APPLICATION CERTIFICATION

On Behalf of Shenzhen KingBoard Technology Co., Ltd.

Speaker Model No.: KTS-04

FCC ID: SXXKTS-04

Prepared for : Shenzhen KingBoard Technology Co., Ltd.

Address : Bldg. A, Dakanglong Industry Zone, Dabuxiang, Guanlan,

Shenzhen, China

Prepared by : ACCURATE TECHNOLOGY CO. LTD

Address : F1, Bldg. A, Changyuan New Material Port, Keyuan Rd.

Science & Industry Park, Nanshan, Shenzhen, Guangdong

P.R. China

Tel: (0755) 26503290 Fax: (0755) 26503396

Report Number : ATE20130608

Date of Test : April 11-24, 2013

Date of Report : April 24, 2013

TABLE OF CONTENTS

Description	Page
-------------	------

	~ · · · ·	. •
Tact Panort	('ortitio	otion
Test Report		aucn
TOBUTTOPOIL		

		1	
1.	G	GENERAL INFORMATION	5
	1.1.	Description of Device (EUT)	5
	1.2.	Special Accessory and Auxiliary Equipment	
	1.3.	Description of Test Facility	
	1.4.	Measurement Uncertainty	
2.	\mathbf{M}	MEASURING DEVICE AND TEST EQUIPMENT	
3.		OPERATION OF EUT DURING TESTING	
Э.			
	3.1. 3.2.	Operating Mode Configuration and peripherals	
4			
4.		TEST PROCEDURES AND RESULTS	
5.	20	0DB BANDWIDTH TEST	
	5.1.	Block Diagram of Test Setup	
	5.2.	The Requirement For Section 15.247(a)(1)	
	5.3.	EUT Configuration on Measurement	
	5.4.	Operating Condition of EUT	
	5.5.	Test Procedure	
	5.6.	Test Result	
6.	C	CARRIER FREQUENCY SEPARATION TEST	15
	6.1.	Block Diagram of Test Setup	15
	6.2.	The Requirement For Section 15.247(a)(1)	15
	6.3.	EUT Configuration on Measurement	
	6.4.	Operating Condition of EUT	
	6.5.	Test Procedure	16
	6.6.	Test Result	16
7.	N	NUMBER OF HOPPING FREQUENCY TEST	20
	7.1.	Block Diagram of Test Setup	20
	7.2.	The Requirement For Section 15.247(a)(1)(iii)	20
	7.3.	EUT Configuration on Measurement	
	7.4.	Operating Condition of EUT	
	7.5.	Test Procedure	
	7.6.	Test Result	21
8.	D	OWELL TIME TEST	24
	8.1.	Block Diagram of Test Setup	
	8.2.	The Requirement For Section 15.247(a)(1)(iii)	24
	8.3.	EUT Configuration on Measurement	
	8.4.	Operating Condition of EUT	
	8.5.	Test Procedure	
	8.6.	Test Result	
9.	\mathbf{M}	MAXIMUM PEAK OUTPUT POWER TEST	32
	9.1.	Block Diagram of Test Setup	32
	9.2.	The Requirement For Section 15.247(b)(1)	
	9.3.	EUT Configuration on Measurement	32
	9.4.	Operating Condition of EUT	32
	9.5.	Test Procedure	
	9.6.	Test Result	33

10. BA	ND EDGE COMPLIANCE TEST	37
10.1.	Block Diagram of Test Setup	37
10.2.	The Requirement For Section 15.247(d)	
10.3.	EUT Configuration on Measurement	
10.4.	Operating Condition of EUT	
10.5.	Test Procedure	38
10.6.	Test Result	39
11. RA	DIATED SPURIOUS EMISSION TEST	50
11.1.	Block Diagram of Test Setup	50
11.2.	The Limit For Section 15.247(d)	51
11.3.	Restricted bands of operation	51
11.4.	Configuration of EUT on Measurement	
11.5.	Operating Condition of EUT	52
11.6.	Test Procedure	
11.7.	The Field Strength of Radiation Emission Measurement Results	53
12. CC	ONDUCTED SPURIOUS EMISSION COMPLIANCE TEST	74
12.1.	Block Diagram of Test Setup	
12.2.	The Requirement For Section 15.247(d)	74
12.3.	EUT Configuration on Measurement	74
12.4.	Operating Condition of EUT	75
12.5.	Test Procedure	75
12.6.	Test Result	75
13. AC	POWER LINE CONDUCTED EMISSION FOR FCC PART 15 SECTION 15.20)7(A)79
13.1.	Block Diagram of Test Setup	79
13.2.	The Emission Limit	79
13.3.	Configuration of EUT on Measurement	80
13.4.	Operating Condition of EUT	80
13.5.	Test Procedure	80
13.6.	Power Line Conducted Emission Measurement Results	81
14. AN	TENNA REQUIREMENT	84
14.1.	The Requirement	84
14.2	Antenna Construction	

Test Report Certification

Applicant : Shenzhen KingBoard Technology Co., Ltd.

Manufacturer : Shenzhen KingBoard Technology Co., Ltd.

EUT Description : Speaker

(A) MODEL NO.: KTS-04

(B) SERIAL NO.: N/A

(C) POWER SUPPLY: 5V DC (Power by PC)

Measurement Procedure Used:

FCC Rules and Regulations Part 15 Subpart C Section 15.247 ANSI C63.4: 2009

The device described above is tested by ACCURATE TECHNOLOGY CO. LTD to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart C Section 15.247 limits. The measurement results are contained in this test report and ACCURATE TECHNOLOGY CO. LTD is assumed full responsibility for the accuracy and completeness of these measurements. Also, this report shows that the Equipment Under Test (EUT) is to be technically compliant with the FCC requirements.

