APPLICATION CERTIFICATION FCC Part 15C On Behalf of Shenzhen KingBoard Technology Co., Ltd.

Speaker Model No.:KTS-06

FCC ID: SXXKTS-06

Prepared for : Shenzhen KingBoard Technology Co., Ltd.

Address : Bldg. A, Dakanglong Industry Zone, Dabuxiang, Guanlan,

Shenzhen, China

Prepared by : ACCURATE TECHNOLOGY CO., LTD

Address : F1, Bldg. A, Chan Yuan New Material Port, Keyuan Rd.

Science & Industry Park, Nan Shan, Shenzhen,

Guangdong P.R. China

Tel: (0755) 26503290 Fax: (0755) 26503396

Report Number : ATE20130606

Date of Test : April 11-24, 2013

Date of Report : April 24, 2013

TABLE OF CONTENTS

Description	Page
1	\mathcal{L}

	~ ·····
Lact Panart	L'artitiontion
TEST IZEDOTE	Certification

1.	Gl	ENERAL INFORMATION	5
	1.1.	Description of Device (EUT)	5
	1.2.	Carrier Frequency of Channels	
	1.3.	Special Accessory and Auxiliary Equipment	
	1.4.	Description of Test Facility	
	1.5.	Measurement Uncertainty	7
2.	M	EASURING DEVICE AND TEST EQUIPMENT	8
3.	Ol	PERATION OF EUT DURING TESTING	9
	3.1.	Operating Mode	9
	3.2.	Configuration and peripherals	10
4.	TF	EST PROCEDURES AND RESULTS	11
5.	6D	OB BANDWIDTH MEASUREMENT	12
•	5.1.	Block Diagram of Test Setup	
	5.2.	The Requirement For Section 15.247(a)(2)	
	5.3.	EUT Configuration on Measurement	
	5.4.	Operating Condition of EUT	
	5.5.	Test Procedure	
	5.6.	Test Result	
6.	\mathbf{M}	AXIMUM PEAK OUTPUT POWER	17
	6.1.	Block Diagram of Test Setup	17
	6.2.	The Requirement For Section 15.247(b)(3)	
	6.3.	EUT Configuration on Measurement	17
	6.4.	Operating Condition of EUT	
	6.5.	Test Procedure	18
	6.6.	Test Result	18
7.	PC	OWER SPECTRAL DENSITY MEASUREMENT	
	7.1.	Block Diagram of Test Setup	
	7.2.	The Requirement For Section 15.247(e)	
	7.3.	EUT Configuration on Measurement	
	7.4.	Operating Condition of EUT	
	7.5.	Test Procedure	
	7.6.	Test Result	
8.	\mathbf{B}^{A}	AND EDGE COMPLIANCE TEST	
	8.1.	Block Diagram of Test Setup	
	8.2.	The Requirement For Section 15.247(d)	
	8.3.	EUT Configuration on Measurement	
	8.4.	Operating Condition of EUT	
	8.5.	Test Procedure	
_	8.6.	Test Result	
9.		ADIATED SPURIOUS EMISSION TEST	
	9.1.	Block Diagram of Test Setup	
	9.2.	The Limit For Section 15.247(d)	
	9.3.	Restricted bands of operation	
	9.4.	Configuration of EUT on Measurement	41

9.5.	Operating Condition of EUT	41
9.6.	Test Procedure	41
9.7.	The Field Strength of Radiation Emission Measurement Results	42
10. CO	NDUCTED SPURIOUS EMISSION COMPLIANCE TEST	63
10.1.	Block Diagram of Test Setup	63
10.2.	The Requirement For Section 15.247(d)	63
10.3.	EUT Configuration on Measurement	63
10.4.	Operating Condition of EUT	64
10.5.	Test Procedure	
10.6.	Test Result	64
11. AC	POWER LINE CONDUCTED EMISSION FOR FCC PART 15 SECTION 15.2	207(A)68
11.1.	Block Diagram of Test Setup	68
11.2.	The Emission Limit	68
11.3.	Configuration of EUT on Measurement	69
11.4.	Operating Condition of EUT	69
11.5.	Test Procedure	69
11.6.	Power Line Conducted Emission Measurement Results	70
12. AN	TENNA REQUIREMENT	73
12.1.	The Requirement	73
12.2.	Antenna Construction	

Test Report Certification

Applicant : Shenzhen KingBoard Technology Co., Ltd.

Manufacturer : Shenzhen KingBoard Technology Co., Ltd.

EUT Description : Speaker

(A) MODEL NO.: KTS-06(B) TRADE NAME.: N/A

(C) POWER SUPPLY: DC 3.7V (Li-polymer battery) or DC 5V (Power by USB port)

Measurement Procedure Used:

FCC Rules and Regulations Part 15 Subpart C Section 15.247 ANSI C63.4: 2009

The EUT was tested according to 558074 D01 DTS Meas Guidance v03r01

The device described above is tested by ACCURATE TECHNOLOGY CO. LTD to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart C Section 15.247 limits. The measurement results are contained in this test report and ACCURATE TECHNOLOGY CO. LTD is assumed full responsibility for the accuracy and completeness of these measurements. Also, this report shows that the Equipment Under Test (EUT) is to be technically compliant with the FCC requirements.

This report applies to above tested sample only. This report shall not be reproduced in part without written approval of ACCURATE TECHNOLOGY CO. LTD.

Date of Test :	April 11-24, 2013
Prepared by :	Apple Lu
	(Engineer)
Approved & Authorized Signer :	Lemil
	(Manager)

1. GENERAL INFORMATION

1.1.Description of Device (EUT)

EUT : Speaker

Model Number : KTS-06

Frequency Range : Bluetooth V4.0 BLE: 2402MHz-2480MHz

Number of Channels : 40

Antenna Gain : 0dBi

Power Supply : DC 3.7V (Li-polymer battery) or DC 5V (Power by USB

port)

Applicant : Shenzhen KingBoard Technology Co., Ltd.

Address : Bldg. A, Dakanglong Industry Zone, Dabuxiang,

Guanlan, Shenzhen, China

Manufacturer : Shenzhen KingBoard Technology Co., Ltd.

Address : Bldg. A, Dakanglong Industry Zone, Dabuxiang,

Guanlan, Shenzhen, China

Date of sample received: April 11, 2013

Date of Test : April 11-24, 2013

1.2. Carrier Frequency of Channels

Channel	Frequency(MHz)	Channel	Frequency(MHz)	Channel	Frequency(MHz)	Channel	Frequency(MHz)
01	2402	11	2422	21	2442	31	2462
02	2404	12	2424	22	2444	32	2464
03	2406	13	2426	23	2446	33	2466
04	2408	14	2428	24	2448	34	2468
05	2410	15	2430	25	2450	35	2470
06	2412	16	2432	26	2452	36	2472
07	2414	17	2434	27	2454	37	2474
08	2416	18	2436	28	2456	38	2476
09	2418	19	2438	29	2458	39	2478
10	2420	20	2440	30	2460	40	2480

1.3. Special Accessory and Auxiliary Equipment

Notebook PC : Manufacturer: Lenovo

Model No.: 4290-RT8

Serial No.: R9-FW93G 11/08

1.4.Description of Test Facility

EMC Lab : Accredited by TUV Rheinland Shenzhen

Listed by FCC

The Registration Number is 752051

Listed by Industry Canada

The Registration Number is 5077A-2

Accredited by China National Accreditation Committee

for Laboratories

The Certificate Registration Number is L3193

Name of Firm : ACCURATE TECHNOLOGY CO. LTD

Site Location : F1, Bldg. A, Changyuan New Material Port, Keyuan Rd.

Science & Industry Park, Nanshan, Shenzhen, Guangdong

P.R. China

1.5.Measurement Uncertainty

Conducted Emission Expanded Uncertainty = 2.23dB, k=2

Radiated emission expanded uncertainty = 3.08dB, k=2

(9kHz-30MHz)

Radiated emission expanded uncertainty = 4.42dB, k=2

(30MHz-1000MHz)

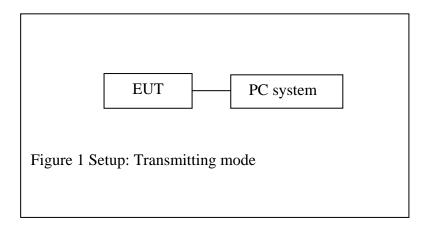
Radiated emission expanded uncertainty = 4.06dB, k=2

(Above 1GHz)

2. MEASURING DEVICE AND TEST EQUIPMENT

Table 1: List of Test and Measurement Equipment

Kind of equipment	Manufacturer	Туре	S/N	Calibrated dates	Calibrated until
EMI Test Receiver	Rohde&Schwarz	ESCS30	100307	Jan. 12, 2013	Jan. 11, 2014
EMI Test Receiver	Rohde&Schwarz	ESPI3	101526/003	Jan. 12, 2013	Jan. 11, 2014
Spectrum Analyzer	Agilent	E7405A	MY45115511	Jan. 12, 2013	Jan. 11, 2014
Pre-Amplifier	Rohde&Schwarz	CBLU118354 0-01	3791	Jan. 12, 2013	Jan. 11, 2014
Loop Antenna	Schwarzbeck	FMZB1516	1516131	Feb. 6, 2013	Feb. 5, 2014
Bilog Antenna	Schwarzbeck	VULB9163	9163-323	Feb. 6, 2013	Feb. 5, 2014
Horn Antenna	Schwarzbeck	BBHA9120D	9120D-655	Feb. 6, 2013	Feb. 5, 2014
Horn Antenna	Schwarzbeck	BBHA9170	9170-359	Feb. 6, 2013	Feb. 5, 2014
LISN	Rohde&Schwarz	ESH3-Z5	100305	Jan. 12, 2013	Jan. 11, 2014
LISN	Schwarzbeck	NSLK8126	8126431	Jan. 12, 2013	Jan. 11, 2014
Highpass Filter	Wainwright Instruments	WHKX3.6/18 G-10SS	N/A	Jan. 12, 2013	Jan. 11, 2014
Band Reject Filter	Wainwright Instruments	WRCG2400/2 485-2375/2510 -60/11SS	N/A	Jan. 12, 2013	Jan. 11, 2014

