

FCC TEST REPORT

FCC ID: SY4-A02026

On Behalf of

Shanghai Huace Navigation Technology LTD.

Geodetic GNSS Receiver

Model No.: i50

Prepared for : Shanghai Huace Navigation Technology LTD.

Address : 599 Gaojing Road, Building D, Shanghai 201702, China

Prepared By : Shenzhen Alpha Product Testing Co., Ltd.

Address Building i, No.2, Lixin Road, Fuyong Street, Bao'an District,

518103, Shenzhen, Guangdong, China

Report Number : A2006165-C01-R07

Date of Receipt : June 18, 2020

Date of Test : June 18, 2020 – July 13, 2020

Date of Report : July 14, 2020

Version Number : V0

TABLE OF CONTENTS

De	escript	cion	Page
1.	Gene	ral Information	5
	1.1.	Description of Device (EUT)	5
	1.2.	Accessories of Device (EUT)	5
	1.3.	Tested Supporting System Details	6
	1.4.	Block Diagram of connection between EUT and simulators	6
2.	Sum	mary Of Standards And Results	
	2.1.	Description of Standards and Results	
	2.2.	Test Mode Description	7
	2.3.	Test Equipment List	8
	2.4.	Test Facility	9
	2.5.	Measurement Uncertainty	9
3.	Powe	er Line Conducted Emission Test	10
	3.1.	Test Limits	10
	3.2.	Block Diagram of Test Setup	10
	3.3.	Configuration of EUT on Test	11
	3.4.	Operating Condition of EUT	11
	3.5.	Test Procedure	11
	3.6.	Test Results	12
4.	Radi	ated Emission Test	15
	4.1.	Test Limit	15
	4.2.	Block Diagram of Test Setup	16
	4.3.	Configuration of EUT on Test	17
	4.4.	Operating Condition of EUT	17
	4.5.	Test Procedure	17
	4.6.	Test Results	18
5.	Photo	ograph	24
	5.1.	Photos of Radiated Emission Test (In Semi Anechoic Chamber)	24
	5.2.	Photos of Conducted disturbance at mains terminals test	24
6.	Exte	rior Photographs of the eut	25
7	INTI	FRIOR Photographs of the out	25

TEST REPORT DECLARATION

Applicant : Shanghai Huace Navigation Technology LTD.

Address : 599 Gaojing Road, Building D, Shanghai 201702, China

Manufacturer : Shanghai Huace Navigation Technology LTD.

Address : 599 Gaojing Road, Building D, Shanghai 201702, China

EUT Description : Geodetic GNSS Receiver

(A) Model No. : i50

(B) Trademark : [H[]]

Measurement Standard Used:

FCC Rules and Regulations Part 15 Subpart B Class B, ANSI C63.4:2014

The device described above is tested by Shenzhen Alpha Product Testing Co., Ltd. to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The test results are contained in this test report and Shenzhen Alpha Product Testing Co., Ltd. is assumed full responsibility for the accuracy and completeness of test. Also, this report shows that the EUT is technically compliant with the FCC Part15 requirements.

This report applies to above tested sample only. This report shall not be reproduced in parts without written approval of Shenzhen Alpha Product Testing Co., Ltd.

Tested by (name + signature).....

Project Engineer

Approved by (name + signature).....: Simple Guan
Project Manage

Project Manager

Date of issue...... July 14, 2020

Revision History

Revision	Issue Date	Revisions	Revised By
V0	July 14, 2020	Initial released Issue	Reak Yang

1. General Information

1.1.Description of Device (EUT)

Product Name : Geodetic GNSS Receiver

Trademark : CHCNAV

Model Number : i50 Diff : N/A

Test Voltage : DC 12V From Adaptor.

