

TEST REPORT

FCC ID: SY4-A01010

For

Shanghai Huace Navigation Technology LTD.

GNSS Receiver

Model No. : i70, iG8

Trade name :

Prepared for : Shanghai Huace Navigation Technology LTD.

Address : Building C,599 Gaojing Road, Qingpu District, Shanghai, China

Prepared by : Shenzhen Alpha Product Testing Co., Ltd.

Building B, East Area of Nanchang Second, Industrial Zone,

Address : Gushu 2nd Road, Bao'an, Shenzhen, China

Report No. : T1871060 03

Date of Receipt : June 22, 2017

Date of Test : June 22, 2017- July 11, 2017

Date of Report : July 11, 2017

TABLE OF CONTENTS

<u>D</u> 6	scription	<u>Page</u>
1.	Summary of Standards And Results	4
	1.1 Description of Standards and Results	4
2.	General Information	6
	2.1 Description of Device (EUT)	6
	2.2 Accessories of Device (EUT)	7
	2.3 Tested Supporting System Details	7
	2.4 Test Mode Description	7
	2.5 Test Conditions	8
	2.6 Test Facility	8
	2.7 Measurement Uncertainty	8
	2.8 Test Equipment List	9
3.	Radiated Power and Effective Isotropic Radiated Power	10
	3.1 Measurement Method	10
	3.2 Test Setup	10
	3.3 Test Procedures	11
	3.4 Test Results	11
4.	Radiated Spurious Emission	14
	4.1 Measurement Method	
	4.2 Test Setup	14
	4.3 Test Procedures	
	4.4 Test Results	16

Reak Yang

DECLARATION

Applicant : Shanghai Huace Navigation Technology LTD.

Manufacturer : Shanghai Huace Navigation Technology LTD.

EUT Description : GNSS Receiver

(A) Model No. : i70, iG8

(B) Trademark : CHC

(C) Ratings Supply : DC 15V from adapter input 120V/60Hz

Measurement Standard Used:

FCC Part 22H, Part 24E, Part 27, part 90, ANSI/TIA-603-E: 2016

The device described above is tested by Shenzhen Alpha Product Testing Co., Ltd. to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The test results are contained in this test report and Shenzhen Alpha Product Testing Co., Ltd. is assumed full responsibility for the accuracy and completeness of test. Also, this report shows that the EUT is technically compliant with the FCC requirements.

This report applies to above tested sample only. This report shall not be reproduced in parts without written approval of Shenzhen Alpha Product Testing Co., Ltd.

Tested by (name + signature)..... Reak Yang

Project Engineer

Approved by (name + signature)......: Simple Guan

Project Manager

Date of issue...... July 11, 2017

1. SUMMARY OF STANDARDS AND RESULTS

1.1 Description of Standards and Results

The EUT have been tested according to the applicable standards as referenced below:

FCC Part2, 22E, 24H EMISSION					
Test Description	Standard Paragraph	Test Result			
Conducted Output Power	§2.1049	Compliance*			
Peak-to-Average Ratio	§2.0146, §24.232	Compliance*			
Effective Radiated Power/Equivalent Isotropic Radiated Power	§2.1046, §22.913, §24.232	Compliance			
Occupied Bandwidth	\$2.1049, \$22.917, \$24.238	Compliance*			
Frequency Stability	\$2.1055, \$22.355, \$24.235	Compliance*			
Spurious Emission at Antenna Terminals	§2.1051, §22.917, §24.238	Compliance*			
Field Strength of Spurious Radiation	§2.1053, §22.917, §24.238	Compliance			
Band Edge	\$2.1051, \$22.917, \$24.238	Compliance*			
FCC Part2, 22E,	24H, 27 EMISSION				
Description of Test Item	Standard Paragraph	Results			
Maximum permissible exposure(MPE)	§1.1307, §2.1091	Compliance			
ERP&EIRP	\$2.1046, \$22.913(a) \$24.232(c), \$27.50(d)	Compliance			
Modulation Characteristics	§ 2.1047	Compliance*			
Occupied Bandwidth	\$2.1049, \$22.905, \$22.917, \$24.238, \$27.53(c)	Compliance*			
Spurious Emissions at Antenna Terminal	\$2.1051, \$22.917(a), \$24.238(a), \$27.53(c)(h)	Compliance*			
Spurious Radiated Emissions	\$2.1053, \$22.917(a), \$24.238(a), \$27.53(c)(h)	Compliance			
Band Edge	\$22.917(a), \$24.238(a) \$27.53(c)(h)	Compliance*			
Frequency Stability	\$2.1055, \$22.355, \$24.235, \$27.54	Compliance*			

Compliance*: The EUT has the 2G/3G module. The module had been certified which the model number is HE910, FCC ID: RI7HE910. The EUT use the module series model: HE910-D. The difference between the module which is used in the EUT and the original 2G/3G module is changed the antenna, so we added the test for ERP&EIRP, Spurious Radiated Emissions and the assessment for MPE, we pre-scan the output power, the output power is similar as the power in the original report. Radiated emission has been re-tested and the result for conducted test was cited from the certified module directly. The other data are refer to the report 1112FR12-02 which the model: HE910 (FCC ID: RI7HE910).

FCC Part2, part90 EMISSION						
Description of Test Item	Standard Paragraph	Results				
RF output power	§ 2.1046; §90.205	Compliance*				
Ocupied bandwidth & emission mask	§ 2.1049; §90.209; §90.210	Compliance*				
Spurious emissions at antenna terminals	§ 2.1051; §90.210	Compliance*				
Radiated spurious emissions	§ 2.1053; §90.210	Compliance				
Frequency stability	§2.1055; §90.213	Compliance*				

Compliance*: The EUT has the Radio module. The module had been certified which the model number is SATEL-TA23, FCC ID: MRBSATEL-TA23. The difference between the module which is used in the EUT changed the antenna, so we added the test for ERP&EIRP, Spurious Radiated Emissions and the assessment for MPE, we pre-scan the output power, the output power is similar as the power in the original report. Radiated emission has been re-tested and the result for conducted test was cited from the certified module directly. The other data are refer to the report 281080-1 which the model: SATEL-T23 (FCC ID: MRBSATEL-TA23).