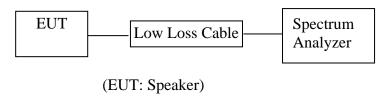

3. OPERATION OF EUT DURING TESTING

3.1.Operating Mode

The mode is used: **BLE Transmitting mode**

Low Channel: 2402MHz Middle Channel: 2440MHz High Channel: 2480MHz

3.2.Configuration and peripherals



4. TEST PROCEDURES AND RESULTS

FCC Rules	Description of Test	Result
Section 15.247(a)(2)	6dB Bandwidth Test	Compliant
Section 15.247(e)	Power Spectral Density Test	Compliant
Section 15.247(b)(3)	Maximum Peak Output Power Test	Compliant
Section 15.247(d)	Band Edge Compliance Test	Compliant
Section 15.247(d) Section 15.209	Radiated Spurious Emission Test	Compliant
Section 15.247(d)	Conducted Spurious Emission Test	Compliant
Section 15.207	AC Power Line Conducted Emission Test	Compliant
Section 15.203	Antenna Requirement	Compliant

5. 6DB BANDWIDTH MEASUREMENT

5.1.Block Diagram of Test Setup

5.2. The Requirement For Section 15.247(a)(2)

Section 15.247(a)(2): Systems using digital modulation techniques may operate in the 902-928MHz, 2400-2483.5MHz, and 5725-5850MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

5.3.EUT Configuration on Measurement

The following equipment is installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

5.3.1. Speaker (EUT)

Model Number : KTS-06 Serial Number : N/A

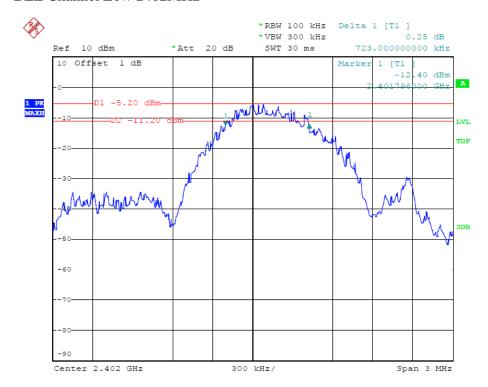
5.4. Operating Condition of EUT

- 5.4.1. Setup the EUT and simulator as shown as Section 5.1.
- 5.4.2. Turn on the power of all equipment.
- 5.4.3.Let the EUT work in TX modes measure it. The transmit frequency are 2402-2480 MHz. We select 2402MHz, 2440MHz, and 2480MHz TX frequency to transmit.

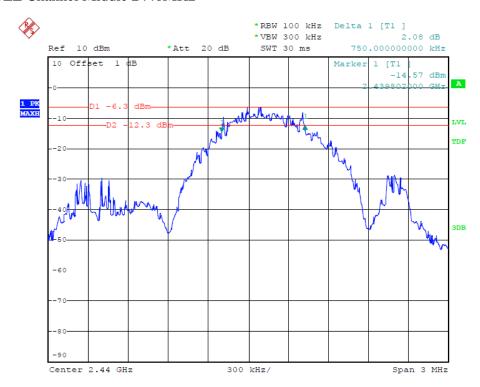
5.5.Test Procedure

- 1. Set RBW = 100 kHz.
- 2. Set the video bandwidth (VBW)≥3 RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

5.6.Test Result


PASS.

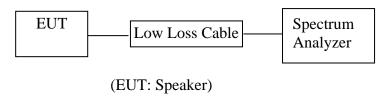
Date of Test:April 20, 2013Temperature:25°CEUT:SpeakerHumidity:50%Model No.:KTS-06Power Supply:DC 5VTest Mode:TXTest Engineer:Star


The test was per	The test was performed with BLE				
Channel	Frequency (MHz)	6dB Bandwidth (MHz)	Limit (MHz)		
Low	2402	0.723	> 0.5MHz		
Middle	2440	0.750	> 0.5MHz		
High	2480	0.751	> 0.5MHz		

The spectrum analyzer plots are attached as below.

BLE Channel Low 2402MHz

BLE Channel Middle 2440MHz



BLE Channel High 2480MHz

6. MAXIMUM PEAK OUTPUT POWER

6.1.Block Diagram of Test Setup

6.2. The Requirement For Section 15.247(b)(3)

Section 15.247(b)(3): For systems using digital modulation in the 902-928MHz, 2400-2483.5MHz, and 5725-5850MHz bands: 1 Watt.

6.3.EUT Configuration on Measurement

The following equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

6.3.1. Speaker (EUT)

Model Number : KTS-06 Serial Number : N/A

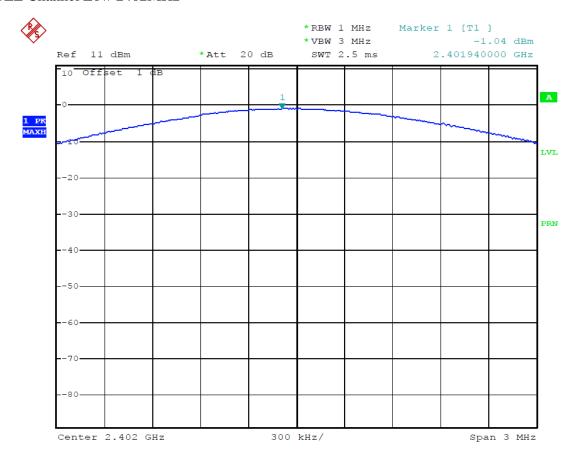
6.4. Operating Condition of EUT

- 6.4.1. Setup the EUT and simulator as shown as Section 6.1.
- 6.4.2. Turn on the power of all equipment.
- 6.4.3.Let the EUT work in TX modes measure it. The transmit frequency are 2402-2480 MHz. We select 2402MHz, 2440MHz, and 2480MHz TX frequency to transmit.

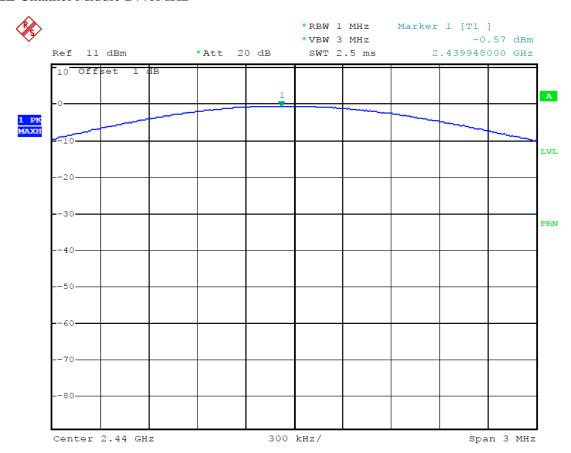
6.5.Test Procedure

- 6.5.1. The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 6.5.2.The EUT was tested according to Section 9.1.1 of the 558074 D01 DTS Meas Guidance v03r01
- 6.5.3.Set RBW of spectrum analyzer to 1MHz and VBW to 3MHz.
- 6.5.4. Measurement the maximum peak output power.

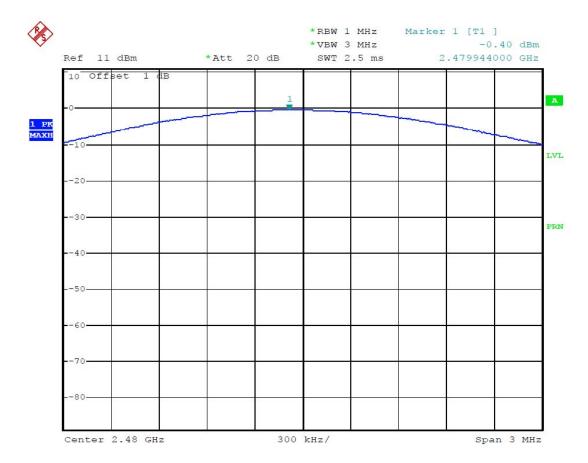
6.6.Test Result


PASS.

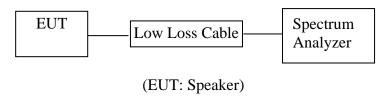
Date of Test:April 20, 2013Temperature:25°CEUT:SpeakerHumidity:50%Model No.:KTS-06Power Supply:DC 5VTest Mode:TXTest Engineer:Star


The test was performed with BLE					
Channel	Frequency (MHz)	Peak Output Power (dBm)	Peak Output Power (mW)	Limits dBm / W	
Low	2402	-1.04	0.79	30 dBm / 1 W	
Middle	2440	-0.57	0.88	30 dBm / 1 W	
High	2480	-0.40	0.91	30 dBm / 1 W	

The spectrum analyzer plots are attached as below.


BLE Channel Low 2402MHz

BLE Channel Middle 2440MHz



BLE Channel High 2480MHz

7. POWER SPECTRAL DENSITY MEASUREMENT

7.1.Block Diagram of Test Setup

7.2. The Requirement For Section 15.247(e)

Section 15.247(e): For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

7.3.EUT Configuration on Measurement

The following equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

7.3.1. Speaker (EUT)

Model Number : KTS-06 Serial Number : N/A

7.4. Operating Condition of EUT

- 7.4.1. Setup the EUT and simulator as shown as Section 7.1.
- 7.4.2. Turn on the power of all equipment.
- 7.4.3.Let the EUT work in TX modes measure it. The transmit frequency are 2402-2480. We select 2402MHz, 2440MHz, and 2480MHz TX frequency to transmit.

7.5.Test Procedure

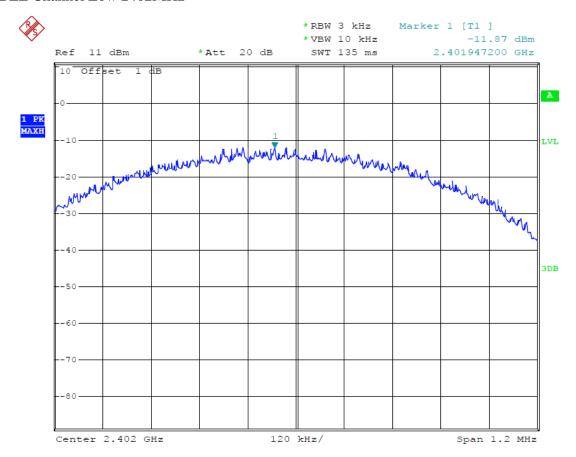
- 7.5.1.The EUT was tested according to Section 10.2 of the 558074 D01 DTS Meas Guidance v03r01.
- 7.5.2. The transmitter output was connected to the spectrum analyzer through a low loss cable.