This report applies to above tested sample only. This report shall not be reproduced in part without written approval of ACCURATE TECHNOLOGY CO. LTD.

Date of Test :	April 11-24, 2013	
Prepared by :	Apple	
	(Engineer)	
Approved & Authorized Signer:	Lemil	
	(Manager)	

1. GENERAL INFORMATION

1.1.Description of Device (EUT)

EUT : Speaker

Model Number : KTS-04

Frequency Band : 2402MHz-2480MHz

Number of Channels : 79

Antenna Gain 0dBi

Power Supply : 5V DC (Power by PC)

Applicant : Shenzhen KingBoard Technology Co., Ltd.

Address : Bldg. A, Dakanglong Industry Zone, Dabuxiang,

Guanlan, Shenzhen, China

Manufacturer : Shenzhen KingBoard Technology Co., Ltd.

Address : Bldg. A, Dakanglong Industry Zone, Dabuxiang,

Guanlan, Shenzhen, China

Date of sample received: April 11, 2013
Date of Test: April 11-24, 2013

1.2. Special Accessory and Auxiliary Equipment

Notebook PC : Manufacturer: Lenovo

Model No.: 4290-RT8

Serial No.: R9-FW93G 11/08

1.3.Description of Test Facility

EMC Lab : Accredited by TUV Rheinland Shenzhen

Listed by FCC

The Registration Number is 752051

Listed by Industry Canada

The Registration Number is 5077A-2

Accredited by China National Accreditation Committee

for Laboratories

The Certificate Registration Number is L3193

Name of Firm : ACCURATE TECHNOLOGY CO. LTD

Site Location : F1, Bldg. A, Changyuan New Material Port, Keyuan Rd.

Science & Industry Park, Nanshan, Shenzhen, Guangdong

P.R. China

1.4. Measurement Uncertainty

Conducted Emission Expanded Uncertainty = 2.23dB, k=2

Radiated emission expanded uncertainty = 3.08dB, k=2

(9kHz-30MHz)

Radiated emission expanded uncertainty = 4.42dB, k=2

(30MHz-1000MHz)

Radiated emission expanded uncertainty = 4.06dB, k=2

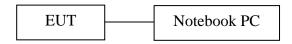
(Above 1GHz)

2. MEASURING DEVICE AND TEST EQUIPMENT

Table 1: List of Test and Measurement Equipment

Kind of equipment	Manufacturer	Туре	S/N	Calibrated date	Calibrated until
EMI Test Receiver	Rohde&Schwarz	ESCS30	100307	Jan. 12, 2013	Jan. 11, 2014
EMI Test Receiver	Rohde&Schwarz	ESPI3	101526/003	Jan. 12, 2013	Jan. 11, 2014
Spectrum Analyzer	Agilent	E7405A	MY45115511	Jan. 12, 2013	Jan. 11, 2014
Pre-Amplifier	Rohde&Schwarz	CBLU118354 0-01	3791	Jan. 12, 2013	Jan. 11, 2014
Loop Antenna	Schwarzbeck	FMZB1516	1516131	Feb. 06, 2013	Feb. 05, 2014
Bilog Antenna	Schwarzbeck	VULB9163	9163-323	Feb. 06, 2013	Feb. 05, 2014
Horn Antenna	Schwarzbeck	BBHA9120D	9120D-655	Feb. 06, 2013	Feb. 05, 2014
Horn Antenna	Schwarzbeck	BBHA9170	9170-359	Feb. 06, 2013	Feb. 05, 2014
LISN	Rohde&Schwarz	ESH3-Z5	100305	Jan. 12, 2013	Jan. 11, 2014
LISN	Schwarzbeck	NSLK8126	8126431	Jan. 12, 2013	Jan. 11, 2014

3. OPERATION OF EUT DURING TESTING


3.1. Operating Mode

The mode is used: Transmitting mode

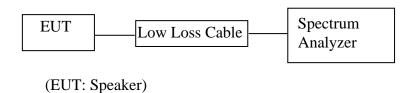
Low Channel: 2402MHz Middle Channel: 2441MHz High Channel: 2480MHz

Hopping

3.2. Configuration and peripherals

Setup: Transmitting mode

(EUT: Speaker)


4. TEST PROCEDURES AND RESULTS

FCC Rules	Description of Test	Result
Section 15.247(a)(1)	20dB Bandwidth Test	Compliant
Section 15.247(a)(1)	Carrier Frequency Separation Test	Compliant
Section 15.247(a)(1)(iii)	Number Of Hopping Frequency Test	Compliant
Section 15.247(a)(1)(iii)	Dwell Time Test	Compliant
Section 15.247(b)(1)	Maximum Peak Output Power Test	Compliant
Section 15.247(d)	Band Edge Compliance Test	Compliant
Section 15.247(d) Section 15.209	Radiated Spurious Emission Test	Compliant
Section 15.247(d)	Conducted Spurious Emission Test	Compliant
Section 15.207	AC Power Line Conducted Emission Test	Compliant
Section 15.203	Antenna Requirement	Compliant

Remark: "N/A" means "Not applicable".

5. 20DB BANDWIDTH TEST

5.1.Block Diagram of Test Setup

5.2. The Requirement For Section 15.247(a)(1)

Section 15.247(a)(1): Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

5.3.EUT Configuration on Measurement

The following equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

5.3.1.Speaker (EUT)

Model Number : KTS-04 Serial Number : N/A

Manufacturer : Shenzhen KingBoard Technology Co., Ltd.

5.4. Operating Condition of EUT

- 5.4.1. Setup the EUT and simulator as shown as Section 5.1.
- 5.4.2. Turn on the power of all equipment.
- 5.4.3.Let the EUT work in TX(Hopping off) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, 2480MHz TX frequency to transmit.

