	2440				
	High: CH40	2480				

2.6.Test Conditions

Items	Required	Actual	
Temperature range:	15-35°C	24°C	
Humidity range:	25-75%	56%	
Pressure range:	86-106kPa	98kPa	

2.7.Test Facility

Shenzhen Alpha Product Testing Co., Ltd Building i, No.2, Lixin Road, Fuyong Street, Bao'an District, 518103, Shenzhen, Guangdong, China

June 21, 2018 File on Federal Communication Commission

Registration Number: 293961 Designation Number: CN1236

July 15, 2019 Certificated by IC Registration Number: CN0085

2.8. Measurement Uncertainty

(95% confidence levels, k=2)

Item	Uncertainty
Uncertainty for Power point Conducted Emissions Test	2.74dB
Uncertainty for Radiation Emission test in 3m chamber	2.13 dB(Polarize: V)
(below 30MHz)	2.57dB(Polarize: H)
Uncertainty for Radiation Emission test in 3m chamber	3.77dB(Polarize: V)
(30MHz to 1GHz)	3.80dB(Polarize: H)
Uncertainty for Radiation Emission test in 3m chamber	4.16dB(Polarize: H)
(1GHz to 25GHz)	4.13dB(Polarize: V)
Uncertainty for radio frequency	5.4×10-8
Uncertainty for conducted RF Power	0.37dB
Uncertainty for temperature	0.2°C
Uncertainty for humidity	1%
Uncertainty for DC and low frequency voltages	0.06%

2.9.Test Equipment List

Equipment	Manufacture	Model No.	Serial No.	Last cal.	Cal Interval
9*6*6 anechoic chamber	CHENYU	9*6*6	N/A	2019.09.06	1Year
Spectrum analyzer	ROHDE&SCHW ARZ	FSU	1166.1660.26	2019.09.06	1Year
Spectrum analyzer	Agilent	N9020A	MY499100060	2019.09.05	1Year
Receiver	ROHDE&SCHW ARZ	ESR	1316.3003K03-102082- Wa	2019.09.06	1Year
Receiver	R&S	ESCI	101165	2019.09.05	1Year
Bilog Antenna	Schwarzbeck	VULB 9168	VULB9168-438	2020.04.12	2Year
Horn Antenna	SCHWARZBEC K	BBHA 9120 D	BBHA 9120 D(1201)	2020.04.12	2Year
Active Loop Antenna	SCHWARZBEC K	FMZB 1519B	00059	2018.09.26	2Year
Cable	Resenberger	N/A	No.1	2019.09.05	1Year
Cable	Resenberger	N/A	No.2	2019.09.05	1Year
Cable Resenberger N/A		N/A	No.3	2019.09.05	1Year
Pre-amplifier HP HI		HP8347A	2834A00455	2019.09.05	1Year
Pre-amplifier	Agilent	8449B	3008A02664	2019.09.05	1Year
L.I.S.N.#1	Schwarzbeck	NSLK8126	8126466	2019.09.05	1Year
L.I.S.N.#2	ROHDE&SCHW ARZ	ENV216	101043	2019.09.05	1 Year
20db Attenuator	ICPROBING	IATS1	82347	2019.09.20	1 Year
Horn Antenna	A-INFOMW	LB-180100-KF	J211020657	2019.09.20	2 Year
Preamplifier	SKET	LNPA_1840-50	SK2018101801	2019.09.05	1 Year
Power Meter	Agilent	E9300A	MY41496625	2019.09.06	1 Year
Temp. & Humid. Chamber	Weihuang	WHTH-1000-40-88	100631	2019.09.10	1 Year
Switching Mode Power Supply	JUNKE	JK12010S	20140927-6	2019.09.10	1 Year

3. Spurious Emission

3.1.Test Limits

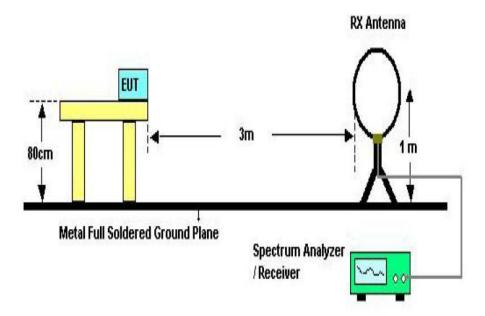
Frequencies (MHz)	Field Strength (micorvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Harmonic emissions limits comply with below 54 dBuV/m at 3m. Other emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or comply with the radiated emissions limits specified in section 15.209(a) limit in the table below has to be followed.