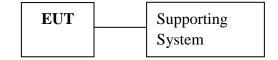
EUT Information : DC 12-36V, 2A (for DC port)

or DC 7.4V, 3400mAh (for replaceable lithium battery)

Highest Frequency: More than 108MHz

Software version : V1.0

Hardware version : i50_MAIN_V2.1


1.2. Accessories of Device (EUT)

Power Source : N/A

1.3.Tested Supporting System Details

No.	Description	Manufacturer	Model	Serial Number	Certification or SDOC
1.	Notebook	ACER	ZQT	N/A	SDOC

1.4.Block Diagram of connection between EUT and simulators For Test

	Signal Cable Description of the above Support Units						
No.	Port Name	Cable	Length	Shielded (Yes or No)	Detachable (Yes or No)		
(a)	N/A	N/A	N/A	N/A	N/A		

EUT: Geodetic GNSS Receiver

2. Summary Of Standards And Results

2.1.Description of Standards and Results

The EUT have been tested according to the applicable standards as referenced below:

EMISSION					
Description of Test Item	Standard	Limits	Results		
Power Line Conducted	FCC Part 15	Class B	D		
Emission Test	ANSI C63.4:2014	Class D	1		
D I' (IE ' ' T (FCC Part 15	CI D	D		
Radiated Emission Test	ANSI C63.4:2014	Class B	P		

Note: 1. P is an abbreviation for Pass.

2. F is an abbreviation for Fail.

3. N/A is an abbreviation for Not Applicable.

2.2.Test Mode Description

For Test	For Test				
Mode No.	Test Mode	Test Voltage			
1.	GNSS Receive	DC 12V From Adaptor			
※ 2.	Data Transmitting	DC 12V From Adaptor			
3.	GNSS Receive	DC 7.4V From Battery			
4.	4. Data Transmitting DC 7.4V From Battery				
Note: * is	Note: * is worst case mode tests, so this report only reflected the worst mode in each part.				

2.3.Test Equipment List

For Pov	For Power Line Conducted Emission Test Equipment:						
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval	
1.	Test Receiver	Rohde & Schwarz	ESCI	101165	2019.09.05	1 Year	
2.	L.I.S.N.#1	Schwarz beck	NSLK8126	8126466	2019.09.05	1 Year	
3.	L.I.S.N.#2	ROHDE&SCH WARZ	ENV216	101043	2019.09.05	1 Year	
4.	Pulse Limiter	Schwarz beck	9516F	9618	2019.09.05	1 Year	

For Fr	For Frequency Range 30MHz~1GHz Radiated Emission Test Equipment:						
Item							
1	Test Receiver	Rohde&Schwarz	ESR	1316.3003K0 3-102082-Wa	2019.09.06	1 Year	
3	Bilog Antenna	Schwarz beck	VULB 9168	9168-627	2020.04.12	2 Year	

For Fre	For Frequency Range above 1GHz Radiated Emission Test Equipment:						
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval	
1	Spectrum analyzer	ROHDE&SCHW ARZ	FSU	1166.1660.26	2019.09.06	1 Year	
2	Horn Antenna	Schwarz beck	BBHA 9120 D	BBHA 9120 D(1201)	2020.04.12	2 Year	
3	Amplifier	Agilent	8449B	3008A02664	2019.09.05	1 Year	

2.4.Test Facility

Shenzhen Alpha Product Testing Co., Ltd.

Building i, No.2, Lixin Road, Fuyong Street, Bao'an District, 518103,

Shenzhen, Guangdong, China

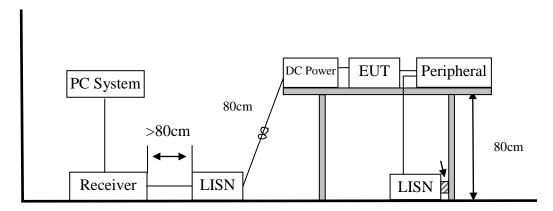
June 21, 2018 File on Federal Communication Commission