2. GENERAL INFORMATION

2.1 Description of Device (EUT)

Trademark :

Description : GNSS Receiver

Model Number : i70, iG8

Diff

All the models are the same, except the model name, this report performs:

the model i70.

GPRS/EDGE:850: 824.2 MHz ~ 848.8 MHz

1900: 1850.2 MHz ~ 1909.8 MHz

TX frequency : WCDMA: Band V: 826.4 MHz ~ 846.6 MHz

Band II: 1852.4 MHz ~ 1907.6 MHz

Band IV: 1712.4~1752.6MHz

UHF: 406.1-430.0 MHz and 450.0-470.0 MHz GPRS/EDGE: 850: 869.2 MHz ~ 893.8 MHz

1900: 1930.2 MHz ~ 1989.8 MHz

RX frequency : WCDMA: Band V: 871.4 MHz ~ 891.6 MHz

Band II: 1932.4 MHz ~ 1987.6 MHz Band IV: 2112.4MHz ~ 2152.6MHz

GPRS for **GMSK**

EGPRS for 8PSK

Modulation type : WCDMA: QPSK&16QAM

UHF: 4FSK, 8FSK,16FSK

Antenna Type : 2G/3G: PIFA antenna UHF: Rod antenna

GSM 850: 2dBi GSM1900: 1.5dBi

Antenna Peak Gain : WCDMA Band V: 0.5dBi Band II: 0dBi Band IV: 0dBi

UHF: 1.5dBi

GPRS Class : 12 Software version : V1.3 Hardware version : V1.0

Applicant : Shanghai Huace Navigation Technology LTD.

Address : Building C, 599 Gaojing Road, Qingpu District, Shanghai, China

Manufacturer : Shanghai Huace Navigation Technology LTD.

Address : Building C, 599 Gaojing Road, Qingpu District, Shanghai, China

Sample Type : Prototype production

2.2 Accessories of Device (EUT)

Power Source : Input: AC 100-240V

Output: DC 12-36V/2A

LI-ION battery: 3400mAh/7.4V*2

USB Cable : USB port to PC

1.5m

Data Cable : IO port to PC with RS-232/external power

1.8m

2.3 Tested Supporting System Details

No.	Description	Manufacturer	Model	Serial Number	Certification or DOC
1	Notebook	ACER	ZQT	N/A	DOC

2.4 Test Mode Description

ALPHA has verified the construction and function in typical operation. EUT is inlink mode with base station emulator at maximum power level. All the test modes were carried out with the EUT in normal operation, which was shown in this test report is the worst test mode and defined as:

	TEST MODES						
BAND	RADIATED TCS	CONDUCTED TCS					
GSM 850	GPRS/EDGE CLASS 12 LINK	GPRS/EDGE CLASS 12 LINK					
GSM 1900	GPRS/EDGE CLASS 12 LINK	GPRS/EDGE CLASS 12 LINK					
WCDMA BAND V	RMC 12.2KBPS LINK	RMC 12.2KBPS LINK					
WCDMA BAND II	RMC 12.2KBPS LINK	RMC 12.2KBPS LINK					
WCDMA BAND IV	RMC 12.2KBPS LINK	RMC 12.2KBPS LINK					
UHF	428.0MHz	428.0MHz					

Note:

- 1. Regards to the frequency band operation: the lowest middle and highest frequency of channel were selected to perform the test, then shown on this report.
- 2. The maximum power levels are GPRS multi-slot class 12 for GMSK link, EGPRS multi-slot class 12 mode for 8PSK link, RMC 12.2Kbps mode for WCDMA band V, II and IV, when power supply was 12V, only these modes were used for all tests.
- 3. For the ERP/EIRP and radiated emission test, every axis (X, Y, Z) was verified, and show the worst (Z axis) result on this report.

2.5 Test Conditions

Items	Required	Actual
Temperature range:	15-35℃	27°C
Humidity range: 25-75%		56%
Pressure range:	86-106kPa	980kPa

2.6 Test Facility

Shenzhen Alpha Product Testing Co., Ltd.

Building B, East Area of Nanchang Second, Industrial Zone, Gushu 2nd Road, Bao'an, Shenzhen, China

March 25, 2015 File on Federal Communication Commission

Registration Number: 203110

July 18, 2014 Certificated by IC Registration Number: 12135A

2.7 Measurement Uncertainty

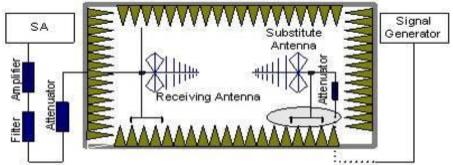
(95% confidence levels, k=2)

Test Item	Uncertainty	
Uncertainty for Conduction emission test	2.71dB	
Uncertainty for Radiation Emission test	3.90 dB (Distance: 3m Polarize: V)	
(<1G)	3.92 dB (Distance: 3m Polarize: H)	
Uncertainty for Radiation Emission test	4.26 dB (Distance: 3m Polarize: V)	
(>1G)	4.28 dB (Distance: 3m Polarize: H)	
Uncertainty for conducted RF Power	0.16dB	