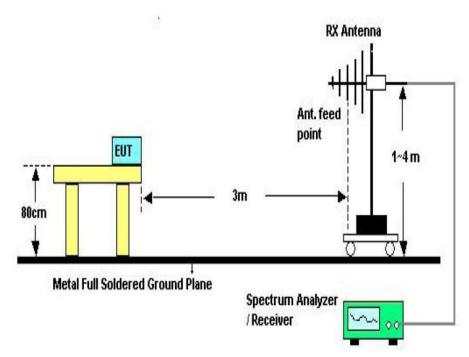
NOTE:

- a) The tighter limit applies at the band edges.
- b) Emission Level(dB uV/m)=20log Emission Level(uv/m)

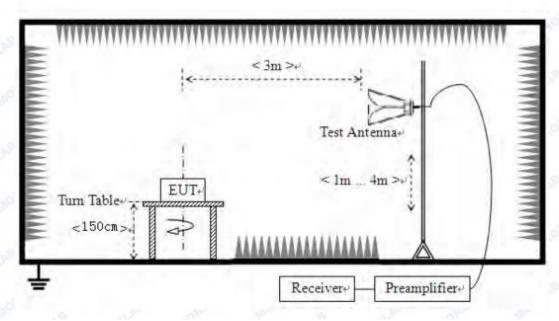
3.2.Test Procedure


The measuring distance of 3m shall be used for measurements at frequency up to 1GH and above 1GHz, The EUT was placed on a rotating 0.8 m high above ground for below 1GHz and 1.5m high for above1GHz testing, The table was rotated 360 degrees to determine the position of the highest radiation

The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set of make measurement.


The initial step in collecting conducted emission data is a spectrum analyzer Peak detector mode pre-scanning the measurement frequency range. Significant Peaks are then marked. and then Qusia Peak Detector mode premeasured

If Peak value comply with QP limit Below 1GHz. The EUT deemed to comply with QP limit. But the Peak value and average value both need to comply with applicable limit above 1GHz. For the actual test configuration, please see the test setup photo.


3.3.Test Setup

Below 30MHz Test Setup

Above 30MHz Test Setup

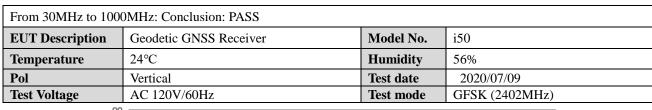
Above 1GHz Test Setup

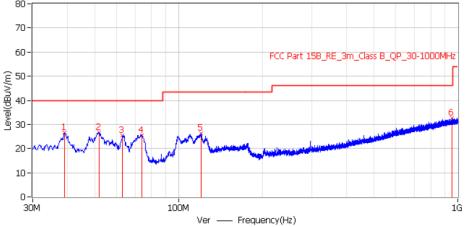
3.4.Test Results

Test Condition

Continual Transmitting in maximum power.

9KHz~150KHz	RBW200Hz	VBW1KHz		
150KHz~30MHz	RBW9KHz	VBW 30KHz		
30MHZ~1GHz	RBW120KHz	VBW 300KHz		
Above1GHz	RBW1MHz	VBW 3MHz		


We have scanned the 10th harmonic from 9 kHz to the EUT.


Detailed information please see the following page.

From 9KHz to 30MHz: Conclusion: PASS

Note: 1.The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

2.Only show the test data of the worst Channel in this report.