Registration Number: 293961 Designation Number: CN1236

2.5.Measurement Uncertainty

Test Item	Uncertainty		
Uncertainty for Conduction emission test	2.74dB		
Uncertainty for Radiation Emission test	3.77 dB (Distance: 3m Polarize: V)		
(<1G)	3.80 dB (Distance: 3m Polarize: H)		
Un containty for Dodiction Emission test (>1C)	4.13 dB (Distance: 3m Polarize: V)		
Uncertainty for Radiation Emission test (>1G)	4.16 dB (Distance: 3m Polarize: H)		
(95% confidence levels, k=2)			

3. Power Line Conducted Emission Test


3.1.Test Limits

			Maximum RF Line Voltage		
Frequency		cy	Quasi-Peak Level	Average Level	
			dB(μV)	$dB(\mu V)$	
150kHz	~	500kHz	66 ~ 56*	56 ~ 46*	
500kHz	~	5MHz	56	46	
5MHz	~	30MHz	60	50	

Notes:

- 1. Emission level=Read level + LISN factor-Preamp factor + Cable loss
- 2. * Decreasing linearly with logarithm of frequency.
- 3. The lower limit shall apply at the transition frequencies.

3.2.Block Diagram of Test Setup

3.3. Configuration of EUT on Test

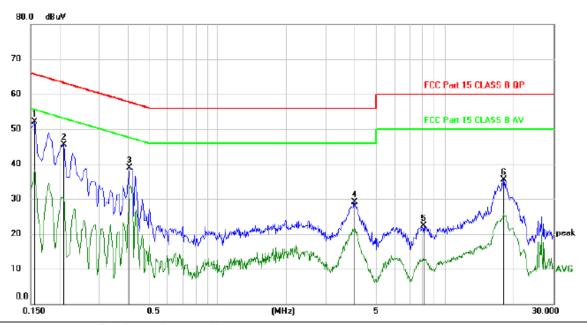
The following equipment are installed on Power Line Conducted Emission Test to meet the commission requirement and operating regulations in a manner which tends to maximize its emission characteristics in a normal application.

3.4. Operating Condition of EUT

- (1) Setup the EUT as shown as Section 3.2.
- (2) Turn on the power of all equipment.
- (3) Let the EUT work in test mode and 15 minutes before taking the test.

3.5.Test Procedure

- (1) The EUT was placed on a non-metallic table, 80cm above the ground plane. The EUT Power connected to the power mains through a line impedance stabilization network (L.I.S.N. 1#). This provided a 50-ohm coupling impedance for the EUT (Please refer to the block diagram of the test setup and photographs). The other peripheral devices power cord connected to the power mains through a line impedance stabilization network (L.I.S.N.#2). Both sides of power line were checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipments and all of the interface cables were changed according to ANSI C63.4:2014 on conducted Emission test.
- (2) The frequency range from 150kHz to 30MHz is checked, the bandwidth of test receiver (R&S TEST RECEIVER ESCI) is set at 9kHz.

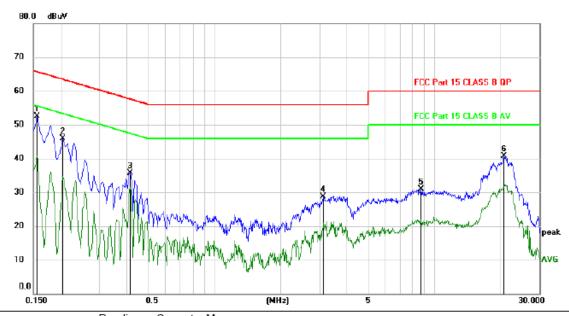

3.6.Test Results

Test Date	: 2020.07.09	Temperature : 24°C
Model	: i50	Humidity : 56%
Test Mode	: UHF Receive	
Test Results	: PASS	Test Engineer : Reak Yang

Note: 1. The test results are listed in next pages.