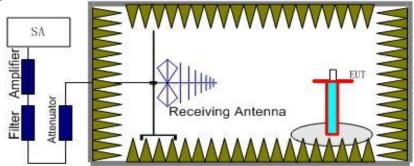
2.8 Test Equipment List

Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due day
Bilog Antenna	SCHWARZBECK	VULB 9168	9168-438	2016.09.30	2017.09.29
Test Receiver	R&S	ESCI	101165	2016.09.29	2017.09.28
Spectrum analyzer	Agilent	E4407B	MY49510055	2016.09.29	2017.09.28
Horn Antenna	SCHWARZBECK	BBHA 9120 D	BBHA 9120 D(1201)	2016.09.30	2017.09.29
Filter	KANGMAI	ZLPF-LDC-1000- 1959	1209002075	2016.09.29	2017.09.28
Filter	WAINWRIGHT	WHKX2.80/18G- 12SS	SN1	2016.09.29	2017.09.28
RF Cable	Resenberger	Cable 4	N/A	2016.09.29	2017.09.28
CMU200	R&S	CMU200	116785	2016.09.29	2017.09.28
Signal Analyzer	Agilent	N9020A	MY499100060	2016.09.29	2017.09.28
vector Signal Generator	Agilent	N5182A	MY49060042	2016.09.29	2017.09.28
vector Signal Generator	Agilent	E4438C	US44271917	2016.09.29	2017.09.28
Amplifier	HP	HP8347A	2834A00455	2016.09.29	2017.09.28
Amplifier	Teseq	LNA6901	72718	2016.09.29	2017.09.28
Amplifier	Agilent	8449B	3008A02664	2016.09.29	2017.09.28
Filter	WAINWRIGHT	WHKX1.0G/15G- 10SS	SN40	2016.09.29	2017.09.28
Test Receiver	R&S	ESR	1316.3003K03-1 02082-Wa	2016.09.29	2017.09.28
Bilog Antenna	SCHWARZBECK	VULB 9168	9168-438	2016.09.29	2017.09.28
9*6*6 anechoic chamber	CHENYU	9*6*6	N/A	2016.7.21	2017.7.20
RF Cable	Resenberger	Cable 1	N/A	2016.09.29	2017.09.28
RF Cable	Resenberger	Cable 2	N/A	2016.09.29	2017.09.28
RF Cable	Resenberger	Cable 3	N/A	2016.09.29	2017.09.28
Power Sensor	Power Radio	RPR3006W	15100041SNO91	2016.09.29	2017.09.28
Power Sensor	Power Radio	RPR3006W	15100041SNO92	2016.09.29	2017.09.28
CMW500	R&S	CMW500	1201.0002K50-1 17239-sM	2016.09.29	2017.09.28
Loop Antenna	SCHWARZBECK	FMZB 1519B	00005	2016.09.29	2017.09.28
POWER DIVIDER	Mini-circuits	PD-2SF-0010	N/A	2016.09.29	2017.09.28
POWER DIVIDER	Mini-circuits	PD-2SF-0010	N/A	2016.09.29	2017.09.28

3. RADIATED POWER AND EFFECTIVE ISOTROPIC RADIATED POWER


3.1 Measurement Method

Effective radiated power output measurements by substitution method according to ANSI / TIA /EIA-603-E, and the spectrum analyzer configuration follows KDB 971168 D01 Power Meas. License Digital Systems. Mobile and portable (hand-held) stations operating are limited to average ERP,Equivalent isotropic radiated power output measurements by substitution method according to ANSI /TIA / EIA-603-E, and the spectrum analyzer configuration follows KDB 971168 D01 Power Meas ,Mobile and portable (hand-held) stations operating are limited to average EIRP.


3.2 Test Setup

The procedure of radiated spurious emissions is as follows:

a) Pre-calibration With pre-calibration method, the Radiated Spurious Emissions(RSE) is calculated as, RSE=Rx (dBuV) + CL (dB) + SA (dB) + Gain (dBi) -107 (dBuV to dBm) The SA is calibrated using following setup.

b) EUT was placed on a 1.5 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the test item for emission measurements. The height of receiving antenna is 0.8m. The test setup refers to figure below. Detected emissions were maximized at each frequency by rotating the test item and adjusting the receiving antenna polarization. The radiated emission measurements of all non-harmonic and harmonics of the transmit frequency through the 10th harmonic were measured with peak detector and 1MHz bandwidth.

Radiated emissions measurements were made only at the upper, middle, and lower carrier frequencies It was decided that measurements at these three carrier frequencies would be sufficient to demonstrate compliance with emissions limits because it was seen that all the

significant spurs occur well outside the band and no radiation was seen from a carrier in one block of any band into any of the other blocks.

The substitution method is used. Substitution values at each frequency are measured before and saved to the test software. A "reference path loss" is established and the ARpl is the attenuation of "reference path loss", and including the gain of receive antenna, the gain of the preamplifier, the cable loss and the air loss. The measurement results are obtained as described below: Power=PMea+ARpl

3.3 Test Procedures

- 1. The testing follows FCC KDB 971168 v02r02 Section 5.6. and ANSI / TIA-603-E-2010 Section 2.2.17.
- 2. The EUT was placed on a non-conductive rotating platform 1.5 meters high in a semi-anechoic
- chamber. The radiated emission at the fundamental frequency was measured at 3 m with a test antenna and a spectrum analyzer with Peak detector.
- 3. During the measurement, the system simulator parameters were set to force the EUTtransmitting at maximum output power. The maximum emission was recorded from analyzer power level (LVL) from the 360 degrees rotation of the turntable and the test antenna raised and lowered over a range from 1 to 4 meters in both horizontally and vertically polarized orientations.
- 4. Effective Isotropic Radiated Power (EIRP) was measured by substitution method according to TIA/EIA-603-E. The EUT was replaced by dipole antenna (substitution antenna) at same location, and then a known power from S.G. was applied into the dipole antenna through a Tx cable, and then recorded the maximum Analyzer reading through raised and lowered the test antenna. The correction factor (in dB) = S.G. Tx Cable loss + Substitution antenna gain Analyzer reading. Then the EUT's EIRP was calculated with the correction factor, EIRP= LVL + Correction factor and ERP = EIRP 2.15.
- 5.RB Set greater than bandwidth, Vb Set spectrum analyzer Maximum support.