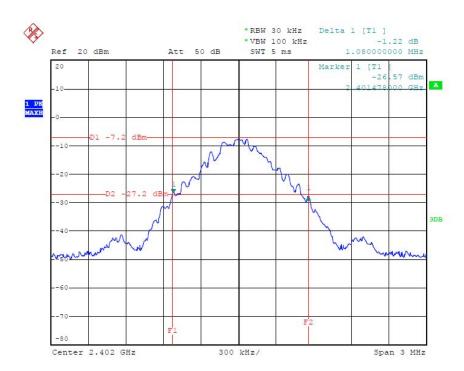
5.5.Test Procedure

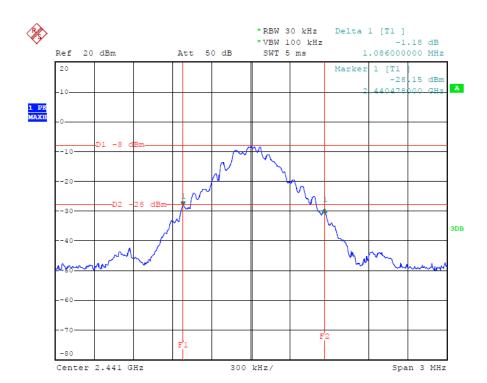
- 5.5.1.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 5.5.2.Set RBW of spectrum analyzer to 30kHz and VBW to 100kHz.
- 5.5.3.The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

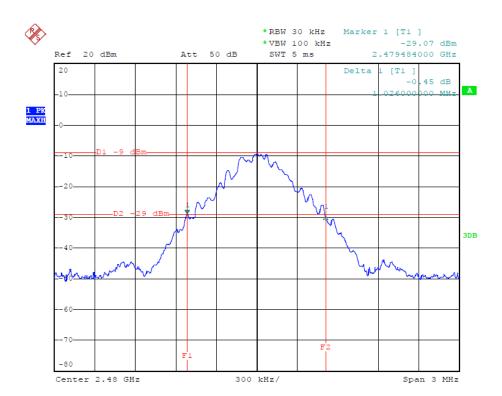
5.6.Test Result

PASS.

Date of Test:April 15, 2013Temperature:25°CEUT:SpeakerHumidity:50%Model No.:KTS-04Power Supply:DC 5.0VTest Mode:TXTest Engineer:Apple

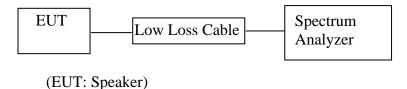

Channel	Frequency (MHz)	20dB Bandwidth (MHz)	Limit (MHz)
Low	2402	1.080	N/A
Middle	2441	1.086	N/A
High	2480	1.026	N/A


Note: N/A: 1) The 20 dB bandwidth of the hopping channel is not limit.


2) The data of 20 dB bandwidth of the hopping channel is limit of carrier frequencies separated

The spectrum analyzer plots are attached as below.

"Spectrum analyzer" is R/S



Date: 15.APR.2013 18:24:22

6. CARRIER FREQUENCY SEPARATION TEST

6.1.Block Diagram of Test Setup

6.2. The Requirement For Section 15.247(a)(1)

Section 15.247(a)(1): Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudorandomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

6.3.EUT Configuration on Measurement

The following equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

6.3.1.Speaker (EUT)

Model Number : KTS-04 Serial Number : N/A

Manufacturer : Shenzhen KingBoard Technology Co., Ltd.

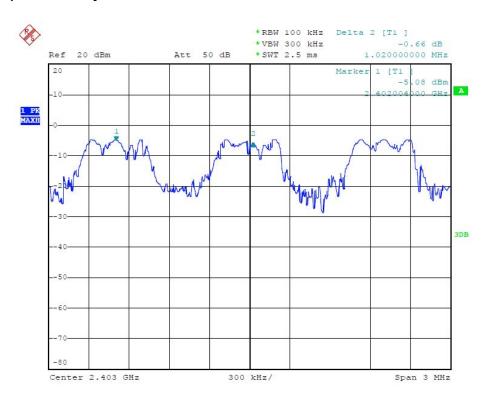
6.4. Operating Condition of EUT

- 6.4.1. Setup the EUT and simulator as shown as Section 6.1.
- 6.4.2. Turn on the power of all equipment.
- 6.4.3.Let the EUT work in TX (Hopping on) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, 2480MHz TX frequency to transmit.

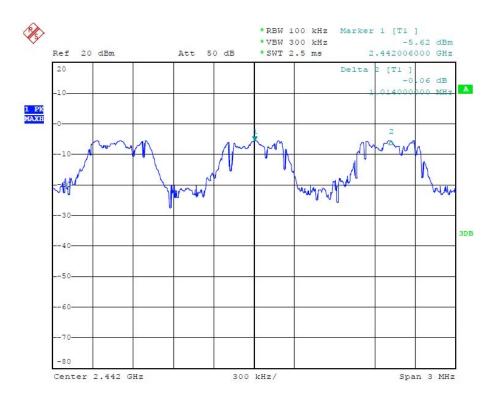
6.5.Test Procedure

- 6.5.1.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 6.5.2.Set RBW of spectrum analyzer to 100kHz and VBW to 300kHz. Adjust Span to 3 MHz.
- 6.5.3.Set the adjacent channel of the EUT maxhold another trace.
- 6.5.4. Measurement the channel separation

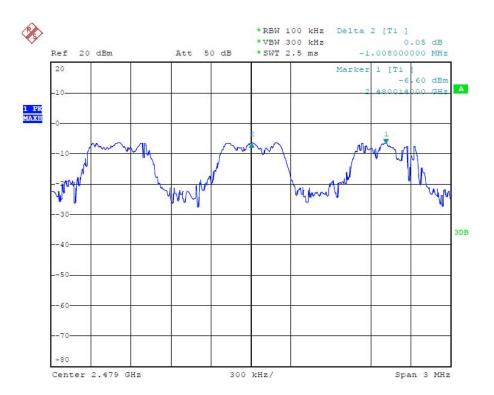
6.6.Test Result


PASS.

