

FCC TEST REPORT

FCC ID: SY4-A01013

On Behalf of

Shanghai Huace Navigation Technology LTD.

Geodetic GNSS Receiver (E91)

Model No.: 1150082231145

Prepared for : Shanghai Huace Navigation Technology LTD.

Building D, 599 Gaojing Road, Qingpu District, Shanghai,

Address : China

Prepared By : Shenzhen Alpha Product Testing Co., Ltd.

Address Building i, No.2, Lixin Road, Fuyong Street, Bao'an District,

518103, Shenzhen, Guangdong, China

Report Number : T1881590 01 Date of Receipt : October 12, 2018

Date of Test : October 12, 2018- November 15, 2018

Date of Report : November 20, 2018

Version Number : REV0

Report No.: T1881590 01

TABLE OF CONTENTS

De	escript	1011	Page
1.	Gene	ral Information	5
1.	1.1.	Description of Device (EUT)	
	1.2.	Accessories of Device (EUT)	
	1.3.	Tested Supporting System Details.	
	1.4.	Block Diagram of connection between EUT and simulators	
2.	Sumi	mary Of Standards And Results	
	2.1.	Description of Standards and Results	
	2.2.	Test Mode Description	
	2.3.	Test Equipment List	9
	2.4.	Test Facility	10
	2.5.	Measurement Uncertainty	10
3.	Powe	er Line Conducted Emission Test	
	3.1.	Test Limits	11
	3.2.	Block Diagram of Test Setup	11
	3.3.	Configuration of EUT on Test	12
	3.4.	Operating Condition of EUT	12
	3.5.	Test Procedure	12
	3.6.	Test Results	13
4.	Radi	ated Emission Test	16
	4.1.	Test Limit	16
	4.2.	Block Diagram of Test Setup	17
	4.3.	Configuration of EUT on Test	18
	4.4.	Operating Condition of EUT	18
	4.5.	Test Procedure	18
	4.6.	Test Results	19
5.	Photo	ograph	25
	5.1.	Photo of Radiated Emission Test (In Semi Anechoic Chamber)	25
	5.2.	Photo of Power Line Conducted Emission Test	26
6	Dhote	os Of The FUT	27

Report No.: T1881590 01

TEST REPORT DECLARATION

Applicant : Shanghai Huace Navigation Technology LTD.

Address : Building D, 599 Gaojing Road, Qingpu District, Shanghai, China

Manufacturer : Shanghai Huace Navigation Technology LTD.

Address : Building D, 599 Gaojing Road, Qingpu District, Shanghai, China

EUT Description : Geodetic GNSS Receiver (E91)

(A) Model No. : 1150082231145

(B) Trademark : []

Measurement Standard Used:

FCC Rules and Regulations Part 15 Subpart B Class B 2017, ANSI C63.4:2014

The device described above is tested by Shenzhen Alpha Product Testing Co., Ltd. to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The test results are contained in this test report and Shenzhen Alpha Product Testing Co., Ltd. is assumed full responsibility for the accuracy and completeness of test. Also, this report shows that the EUT is technically compliant with the FCC Part15 requirements.

This report applies to above tested sample only. This report shall not be reproduced in parts without written approval of Shenzhen Alpha Product Testing Co., Ltd.

Tested by (name + signature)......

Reak Yang
Project Engineer

Reak Yang
Project Engineer

Approved by (name + signature).....:

Simple Guan
Project Manager

Date of issue...... November 20, 2018

Revision History

Revision	Issue Date	Revisions	Revised By
REV0	November 20, 2018	Initial released Issue	Simple Guan

1. General Information

1.1.Description of Device (EUT)

Product Name : Geodetic GNSS Receiver (E91)

Model Number : 1150082231145

Note : 1. The model name "1150082231145" information not listed on marking

plate at testing & certification stage, but will be listed in white rectangular

frame of marking plate at MP stage.

2. The model name "1150082231145" corresponding client's internal

model is "Geodetic GNSS Receiver (E91) E91E-WSAC".

Trademark : [H[N]]

Highest Frequency: More than 108MHz

Test Voltage : DC 7.2V from battery or 9-36VDC, DC 12V From adapter

Software version : V1.0.29 Hardware version : V2.2

1.2. Accessories of Device (EUT)

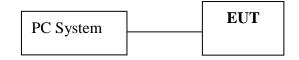
Accessories 1 : AC/DC SWITTHING ADAPTOR

Trademark : MW

Model : GST60A12

Ratings : Input:100-240V~, 50/60Hz, 1.4A;

Output: 12VDC, 5A, 60W MAX


1.3. Tested Supporting System Details.

Manufacturer	Description	Model	Serial Number	FCC Approval
ACER	USB Keyboard	SK-9625	KBUSB1580500037E010 0	FCC DoC
ACER	USB Mouse	MS.11200.014	M-UAY-ACR2	FCC DoC
HP	Printer	HP1020	CNCJ410726	CE
ACER	Monitor	G205HV	SNID:10306738385	CE
ACER	Personal Computer	ASPIRE M1830	PTSF90C00305005CAC3 000	DOC