3.4 Test Results

Radiated Power (ERP) for UHF									
	Fraguency			R	lesult		Conclusion		
Mode	Frequency (MHz)	S G.Level (dBm)	Cable loss	Gain (dBi)	E.R.P (dBm)	Polarization			
	408.0	23.11	0.35	6.2	29.66	Horizontal	Pass		
	408.0	23.32	0.35	6.2	29.87	Vertical	Pass		
UHF	428.0	23.50	0.36	6.2	30.06	Horizontal	Pass		
OIII	428.0	23.71	0.36	6.2	30.27	Vertical	Pass		
	468.0	23.24	0.37	6.2	29.81	Horizontal	Pass		
	468.0	23.39	0.37	6.2	29.96	Vertical	Pass		

Radiated Power (ERP) for GSM 850 MHZ								
	E		Result					
Mode	Frequency (MHz)	S G.Level	Cable	Gain	E.R.P	Polarization	Conclusion	
	(141112)	(dBm)	loss	(dBi)	(dBm)	1 Olalization		
	824.2	22.81	0.44	6.5	28.87	Horizontal	Pass	
	824.2	24.39	0.44	6.5	30.45	Vertical	Pass	
GPRS850	836.6	22.77	0.45	6.5	28.82	Horizontal	Pass	
GPKS830	836.6	24.74	0.45	6.5	30.79	Vertical	Pass	
	848.8	22.76	0.46	6.5	28.80	Horizontal	Pass	
	848.8	24.50	0.46	6.5	30.54	Vertical	Pass	
	824.2	22.80	0.44	6.5	28.86	Horizontal	Pass	
	824.2	24.51	0.44	6.5	30.57	Vertical	Pass	
EDGE850	836.6	22.83	0.45	6.5	28.88	Horizontal	Pass	
EDGE830	836.6	24.53	0.45	6.5	30.58	Vertical	Pass	
	848.8	22.77	0.46	6.5	28.81	Horizontal	Pass	
	848.8	24.51	0.46	6.5	30.55	Vertical	Pass	

Radiated Power (EIRP) for PCS 1900 MHZ								
	Frequency		Result					
Mode	(MHz)	S G.Level	Cable	Gain	E.I.R.P	Polarization	Conclusion	
	, ,	(dBm)	loss	(dBi)	(dBm)	1 oldinzation		
	1850.2	17.75	2.41	10.35	25.69	Horizontal	Pass	
	1850.2	19.27	2.41	10.35	27.21	Vertical	Pass	
GPRS1900	1880.0	17.9	2.42	10.35	25.83	Horizontal	Pass	
GPK51900	1880.0	19.62	2.42	10.35	27.55	Vertical	Pass	
	1909.8	17.76	2.43	10.35	25.68	Horizontal	Pass	
	1909.8	19.24	2.43	10.35	27.16	Vertical	Pass	
	1850.2	17.79	2.41	10.35	25.73	Horizontal	Pass	
	1850.2	19.4	2.41	10.35	27.34	Vertical	Pass	
EDGE1900	1880.0	17.88	2.42	10.35	25.81	Horizontal	Pass	
EDGE1900	1880.0	19.76	2.42	10.35	27.69	Vertical	Pass	
	1909.8	17.67	2.43	10.35	25.59	Horizontal	Pass	
	1909.8	19.2	2.43	10.35	27.12	Vertical	Pass	

Radiated Power (ERP) for WCDMA Band V									
	Frequency			R	esult				
Mode	(MHz)	S G.Level	Cable	Gain	E.R.P	Polarization	Conclusion		
	(WITIE)	(dBm)	loss	(dBi)	(dBm)	Polarization			
	826.4	14.34	0.44	6.5	20.40	Horizontal	Pass		
	826.4	16.33	0.44	6.5	22.39	Vertical	Pass		
Band V	836.6	14.64	0.45	6.5	20.69	Horizontal	Pass		
Dallu V	836.6	16.38	0.45	6.5	22.43	Vertical	Pass		
	846.6	14.56	0.46	6.5	20.60	Horizontal	Pass		
	846.6	16.33	0.46	6.5	22.37	Vertical	Pass		

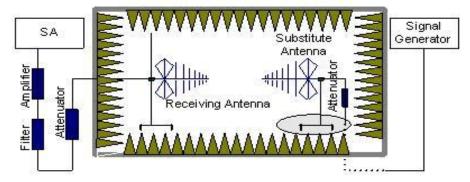
Radiated Power (EIRP) for WCDMA Band II									
Mode	Frequency		Result						
	(MHz)	S G.Level (dBm)	Cable loss	Gain (dBi)	E.I.R.P (dBm)	Polarization	Conclusion		
1852.	1852.4	12.13	2.41	10.35	20.07	Horizontal	Pass		
	1852.4	14.09	2.41	10.35	22.03	Vertical	Pass		
Band II	1880.0	12.49	2.42	10.35	20.42	Horizontal	Pass		
Danu II	1880.0	14.19	2.42	10.35	22.12	Vertical	Pass		
	1907.6	12.15	2.43	10.35	20.07	Horizontal	Pass		
	1907.6	14.13	2.43	10.35	22.05	Vertical	Pass		

	Radiated Power (EIRP) for WCDMA Band IV									
	Frequency									
Mode	(MHz)	S G.Level	Cable	Gain	E.I.R.P	Polarization	Conclusion			
	(WITIZ)	(dBm)	loss	(dBi)	(dBm)	1 Olarization				
	1712.4	12.32	2.40	10.35	20.27	Horizontal	Pass			
	1712.4	13.49	2.40	10.35	21.44	Vertical	Pass			
Band IV	1732.4	12.18	2.41	10.35	20.12	Horizontal	Pass			
Dallu I v	1732.4	13.55	2.41	10.35	21.49	Vertical	Pass			
	1752.5	12.17	2.42	10.35	20.10	Horizontal	Pass			
	1752.5	13.83	2.42	10.35	21.76	Vertical	Pass			

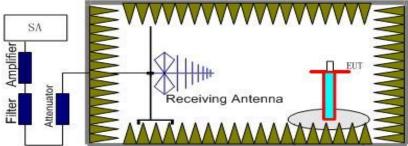
4. RADIATED SPURIOUS EMISSION

4.1 Measurement Method

The radiated spurious emission was measured by substitution method according to ANSI / TIA


EIA-603-E-2010. The power of any emission outside of the authorized operating frequency ranges

must be attenuated below the transmitter power (P) by a factor of at least 43 + 10 log (P) dB. For Band 7 The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitter power (P) by a factor of at least 55 + 10 log (P) dB. For Band. The spectrum is scanned from 30 MHz up to a frequency including its 10th harmonic.