- 2. If the limits for the measurement with the average detector are met when using a receiver with a peak detector, the test unit shall be deemed to meet both limits and the measurement with the average detector and quasi-peak detector need not be carried out.
- 3. If the limits for the measurement with the average detector are met when using a receiver with a quasi-peak detector, the test unit shall be deemed to meet both limits and the measurement with the average detector need not be carried out.

Antenna polarity: L



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin	ı	
		MHz	dBu∀	dB	dBu∀	dBu∀	dB	Detector	Comment
1	*	0.1560	42.26	9.94	52.20	65.67	-13.47	peak	
2		0.2100	35.54	9.93	45.47	63.21	-17.74	peak	
3		0.4080	29.03	9.94	38.97	57.69	-18.72	peak	
4		3.9900	19.16	9.97	29.13	56.00	-26.87	peak	
5		8.0460	12.10	10.15	22.25	60.00	-37.75	peak	
6		18.1920	25.03	10.42	35.45	60.00	-24.55	peak	

Note: Measurement=Reading Level+Correc Factor. Factor=(LISN or ISN or PLC or Current Probe)Factor+Cable

^{*:}Maximum data x:Over limit !:over margin (Reference Only Note: Maximum data x:Over limit !:over margin | Reference Only Note: Maximum data x:Over limit !:over margin | Reference Only Note: Maximum data x:Over limit !:over margin | Reference Only Note: Maximum data x:Over limit !:over margin | Reference Only Note: Maximum data x:Over limit !:over margin | Reference Only Note: Maximum data x:Over limit !:over margin | Reference Only Note: Maximum data x:Over limit !:over margin | Reference Only Note: Maximum data x:Over limit !:over margin | Reference Only Note: Maximum data x:Over limit !:over margin | Reference Only Note: Maximum data x:Over limit !:over margin | Reference Only Note: Maximum data x:Over limit !:over margin | Reference Only Note: Maximum data x:Over limit !:over margin | Reference Only Note: Maximum data x:Over limit !:over margin | Reference Only Note: Maximum data x:Over limit !:over limit !:over

Antenna polarity: N

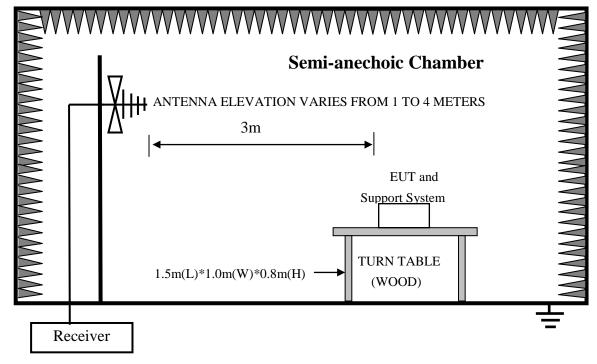
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin	ı	
		MHz	dBu∀	dB	dBu∨	dBu∀	dB	Detector	Comment
1	*	0.1560	42.58	9.94	52.52	65.67	-13.15	peak	
2		0.2040	35.89	9.92	45.81	63.45	-17.64	peak	
3		0.4140	25.72	9.94	35.66	57.57	-21.91	peak	
4		3.1380	18.69	9.96	28.65	56.00	-27.35	peak	
5		8.7000	20.67	10.17	30.84	60.00	-29.16	peak	
6		20.7300	30.15	10.47	40.62	60.00	-19.38	peak	

^{*:}Maximum data x:Over limit !:over margin \(\text{Reference Only} \)
Note: Measurement=Reading Level+Correc Factor. Factor=(LISN or ISN or PLC or Current Probe)Factor+Cable