1.4.Block Diagram of connection between EUT and simulators

For Test

Data Transmitting Mode

EUT: Geodetic GNSS Receiver (E91)

Signal Cable Description of the above Support Units

No.	Port Name	Cable	Length	Shielded (Yes or No)	Detachable (Yes or No)
/	/	/	/	/	/
/	/	/	/	/	/

2. Summary Of Standards And Results

2.1.Description of Standards and Results

The EUT have been tested according to the applicable standards as referenced below:

EMISSION						
Description of Test Item	Standard	Limits	Results			
Power Line Conducted	FCC Part 15:2017	Class B	D			
Emission Test	ANSI C63.4:2014	Class D	1			
Dedicated Emission Test	FCC Part 15:2017	Class D	D			
Radiated Emission Test	ANSI C63.4:2014	Class B	ľ			

Note: 1. P is an abbreviation for Pass.

2. F is an abbreviation for Fail.

3. N/A is an abbreviation for Not Applicable.

2.2.Test Mode Description

For Radiated Emission Test						
Mode No.	Test Voltage					
※ 1.	Data transmitting	DC 12V From adapter				
2.	GNSS Receive	DC 12V From adapter				
3. NFC Receive DC 12V From adapter						
Note: $\times 2$ is worst case mode tests, so this report only reflected the worst mode in each part.						

For Power Line Conducted Emission Test

Mode No. Test Mode Test Voltage

1. Data transmitting DC 12V From adapter

2. GNSS Receive DC 12V From adapter

NFC Receive DC 12V From adapter

2.3.Test Equipment List

For Power Line Conducted Emission Test Equipment:								
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval		
1.	Test Receiver	Rohde & Schwarz	ESCI	101165	2018.09.21	1 Year		
2.	L.I.S.N.#1	Schwarz beck	NSLK8126	8126-466	2018.09.21	1 Year		
3.	L.I.S.N.#2	ROHDE&SCH WARZ	ENV216	101043	2018.09.21	1 Year		
4.	Pulse Limiter	Schwarz beck	9516F	9618	2018.09.21	1 Year		

For Frequency Range 30MHz~1GHz Radiated Emission Test Equipment:								
Item	Equipment	Last Cal.	Cal. Interval					
1	Test Receiver	Rohde&Schwarz	ESR	1316.3003K0 3-102082-Wa	2018.09.21	1 Year		
2	Bilog Antenna	Schwarz beck	VULB 9168	9168-438	2018.04.13	2 Year		

For Frequency Range above 1GHz Radiated Emission Test Equipment:								
Item	Equipment	Last Cal.	Cal. Interval					
1	Spectrum analyzer	ROHDE&SCHW ARZ	FSU	1166.1660.26	2018.09.21	1 Year		
2	Horn Antenna	Schwarz beck	BBHA 9120 D	BBHA 9120 D(1201)	2018.04.13	2 Year		
3	Amplifier	Agilent	8449B	3008A02664	2018.09.21	1 Year		

2.4.Test Facility

Shenzhen Alpha Product Testing Co., Ltd.

Building i, No.2, Lixin Road, Fuyong Street, Bao'an District, 518103, Shenzhen, Guangdong, China

June 21, 2018 File on Federal Communication Commission

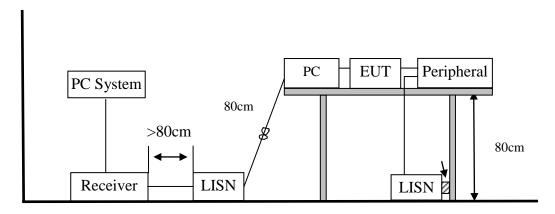
Registration Number: 293961 Designation Number: CN1236

July 25, 2017 Certificated by IC Registration Number: 12135A

2.5. Measurement Uncertainty

Test Item	Uncertainty			
Uncertainty for Conduction emission test	2.74dB			
Uncertainty for Radiation Emission test	3.77 dB (Distance: 3m Polarize: V)			
(<1G)	3.80 dB (Distance: 3m Polarize: H)			
Uncertainty for Padiation Emission tast (>1C)	4.13 dB (Distance: 3m Polarize: V)			
Uncertainty for Radiation Emission test (>1G)	4.16 dB (Distance: 3m Polarize: H)			
(95% confidence levels, k=2)				

3. Power Line Conducted Emission Test


3.1.Test Limits

			Maximum RF Line Voltage		
Frequency			Quasi-Peak Level	Average Level	
			dB(μV)	$dB(\mu V)$	
150kHz	~	500kHz	66 ~ 56*	56 ~ 46*	
500kHz	~	5MHz	56	46	
5MHz	~	30MHz	60	50	

Notes:

- 1. Emission level=Read level + LISN factor-Preamp factor + Cable loss
- 2. * Decreasing linearly with logarithm of frequency.
- 3. The lower limit shall apply at the transition frequencies.