7.5.3.Measurement Procedure PKPSD:

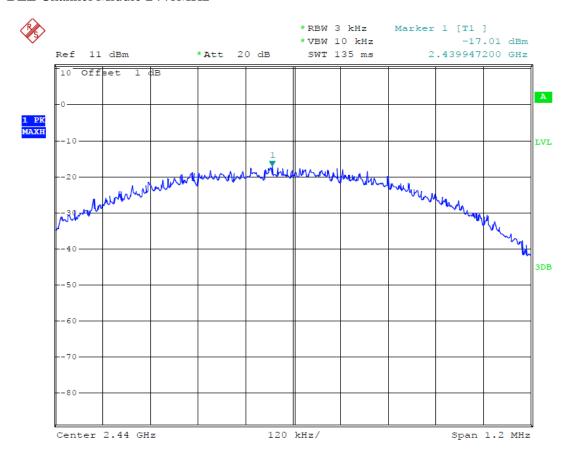
This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance, and is optional if the maximum conducted (average) output power was used to demonstrate compliance.

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS channel bandwidth.
- 3. Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.
- 7.5.4.Measurement the maximum power spectral density.

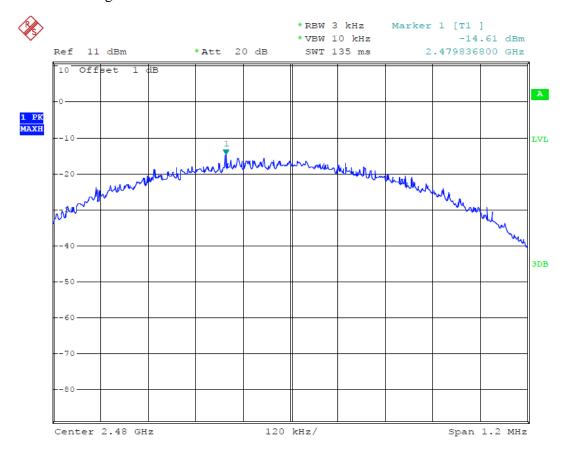
7.6.Test Result


PASS.

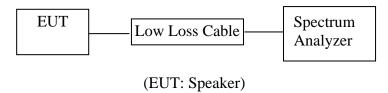
Date of Test:	April 20, 2013	Temperature:	25°C
EUT:	Speaker	Humidity:	50%
Model No.:	KTS-06	Power Supply:	DC 5V
Test Mode:	TX	Test Engineer:	Star


The test was performed with BLE				
Channel	Frequency (MHz)	Power Spectral Density (dBm/3kHz)	Limits (dBm/3kHz)	
Low	2402	-11.87	8 dBm	
Middle	2440	-17.01	8 dBm	
High	2480	-14.61	8 dBm	

The spectrum analyzer plots are attached as below.


BLE Channel Low 2402MHz

BLE Channel Middle 2440MHz



BLE Channel High 2480MHz

8. BAND EDGE COMPLIANCE TEST

8.1.Block Diagram of Test Setup

8.2. The Requirement For Section 15.247(d)

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

8.3.EUT Configuration on Measurement

The following equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

8.3.1. Speaker (EUT)

Model Number : KTS-06 Serial Number : N/A

8.4. Operating Condition of EUT

- 8.4.1. Setup the EUT and simulator as shown as Section 8.1.
- 8.4.2.Turn on the power of all equipment.
- 8.4.3.Let the EUT work in TX modes measure it. The transmit frequency are 2402-2480 MHz. We select 2402MHz, 2480MHz TX frequency to transmit.

8.5.Test Procedure

Conducted Band Edge:

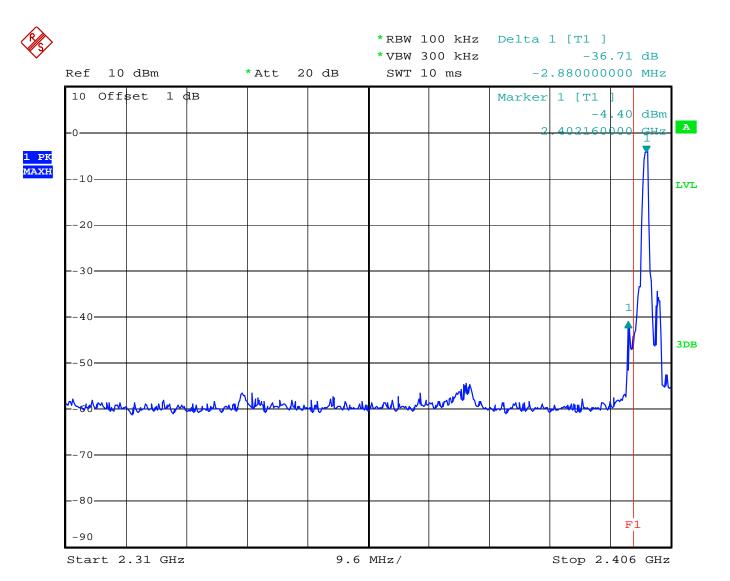
- 8.5.1. The transmitter output was connected to the spectrum analyzer via a low loss cable.
- 8.5.2.Set RBW of spectrum analyzer to 100 kHz and VBW to 300 kHz.

Radiate Band Edge:

- 8.5.3. The EUT is placed on a turntable, which is 0.8m above the ground plane and worked at highest radiated power.
- 8.5.4. The turntable was rotated for 360 degrees to determine the position of maximum emission level.
- 8.5.5. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission.
- 8.5.6. Set the spectrum analyzer in the following setting in order to capture the lower and upper band-edges of the emission:

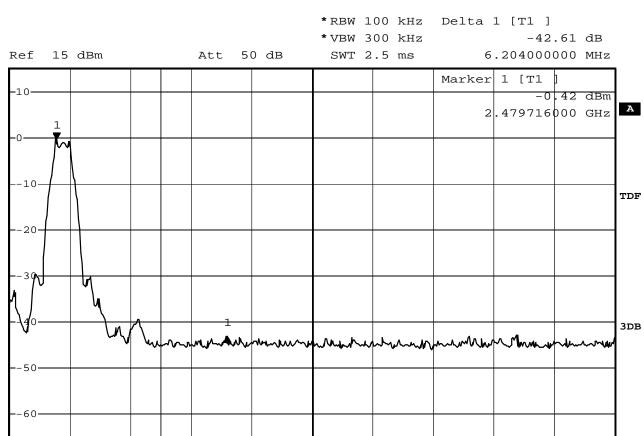
8.5.7. The band edges was measured and recorded.

8.6.Test Result


Pass

Conducted test

Date of Test:	April 20, 2013	Temperature:	25°C
EUT:	Speaker	Humidity:	50%
Model No.:	KTS-06	Power Supply:	DC 5V
Test Mode:	TX	Test Engineer:	Star


The test was performed with BLE									
Frequency	Result of Band Edge (dBc)	Limit of Band Edge (dBc)							
(MHz)									
2402	36.71	> 20dBc							
2480	42.61	> 20dBc							

BLE Channel Low 2402MHz

BLE Channel High 2480MHz

Start 2.478 GHz

F1

-70

-80-

2.2 MHz/

Stop 2.5 GHz

Radiated Band Edge Result

Date of Test:	April 11, 2013	Temperature:	25°C
EUT:	Speaker	Humidity:	50%
Model No.:	KTS-06	Power Supply:	DC 5V
Test Mode:	BLE Channel Low 2402MHz	Test Engineer:	Star

Frequency	Reading(dBµV/m)		Factor(dB)	Result(dBµV/m)		Limit(dBµV/m)		Margin(dB)		Polarization
(MHz)	AV	PEAK	Corr.	AV	PEAK	AV	PEAK	AV	PEAK	
2310.000	36.83	45.22	-7.81	29.02	37.41	54.00	74.00	-24.98	-36.59	Vertical
2339.971	38.14	47.09	-7.80	30.34	39.29	54.00	74.00	-23.66	-34.71	Vertical
2390.000	35.13	44.54	-7.53	27.60	37.01	54.00	74.00	-26.40	-36.99	Vertical
2310.000	31.28	43.98	-7.81	23.47	36.17	54.00	74.00	-30.53	-37.83	Horizontal
2375.708	36.18	47.72	-7.62	28.56	40.10	54.00	74.00	-25.44	-33.90	Horizontal
2390.000	33.58	44.28	-7.53	26.05	36.75	54.00	74.00	-27.95	-37.25	Horizontal

Note:

- 1. Emissions attenuated more than 20 dB below the permissible value are not reported.
- 2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

3. Display the measurement of peak values.

Date of Test:	April 11, 2013	Temperature:	25°C
EUT:	Speaker	Humidity:	50%
Model No.:	KTS-06	Power Supply:	DC 5V
Test Mode:	BLE Channel High 2480MHz	Test Engineer:	Star

Frequency	Reading(dBµV/m)		Factor(dB)	Result(dBµV/m)		Limit(dBµV/m)		Margin(dB)		Polarization
(MHz)	AV	PEAK	Corr.	AV	PEAK	AV	PEAK	AV	PEAK	
2483.500	34.14	45.73	-7.37	26.77	38.36	54.00	74.00	-27.23	-35.64	Vertical
2493.689	35.25	45.56	-7.39	27.86	38.17	54.00	74.00	-26.14	-35.83	Vertical
2500.000	32.58	43.92	-7.40	25.18	36.52	54.00	74.00	-28.82	-37.48	Vertical
2483.500	36.89	46.09	-7.37	29.52	38.72	54.00	74.00	-24.48	-35.28	Horizontal
2493.054	35.18	46.12	-7.39	27.79	38.73	54.00	74.00	-26.21	-35.27	Horizontal
2500.000	34.04	44.30	-7.40	26.64	36.90	54.00	74.00	-27.36	-37.10	Horizontal

Note:

- 1. Emissions attenuated more than 20 dB below the permissible value are not reported.
- 2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:

 Result = Reading + Corrected Factor
- 3. Display the measurement of peak values.