No.	Fraguanay	Level	Factor	Limit	Margin	Detector	Polar	Height	Angle
NO.	Frequency	dBuV/m	dB/m	dBuV/m	dB	Detector	Polal	cm	deg
1*	38.972 MHz	26.8	20.2	40.0	-13.2	PK	Ver	100.0	354.0
2*	51.825 MHz	26.8	19.7	40.0	-13.2	PK	Ver	100.0	0.0
3*	62.859 MHz	25.6	18.6	40.0	-14.4	PK	Ver	100.0	332.0
4*	73.650 MHz	25.6	16.7	40.0	-14.4	PK	Ver	100.0	173.0
5*	120.089 MHz	26.3	18.8	43.5	-17.2	PK	Ver	100.0	254.0
6*	054 410 MHz	32.6	30.4	46.0	-13 4	DK	Vor	100.0	328 U

No.	Frequency	Level	Factor	Limit	Margin	Detector	Polar	Height	Angle
INO.	rrequericy	dBuV/m	dB/m	dBuV/m	dBuV/m dB		Polai	cm	deg
1*	38.609 MHz	20.4	20.1	40.0	-19.6	PK	Hor	100.0	84.0
2*	50.855 MHz	20.4	19.8	40.0	-19.6	PK	Hor	100.0	173.0
3*	98.749 MHz	20.1	16.6	43.5	-23.4	PK	Hor	100.0	36.0
4*	152.947 MHz	21.5	20.9	43.5	-22.0	PK	Hor	100.0	116.0
5*	277.471 MHz	22.1	19.3	46.0	-23.9	PK	Hor	100.0	153.0
6*	533.794 MHz	25.7	24.7	46.0	-20.3	PK	Hor	100.0	84.0

^{*:}Maximum data x:Over limit !:over margin

Note: Measurement=Reading Level+Correc Factor. Factor=(LISN or ISN or PLC or Current Probe)Factor+Cable Remark: All modes have been tested, and only worst data of GFSK (2402MHz) was listed in this report.

From 1G-25GHz

	J-23GHZ									
Test M	Test Mode: TX Low									
Freq (MHz)	Read Level (dBuV/m)	Polar (H/V)	Antenna Factor (dB/m)	Cable loss(dB)	Amp Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	
4804	44.13	V	33.95	10.18	34.26	54.00	74	-20.00	PK	
4804	34.55	V	33.95	10.18	34.26	44.42	54	-9.58	AV	
7206	/	/	/	/	/	/	/	/	/	
9608	/	/	/	/	/	/	/	/	/	
4804	43.21	Н	33.95	10.18	34.26	53.08	74	-20.92	PK	
4804	33.98	Н	33.95	10.18	34.26	43.85	54	-10.15	AV	
7206	/	/	/	/	/	/	/	/	/	
9608	/	/	/	/	/	/	/	/	/	
Test M	lode: TX M	Iid								
4880	41.68	V	33.93	10.2	34.29	51.52	74	-22.48	PK	
4880	32.40	V	33.93	10.2	34.29	42.24	54	-11.76	AV	
7320	/	/	/	/	/	/	/	/	/	
9760	/	/	/	/	/	/	/	/	/	
4880	41.94	Н	33.93	10.2	34.29	51.78	74	-22.22	PK	
4880	32.62	Н	33.93	10.2	34.29	42.46	54	-11.54	AV	
7320	/	/	/	/	/	/	/	/	/	
9760	/	/	/	/	/	/	/	/	/	
Test M	lode: TX H	igh								
4960	42.68	V	33.98	10.22	34.25	52.63	74	-21.37	PK	
4960	32.93	V	33.98	10.22	34.25	42.88	54	-11.12	AV	
7440	/	/	/	/	/	/	/	/	/	
9920	/	/	/	/	/	/	/	/	/	
4960	42.10	Н	33.98	10.22	34.25	52.05	74	-21.95	PK	
4960	31.37	Н	33.98	10.22	34.25	41.32	54	-12.68	AV	
7440	/	/	/	/	/	/	/	/	/	
9920	/	/	/	/	/	/	/	/	/	

Note:

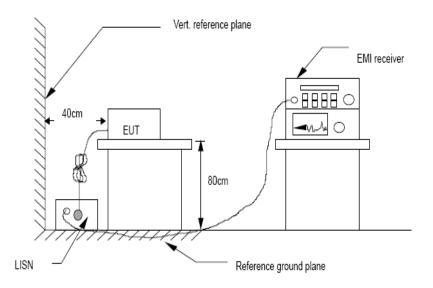
^{1,} Result = Read level + Antenna factor + cable loss-Amp factor
2, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