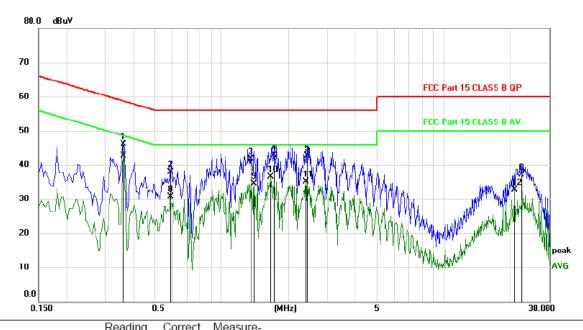
3.2.Block Diagram of Test Setup

3.3. Configuration of EUT on Test

The following equipment are installed on Power Line Conducted Emission Test to meet the commission requirement and operating regulations in a manner which tends to maximize its emission characteristics in a normal application.

3.4. Operating Condition of EUT

- (1) Setup the EUT as shown as Section 3.2.
- (2) Turn on the power of all equipment.
- (3) Let the EUT work in test mode and 15 minutes before taking the test.

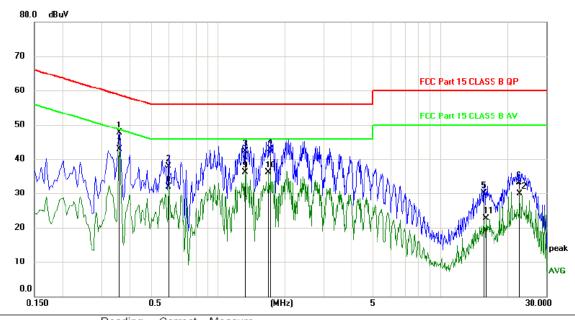

3.5.Test Procedure

- (1) The EUT was placed on a non-metallic table, 80cm above the ground plane. The EUT Power connected to the power mains through a line impedance stabilization network (L.I.S.N. 1#). This provided a 50-ohm coupling impedance for the EUT (Please refer to the block diagram of the test setup and photographs). The other peripheral devices power cord connected to the power mains through a line impedance stabilization network (L.I.S.N.#2). Both sides of power line were checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipments and all of the interface cables were changed according to ANSI C63.4:2014 on conducted Emission test.
- (2) The frequency range from 150kHz to 30MHz is checked, the bandwidth of test receiver (R&S TEST RECEIVER ESCI) is set at 9kHz.

3.6.Test Results

Test Date		:	2018.10.13	Temperature	:	23.9℃	
Test E	Test Engineer		Reak Yang	Humidity	:	46%	
Test M	Iode	:	Data transmitting				
Test R	esults	:	Pass				
Note:	1. The	tes	t results are listed in next pages.				
	1. If th	e li	mits for the measurement with the ave	rage detector are	me	t when using a	
	receive	r w	ith a peak detector, the test unit shall b	e deemed to meet	bo	oth limits and the	
	measur	em	ent with the average detector and quas-	i-peak detector ne	ed	not be carried out.	
	2. If the limits for the measurement with the average detector are met when using a			t when using a			
receiver with a quasi-peak detector, the test unit shall be deemed to meet both			neet both limits and				
	the measurement with the average detector need not be carried out.			not be carried out	•		

Polarity: L



No. N	Лk.	Freq.	Level	Factor	ment	Limit	Margir	n	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	(0.3620	45.86	0.20	46.06	58.68	-12.62	QP	
2	(0.5899	37.78	0.20	37.98	56.00	-18.02	QP	
3	,	1.3580	41.49	0.20	41.69	56.00	-14.31	QP	
4	,	1.7180	42.72	0.20	42.92	56.00	-13.08	QP	
5	2	2.4420	42.44	0.22	42.66	56.00	-13.34	QP	
6	22	2.3620	36.30	0.80	37.10	60.00	-22.90	QP	
7 *	, (0.3620	42.60	0.20	42.80	48.68	-5.88	AVG	
8	(0.5860	30.56	0.20	30.76	46.00	-15.24	AVG	
9	,	1.4060	34.28	0.20	34.48	46.00	-11.52	AVG	
10	,	1.6700	36.24	0.20	36.44	46.00	-9.56	AVG	
11	2	2.3980	34.90	0.22	35.12	46.00	-10.88	AVG	
12	20	0.9020	32.04	0.74	32.78	50.00	-17.22	AVG	

^{*:}Maximum data x:Over limit !:over margin

Note: Measurement=Reading Level+Correc Factor. Factor=(LISN or ISN or PLC or Current Probe)Factor+Cable

Polarity: N

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margir	า	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.3620	47.47	0.20	47.67	58.68	-11.01	QP	
2		0.6020	37.71	0.20	37.91	56.00	-18.09	QP	
3		1.3300	42.18	0.20	42.38	56.00	-13.62	QP	
4		1.7300	42.68	0.20	42.88	56.00	-13.12	QP	
5		15.7860	29.65	0.54	30.19	60.00	-29.81	QP	
6		22.5940	32.24	0.82	33.06	60.00	-26.94	QP	
7	*	0.3620	42.62	0.20	42.82	48.68	-5.86	AVG	
8		0.6020	31.67	0.20	31.87	46.00	-14.13	AVG	
9		1.3300	36.00	0.20	36.20	46.00	-9.80	AVG	
10		1.6940	35.94	0.20	36.14	46.00	-9.86	AVG	
11		16.0660	22.14	0.54	22.68	50.00	-27.32	AVG	
12		22.6900	29.07	0.82	29.89	50.00	-20.11	AVG	