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Horizontal

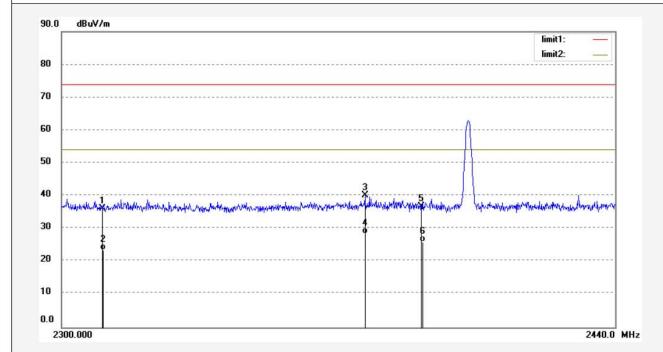
Job No.: STAR #1905 Standard: FCC 15C PK Test item: Radiation Test

Temp.(C)/Hum.(%) 24 C / 48 %

EUT: Speaker

Mode: TX 2402MHz

Model: KTS-06


Manufacturer: KingBoard

C 15C PK Power Source: DC 5V adiation Test Date: 2013/04/11 Time: 19:44:11

Engineer Signature: Distance: 3m

Polarization:

Note: Report No.:ATE20130606

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2310.000	43.98	-7.81	36.17	74.00	-37.83	peak			
2	2310.000	31.28	-7.81	23.47	54.00	-30.53	AVG			
3	2375.708	47.72	-7.62	40.10	74.00	-33.90	peak			
4	2375.708	36.18	-7.62	28.56	54.00	-25.44	AVG			
5	2390.000	44.28	-7.53	36.75	74.00	-37.25	peak			
6	2390.000	33.58	-7.53	26.05	54.00	-27.95	AVG			

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

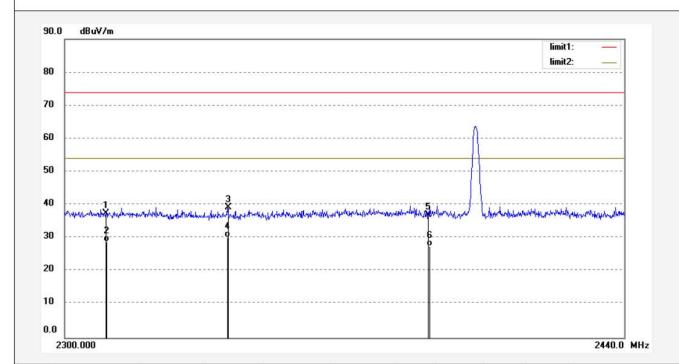
Job No.: STAR #1906 Standard: FCC 15C PK Test item: Radiation Test

Temp.(C)/Hum.(%) 24 C / 48 %

EUT: Speaker

Mode: TX 2402MHz

Model: KTS-06


Manufacturer: KingBoard

iditalactarer. Tangbot

Polarization: Vertical Power Source: DC 5V

Date: 2013/04/11 Time: 19:46:54 Engineer Signature: Distance: 3m

Note: Report No.:ATE20130606

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2310.000	45.22	-7.81	37.41	74.00	-36.59	peak			
2	2310.000	36.83	-7.81	29.02	54.00	-24.98	AVG			
3	2339.971	47.09	-7.80	39.29	74.00	-34.71	peak			
4	2339.971	38.14	-7.80	30.34	54.00	-23.66	AVG			
5	2390.000	44.54	-7.53	37.01	74.00	-36.99	peak			
6	2390.000	35.13	-7.53	27.60	54.00	-26.40	AVG			

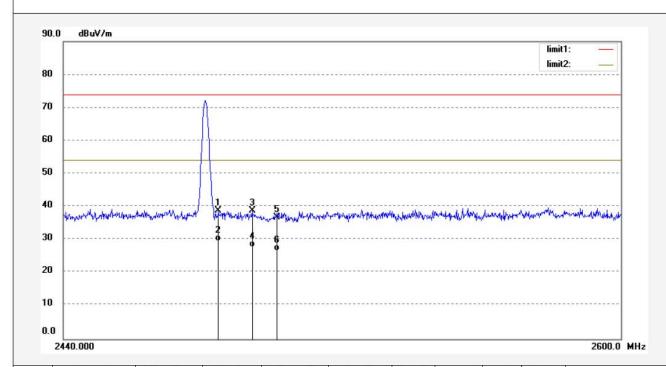
F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: STAR #1908 Standard: FCC 15C PK Test item: Radiation Test

Temp.(C)/Hum.(%) 24 C / 48 %

EUT: Speaker

Mode: TX 2480MHz


Model: KTS-06

Manufacturer: KingBoard

Note: Report No.:ATE20130606

Polarization: Horizontal Power Source: DC 5V

Date: 2013/04/11 Time: 19:51:29 Engineer Signature: Distance: 3m

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2483.500	46.09	-7.37	38.72	74.00	-35.28	peak			
2	2483.500	36.89	-7.37	29.52	54.00	-24.48	AVG			
3	2493.054	46.12	-7.39	38.73	74.00	-35.27	peak			
4	2493.054	35.18	-7.39	27.79	54.00	-26.21	AVG			
5	2500.000	44.30	-7.40	36.90	74.00	-37.10	peak			
6	2500.000	34.04	-7.40	26.64	54.00	-27.36	AVG			

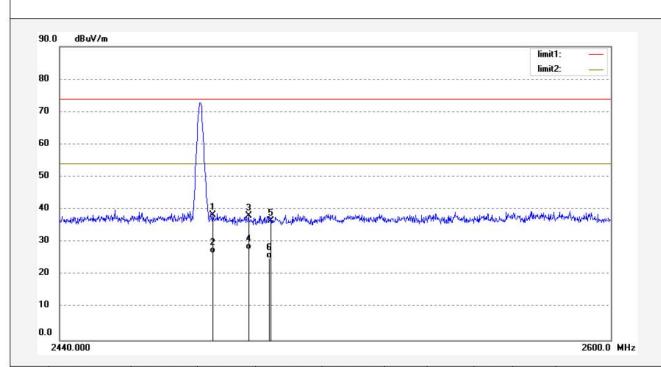
F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: STAR #1907 Standard: FCC 15C PK Test item: Radiation Test

Temp.(C)/Hum.(%) 24 C / 48 %

EUT: Speaker

Mode: TX 2480MHz

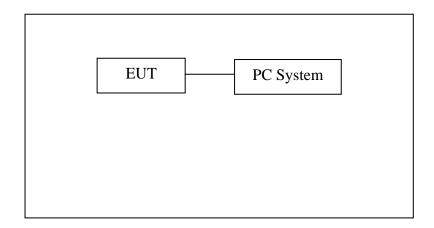

Model: KTS-06

Manufacturer: KingBoard

Note: Report No.:ATE20130606

Polarization: Vertical Power Source: DC 5V

Date: 2013/04/11
Time: 19:49:32
Engineer Signature:
Distance: 3m



No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2483.500	45.73	-7.37	38.36	74.00	-35.64	peak			
2	2483.500	34.14	-7.37	26.77	54.00	-27.23	AVG			
3	2493.689	45.56	-7.39	38.17	74.00	-35.83	peak			
4	2493.689	35.25	-7.39	27.86	54.00	-26.14	AVG			
5	2500.000	43.92	-7.40	36.52	74.00	-37.48	peak			
6	2500.000	32.58	-7.40	25.18	54.00	-28.82	AVG			

9. RADIATED SPURIOUS EMISSION TEST

9.1.Block Diagram of Test Setup

9.1.1.Block diagram of connection between the EUT and peripherals

Setup: Transmitting mode

(EUT: Speaker)

9.1.2.Semi-Anechoic Chamber Test Setup Diagram

Cable

ANTENNA ELEVATION VARIES FROM 1 TO 4 METERS

BUT

Cable

GROUND PLANE

(EUT: Speaker)

9.2. The Limit For Section 15.247(d)

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

9.3. Restricted bands of operation

9.3.1.FCC Part 15.205 Restricted bands of operation

(a) Except as shown in paragraph (d) of this section, Only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	$\binom{2}{}$
13.36-13.41			

Until February 1, 1999, this restricted band shall be 0.490-0.510

(b) Except as provided in paragraphs (d) and (e), the field strength of emission appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000MHz, Compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000MHz, compliance with the emission limits in Section15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

²Above 38.6

9.4. Configuration of EUT on Measurement

The following equipment are installed on Radiated Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

9.4.1.Speaker (EUT)

Model Number : KTS-06 Serial Number : N/A

9.5. Operating Condition of EUT

- 9.5.1. Setup the EUT and simulator as shown as Section 9.1.
- 9.5.2. Turn on the power of all equipment.
- 9.5.3.Let the EUT work in TX modes measure it. The transmit frequency are 2402-2480 MHz. We select 2402MHz, 2440MHz, and 2480MHz TX frequency to transmit.

9.6.Test Procedure

The EUT and its simulators are placed on a turntable, which is 0.8 meter high above ground. The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bilog antenna) is used as receiving antenna. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the interface cables must be manipulated according to ANSI C63.4: 2009 on radiated emission measurement. The EUT was tested in 3 orthogonal planes.

The bandwidth of test receiver is set at 9 kHz in below 30MHz. and set at 120 kHz in 30-1000MHz, and 1MHz in above 1000MHz.

The frequency range from 9 kHz to 25GHz is checked.

The final measurement in band 9-90 kHz, 110-490 kHz and above 1000MHz is performed with Average detector. Except those frequency bands mention above, the final measurement for frequencies below 1000MHz is performed with Quasi Peak detector.

The field strength is calculated by adding the antenna factor, and cable loss, and subtracting the amplifier gain from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

Where Corrected Factor = Antenna Factor + Cable Loss - Amplifier Gain

9.7. The Field Strength of Radiation Emission Measurement Results **PASS.**

Date of Test:	April 12, 2013	Temperature:	25°C
EUT:	Speaker	Humidity:	50%
Model No.:	KTS-06	Power Supply:	DC 5V
Test Mode:	BLE Channel Low 2402MHz	Test Engineer:	Star

For Below 30MHz

Frequency	Reading	Factor(dB)	Result	Limit	Margin	Polarization
(MHz)	(dBµV/m)	Corr.	(dBµV/m)	(dBµV/m)	(dB)	
	QP		QP	QP	QP	
-	-	-	-	-	-	X
-	-	-	-	-	-	Y
-	-	-	-	-	-	Z

For 30MHz-1000MHz

Corrected Factor = Antenna Factor + Cable Loss – Amplifier Gain

Corrected 1 actor	- 7 tintenna 1	actor Cable	Loss minpi	nei Gani		
Frequency	Reading	Factor	Result	Limit	Margin	Polarization
(MHz)	(dBµV/m)	Corr.	(dBµV/m)	(dBµV/m)	(dB)	
	QP	(dB)	QP	QP	QP	
102.9728	3.36	13.95	17.31	43.50	-26.19	Vertical
219.1785	2.17	15.49	17.66	46.00	-28.34	Vertical
357.1923	8.99	21.17	30.16	46.00	-15.84	Vertical
95.6484	14.26	14.09	28.35	43.50	-15.15	Horizontal
259.4433	13.05	18.52	31.57	46.00	-14.43	Horizontal
285.2611	18.41	18.46	36.87	46.00	-9.13	Horizontal

For 1GHz-25GHz

Corrected Factor = Antenna Factor + Cable Loss – Amplifier Gain

Frequency	Reading	(dBµV/m)	Factor	Result(d	BμV/m)	Limit(d	BμV/m)	Margin(dBμV/m)	Polarizati
(MHz)	AV	PEAK	Corr. (dB)	AV	PEAK	AV	PEAK	AV	PEAK	on
-	-	-	-	1	ı	1	1	-	-	Vertical
-	-	-	-	ı	-	1	1	-	-	Horizontal

Note: 1. Emissions attenuated more than 20 dB below the permissible value are not reported.