4.2 Test Setup

The procedure of radiated spurious emissions is as follows:

a) Pre-calibration With pre-calibration method, the Radiated Spurious Emissions(RSE) is calculated as, RSE=Rx (dBuV) +CL (dB) +SA (dB) +Gain (dBi) -107 (dBuV to dBm) The SA is calibrated using following setup.

b) EUT was placed on a 1.5 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the test item for emission measurements. The height of receiving antenna is 0.8m. The test setup refers to figure below. Detected emissions were maximized at each frequency by rotating the test item and adjusting the receiving antenna polarization. The radiated emission measurements of all non-harmonic and harmonics of the transmit frequency through the 10th harmonic were measured with peak detector and 1MHz bandwidth.

Radiated emissions measurements were made only at the upper, middle, and lower carrier frequencies It was decided that measurements at these three carrier frequencies would be

Page 15 of 23 Report No.: T1871060 03

sufficient to demonstrate compliance with emissions limits because it was seen that all the significant spurs occur well outside the band and no radiation was seen from a carrier in one block of any band into any of the other blocks.

The substitution method is used. Substitution values at each frequency are measured before and saved to the test software. A "reference path loss" is established and the ARpl is the attenuation of "reference path loss", and including the gain of receive antenna, the gain of the preamplifier, the cable loss and the air loss. The measurement results are obtained as described below: Power=PMea+ARpl

4.3 Test Procedures

- 1. The testing follows FCC KDB 971168 v02r02 Section 5.8 and ANSI / TIA-603-E-2010 Section
- 2.2.12.
- 2. The EUT was placed on a rotatable wooden table with 0.8 meter above ground.
- 3. The EUT was set 3 meters from the receiving antenna, which was mounted on the antenna tower.
- 4. The table was rotated 360 degrees to determine the position of the highest spurious emission.
- 5. The height of the receiving antenna is varied between one meter and four meters to search the

maximum spurious emission for both horizontal and vertical polarizations

6. Make the measurement with the spectrum analyzer's RBW = 1MHz, VBW = 3MHz, taking the

record of maximum spurious emission.

- 7. A horn antenna was substituted in place of the EUT and was driven by a signal generator.
- 8. Tune the output power of signal generator to the same emission level with EUT maximum spurious emission.
- 9. Taking the record of output power at antenna port.
- 10. Repeat step 7 to step 8 for another polarization.
- 11. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

```
The limit line is derived from 43 + 10\log(P)dB below the transmitter power P(Watts) = P(W)- [43 + 10\log(P)] (dB) = [30 + 10\log(P)] (dBm) - [43 + 10\log(P)] (dB) = -13dBm . For Band 7: The limit line is derived from 55 + 10\log(P)dB below the transmitter power P(Watts) = [30 + 10\log(P)] (dBm) - [55 + 10\log(P)] (dB)
```

```
= -25dBm

EIRP (dBm) = S.G. Power – Tx Cable Loss + Tx Antenna Gain

ERP (dBm) = EIRP - 2.15
```

4.4 Test Results

		(GPRS 850: (3	80-9000)MHz	Z		
		The Worst	Test Results	Channel 128/	/824.2 MHz		
Frequency	S G.Lev	Ant	Loss	PMea	Limit	Margin	Dolomitry
(MHz)	(dBm)	(dBi)	LOSS	(dBm)	(dBm)	(dB)	Polarity
1648.21	-41.32	9.40	4.75	-36.67	-13.00	-23.67	Н
2472.54	-40.35	10.60	8.39	-38.14	-13.00	-25.14	Н
3296.86	-31.97	12.00	11.79	-31.76	-13.00	-18.76	Н
1648.09	-43.60	9.40	4.75	-38.95	-13.00	-25.95	V
2472.47	-44.62	10.60	8.39	-42.41	-13.00	-29.41	V
3296.64	-42.73	12.00	11.79	-42.52	-13.00	-29.52	V
		The Worst	Test Results	Channel 190/	/836.6 MHz		
Frequency	S G.Lev	Ant	Logg	PMea	Limit	Margin	Polarity
(MHz)	(dBm)	(dBi)	Loss	(dBm)	(dBm)	(dB)	Folality
1673.28	-41.22	9.50	4.76	-36.48	-13.00	-23.48	Н
2509.71	-40.54	10.70	8.40	-38.24	-13.00	-25.24	Н
3346.37	-31.69	12.20	11.80	-31.29	-13.00	-18.29	Н
1672.85	-44.38	9.40	4.75	-39.73	-13.00	-26.73	V
2509.92	-44.55	10.60	8.39	-42.34	-13.00	-29.34	V
3346.23	-42.94	12.20	11.82	-42.56	-13.00	-29.56	V
		The Worst	Test Results	Channel 251/	/848.8 MHz		
Frequency	S G.Lev	Ant	Loss	PMea	Limit	Margin	Polarity
(MHz)	(dBm)	(dBi)	LUSS	(dBm)	(dBm)	(dB)	Folality
1697.63	-41.62	9.60	4.77	-36.79	-13.00	-23.79	Н
2546.41	-40.50	10.80	8.50	-38.20	-13.00	-25.20	Н
3395.07	-31.82	12.50	11.90	-31.22	-13.00	-18.22	Н
1697.60	-44.62	9.60	4.77	-39.79	-13.00	-26.79	V
2546.36	-45.20	10.80	8.50	-42.90	-13.00	-29.90	V
3394.95	-43.87	12.50	11.90	-43.27	-13.00	-30.27	V

Note: (1)Below 30MHz no Spurious found is the worst condition.

(2)Above 3.5GHz amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has.