4. Power Line Conducted Emission

4.1. Test Limits

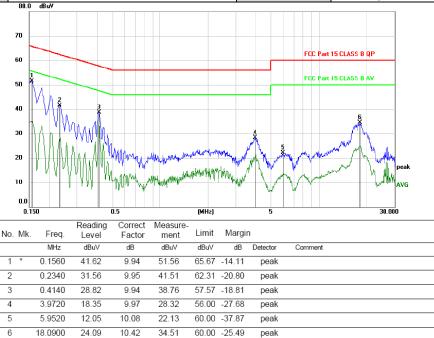
Frequency	Limits dB(μV)					
MHz	Quasi-peak Level	Average Level				
0.15 -0.50	66 -56*	56 - 46*				
0.50 -5.00	56	46				
5.00 -30.00	60	50				

Notes: 1. *Decreasing linearly with logarithm of frequency.

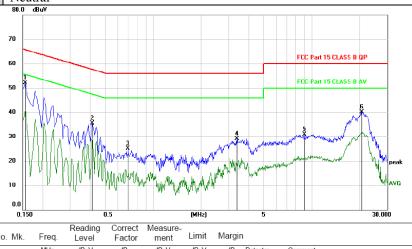

- 2. The lower limit shall apply at the transition frequencies.
- 3. The limit decreases in line with the logarithm of the frequency in rang of 0.15 to 0.50 MHz.

4.2. Test Procedure

The EUT is put on the plane 0.8m high above the ground by insulating support and is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC lines are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to ANSI ANSI C63.10:2013 on Conducted Emission Measurement.


The bandwidth of test receiver is set at 9 kHz.

4.3.Test Setup



4.4.Test Results

EUT Description	Geodetic GNSS Receiver	Model No.	i50
Temperature	24°C	Humidity	56%
Pol	Line	Test date	2020/7/9
Test Voltage	AC 120V/60Hz	Test mode	GFSK (2402MHz)

Pol Neutral

Ν	lo.	Mk.	Freq.	Level	Factor	ment	Limit	Margir	ו	
			MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
	1	*	0.1560	42.16	9.94	52.10	65.67	-13.57	peak	
	2		0.4140	25.49	9.94	35.43	57.57	-22.14	peak	
	3		0.6960	15.13	9.93	25.06	56.00	-30.94	peak	
	4		3.3720	19.06	9.96	29.02	56.00	-26.98	peak	
	5		8.9700	20.64	10.18	30.82	60.00	-29.18	peak	
	6		20.7959	29.68	10.46	40.14	60.00	-19.86	peak	

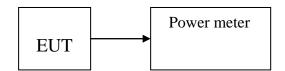
^{*:}Maximum data x:Over limit !:over margin

Note: Measurement=Reading Level+Correc Factor. Factor=(LISN or ISN or PLC or Current Probe)Factor+Cable Remark: All modes have been tested, and only worst data of GFSK (2402MHz) was listed in this report.

5. Conducted Maximum Output Power

5.1.Test limits

Please refer section RSS-247 & 15.247.


5.2.Test Procedure

Details see the KDB558074 D01 Meas Guidance v05r02

- 5.2.1 Place the EUT on the table and set it in transmitting mode.
- 5.2.2 Measure out each mode and each bands average output power of EUT.

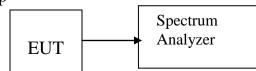
Note: The cable loss and attenuator loss were offset into measure device as amplitude offset.