- 2. *: Denotes restricted band of operation.
- 3. The fundamental radiated emissions were reduced by Band Reject Filter in the attached plots.

Date of Test:	April 12, 2013	Temperature:	25°C
EUT:	Speaker	Humidity:	50%
Model No.:	KTS-06	Power Supply:	DC 5V
Test Mode:	BLE Channel Middle 2440MHz	Test Engineer:	Bob

For Below 30MHz

Frequency	Reading	Factor(dB)	Result	Limit	Margin	Polarization
(MHz)	(dBµV/m)	Corr.	(dBµV/m)	(dBµV/m)	(dB)	
	QP		QP	QP	QP	
-	-	-	-	-	-	X
-	-	-	-	-	-	Y
-	-	-	-	-	-	Z

For 30MHz-1000MHz

Corrected Factor = Antenna Factor + Cable Loss - Amplifier Gain

Corrected ractor	1 11100111100 1	actor Cable		ner Sum		
Frequency	Reading	Factor	Result	Limit	Margin	Polarization
(MHz)	(dBµV/m)	Corr.	(dBµV/m)	(dBµV/m)	(dB)	
	QP	(dB)	QP	QP	QP	
46.5439	3.41	14.45	17.86	40.00	-22.14	Vertical
103.3353	3.93	13.94	17.87	43.50	-25.63	Vertical
285.2611	3.25	18.46	21.71	46.00	-24.29	Vertical
95.6484	15.20	14.09	29.29	43.50	-14.21	Horizontal
259.4433	13.28	18.52	31.80	46.00	-14.20	Horizontal
285.2611	18.88	18.46	37.34	46.00	-8.66	Horizontal

For 1GHz-25GHz

Corrected Factor = Antenna Factor + Cable Loss - Amplifier Gain

Frequency	Reading(dBμV/m)	Factor	Result(c	lBμV/m)	Limit(d	BμV/m)	Margin(c	dBμV/m)	Polarizati
(MHz)	AV	PEAK	Corr. (dB)	AV	PEAK	AV	PEAK	AV	PEAK	on
-	-	-	-	-	-	-	-	-	-	Vertical
-	-	-	-	-	-	-	-	-	-	Horizontal

Note: 1. Emissions attenuated more than 20 dB below the permissible value are not reported.

- 2. *: Denotes restricted band of operation.
- 3. The fundamental radiated emissions were reduced by Band Reject Filter in the attached plots.

Date of Test:	April 12, 2013	Temperature:	25°C
EUT:	Speaker	Humidity:	50%
Model No.:	KTS-06	Power Supply:	DC 5V
Test Mode:	BLE Channel High 2480MHz	Test Engineer:	Star

For Below 30MHz

Frequency	Reading	Factor(dB)	Result	Limit	Margin	Polarization
(MHz)	(dBµV/m)	Corr.	(dBµV/m)	(dBµV/m)	(dB)	
	QP		QP	QP	QP	
-	-	-	-	-	-	X
-	-	-	-	-	-	Y
-	-	-	-	-	-	Z

For 30MHz-1000MHz

Corrected Factor = Antenna Factor + Cable Loss - Amplifier Gain

Corrected 1 detor				Tier Guin		
Frequency	Reading	Factor	Result	Limit	Margin	Polarization
(MHz)	(dBµV/m)	Corr.	(dBµV/m)	(dBµV/m)	(dB)	
	QP	(dB)	QP	QP	QP	
34.4059	2.59	15.75	18.34	40.00	-21.66	Vertical
40.0172	3.45	14.55	18.00	40.00	-22.00	Vertical
357.1923	9.44	21.17	30.61	46.00	-15.39	Vertical
189.1075	12.21	13.86	26.07	43.50	-17.43	Horizontal
236.7927	14.44	16.80	31.24	46.00	-14.76	Horizontal
285.2611	18.79	18.46	37.25	46.00	-8.75	Horizontal

For 1GHz-25GHz

Corrected Factor = Antenna Factor + Cable Loss - Amplifier Gain

Frequency	Reading(dBμV/m)	Factor	Result(c	lBμV/m)	Limit(d	BμV/m)	Margin(c	dBμV/m)	Polarizati
(MHz)	AV	PEAK	Corr. (dB)	AV	PEAK	AV	PEAK	AV	PEAK	on
-	1	-	-	-	-	1	-	-	-	Vertical
-	-	-	-	-	-	-	-	-	-	Horizontal

Note: 1. Emissions attenuated more than 20 dB below the permissible value are not reported.

- 2. *: Denotes restricted band of operation.
- 3. The fundamental radiated emissions were reduced by Band Reject Filter in the attached plots.

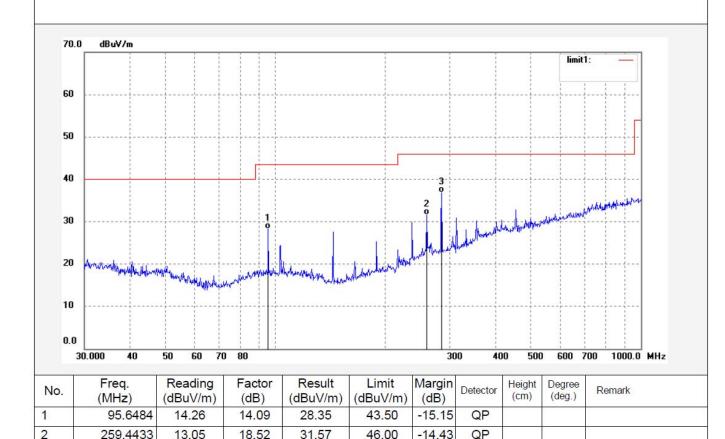
F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: star #1909

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 24 C / 48 %


EUT: Speaker Mode: TX 2402MHz Model: KTS-06

Manufacturer: KingBoard

Note: Report No.:ATE20130606

Polarization: Horizontal Power Source: DC 5V Date: 2013/04/12

Time: 20:21:04 Engineer Signature: Distance: 3m

46.00

3

285.2611

18.41

18.46

36.87

QP

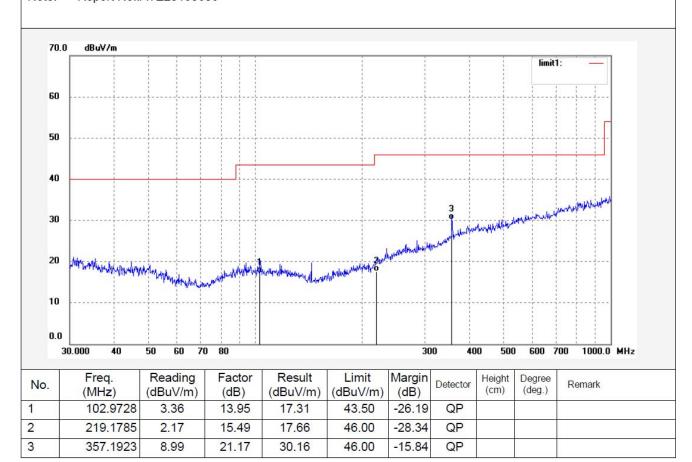
-9.13

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: star #1910

Standard: FCC Class B 3M Radiated

Test item: Radiation Test


Temp.(C)/Hum.(%) 24 C / 48 %

EUT: Speaker
Mode: TX 2402MHz
Model: KTS-06

Manufacturer: KingBoard

Note: Report No.:ATE20130606

Polarization: Vertical
Power Source: DC 5V
Date: 2013/04/12
Time: 20:21:57
Engineer Signature:
Distance: 3m

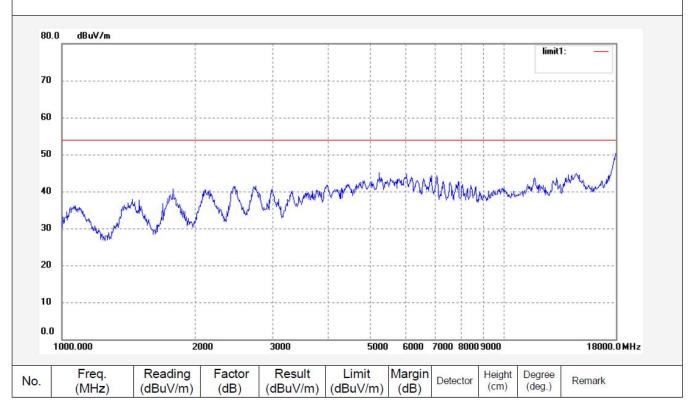
F1, Bldg, A, Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: STAR #1881 Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 24 C / 48 %


EUT: Speaker TX 2402MHz Mode: **KTS-06** Model:

Manufacturer: KingBoard

Polarization: Horizontal Power Source: DC 5V Date: 2013/04/12

Time: 19:05:19 Engineer Signature: Distance: 3m

Note: Report No.:ATE20130606

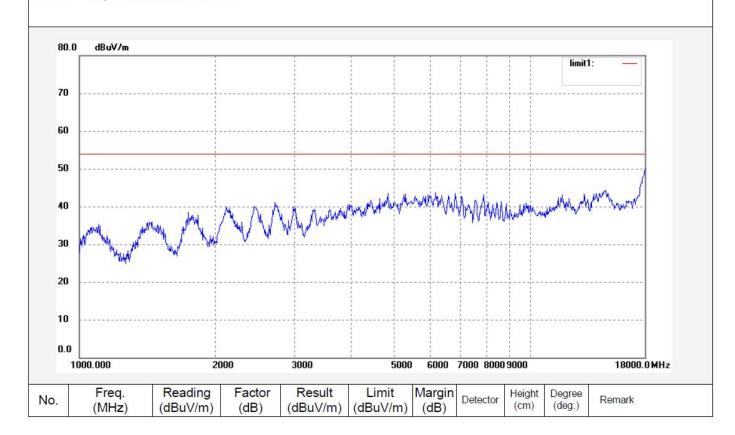
F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: STAR #1882