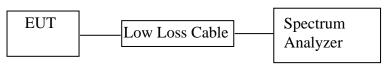
Date of Test:April 15, 2013Temperature:25°CEUT:SpeakerHumidity:50%Model No.:KTS-04Power Supply:DC 5.0VTest Mode:HoppingTest Engineer:Apple


	Channel Frequency	Channel separation	
Channel			Limit
	(MHz)	(MHz)	
			> two-thirds of the 20 dB
Low	2402	1.020	bandwidth (0.720MHz) or 25kHz
			(whichever is greater)
			> two-thirds of the 20 dB
Middle	2441	1.014	bandwidth (0.724MHz) or 25kHz
			(whichever is greater)
			> two-thirds of the 20 dB
High	2480	1.008	bandwidth (0.684MHz) or 25kHz
			(whichever is greater)

The spectrum analyzer plots are attached as below.


"Spectrum analyzer" is R/S

Date: 15.APR.2013 19:11:14


Date: 15.APR.2013 19:16:14

Date: 15.APR.2013 19:20:13

7. NUMBER OF HOPPING FREQUENCY TEST

7.1.Block Diagram of Test Setup

(EUT: Speaker)

7.2. The Requirement For Section 15.247(a)(1)(iii)

Section 15.247(a)(1)(iii): Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

7.3.EUT Configuration on Measurement

The following equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

7.3.1.Speaker (EUT)

Model Number : KTS-04 Serial Number : N/A

Manufacturer : Shenzhen KingBoard Technology Co., Ltd.

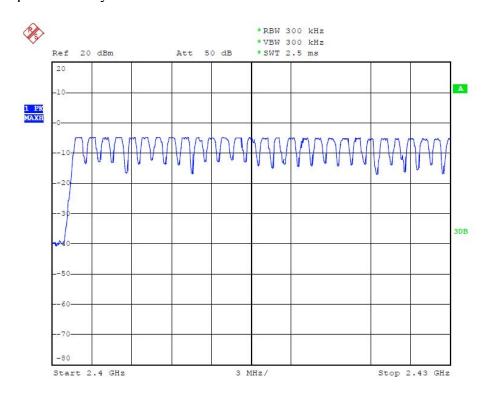
7.4. Operating Condition of EUT

- 7.4.1. Setup the EUT and simulator as shown as Section 7.1.
- 7.4.2. Turn on the power of all equipment.
- 7.4.3.Let the EUT work in TX (Hopping on) modes measure it.

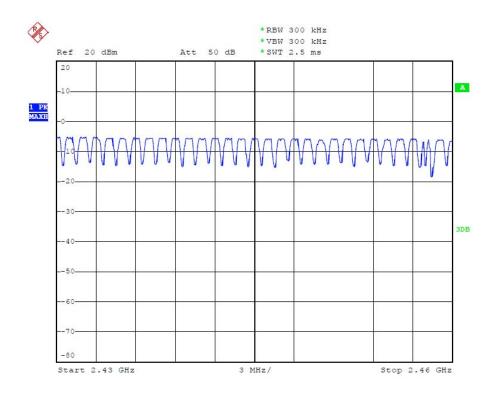
7.5.Test Procedure

- 7.5.1.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 7.5.2.Set the spectrum analyzer as Span=30MHz, RBW=300kHz, VBW=300kHz.
- 7.5.3.Max hold, view and count how many channel in the band.

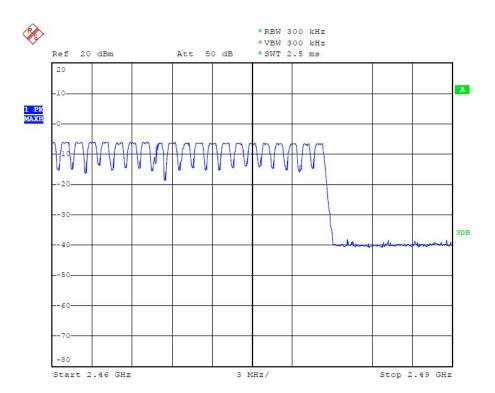
7.6.Test Result


PASS.

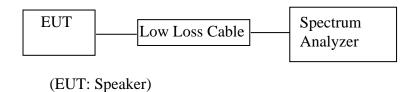
Date of Test:April 15, 2013Temperature:25°CEUT:SpeakerHumidity:50%Model No.:KTS-04Power Supply:DC 5.0VTest Mode:HoppingTest Engineer:Apple


Total number of	Measurement result (CH)	Limit (CH)
hopping channel	79	>15

The spectrum analyzer plots are attached as below.


"Spectrum analyzer" is R/S

Date: 15.APR.2013 18:58:12


Date: 15.APR.2013 19:02:04

Date: 15.APR.2013 19:05:35

8. DWELL TIME TEST

8.1.Block Diagram of Test Setup

8.2. The Requirement For Section 15.247(a)(1)(iii)

Section 15.247(a)(1)(iii): Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

8.3.EUT Configuration on Measurement

The following equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

8.3.1.Speaker (EUT)

Model Number : KTS-04 Serial Number : N/A

Manufacturer : Shenzhen KingBoard Technology Co., Ltd.

8.4. Operating Condition of EUT

- 8.4.1. Setup the EUT and simulator as shown as Section 8.1.
- 8.4.2. Turn on the power of all equipment.
- 8.4.3.Let the EUT work in TX (Hopping on) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, 2480MHz TX frequency to transmit.