5.3.Test Setup

5.4.Test Results

Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE	2402	Total	2.791	30	Pass
NVNT	BLE	2440	Total	3.064	30	Pass
NVNT	BLE	2480	Total	2.945	30	Pass

6. Power Spectral Density

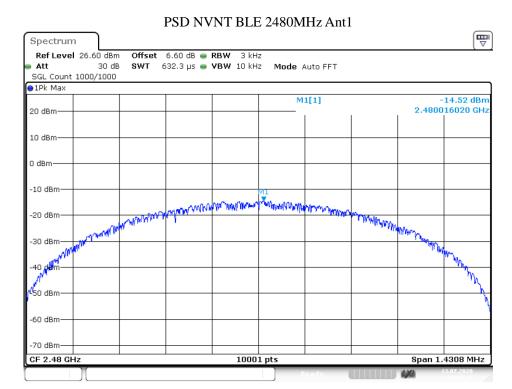

- 6.1.Test limits
- 6.1.1 Please refer section RSS-247 & 15.247.
- 6.1.2 For direct sequence systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3kHz band during any time interval of continuous transmission.
- 6.1.3 The direct sequence operating of the hybrid system, with the frequency hopping operation turned off, shall comply with the power density requirements of paragraph (d) of this section.

6.2.Test Procedure

Details see the KDB558074 D01 Meas Guidance v05r02

- 6.2.1 Place the EUT on the table and set it in transmitting mode.
- 6.2.2 Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 6.2.3 Detector = RMS. Set the spectrum analyzer as RBW = 3kHz(Set the RBW to: 3 kHz≤RBW≤100 kHz.), VBW = 10kHz(Set the VBW≥3×RBW), span=1.5×DTS bandwidth., detail see the test plot.
- 6.2.4 Record the max reading.
- 6.2.5 Repeat the above procedure until the measurements for all frequencies are completed.

6.4. Test Results


Condition	Mode	Frequency (MHz)	Antenna	Max PSD (dBm/3kHz)	Limit	Verdict
					(dBm/3kHz)	
NVNT	BLE	2402	Total	-14.45	8	Pass
NVNT	BLE	2440	Total	-14.562	8	Pass
NVNT	BLE	2480	Total	-14.521	8	Pass

PSD NVNT BLE 2402MHz Ant1 Spectrum Ref Level 26.62 dBm Att 30 dB SGL Count 1000/1000 ●1Pk Max -14.45 dBm 2.402008360 GHz M1[1] 20 dBm 10 dBm 0 dBm -10 dBm Almand Arthur College Arthur March and that hip are able with down th -20 dBm Wat Walliage Man -30 dBm -50 dBm -60 dBm -70 dBm-Span 1.4164 MHz CF 2.402 GHz 10001 pts

Date: 13.JUL.2020 08:41:26

PSD NVNT BLE 2440MHz Ant1 Spectrum Ref Level 26.78 dBm Offset 6.78 dB • RBW 3 kHz 632.1 µs 🍅 **VBW** 10 kHz Mode Auto FFT Att 30 dB SWT SGL Count 1000/1000 ●1Pk Max M1[1] -14.56 dBm 2.440007620 GHz 20 dBm 10 dBm 0 dBm -10 dBm The same of the sa -20 dBm -30 dBm -50 dBm -70 dBm Span 1.4108 MHz 10001 pts CF 2.44 GHz

Date: 13.JUL.2020 08:59:33

Date: 13.JUL.2020 09:04:37

7. Bandwidth

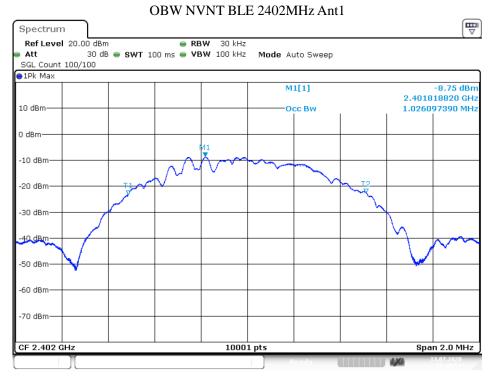
7.1.Test limits

Please refer sectionRSS-247 & 15.247

For direct sequence systems, the minimum 6dB bandwidth shall be at least 500 kHz.