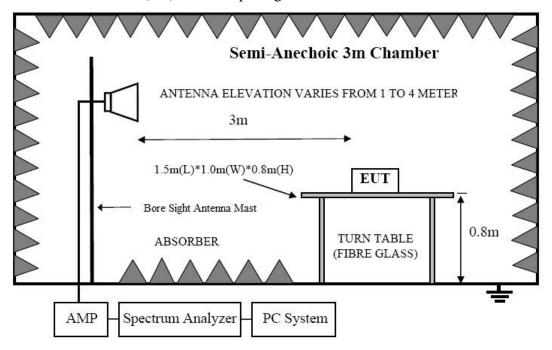
4. RADIATED EMISSION TEST

4.1.Test Limit

]	Freque	ency	Distance	Field Strengths Limits			
	MH	[z	(Meters)	dB(μV)/m			
30	~	88	3	40.0			
88	~	216	3	43.5			
216	~	960	3	46.0			
960	960 ~ 1000		3	54.0			
A	bove	1GHz	3	74(Peak) 54(Average)			


Notes:

- 1. The smaller limit shall apply at the cross point between two frequency bands.
- 2. Distance is the distance in meters between the measuring instrument, antenna and the closest point of any part of the device or system.
- 3. Frequency range of radiated measurements:


Highest frequency generated or used in the device or on which the device operates or tunes (MHz)	Upper frequency of measurement range (MHz)
Below 1.705	30
1.705-108	1000
108-500	2000
500-1000	5000
Above 1000	5th harmonic of the highest frequency or 40 GHz, whichever is lower.

4.2.Block Diagram of Test Setup

In Semi Anechoic Chamber (3m) Test Setup Diagram for 30MHz~1000MHz

In Semi Anechoic Chamber (3m) Test Setup Diagram for Above 1GHz

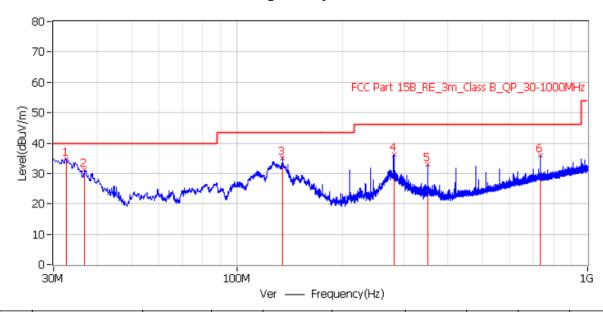
4.3. Configuration of EUT on Test

The following equipment are installed on Radiated Emission Test to meet the commission requirements and operating regulations in a manner that tends to maximize its emission characteristics in normal application.

4.4. Operating Condition of EUT

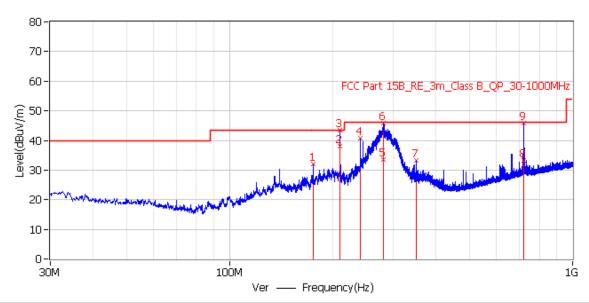
- (1) Setup the EUT as shown as Section 4.2.
- (2) Turn on the power of all equipment.
- (3) Let the EUT work in test mode and 15 minutes before taking the test.