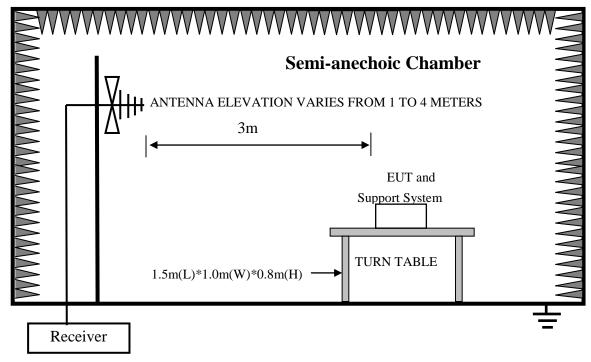
^{*:}Maximum data x:Over limit !:over margin

Note: Measurement=Reading Level+Correc Factor. Factor=(LISN or ISN or PLC or Current Probe)Factor+Cable

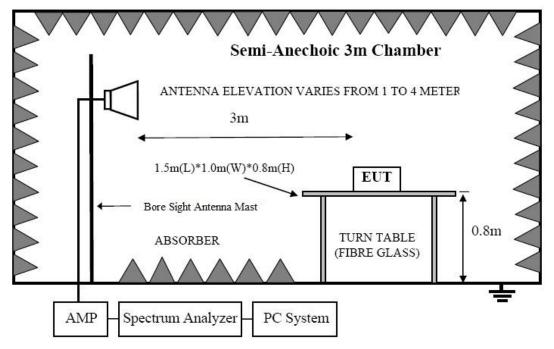
4. RADIATED EMISSION TEST

4.1.Test Limit

]	Freque	ency	Distance	Distance			
	MH	[z	(Meters)	(Meters)			
30	~	88	3	40.0			
88	~	216	3	43.5			
216	~ 960		3	46.0			
960	~	1000	3	54.0			
A	bove	1GHz	3	74(Peak) 54(Average)			


Notes:

- 1. The smaller limit shall apply at the cross point between two frequency bands.
- 2. Distance is the distance in meters between the measuring instrument, antenna and the closest point of any part of the device or system.
- 3. Frequency range of radiated measurements:


Highest frequency generated or used in the device or on which the device operates or tunes (MHz)	Upper frequency of measurement range (MHz)				
Below 1.705	30				
1.705-108	1000				
108-500	2000				
500-1000	5000				
Above 1000	5th harmonic of the highest frequency or 40 GHz, whichever is lower.				

4.2.Block Diagram of Test Setup

In Semi Anechoic Chamber (3m) Test Setup Diagram for 30MHz~1000MHz

In Semi Anechoic Chamber (3m) Test Setup Diagram for Above 1GHz

4.3. Configuration of EUT on Test

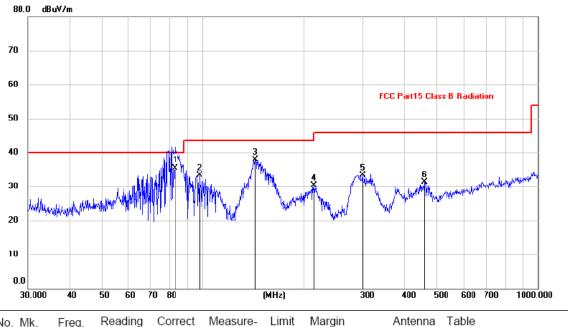
The following equipment are installed on Radiated Emission Test to meet the commission requirements and operating regulations in a manner that tends to maximize its emission characteristics in normal application.

4.4. Operating Condition of EUT

- (1) Setup the EUT as shown as Section 4.2.
- (2) Turn on the power of all equipment.
- (3) Let the EUT work in test mode and 15 minutes before taking the test.

4.5.Test Procedure

- (1) The EUT was placed on a non-metallic table, 80 cm above the ground plane inside a semi-anechoic chamber. An antenna was located 3m from the EUT on an adjustable mast. A pre-scan was first performed in order to find prominent radiated emissions. For final emissions measurements at each frequency of interest, the EUT were rotated and the antenna height was varied between 1m and 4m in order to maximize the emission. Measurements in both horizontal and vertical polarities were made and the data was recorded. In order to find the maximum emission, the relative positions of equipments and all of the interface cables were changed according to ANSI C63.4:2014 on Radiated Emission test.
- (2) For the radiated emission test above 1GHz:
 - Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- (3) The frequency range from 30MHz to 1000MHz is checked, the bandwidth of test receiver (R&S TEST RECEIVER ESR) is set at 120kHz.
- (4) The frequency range from above 1GHz is checked, the bandwidth of spectrum analyzer (Spectrum Analyzer FSU) is set at 1MHz.
- (5) The frequency range from 30MHz to 1000MHz was pre-scanned with a peak detector and all final readings of measurement from Test Receiver are Quasi-Peak values, the frequency range from 1GHz to 6GHz was pre-scanned with a peak detector and all final readings of measurement from Spectrum Analyzer are peak and average values checked, all measurement distance is 3m in 3m semi anechoic chamber.
- (6) The test results are reported on Section 4.7.