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 24 C / 48 %


EUT: Speaker Mode: TX 2402MHz Model: KTS-06

Manufacturer: KingBoard

Note: Report No.:ATE20130606

Polarization: Vertical Power Source: DC 5V Date: 2013/04/12 Time: 19:05:49

Engineer Signature: Distance: 3m

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

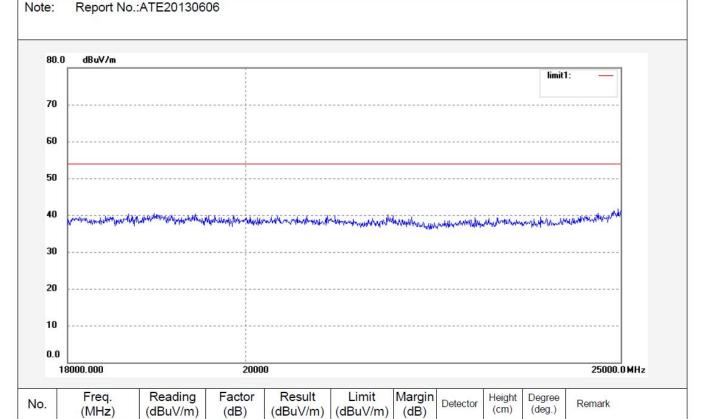
Job No.: STAR #1892

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 24 C / 48 %

EUT: Speaker


Mode: TX 2402MHz

Model: KTS-06

Manufacturer: KingBoard

Polarization: Horizontal Power Source: DC 5V Date: 2013/04/12

Time: 19:14:09
Engineer Signature:
Distance: 3m

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: STAR #1891

Standard: FCC Class B 3M Radiated

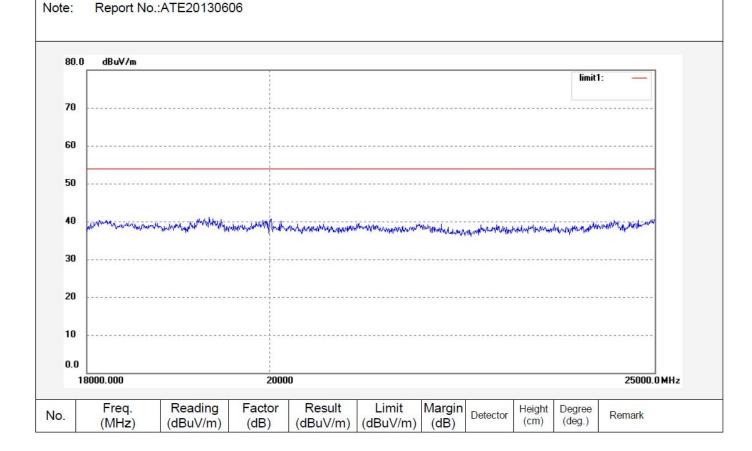
Test item: Radiation Test

Temp.(C)/Hum.(%) 24 C / 48 %

EUT: Speaker

Mode: TX 2402MHz

Model: KTS-06


Manufacturer: KingBoard

muracturer. Kingboard

Polarization: Vertical

Power Source: DC 5V Date: 2013/04/12 Time: 19:13:02 Engineer Signature:

Distance: 3m

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: star #1912

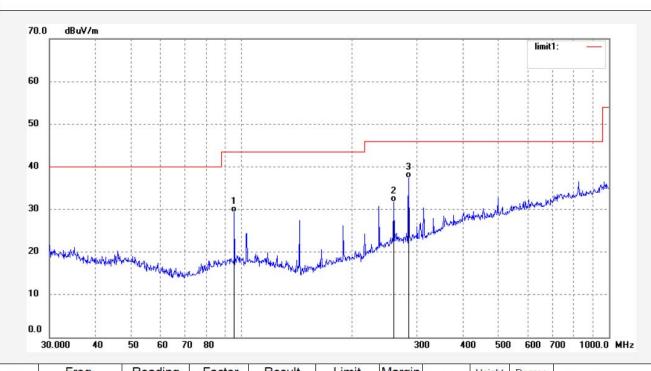
Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 24 C / 48 %

EUT: Speaker

Mode: TX 2440MHz


Model: KTS-06

Manufacturer: KingBoard

Note: Report No.:ATE20130606

Polarization: Horizontal Power Source: DC 5V

Date: 2013/04/12 Time: 20:24:42 Engineer Signature: Distance: 3m

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	95.6484	15.20	14.09	29.29	43.50	-14.21	QP			
2	259.4433	13.28	18.52	31.80	46.00	-14.20	QP			
3	285.2611	18.88	18.46	37.34	46.00	-8.66	QP			

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

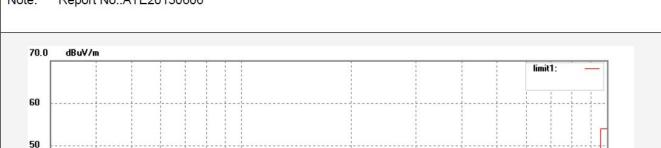
Job No.: star #1911

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 24 C / 48 %

EUT: Speaker


Mode: TX 2440MHz

Model: KTS-06

Manufacturer: KingBoard

Note: Report No.:ATE20130606

Polarization: Vertical
Power Source: DC 5V
Date: 2013/04/12
Time: 20:22:48
Engineer Signature:
Distance: 3m

	1.000 40 50 60 70 80		300	400	500 E	500 7	00 100	0.0
0.0			1					
10								
20	and find a second from the second of the sec	white production	L					
		Jagun May 3	age blood of the first					
30				april second	Jan 194 And	allahla di di	1	
40							and market	garjen.
40		_						
50								Γ
60								

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	46.5439	3.41	14.45	17.86	40.00	-22.14	QP		0	
2	103.3353	3.93	13.94	17.87	43.50	-25.63	QP		0	
3	285.2611	3.25	18.46	21.71	46.00	-24.29	QP		- 23	

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: STAR #1884

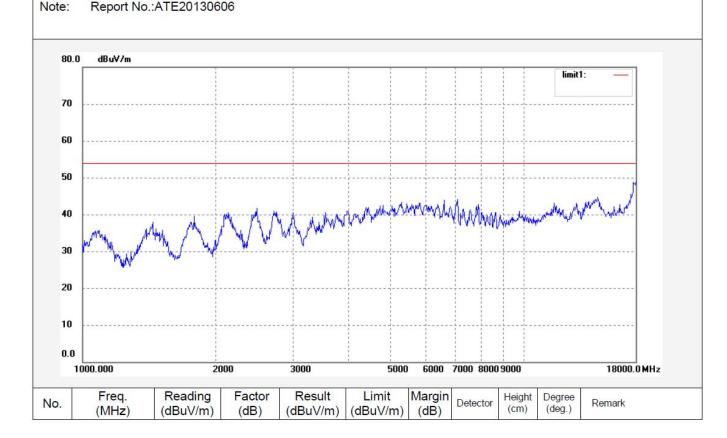
Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 24 C / 48 %

EUT: Speaker

Mode: TX 2440MHz


Model: KTS-06

Manufacturer: KingBoard

Polarization: Horizontal Power Source: DC 5V Date: 2013/04/12

Date: 2013/04/12 Time: 19:06:45 Engineer Signature:

Distance: 3m

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

18000.0 MHz

Job No.: STAR #1883

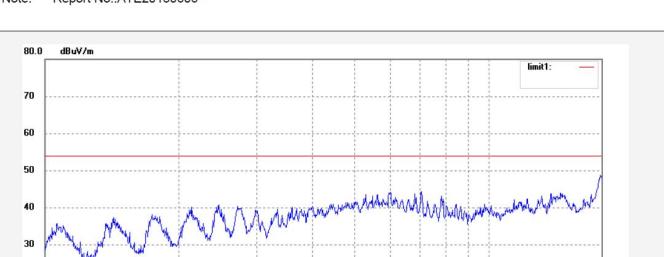
Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 24 C / 48 %

EUT: Speaker

Mode: TX 2440MHz


Model: KTS-06

Manufacturer: KingBoard

Note: Report No.:ATE20130606

Polarization: Vertical Power Source: DC 5V Date: 2013/04/12 Time: 19:06:10 Engineer Signature:

Distance: 3m

Freq. Reading Factor Result Limit Margin Height Degree Detector No. Remark (cm) (deg.) (MHz) (dBuV/m) (dBuV/m) (dB) (dBuV/m) (dB)

5000

6000 7000 8000 9000

3000

2000

20

10

0.0

1000.000

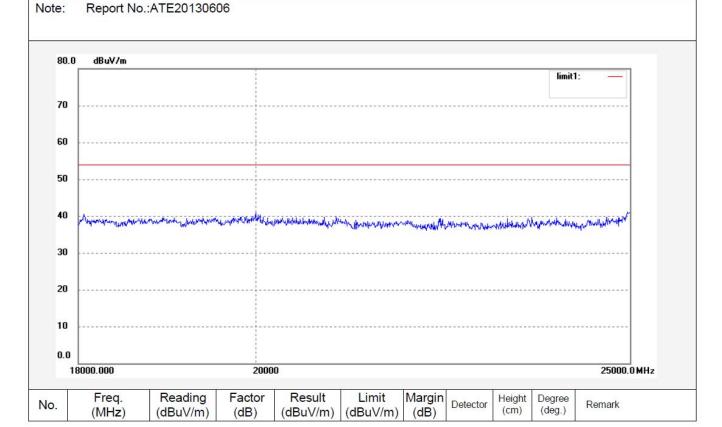
F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: STAR #1889 Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 24 C / 48 %


EUT: Speaker Mode: TX 2440MHz Model: **KTS-06**

Manufacturer: KingBoard

Note:

Polarization: Horizontal Power Source: DC 5V Date: 2013/04/12

Time: 19:10:52 Engineer Signature: Distance: 3m

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: STAR #1890

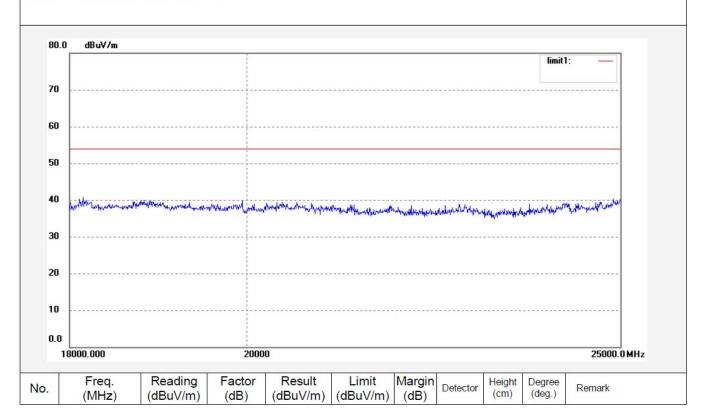
Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 24 C / 48 %