4.5.Test Procedure


- (1) The EUT was placed on a non-metallic table, 80 cm above the ground plane inside a semi-anechoic chamber. An antenna was located 3m from the EUT on an adjustable mast. A pre-scan was first performed in order to find prominent radiated emissions. For final emissions measurements at each frequency of interest, the EUT were rotated and the antenna height was varied between 1m and 4m in order to maximize the emission. Measurements in both horizontal and vertical polarities were made and the data was recorded. In order to find the maximum emission, the relative positions of equipments and all of the interface cables were changed according to ANSI C63.4:2014 on Radiated Emission test.
- (2) For the radiated emission test above 1GHz:
 - Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- (3) The frequency range from 30MHz to 1000MHz is checked, the bandwidth of test receiver (R&S TEST RECEIVER ESR) is set at 120kHz.
- (4) The frequency range from above 1GHz is checked, the bandwidth of spectrum analyzer (Spectrum Analyzer FSU) is set at 1MHz.
- (5) The frequency range from 30MHz to 1000MHz was pre-scanned with a peak detector and all final readings of measurement from Test Receiver are Quasi-Peak values, the frequency range from 1GHz to 6GHz was pre-scanned with a peak detector and all final readings of measurement from Spectrum Analyzer are peak and average values checked, all measurement distance is 3m in 3m semi anechoic chamber.
- (6) The test results are reported on Section 4.7.

Frequency Range	:	30MHz~1000MHz			
Test Date	:	2020.07.09	Temperature	:	24℃
Model	:	i50	Humidity	:	56%
Test Mode	:	UHF Receive	Test Engineer	:	Reak Yang
Test Results	:	PASS			

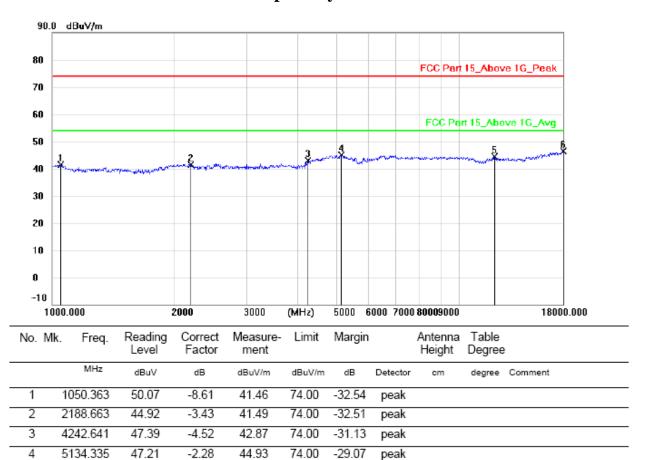
Note: 1. The test results are listed in next pages.


2. If the limits for the measurement with the quasi-peak detector are met when using a receiver with a peak detector, the test unit shall be deemed to meet both limits and the measurement with the quasi-peak detector need not be carried out.

Antenna polarity: Horizontal

No.	Erogueneu	Level	Factor	Limit	Margin	Detector	Polar	Height	Angle
NO.	Frequency	dBuV/m	dB/m	dBuV/m	dB	Detector	Polal	cm	deg
1*	32.546 MHz	34.9	19.5	40.0	-5.1	PK	Ver	100.0	146.0
2*	36.669 MHz	31.1	19.8	40.0	-8.9	PK	Ver	100.0	146.0
3*	135.002 MHz	35.2	19.8	43.5	-8.3	PK	Ver	100.0	135.0
4*	280.017 MHz	36.3	19.4	46.0	-9.7	PK	Ver	100.0	150.0
5*	349.979 MHz	33.0	21.0	46.0	-13.0	PK	Ver	100.0	167.0
6*	735.069 MHz	36.0	28.0	46.0	-10.0	PK	Ver	100.0	48.0

Antenna polarity: Vertical


No.	Frequency	Level dBuV/m	Factor dB/m	Limit dBuV/m	Margin dB	Detector	Polar	Height cm	Angle deg
1*	174.894 MHz	32.1	19.2	43.5	-11.4	PK	Ver	100.0	82.0
2	209.998 MHz	38.2	16.9	43.5	-5.3	QP	Ver	100.0	93.0
3*	209.935 MHz	43.3	16.9	43.5	-0.2	PK	Ver	100.0	93.0
4*	240.005 MHz	40.8	18.4	46.0	-5.2	PK	Ver	100.0	202.0
5	280.013 MHz	33.7	19.4	46.0	-12.3	QP	Ver	100.0	0.0
6*	281.594 MHz	45.7	19.4	46.0	-0.3	PK	Ver	100.0	150.0
7*	349.979 MHz	33.3	21.0	46.0	-12.7	PK	Ver	100.0	50.0
8	720.111 MHz	33.2	27.8	46.0	-12.8	QP	Ver	100.0	0.0
9*	720.034 MHz	45.7	27.8	46.0	-0.3	PK	Ver	100.0	0.0