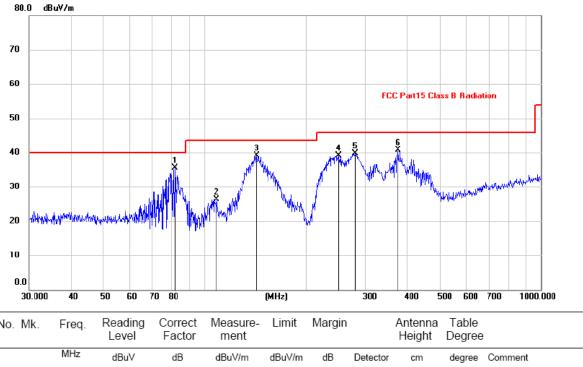

4.6.Test Results

Frequency Range	:	30MHz~1000MHz			
Test Date	:	2018.10.13	Temperature	:	24.2℃
Test Engineer	:	Reak Yang	Humidity	:	53%
Test Mode	:	Data transmitting			
Test Results	:	PASS			

Note: 1. The test results are listed in next pages.

2. If the limits for the measurement with the quasi-peak detector are met when using a receiver with a peak detector, the test unit shall be deemed to meet both limits and the measurement with the quasi-peak detector need not be carried out.

Antenna polarity: Vertical



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	*	82.6482	27.25	9.56	36.81	40.00	-3.19	QP			
2		97.4560	22.98	10.33	33.31	43.50	-10.19	peak			
3		143.3261	23.87	14.07	37.94	43.50	-5.56	peak			
4		214.5143	19.25	10.97	30.22	43.50	-13.28	peak			
5		299.3158	19.94	13.46	33.40	46.00	-12.60	peak			
6		459.1144	14.28	17.11	31.39	46.00	-14.61	peak			

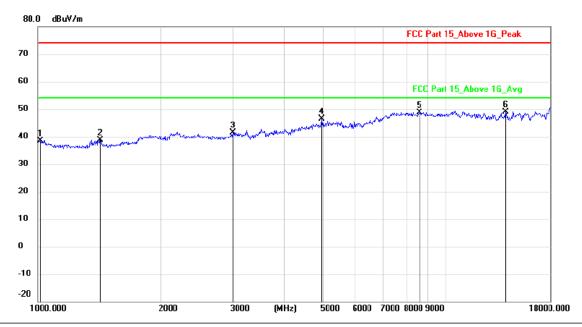
Note:1. *:Maximum data; x:Over limit; !:over margin.

^{2.}Measurement=Reading Level+Correct Factor; Correct Factor=Antenna Factor+Cable Loss.

Antenna polarity: Horizontal

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		81.2117	25.97	9.50	35.47	40.00	-4.53	peak			
2		108.2667	15.04	11.35	26.39	43.50	-17.11	peak			
3	*	142.3243	25.20	14.00	39.20	43.50	-4.30	peak			
4		250.3012	27.07	12.06	39.13	46.00	-6.87	peak			
5		279.0436	26.75	12.95	39.70	46.00	-6.30	peak			
6		375.9385	25.35	15.31	40.66	46.00	-5.34	peak			

Note:1. *:Maximum data; x:Over limit; !:over margin.

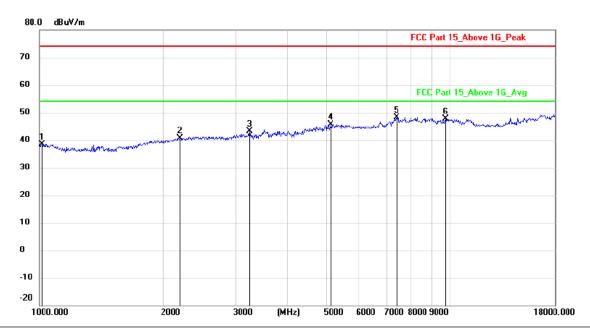

^{2.}Measurement=Reading Level+Correct Factor; Correct Factor=Antenna Factor+Cable Loss.

Frequency Range	:	Above 1GHz			
Test Date	:	2018.10.13	Temperature	:	24.2℃
Test Engineer	:	Reak Yang	Humidity	:	53%
Test Mode	:	Data transmitting			
Test Results	:	Pass			

Note: 1. The data is shown in the next page.

2. If the limits for the measurement with the quasi-peak detector are met when using a receiver with a peak detector, the test unit shall be deemed to meet both limits and the measurement with the quasi-peak detector need not be carried out.

Antenna polarity: Vertical



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBu∀	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		1011.629	47.05	-8.63	38.42	74.00	-35.58	peak			
2		1422.798	45.72	-6.99	38.73	74.00	-35.27	peak			
3	2	2999.187	43.67	-2.31	41.36	74.00	-32.64	peak			
4	4	4959.307	49.01	-2.58	46.43	74.00	-27.57	peak			
5	8	3613.467	44.83	3.91	48.74	74.00	-25.26	peak			
6	*	13957.52	41.88	6.93	48.81	74.00	-25.19	peak			

Note:1. *:Maximum data; x:Over limit; !:over margin.