EUT: Speaker

Mode: TX 2440MHz


Model: KTS-06

Manufacturer: KingBoard

Note: Report No.:ATE20130606

Polarization: Vertical
Power Source: DC 5V
Date: 2013/04/12
Time: 19:11:56

Engineer Signature: Distance: 3m

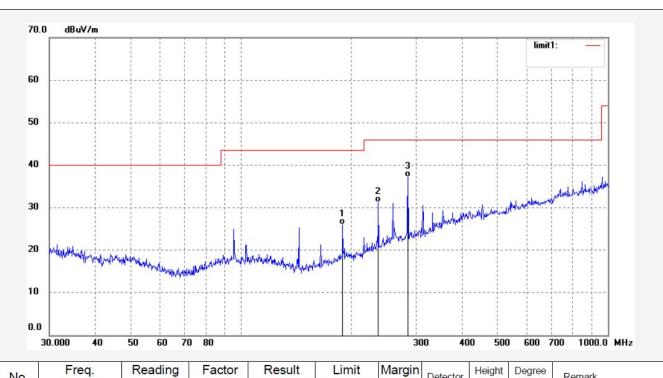
F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: star #1913

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 24 C / 48 %


EUT: Speaker Mode: TX 2480MHz Model: KTS-06

Manufacturer: KingBoard

Note: Report No.:ATE20130606

Polarization: Horizontal Power Source: DC 5V

Date: 2013/04/12 Time: 20:25:59 Engineer Signature: Distance: 3m

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: star #1914

Standard: FCC Class B 3M Radiated

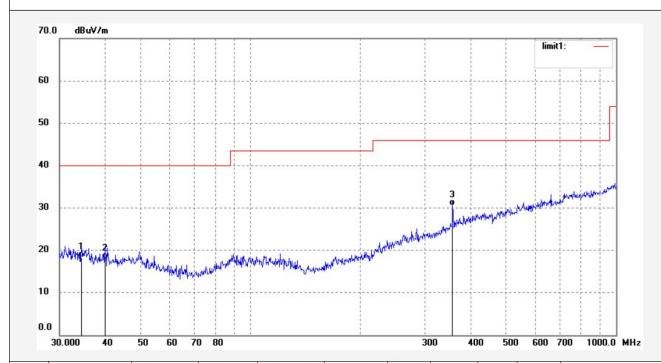
Test item: Radiation Test

Temp.(C)/Hum.(%) 24 C / 48 %

EUT: Speaker

Mode: TX 2480MHz

Model: KTS-06


Manufacturer: KingBoard

Power Source: DC 5V Date: 2013/04/12 Time: 20:26:52 Engineer Signature:

Polarization: Vertical

Distance: 3m

Note: Report No.:ATE20130606

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	34.4059	2.59	15.75	18.34	40.00	-21.66	QP			
2	40.0172	3.45	14.55	18.00	40.00	-22.00	QP			
3	357.1923	9.44	21.17	30.61	46.00	-15.39	QP			

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

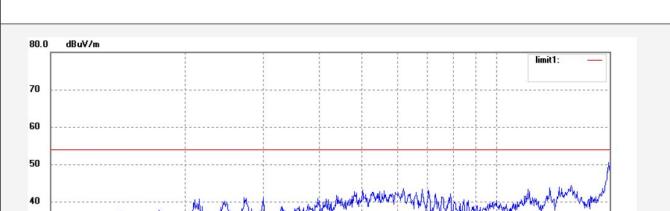
Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: STAR #1885

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 24 C / 48 %


Report No.:ATE20130606

EUT: Speaker TX 2480MHz Mode: Model: **KTS-06**

Manufacturer: KingBoard

Polarization: Horizontal Power Source: DC 5V

Date: 2013/04/12 Time: 19:07:01 Engineer Signature: Distance: 3m

о.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margi (dB)	Detecto	or Height (cm)	Degree (deg.)	Remark
	1000.000	2	000	3000	500		200000000000000000000000000000000000000	000 9000		18000.0 MHz
0.0	1									
10										
20										
30	Mary Mary Mary Mary Mary Mary Mary Mary	My Mary Mark	/ 'W V '	* 'V						
40		L. JAN	MM	1 www	A PARTICIPATION OF THE PARTICI	MANAMA	WANTA	M/Maryandan	(more of the grade	photo hay made
50	100.01.000.0000 00001.000 =130.930.000									1

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

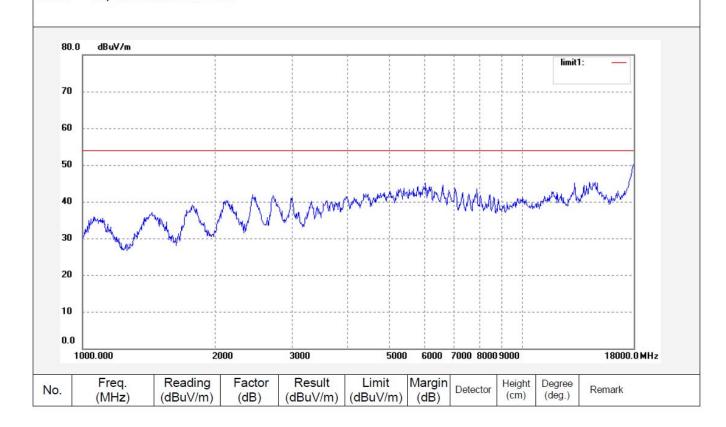
Job No.: STAR #1886

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 24 C / 48 %

EUT: Speaker Mode: TX 2480MHz Model: **KTS-06**


Manufacturer: KingBoard

Note:

Polarization: Vertical Power Source: DC 5V Date: 2013/04/12 Time: 19:08:41 Engineer Signature:

Distance: 3m

Report No.:ATE20130606

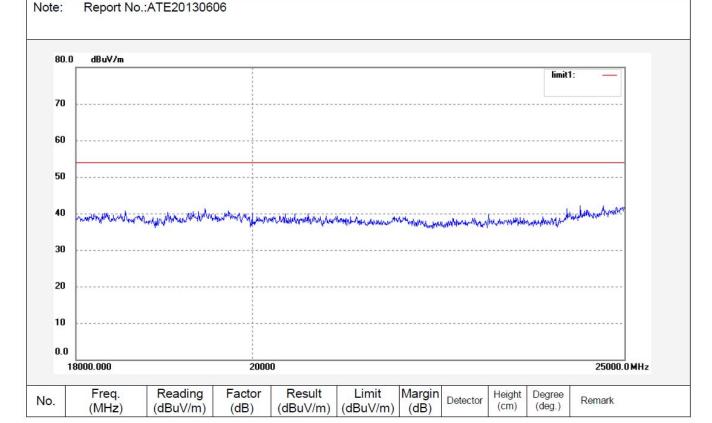
F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: STAR #1888

Standard: FCC Class B 3M Radiated

Test item: Radiation Test


Temp.(C)/Hum.(%) 24 C / 48 %

EUT: Speaker Mode: TX 2480MHz **KTS-06** Model:

Manufacturer: KingBoard

Polarization: Horizontal Power Source: DC 5V Date: 2013/04/12 Time: 19:09:56 Engineer Signature:

Distance: 3m

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: STAR #1887

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 24 C / 48 %

EUT: Speaker

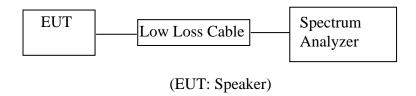
Mode: TX 2480MHz

Model: KTS-06


Manufacturer: KingBoard

Note: Report No.:ATE20130606

Polarization: Vertical Power Source: DC 5V Date: 2013/04/12


Time: 19:09:14 Engineer Signature:

Distance: 3m

10. CONDUCTED SPURIOUS EMISSION COMPLIANCE TEST

10.1.Block Diagram of Test Setup

10.2. The Requirement For Section 15.247(d)

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

10.3.EUT Configuration on Measurement

The following equipment is installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

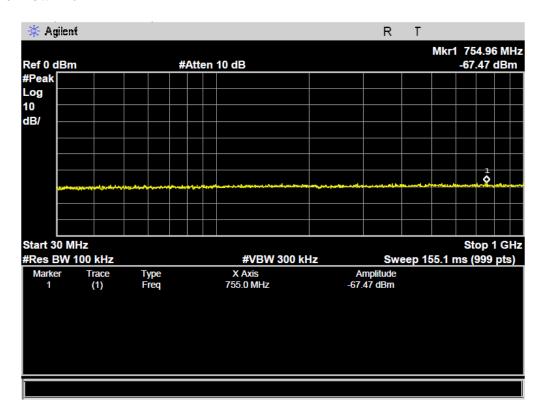
10.3.1. Speaker (EUT)

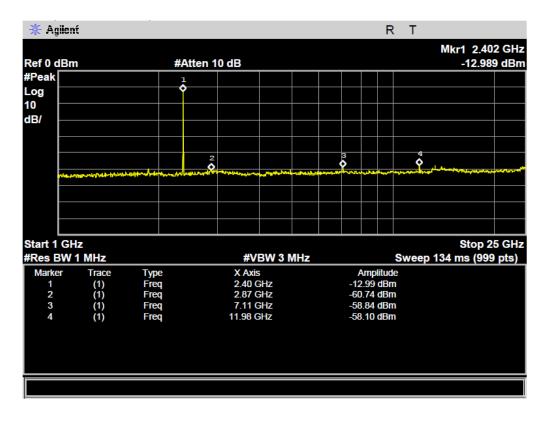
Model Number : KTS-06 Serial Number : N/A

10.4. Operating Condition of EUT

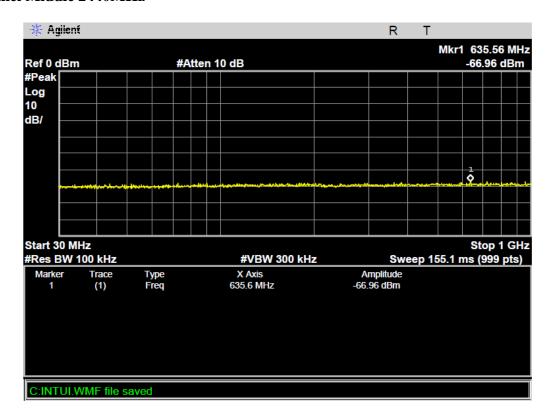
- 10.4.1. Setup the EUT and simulator as shown as Section 10.1.
- 10.4.2. Turn on the power of all equipment.
- 10.4.3.Let the EUT work in TX modes measure it. The transmit frequency are 2402-2480 MHz. We select 2402MHz, 2440MHz, and 2480MHz TX frequency to transmit.