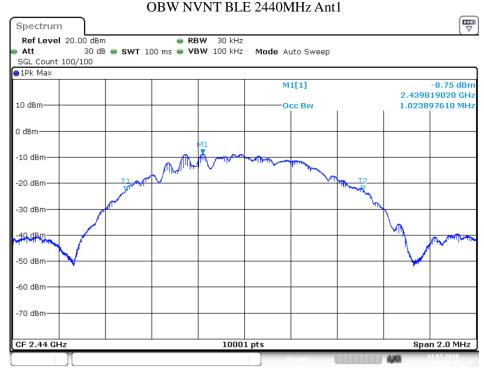
7.2.Test Procedure

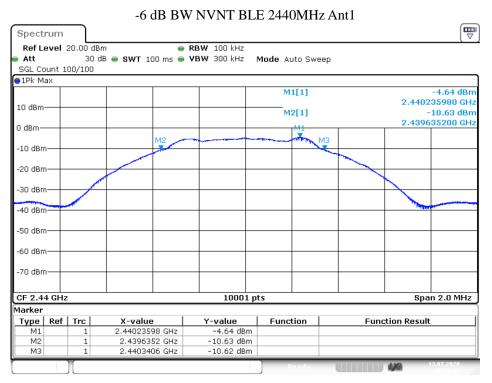
Details see the KDB558074 D01 Meas Guidance v05r02

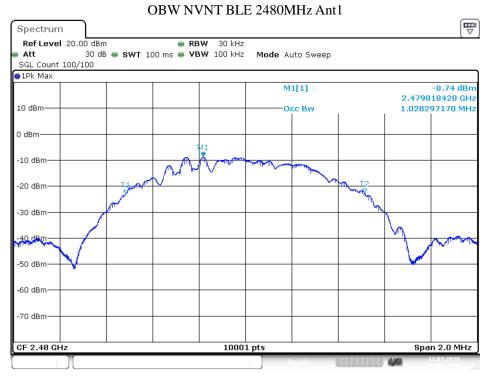

- a) The bandwidth is measured at an amplitude level reduced 20dB from the reference level. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst-case (i.e. the widest) bandwidth.
- b) The test receiver set RBW = 100kHz, VBW\ge 3*RBW = 300kHz,, Sweep time set auto, detail see the test plot.

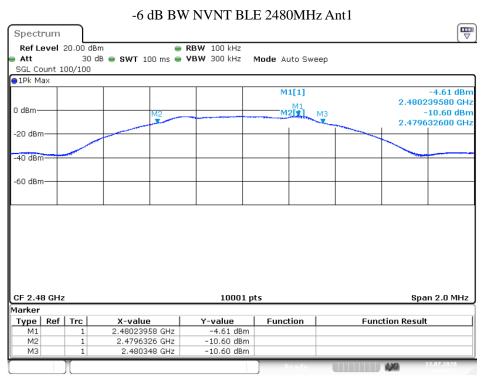
7.3.Test Setup

7.4.Test Results


Condition	Mode	Frequency	99% OBW	-6 dB	Limit -6 dB	Verdict
		(MHz)	(MHz)	Bandwidth	Bandwidth (MHz)	
				(MHz)		
NVNT	BLE	2402	1.0261	0.7082	0.5	Pass
NVNT	BLE	2440	1.0239	0.7054	0.5	Pass
NVNT	BLE	2480	1.0283	0.7154	0.5	Pass


Date: 13.JUL.2020 08:40:57


Date: 13.JUL.2020 08:41:11


Date: 13.JUL.2020 08:53:47

Date: 13.JUL.2020 08:54:01

Date: 13.JUL.2020 09:04:09

Date: 13.JUL.2020 09:04:22

8. Band Edge Check

8.1.Test limits

Please refer section RSS-GEN&15.247.

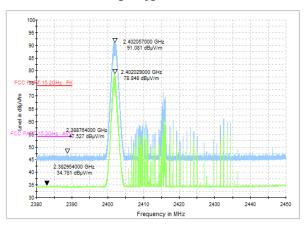
8.2.Test Procedure

Details see the KDB558074 D01 Meas Guidance v05r02

- 8.2.1 Put the EUT on a 0.8m high table, power on the EUT. Emissions were scanned and measured rotating the EUT to 360 degrees, Find the maximum Emission
- 8.2.2 Check the spurious emissions out of band.
- 8.2.3 RBW 1MHz ,VBW 3MHz ,peak detector for peak value , RBW 1MHz ,VBW 3MHz ,RMS detector for AV value.