^{2.}Measurement=Reading Level+Correct Factor; Correct Factor=Antenna Factor+Cable Loss.

Antenna polarity: Horizontal

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBu∀	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		1011.629	47.05	-8.63	38.42	74.00	-35.58	peak			
2		2194.998	44.13	-3.38	40.75	74.00	-33.25	peak			
3		3242.619	45.51	-2.28	43.23	74.00	-30.77	peak			
4		5119.517	47.98	-2.30	45.68	74.00	-28.32	peak			
5	*	7411.461	44.73	3.42	48.15	74.00	-25.85	peak			
6		9725.221	43.92	3.63	47.55	74.00	-26.45	peak			

Note:1. *:Maximum data; x:Over limit; !:over margin.

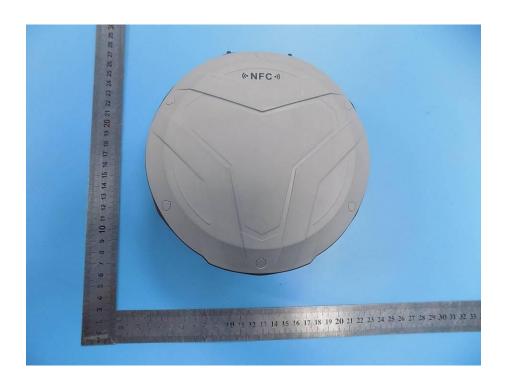
^{2.}Measurement=Reading Level+Correct Factor; Correct Factor=Antenna Factor+Cable Loss.

5. PHOTOGRAPH

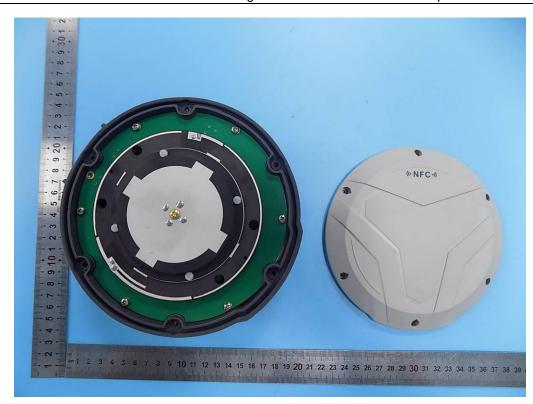
5.1. Photo of Radiated Emission Test (In Semi Anechoic Chamber)