	EGPRS 850: (30-9000)MHz									
			Test Results	· · · · · · · · · · · · · · · · · · ·						
Frequency	S G.Lev	Ant	T	PMea	Limit	Margin	D.I.			
(MHz)	(dBm)	(dBi)	Loss	(dBm)	(dBm)	(dB)	Polarity			
1648.14	-41.56	9.40	4.75	-36.91	-13.00	-23.91	Н			
2472.57	-40.26	10.60	8.39	-38.05	-13.00	-25.05	Н			
3296.64	-32.31	12.00	11.79	-32.10	-13.00	-19.10	Н			
1648.05	-44.27	9.40	4.75	-39.62	-13.00	-26.62	V			
2472.31	-44.44	10.60	8.39	-42.23	-13.00	-29.23	V			
3296.75	-43.66	12.00	11.79	-43.45	-13.00	-30.45	V			
	The Worst Test Results Channel 190/836.6 MHz									
Frequency	S G.Lev	Ant	T	PMea	Limit	Margin	Polarity			
(MHz)	(dBm)	(dBi)	Loss	(dBm)	(dBm)	(dB)				
1672.87	-41.52	9.50	4.76	-36.78	-13.00	-23.78	Н			
2509.78	-40.35	10.70	8.40	-38.05	-13.00	-25.05	Н			
3346.17	-32.26	12.20	11.80	-31.86	-13.00	-18.86	Н			
1673.23	-43.42	9.40	4.75	-38.77	-13.00	-25.77	V			
2509.88	-44.93	10.60	8.39	-42.72	-13.00	-29.72	V			
3346.37	-42.83	12.20	11.82	-42.45	-13.00	-29.45	V			
		The Worst	Test Results	Channel 251	/848.8 MHz					
Frequency	S G.Lev	Ant	Logg	PMea	Limit	Margin	Dolomity			
(MHz)	(dBm)	(dBi)	Loss	(dBm)	(dBm)	(dB)	Polarity			
1697.49	-40.63	9.60	4.77	-35.80	-13.00	-22.80	Н			
2546.44	-40.45	10.80	8.50	-38.15	-13.00	-25.15	Н			
3395.15	-30.98	12.50	11.90	-30.38	-13.00	-17.38	Н			
1697.58	-44.22	9.60	4.77	-39.39	-13.00	-26.39	V			
2546.44	-44.09	10.80	8.50	-41.79	-13.00	-28.79	V			
3395.23	-43.47	12.50	11.90	-42.87	-13.00	-29.87	V			

Note: (1)Below 30MHz no Spurious found is the worst condition.

(2)Above 3.5GHz amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has.

	GPRS1900: (30-20000)MHz								
	-	The Worst Te	est Results for	r Channel 51	2/1850.2MHz	Z			
Frequency	S G.Lev	Ant	T	PMea	Limit	Margin	D-1		
(MHz)	(dBm)	(dBi)	Loss	(dBm)	(dBm)	(dB)	Polarity		
3700.49	-34.08	12.60	12.93	-34.41	-13.00	-21.41	Н		
5550.36	-35.22	13.10	17.11	-39.23	-13.00	-26.23	Н		
7400.67	-33.65	11.50	22.20	-44.35	-13.00	-31.35	Н		
3700.51	-35.58	12.60	12.93	-35.91	-13.00	-22.91	V		
5550.54	-34.94	13.10	17.11	-38.95	-13.00	-25.95	V		
7401.00	-31.89	11.50	22.20	-42.59	-13.00	-29.59	V		
	-	The Worst Te	est Results for	r Channel 66	1/1880.0MH	Z			
Frequency	S G.Lev	Ant	T	PMea	Limit	Margin	D-1		
(MHz)	(dBm)	(dBi)	Loss	(dBm)	(dBm)	(dB)	Polarity		
3759.80	-34.27	12.60	12.93	-34.60	-13.00	-21.60	Н		
5640.09	-35.19	13.10	17.11	-39.20	-13.00	-26.20	Н		
7520.10	-33.25	11.50	22.20	-43.95	-13.00	-30.95	Н		
3760.29	-35.11	12.60	12.93	-35.44	-13.00	-22.44	V		
5640.22	-34.01	13.10	17.11	-38.02	-13.00	-25.02	V		
7519.91	-31.99	11.50	22.20	-42.69	-13.00	-29.69	V		
	-	The Worst Te	est Results for	r Channel 81	0/1909.8MH	Z			
Frequency	S G.Lev	Ant	T	PMea	Limit	Margin	D-1		
(MHz)	(dBm)	(dBi)	Loss	(dBm)	(dBm)	(dB)	Polarity		
3819.60	-33.82	12.60	12.93	-34.15	-13.00	-21.15	Н		
5729.29	-34.15	13.10	17.11	-38.16	-13.00	-25.16	Н		
7639.21	-32.99	11.50	22.20	-43.69	-13.00	-30.69	Н		
3819.38	-35.47	12.60	12.93	-35.80	-13.00	-22.80	V		
5729.53	-35.10	13.10	17.11	-39.11	-13.00	-26.11	V		
7639.27	-32.46	11.50	22.20	-43.16	-13.00	-30.16	V		

Note: (1)Below 30MHz no Spurious found is the worst condition.

(2)Above 8GHz amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has.