8.5.Test Procedure

- 8.5.1.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 8.5.2.Set center frequency of spectrum analyzer = operating frequency.
- 8.5.3.Set the spectrum analyzer as RBW=1MHz, VBW=3MHz, Span=0Hz. Get the pulse time.
- 8.5.4.Repeat above procedures until all frequency measured were complete.

8.6.Test Result

PASS.

Date of Test:April 15, 2013Temperature:25°CEUT:SpeakerHumidity:50%Model No.:KTS-04Power Supply:DC 5.0VTest Mode:HoppingTest Engineer:Apple

DH1	
A period transmit time = $0.4 \times 79 = 31.6$	

Dwell time = pulse time $\times (1600/(2*79))*31.6$

2480

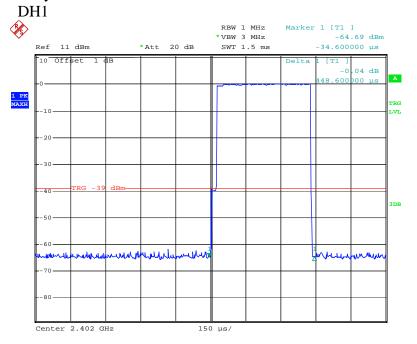
2 (of this pulse this (1000 (2 17)) 6110					
	Channel	Channel Frequency	Pulse Time	Dwell Time	Limit
		(MHz)	(ms)	(ms)	(ms)
	Low	2402	0.449	143.68	400
	Middle	2441	0.449	143.68	400
	High	2480	0.428	136.96	400

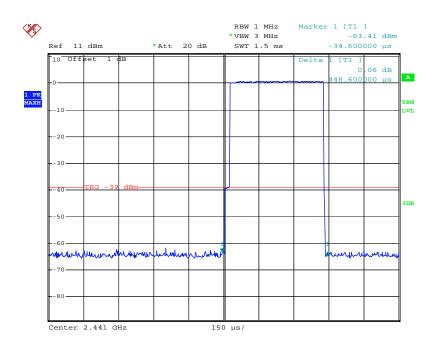
A period transr	A period transmit time = $0.4 \times 79 = 31.6$ Dwell time = pulse time $\times (1600/(4*79))*31.6$							
Dwell time = p								
Channel	Channel Frequency (MHz)	Pulse Time (ms)	Dwell Time (ms)	Limit (ms)				
Low	2402	1.730	276.80	400				
Middle	2441	1.730	276.80	400				

1.694

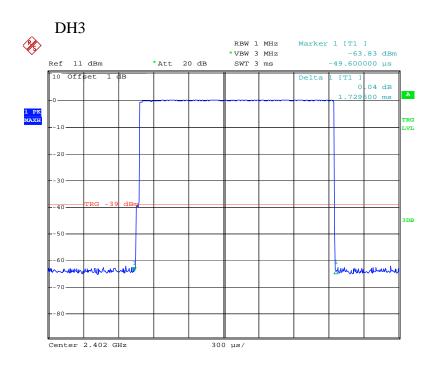
DH3

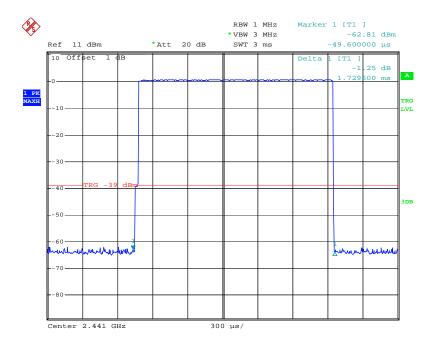
High

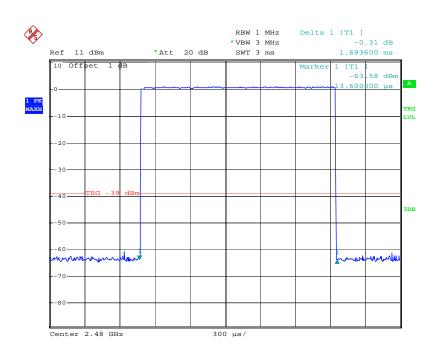

400

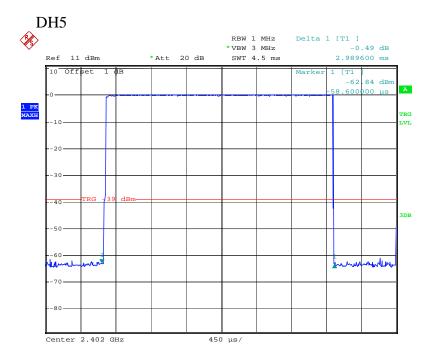

271.04

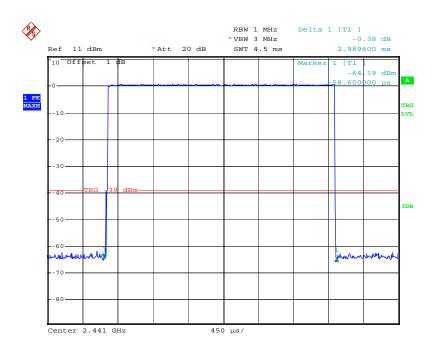
DH5 A period transmit time = $0.4 \times 79 = 31.6$									
Dwell time = pulse time $\times (1600/(6*79))*31.6$									
Channel	Channel Frequency	Pulse Time	Dwell Time	Limit					
	(MHz)	(ms)	(ms)	(ms)					
Low	2402	2.990	318.93	400					
Middle	2441	2.990	318.93	400					
High	2480	2.954	315.09	400					

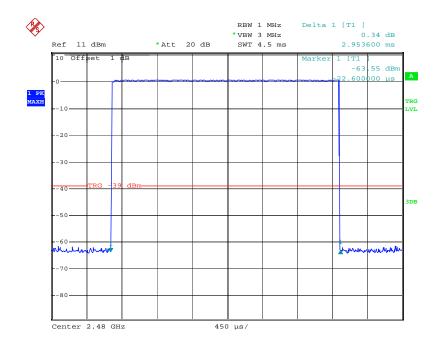

The spectrum analyzer plots are attached as below.