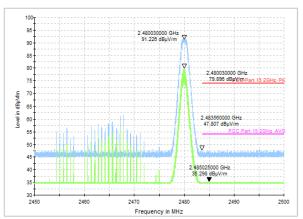
8.3.Test Setup

Same as 5.2.2.

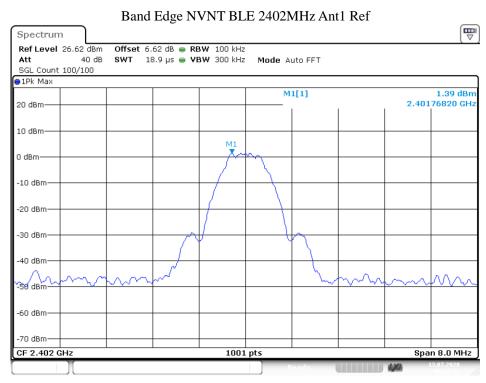

8.4.Test Results

Radiated Method:

Test Mode: Low

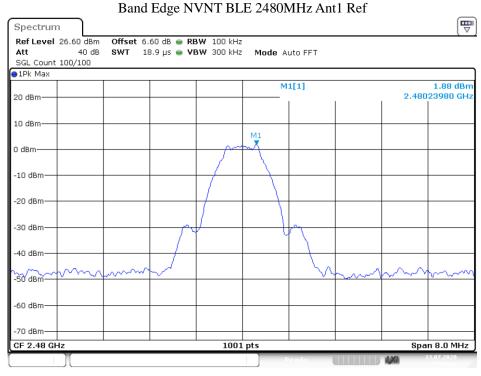

Polarization: Vertical & Horizontal

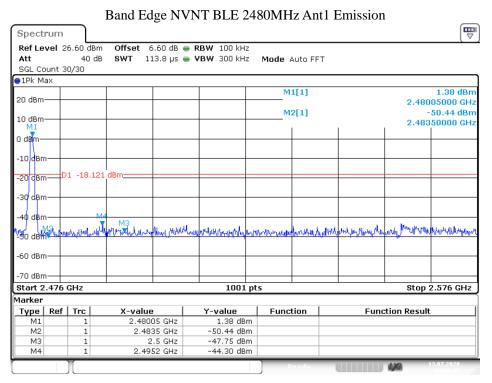
RE_Band Edge_2.38-2.43GHz


Test Mode: High Polarization: Vertical

RE_Band Edge_2.45-2.5GHz

Conducted Method:


Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE	2402	Ant 1	-45.58531851768	-20	Pass
NVNT	BLE	2480	Ant 1	-46.16929856777	-20	Pass


Date: 13.JUL.2020 08:41:31

Band Edge NVNT BLE 2402MHz Ant1 Emission Spectrum Ref Level 26.62 dBm Offset 6.62 dB @ RBW 100 kHz Att 40 dB SWT 113.8 µs ● VBW 300 kHz Mode Auto FFT SGL Count 100/100 ●1Pk Max M1[1] 20 dBm 2.40195000 GHz M2[1] -47.22 dBm 10 dBm-2.400000000 GHz 0 dBm -10 dBm-D1 -18.615 -20 dBm--30 dBm -40 dBm--50 dBm -60 dBm -70 dBm Start 2.306 GHz 1001 pts Stop 2.406 GHz Marker Y-value 1.85 dBm -47.22 dBm Function **Function Result** Type | Ref | Trc | X-value 2.40195 GHz M1 M2 2.4 GHz МЗ 2.39 GHz -46.12 dBm -44.21 dBm Μ4 2.3204 GHz

Date: 13.JUL.2020 08:41:37

Date: 13.JUL.2020 09:04:43

Date: 13.JUL.2020 09:04:47

9. Antenna Requirement

9.1.Standard Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

9.2. Antenna Connected Construction

The antenna is PCB antenna and no consideration of replacement. Please see EUT photo for details.

9.3.Results

The EUT antenna 1 is PCB Antenna. It complies with the standard requirement.

10.Test Setup Photo

Please refer to separated files for Test Setup Photos of the EUT.

11. Photographs Of The EUT

Please refer to separated files fo						1110100	01 4110	201.
	E]	ND OI	FREI	POR'	Т			