		EC	GPRS 1900: (30-20000)M	Hz		
	7	The Worst Te	est Results for	r Channel 51	2/1850.2MH	Z	
Frequency	S G.Lev	Ant	T	PMea	Limit	Margin	Dolomites
(MHz)	(dBm)	(dBi)	Loss	(dBm)	(dBm)	(dB)	Polarity
3700.19	-33.56	12.60	12.93	-33.89	-13.00	-20.89	Н
5550.40	-34.73	13.10	17.11	-38.74	-13.00	-25.74	Н
7400.60	-32.31	11.50	22.20	-43.01	-13.00	-30.01	Н
3700.51	-35.83	12.60	12.93	-36.16	-13.00	-23.16	V
5550.28	-34.90	13.10	17.11	-38.91	-13.00	-25.91	V
7400.57	-33.19	11.50	22.20	-43.89	-13.00	-30.89	V
	7	Γhe Worst Te	est Results for	r Channel 66	1/1880.0MH	Z	
Frequency	S G.Lev	Ant	Loss	PMea	Limit	Margin	Polarity
(MHz)	(dBm)	(dBi)	LOSS	(dBm)	(dBm)	(dB)	
3760.02	-34.01	12.60	12.93	-34.34	-13.00	-21.34	Н
5640.20	-35.38	13.10	17.11	-39.39	-13.00	-26.39	Н
7520.11	-32.83	11.50	22.20	-43.53	-13.00	-30.53	Н
3759.89	-35.67	12.60	12.93	-36.00	-13.00	-23.00	V
5640.26	-34.13	13.10	17.11	-38.14	-13.00	-25.14	V
7520.22	-31.99	11.50	22.20	-42.69	-13.00	-29.69	V
		The Worst Te	est Results for	r Channel 81	0/1909.8MH	Z	
Frequency	S G.Lev	Ant	Loss	PMea	Limit	Margin	Polarity
(MHz)	(dBm)	(dBi)	LUSS	(dBm)	(dBm)	(dB)	Folarity
3819.28	-33.80	12.60	12.93	-34.13	-13.00	-21.13	Н
5729.18	-35.13	13.10	17.11	-39.14	-13.00	-26.14	Н
7639.20	-32.95	11.50	22.20	-43.65	-13.00	-30.65	Н
3819.64	-34.60	12.60	12.93	-34.93	-13.00	-21.93	V
5729.32	-34.52	13.10	17.11	-38.53	-13.00	-25.53	V
7639.04	-32.86	11.50	22.20	-43.56	-13.00	-30.56	V

Note: (1)Below 30MHz no Spurious found is the worst condition.

(2)Above 8GHz amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has.

		WC	DMA Band V	/· (30 <u>-</u> 9000)	MHz		
			testresults ch				
Frequency	S G.Lev	Ant		PMea	Limit	Margin	- · ·
(MHz)	(dBm)	(dBi)	Loss	(dBm)	(dBm)	(dB)	Polarity
1652.04	-40.41	9.40	4.75	-35.76	-13.00	-22.76	Н
2479.42	-39.54	10.60	8.39	-37.33	-13.00	-24.33	Н
3305.62	-30.91	12.00	11.79	-30.70	-13.00	-17.70	Н
1652.09	-43.83	9.40	4.75	-39.18	-13.00	-26.18	V
2479.70	-45.13	10.60	8.39	-42.92	-13.00	-29.92	V
3305.47	-42.89	12.00	11.79	-42.68	-13.00	-29.68	V
		The Worst	Test Results (Channel 4183	3/836.6MHz		
Frequency	S G.Lev	Ant	т	PMea	Limit	Margin	Polarity
(MHz)	(dBm)	(dBi)	Loss	(dBm)	(dBm)	(dB)	
1672.99	-40.44	9.50	4.76	-35.70	-13.00	-22.70	Н
2509.79	-40.16	10.70	8.40	-37.86	-13.00	-24.86	Н
3346.14	-30.98	12.20	11.80	-30.58	-13.00	-17.58	Н
1672.80	-44.00	9.40	4.75	-39.35	-13.00	-26.35	V
2509.47	-44.68	10.60	8.39	-42.47	-13.00	-29.47	V
3346.33	-43.34	12.20	11.82	-42.96	-13.00	-29.96	V
		The Worst	Test Results (Channel 4233	3/846.6MHz		
Frequency	S G.Lev	Ant	T	PMea	Limit	Margin	D-1
(MHz)	(dBm)	(dBi)	Loss	(dBm)	(dBm)	(dB)	Polarity
1693.38	-40.23	9.60	4.77	-35.40	-13.00	-22.40	Н
2539.25	-39.23	10.80	8.50	-36.93	-13.00	-23.93	Н
3385.88	-31.64	12.50	11.90	-31.04	-13.00	-18.04	Н
1693.43	-43.15	9.60	4.77	-38.32	-13.00	-25.32	V
2539.37	-45.12	10.80	8.50	-42.82	-13.00	-29.82	V
3385.85	-43.69	12.50	11.90	-43.09	-13.00	-30.09	V

Note: (1)Below 30MHz no Spurious found is the worst condition.

(2)Above 3.5GHz amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has.

		WCI	OMA Band II	[: (30-20000)	MHz				
	Т	he Worst Te	st Results for	Channel 926	52/1852.4MH	[z			
Frequency	S G.Lev	Ant	T	PMea	Limit	Margin	D-1		
(MHz)	(dBm)	(dBi)	Loss	(dBm)	(dBm)	(dB)	Polarity		
3704.37	-33.52	12.60	12.93	-33.85	-13.00	-20.85	Н		
5557.19	-35.36	13.10	17.11	-39.37	-13.00	-26.37	Н		
7409.47	-33.22	11.50	22.20	-43.92	-13.00	-30.92	Н		
3704.18	-35.89	12.60	12.93	-36.22	-13.00	-23.22	V		
5557.41	-33.81	13.10	17.11	-37.82	-13.00	-24.82	V		
7409.60	-33.16	11.50	22.20	-43.86	-13.00	-30.86	V		
	The Worst Test Results for Channel 9400/1880MHz								
Frequency	S G.Lev	Ant	T	PMea	Limit	Margin	D-1		
(MHz)	(dBm)	(dBi)	Loss	(dBm)	(dBm)	(dB)	Polarity		
3760.20	-33.52	12.60	12.93	-33.85	-13.00	-20.85	Н		
5639.87	-35.47	13.10	17.11	-39.48	-13.00	-26.48	Н		
7520.14	-33.07	11.50	22.20	-43.77	-13.00	-30.77	Н		
3760.10	-35.98	12.60	12.93	-36.31	-13.00	-23.31	V		
5640.28	-34.50	13.10	17.11	-38.51	-13.00	-25.51	V		
7519.95	-32.40	11.50	22.20	-43.10	-13.00	-30.10	V		
	Т	he Worst Te	st Results for	Channel 953	88/1907.6MH	Z			
Frequency	S G.Lev	Ant	Logg	PMea	Limit	Margin	Dolomitry		
(MHz)	(dBm)	(dBi)	Loss	(dBm)	(dBm)	(dB)	Polarity		
3815.39	-33.56	12.60	12.93	-33.89	-13.00	-20.89	Н		
5722.37	-34.68	13.10	17.11	-38.69	-13.00	-25.69	Н		
7630.18	-33.41	11.50	22.20	-44.11	-13.00	-31.11	Н		
3815.48	-35.90	12.60	12.93	-36.23	-13.00	-23.23	V		
5722.17	-35.10	13.10	17.11	-39.11	-13.00	-26.11	V		
7630.16	-33.00	11.50	22.20	-43.70	-13.00	-30.70	V		

Note: (1)Below 30MHz no Spurious found is the worst condition.