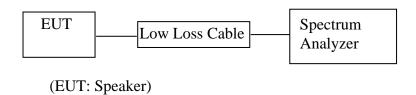

"Spectrum analyzer" is R/S











9. MAXIMUM PEAK OUTPUT POWER TEST

9.1.Block Diagram of Test Setup

9.2. The Requirement For Section 15.247(b)(1)

Section 15.247(b)(1): For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

9.3.EUT Configuration on Measurement

The following equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

9.3.1.Speaker (EUT)

Model Number : KTS-04 Serial Number : N/A

Manufacturer : Shenzhen KingBoard Technology Co., Ltd.

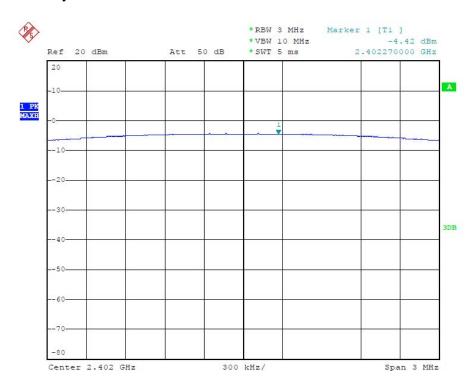
9.4. Operating Condition of EUT

- 9.4.1. Setup the EUT and simulator as shown as Section 9.1.
- 9.4.2. Turn on the power of all equipment.
- 9.4.3.Let the EUT work in TX (Hopping off) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, 2480MHz TX frequency to transmit.

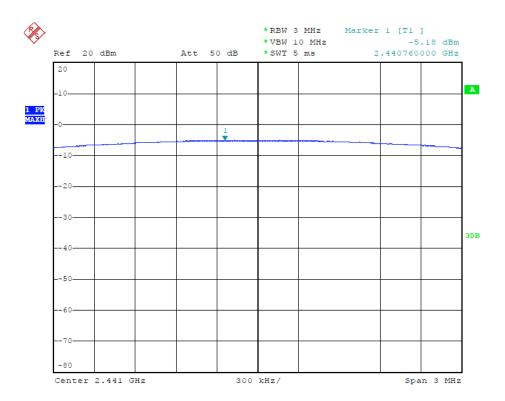
9.5.Test Procedure

- 9.5.1.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 9.5.2.Set RBW of spectrum analyzer to 3MHz and VBW to 10MHz.
- 9.5.3. Measurement the maximum peak output power.

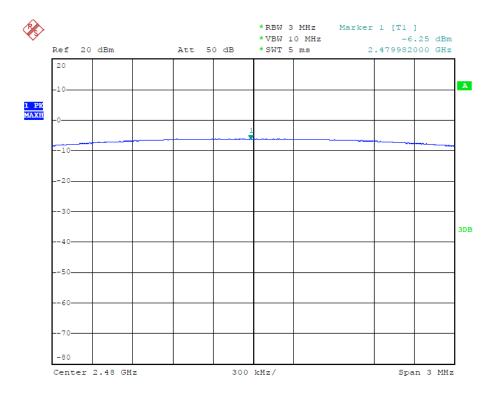
9.6.Test Result


PASS.

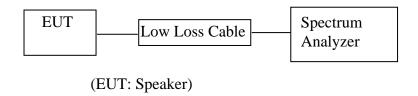
Date of Test:April 15, 2013Temperature:25°CEUT:SpeakerHumidity:50%Model No.:KTS-04Power Supply:DC 5.0VTest Mode:TXTest Engineer:Apple


Channel	Frequency (MHz)	Peak Output Power (dBm)	Peak Output Power (mW)	Limits dBm / W
Low	2402	-4.42	0.361	21 dBm / 0.125 W
Middle	2441	-5.18	0.303	21 dBm / 0.125 W
High	2480	-6.25	0.237	21 dBm / 0.125 W

The spectrum analyzer plots are attached as below.


"Spectrum analyzer" is R/S

Date: 15.APR.2013 18:27:29


Date: 15.APR.2013 18:26:45

Date: 15.APR.2013 18:26:09

10.BAND EDGE COMPLIANCE TEST

10.1.Block Diagram of Test Setup

10.2. The Requirement For Section 15.247(d)

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

10.3.EUT Configuration on Measurement

The following equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

10.3.1.Speaker (EUT)

Model Number : KTS-04 Serial Number : N/A

Manufacturer : Shenzhen KingBoard Technology Co., Ltd.

10.4. Operating Condition of EUT

- 10.4.1. Setup the EUT and simulator as shown as Section 10.1.
- 10.4.2. Turn on the power of all equipment.
- 10.4.3.Let the EUT work in TX (Hopping off, Hopping on) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2480MHz TX frequency to transmit.

10.5.Test Procedure

Conducted Band Edge:

- 10.5.1. The transmitter output was connected to the spectrum analyzer via a low loss cable.
- 10.5.2.Set RBW of spectrum analyzer to 300kHz and VBW to 1MHz.