Frequency Range	: Above 1GHz		
Test Date	: 2020.07.09	Temperature : 24.0℃	
Model	: i50	Humidity : 49%	
Test Mode	: UHF Receive	Test Engineer : Reak Ya	ıng
Test Results	: PASS		

Note: 1. The test results are listed in next pages.

2. If the limits for the measurement with the quasi-peak detector are met when using a receiver with a peak detector, the test unit shall be deemed to meet both limits and the measurement with the quasi-peak detector need not be carried out.

Antenna polarity: Horizontal

Note:1. *: Maximum data; x: Over limit; !: over margin.

38.96

33.41

5.52

12.88

44.48

46.29

74.00

74.00

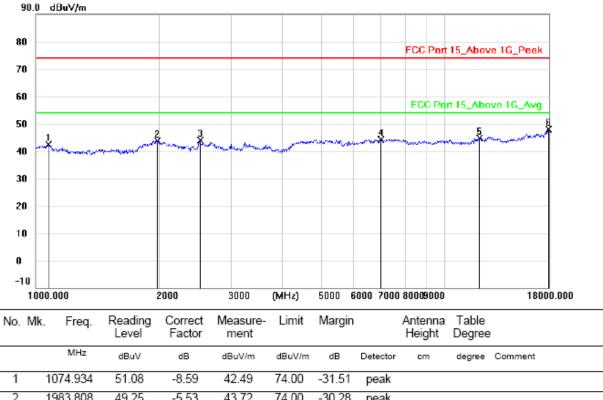
-29.52

-27.71

peak

peak

5

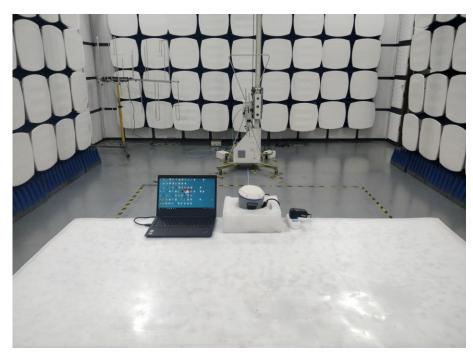

6 *

12219.85

18000.00

^{2.}Measurement=Reading Level+Correct Factor; Correct Factor=Antenna Factor+Cable Loss.

Antenna polarity: Vertical


		Level	ractor	ment				neignt	Degree	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	1074.934	51.08	-8.59	42.49	74.00	-31.51	peak			
2	1983.808	49.25	-5.53	43.72	74.00	-30.28	peak			
3	2521.664	47.17	-3.32	43.85	74.00	-30.15	peak			
4	6995.172	41.76	2.46	44.22	74.00	-29.78	peak			
5	12114.35	38.95	5.56	44.51	74.00	-29.49	peak			
6 *	17948.04	35.35	12.56	47.91	74.00	-26.09	peak			

Note:1. *: Maximum data; x: Over limit; !: over margin.

^{2.}Measurement=Reading Level+Correct Factor; Correct Factor=Antenna Factor+Cable Loss.

5. PHOTOGRAPH

5.1.Photos of Radiated Emission Test (In Semi Anechoic Chamber)

5.2.Photos of Conducted disturbance at mains terminals test

6. EXTERIOR PHOTOGRAPHS OF THE EUT

Please refer to separated files for External Photos of the EUT.

7. INTERIOR PHOTOGRAPHS OF THE EUT

Please refer to separated files for Internal Photos of the EUT.

----END OF REPORT----