(2)Above 8GHz amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has.

		WCI	MA Band IV	7: (30-20000))MHz				
	Т	The Worst Te	st Results for	Channel 131	2/1712.4MH	[z			
Frequency	S G.Lev	Ant	T	PMea	Limit	Margin	D-1		
(MHz)	(dBm)	(dBi)	Loss	(dBm)	(dBm)	(dB)	Polarity		
3424.85	-34.93	12.60	12.93	-35.26	-13.00	-22.26	Н		
5137.68	-34.13	13.10	17.11	-38.14	-13.00	-25.14	Н		
6849.22	-32.39	11.50	22.20	-43.09	-13.00	-30.09	Н		
3425.13	-35.75	12.60	12.93	-36.08	-13.00	-23.08	V		
5137.97	-34.65	13.10	17.11	-38.66	-13.00	-25.66	V		
6849.36	-31.86	11.50	22.20	-42.56	-13.00	-29.56	V		
	The Worst Test Results for Channel 1412/1732.4MHz								
Frequency	S G.Lev	Ant	т	PMea	Limit	Margin	D 1 1		
(MHz)	(dBm)	(dBi)	Loss	(dBm)	(dBm)	(dB)	Polarity		
3464.18	-33.65	12.60	12.93	-33.98	-13.00	-20.98	Н		
5197.97	-34.94	13.10	17.11	-38.95	-13.00	-25.95	Н		
6929.13	-33.13	11.50	22.20	-43.83	-13.00	-30.83	Н		
3464.86	-35.66	12.60	12.93	-35.99	-13.00	-22.99	V		
5197.56	-33.77	13.10	17.11	-37.78	-13.00	-24.78	V		
6929.74	-32.05	11.50	22.20	-42.75	-13.00	-29.75	V		
	Т	The Worst Te	st Results for	Channel 186	52/1752.5MH	Z			
Frequency	S G.Lev	Ant	Lass	PMea	Limit	Margin	Dalamiter		
(MHz)	(dBm)	(dBi)	Loss	(dBm)	(dBm)	(dB)	Polarity		
3505.91	-34.35	12.60	12.93	-34.68	-13.00	-21.68	Н		
5257.18	-35.20	13.10	17.11	-39.21	-13.00	-26.21	Н		
7010.62	-32.93	11.50	22.20	-43.63	-13.00	-30.63	Н		
3505.33	-35.74	12.60	12.93	-36.07	-13.00	-23.07	V		
5257.57	-35.16	13.10	17.11	-39.17	-13.00	-26.17	V		
7010.16	-33.07	11.50	22.20	-43.77	-13.00	-30.77	V		

Note: (1)Below 30MHz no Spurious found is the worst condition.

(2)Above 8GHz amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has.

			UHF(30-4	1000)MHz			
		The Worst	Test Results I	Low Channel	408.0 MHz		
Frequency	S G.Lev	Ant	Lass	PMea	Limit	Margin	Dalamiter
(MHz)	(dBm)	(dBi)	Loss	(dBm)	(dBm)	(dB)	Polarity
816.52	-37.94	8.20	3.11	-32.85	-13.00	-19.85	Н
1224.81	-36.94	9.10	4.02	-31.86	-13.00	-18.86	Н
1632.99	-38.92	9.50	4.76	-34.18	-13.00	-21.18	Н
816.52	-40.76	8.20	3.11	-35.67	-13.00	-22.67	V
1224.81	-40.61	9.10	4.02	-35.53	-13.00	-22.53	V
1632.99	-40.59	9.50	4.76	-35.85	-13.00	-22.85	V
		The Worst	Test Results 1	Mid Channel	428.0 MHz		
Frequency	S G.Lev	Ant	Loss	PMea	Limit	Margin	D 1 '/
(MHz)	(dBm)	(dBi)	LOSS	(dBm)	(dBm)	(dB)	Polarity
856.54	-37.62	8.3	3.21	-32.53	-13.00	-19.53	Н
1284.61	-36.73	9.2	4.23	-31.76	-13.00	-18.76	Н
1712.63	-39.02	9.7	4.92	-34.24	-13.00	-21.24	Н
856.54	-40.18	8.3	3.21	-35.09	-13.00	-22.09	V
1284.61	-41.85	9.2	4.23	-36.88	-13.00	-23.88	V
1712.63	-39.68	9.7	4.92	-34.90	-13.00	-21.90	V
		The Worst 7	Test Results I	High Channel	468.0 MHz		
Frequency	S G.Lev	Ant	Loss	PMea	Limit	Margin	Dolomity
(MHz)	(dBm)	(dBi)	LOSS	(dBm)	(dBm)	(dB)	Polarity
936.23	-37.37	8.4	3.34	-32.31	-13.00	-19.31	Н
1404.28	-36.47	9.3	4.38	-31.55	-13.00	-18.55	Н
1872.64	-37.69	9.8	4.98	-32.87	-13.00	-19.87	Н
936.23	-40.81	8.4	3.34	-35.75	-13.00	-22.75	V
1404.28	-40.16	9.3	4.38	-35.24	-13.00	-22.24	V
1872.64	-40.30	9.8	4.98	-35.48	-13.00	-22.48	V

Note: (1)Below 30MHz no Spurious found is the worst condition.

(2)Above 2GHz amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has.

----THE END OF REPORT-----