Radiate Band Edge:

- 10.5.3. The EUT is placed on a turntable, which is 0.8m above the ground plane and worked at highest radiated power.
- 10.5.4. The turntable was rotated for 360 degrees to determine the position of maximum emission level.
- 10.5.5.EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission.
- 10.5.6.Set the spectrum analyzer in the following setting in order to capture the lower and upper band-edges of the emission:

RBW=1MHz, VBW=1MHz

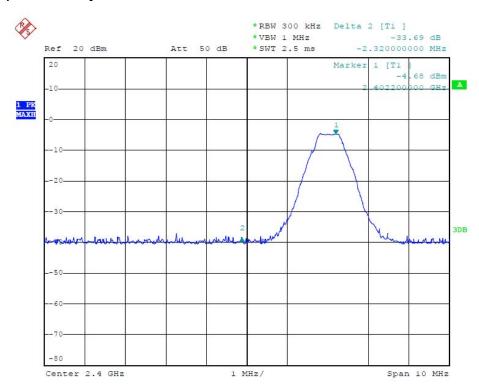
10.5.7. The band edges was measured and recorded.

10.6.Test Result

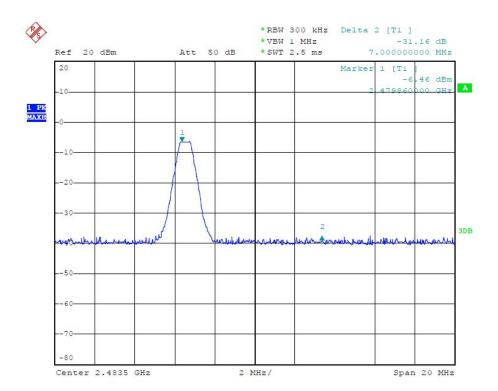
Pass

Date of Test:	April 15, 2013	Temperature:	25°C
EUT:	Speaker	Humidity:	50%
Model No.:	KTS-04	Power Supply:	DC 5.0V
Test Mode:	TX (Hopping off)	Test Engineer:	Apple

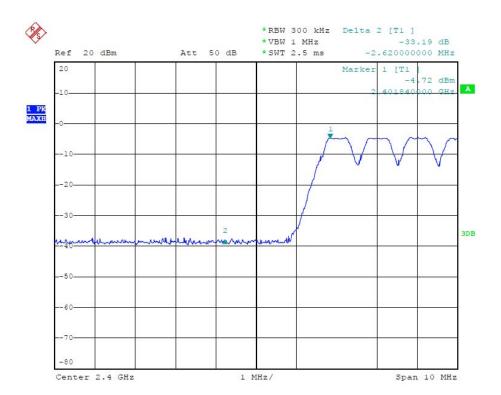
Conducted test

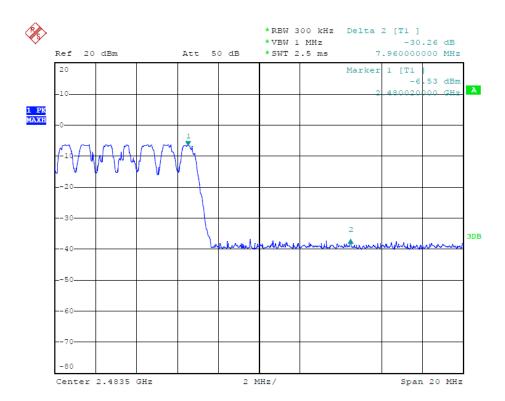

Frequency	Result of Band Edge (dBc)	Limit of Band Edge (dBc)
(MHz)		
2402	33.69	> 20dBc
2480	31.16	> 20dBc

Date of Test:	April 15, 2013	Temperature:	25°C
EUT:	Speaker	Humidity:	50%
Model No.:	KTS-04	Power Supply:	DC 5.0V
Test Mode:	TX (Hopping on)	Test Engineer:	Apple


Conducted test

Frequency	Result of Band Edge (dBc)	Limit of Band Edge (dBc)
(MHz)	, ,	, ,
2402	33.19	> 20dBc
2480	30.26	> 20dBc


"Spectrum analyzer" is R/S


Date: 15.APR.2013 18:31:44

Date: 15.APR.2013 18:33:05

Date: 15.APR.2013 18:53:47

Date: 15.APR.2013 18:37:32

Radiated Band Edge Result

Date of Test:April 14, 2013Temperature:25°CEUT:SpeakerHumidity:50%Model No.:KTS-04Power Supply:DC 5.0VTest Mode:TX (2402MHz)Test Engineer:Kai

Frequency	Reading	(dBµV/m)	Factor(dB)	Result(dBμV/m)	Limit(d)	BμV/m)	Margi	in(dB)	Polarization
(MHz)	AV	PEAK	Corr.	AV	PEAK	AV	PEAK	AV	PEAK	
2310.000	38.92	44.81	-7.81	31.11	37.00	54.00	74.00	-22.89	-37.00	Vertical
2371.773	41.71	47.48	-7.64	34.07	39.84	54.00	74.00	-19.93	34.16	Vertical
2390.000	40.02	45.49	-7.53	32.49	37.96	54.00	74.00	-21.51	-36.04	Vertical
2310.000	37.25	43.87	-7.81	29.44	36.06	54.00	74.00	-24.56	-37.94	Horizontal
2380.073	41.36	47.22	-7.59	33.77	39.63	54.00	74.00	-20.23	-34.37	Horizontal
2390.000	37.99	43.50	-7.53	30.46	35.97	54.00	74.00	-23.54	-38.03	Horizontal

Note:

- 1. Emissions attenuated more than 20 dB below the permissible value are not reported.
- 2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

3. Display the measurement of peak values.

Date of Test:	April 14, 2013	Temperature:	25°C
EUT:	Speaker	Humidity:	50%
Model No.:	KTS-04	Power Supply:	DC 5.0V
Test Mode:	TX (2480MHz)	Test Engineer:	Kai