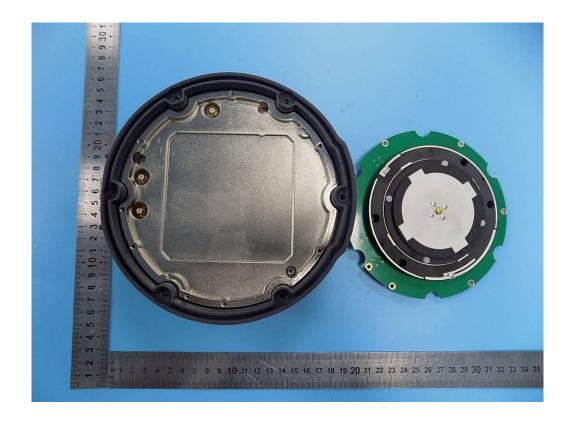
Below 1G

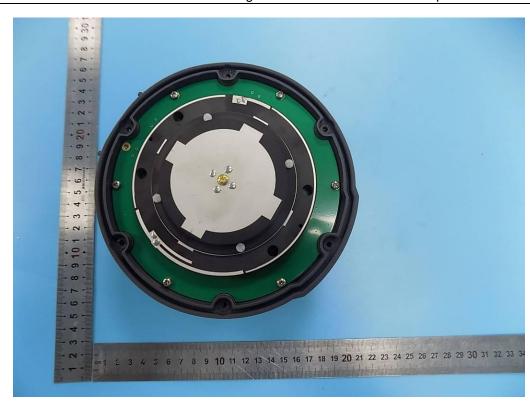
Above 1GHz

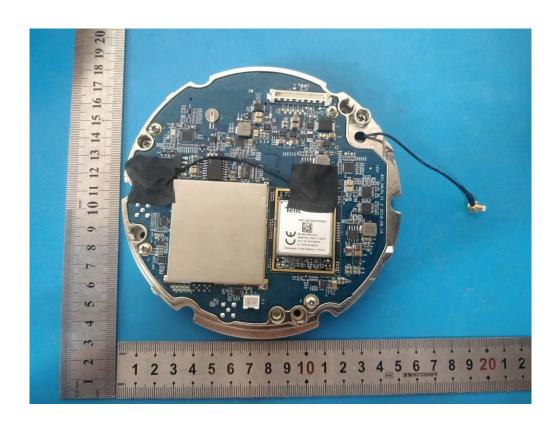

5.2.Photo of Power Line Conducted Emission Test

6. PHOTOS OF THE EUT

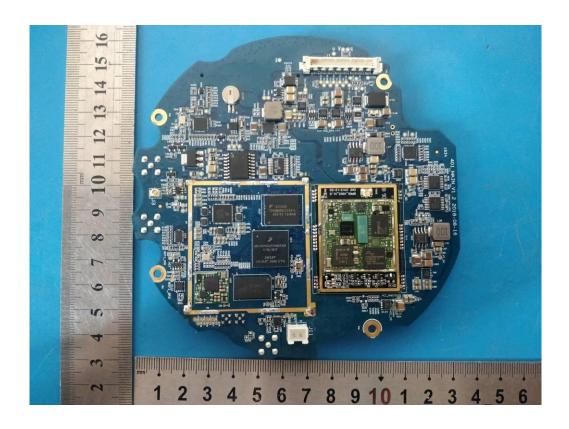


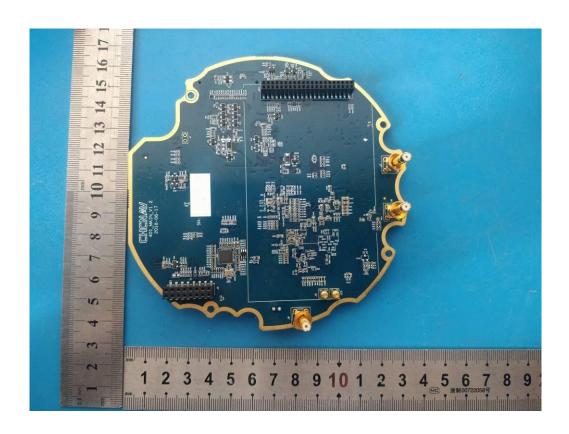


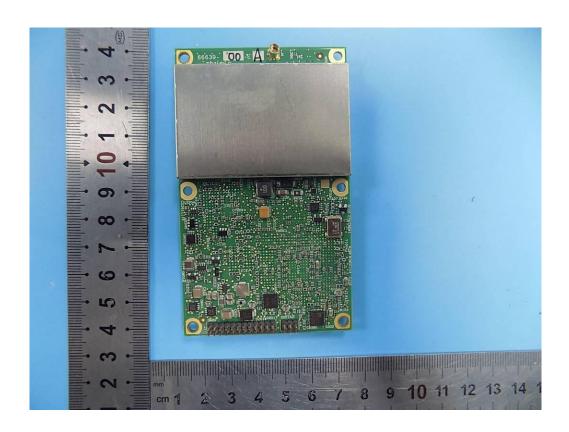


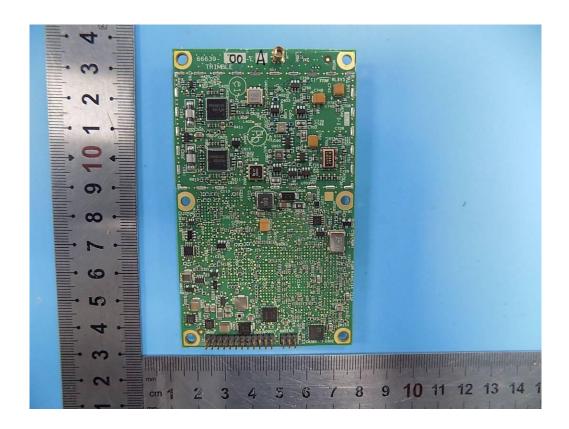