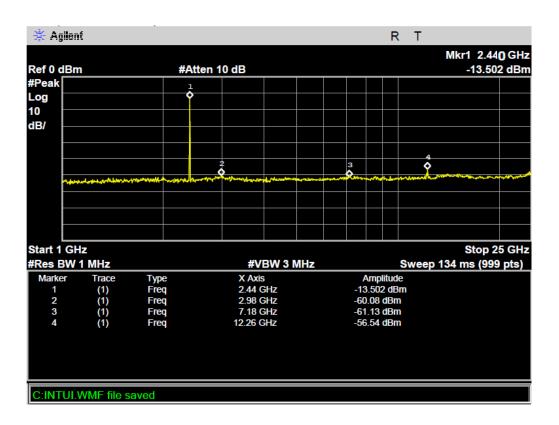
10.5.Test Procedure

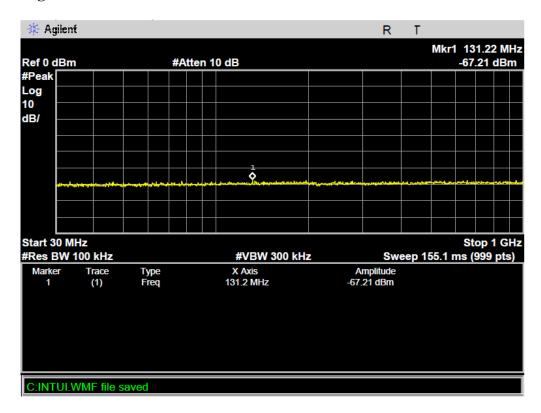

- 10.5.1. The transmitter output was connected to the spectrum analyzer via a low loss cable.
- 10.5.2.Set RBW of spectrum analyzer to 100kHz and VBW to 300kHz (below 1GHz).
- 10.5.3.Set RBW of spectrum analyzer to 1MHz and VBW to 3MHz (above 1GHz).
- 10.5.4. The Conducted Spurious Emission was measured and recorded.

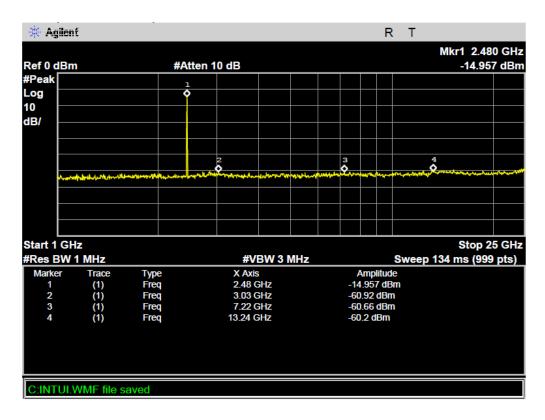

10.6.Test Result

Pass.

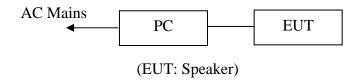

The spectrum analyzer plots are attached as below.

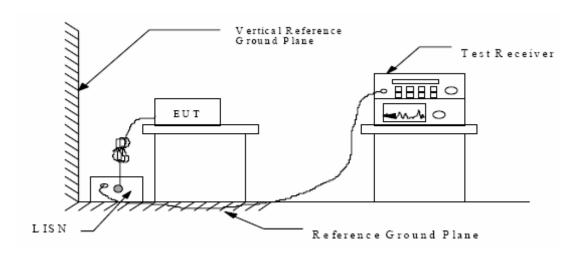

BLE Channel Low 2402MHz




BLE Channel Middle 2440MHz

BLE Channel High 2480MHz




11.AC POWER LINE CONDUCTED EMISSION FOR FCC PART 15 SECTION 15.207(A)

11.1.Block Diagram of Test Setup

11.1.1.Block diagram of connection between the EUT and simulators

11.1.2.Shielding Room Test Setup Diagram

(EUT: Speaker)

11.2. The Emission Limit

11.2.1.Conducted Emission Measurement Limits According to Section 15.207(a)

Frequency	Limit d	$B(\mu V)$
(MHz)	Quasi-peak Level	Average Level
0.15 - 0.50	66.0 - 56.0 *	56.0 – 46.0 *
0.50 - 5.00	56.0	46.0
5.00 - 30.00	60.0	50.0

^{*} Decreases with the logarithm of the frequency.

11.3. Configuration of EUT on Measurement

The following equipment are installed on the Conducted Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

11.3.1.Speaker (EUT)

Model Number : KTS-04 Serial Number : N/A

Manufacturer : Shenzhen KingBoard Technology Co., Ltd.

11.4. Operating Condition of EUT

11.4.1. Setup the EUT and simulator as shown as Section 11.1.

11.4.2. Turn on the power of all equipment.

11.4.3.Let the EUT work in (Tx) mode measure it.

11.5.Test Procedure

The EUT is put on the plane 0.8m high above the ground by insulating support and is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 500hm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC lines are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to ANSI C63.4: 2009 on Conducted Emission Measurement.

The bandwidth of test receiver (R & S ESCS30) is set at 9kHz.

The frequency range from 150kHz to 30MHz is checked.

11.6.Power Line Conducted Emission Measurement Results

PASS.

The frequency range from 150kHz to 30MHz is checked.

Date of Test:April 12, 2013Temperature:25°CEUT:SpeakerHumidity:50%Model No.:KTS-04Power Supply:AC 120V/60HzTest Mode:TxTest Engineer:Kai

Frequency	Result	Limit	Margin	Detector	Line
(MHz)	(dBµV)	(dBµV)	(dB)		
0.150000	53.20	66	-12.8	QP	
0.490912	41.00	56	-15.2	QP	Neutral
0.488957	37.00	46	-9.2	AV	
0.151807	51.80	66	-14.1	QP	
0.492876	40.80	56	-15.3	QP	Live
0.494848	36.50	46	-9.6	AV	

Emissions attenuated more than 20 dB below the permissible value are not reported. The spectral diagrams are attached as below.

CONDUCTED EMISSION STANDARD FCC PART 15C

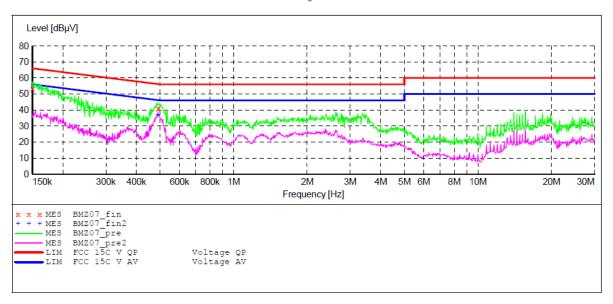
EUT: Speaker M/N:KTS-06

Manufacturer: KingBoard Operating Condition: Playing

Test Site: 1#Shielding Room

Operator: Star

Test Specification: N 120V/60Hz


Report No.:ATE20130606 4/12/2013 / 6:07:21PM Comment: Start of Test:

SCAN TABLE: "V 150K-30MHz fin"

_SUB_STD_VTERM2 1.70 Short Description:

Detector Meas. Stop Start Step IF Transducer Frequency Frequency 150.0 kHz 30.0 MHz Width Bandw. Time 4.5 kHz QuasiPeak 1.0 s 9 kHz NSLK8126 2008

Average

MEASUREMENT RESULT: "BMZ07 fin"

4/1	12/	20	13	6:0	9PM
	_				-

quency	Level				Detector	Line	PE
	'						
					~-	N N	GND GND
	quency MHz L50000	MHZ dBμV	quency Level Transd dBµV dB	quency Level Transd Limit MHz dBµV dB dBµV	quency Level Transd Limit Margin MHz dBµV dB dBµV dB	quency Level Transd Limit Margin Detector	quency Level Transd Limit Margin Detector Line MHz dBµV dB dBµV dB

MEASUREMENT RESULT: "BMZ07 fin2"

4/12/2013 6:09PM

., 12, 2010 0.0	J						
Frequency MHz	_	Transd dB	_		Detector	Line	PE
0.488957	37.00	12.6	46	9.2	AV	N	GND

CONDUCTED EMISSION STANDARD FCC PART 15C

M/N:KTS-06 EUT: Speaker

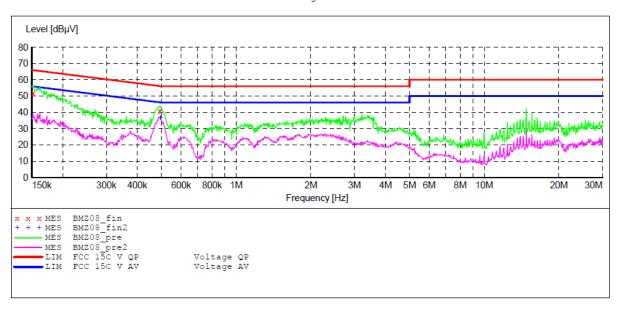
Manufacturer: KingBoard Operating Condition: Playing

Test Site: 1#Shielding Room

Operator: Star Test Specification: L 120V/60Hz

Comment: Report No.:ATE20130606 4/12/2013 / 6:10:21PM Start of Test:

SCAN TABLE: "V 150K-30MHz fin"


_SUB_STD_VTERM2 1.70 Short Description:

Step IF Start Detector Meas. Transducer Stop

Time Bandw.

Frequency Frequency Width 150.0 kHz 30.0 MHz 4.5 kH NSLK8126 2008 4.5 kHz QuasiPeak 1.0 s 9 kHz

Average

MEASUREMENT RESULT: "BMZ08 fin"

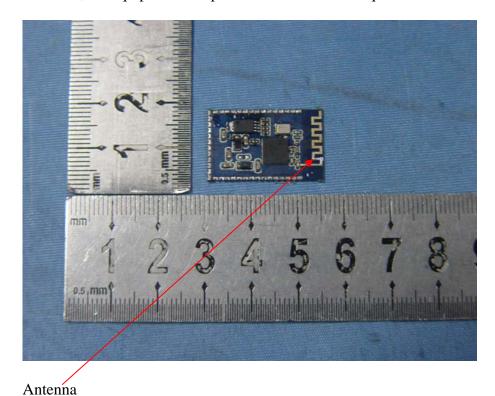
4/12/2013 6:12PM

Frequency MHz	Transd dB		Detector	Line	PE
0.151807 0.492876			QP QP		

MEASUREMENT RESULT: "BMZ08 fin2"

1/12/2013 6·12PM

4/12/2013 0:	12 PM						
Frequency MHz		Transd dB			Detector	Line	PE
0.494848	36.50	12.6	46	9.6	AV	T ₁ 1	GND


12.ANTENNA REQUIREMENT

12.1.The Requirement

According to Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

12.2.Antenna Construction

Device is equipped with unique antenna, which isn't displaced by other antenna. Therefore, the equipment complies with the antenna requirement of Section 15.203.