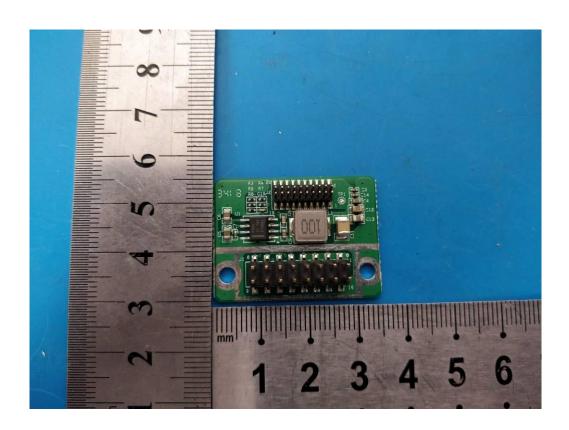


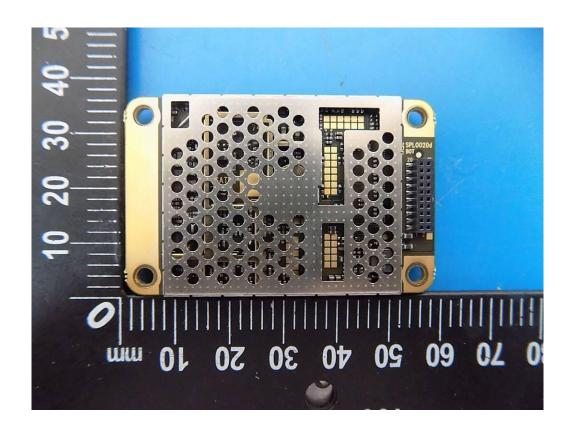


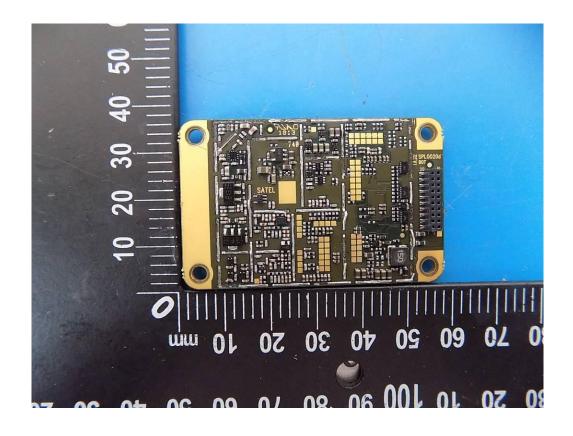


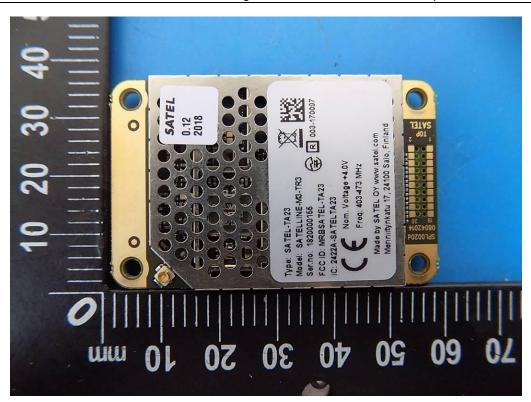


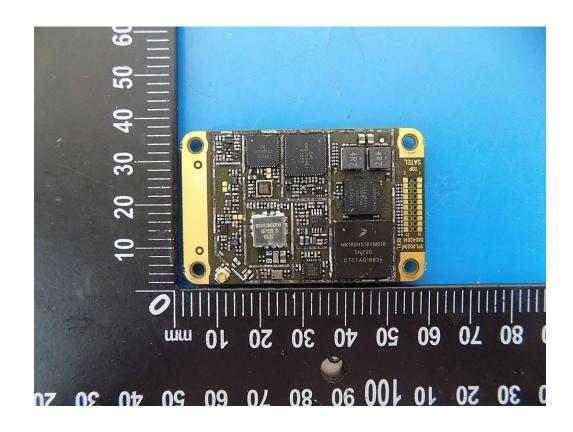


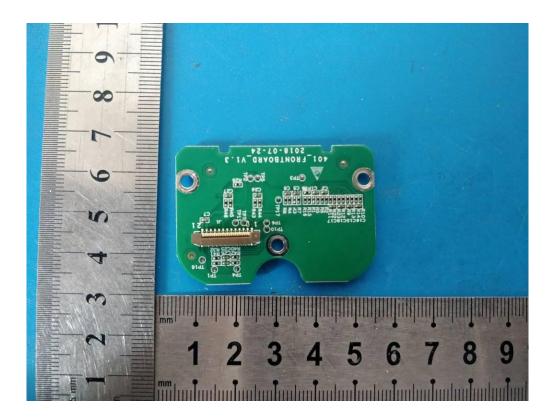


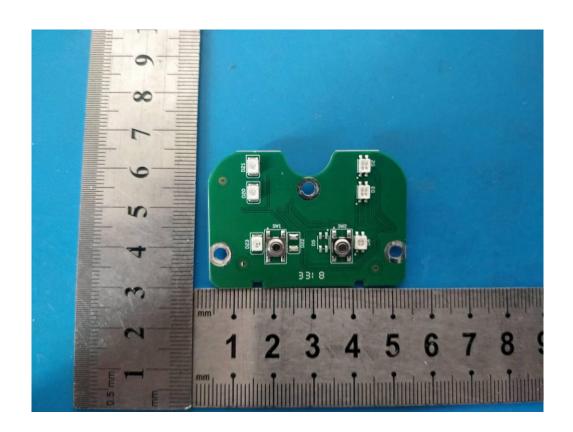


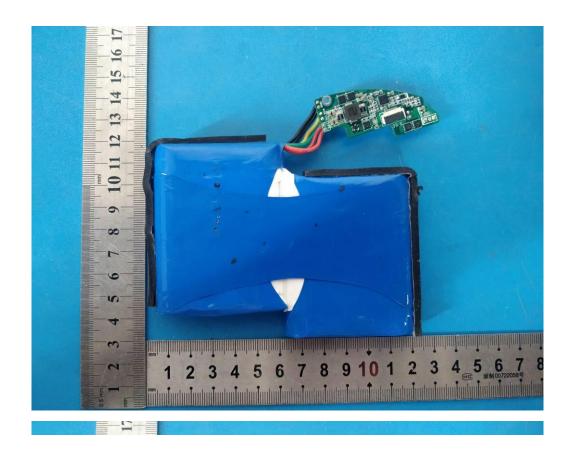












-----End of report-----