Frequency	Reading(dBµV/m)		Factor(dB)	Result(dBµV/m)		Limit(dBµV/m)		Margin(dB)		Polarization
(MHz)	AV	PEAK	Corr.	AV	PEAK	AV	PEAK	AV	PEAK	
2483.500	38.91	44.28	-7.37	31.54	36.91	54.00	74.00	-22.46	-37.09	Vertical
2494.324	41.02	46.16	-7.39	33.63	38.77	54.00	74.00	-20.37	-35.23	Vertical
2500.000	37.39	43.74	-7.40	29.99	36.34	54.00	74.00	-24.01	-37.66	Vertical
2483.500	40.15	45.39	-7.37	32.78	38.02	54.00	74.00	-21.22	-35.98	Horizontal
2489.725	39.61	45.40	-7.39	32.22	38.01	54.00	74.00	-21.78	-35.99	Horizontal
2500.000	37.99	43.63	-7.40	30.59	36.23	54.00	74.00	-23.41	-37.77	Horizontal

Note:

- 1. Emissions attenuated more than 20 dB below the permissible value are not reported.
- 2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:

 Result = Reading + Corrected Factor
- 3. Display the measurement of peak values.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

2440.0 MHz

Job No.: STAR #2773 Standard: FCC 15C PK Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 49 %

EUT: Speaker

Mode: TX 2402MHz

Model: KTS-04

Manufacturer: KingBoard

Note: Report No.:ATE20130608

Polarization: Horizontal Power Source: DC 5V

Date: 2013/04/14
Time: 13:35:23
Engineer Signature:
Distance: 3m

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2310.000	43.87	-7.81	36.06	74.00	-37.94	peak			
2	2310.000	37.25	-7.81	29.44	54.00	-24.56	AVG			
3	2380.073	47.22	-7.59	39.63	74.00	-34.37	peak			
4	2380.073	41.36	-7.59	33.77	54.00	-20.23	AVG			
5	2390.000	43.50	-7.53	35.97	74.00	-38.03	peak			
6	2390.000	37.99	-7.53	30.46	54.00	-23.54	AVG			

30

20

10.0

2300.000

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: STAR #2774 Standard: FCC 15C PK Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 49 %

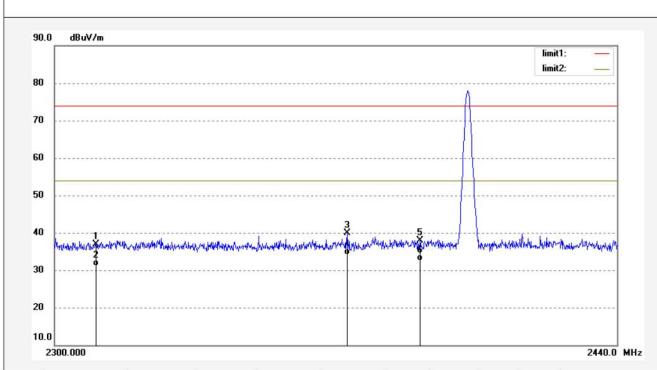
Report No.:ATE20130608

EUT: Speaker

Mode: TX 2402MHz

Model: KTS-04

Manufacturer: KingBoard


Note:

viandiacturer. Kingboard

Polarization: Vertical Power Source: DC 5V

Date: 2013/04/14 Time: 13:39:35 Engineer Signature:

Distance: 3m

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark	
1	2310.000	44.81	-7.81	37.00	74.00	-37.00	peak				
2	2310.000	38.92	-7.81	31.11	54.00	-22.89	AVG				
3	2371.773	47.48	-7.64	39.84	74.00	-34.16	peak				
4	2371.773	41.71	-7.64	34.07	54.00	-19.93	AVG				
5	2390.000	45.49	-7.53	37.96	74.00	-36.04	peak				
6	2390.000	40.02	-7.53	32.49	54.00	-21.51	AVG	5.			

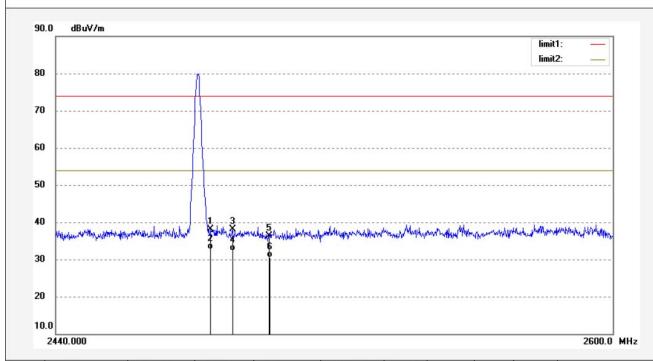
F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: STAR #2776 Standard: FCC 15C PK Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 49 %

EUT: Speaker

Mode: TX 2480MHz


Model: KTS-04

Manufacturer: KingBoard

Note: Report No.:ATE20130608

Polarization: Horizontal Power Source: DC 5V

Date: 2013/04/14
Time: 13:47:19
Engineer Signature:
Distance: 3m

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2483.500	45.39	-7.37	38.02	74.00	-35.98	peak			
2	2483.500	40.15	-7.37	32.78	54.00	-21.22	AVG			
3	2489.725	45.40	-7.39	38.01	74.00	-35.99	peak			
4	2489.725	39.61	-7.39	32.22	54.00	-21.78	AVG			
5	2500.000	43.63	-7.40	36.23	74.00	-37.77	peak			
6	2500.000	37.99	-7.40	30.59	54.00	-23.41	AVG			

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: STAR #2775 Standard: FCC 15C PK Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 49 %

EUT: Speaker

Mode: TX 2480MHz

Model: KTS-04

Manufacturer: KingBoard

Note: Report No.:ATE20130608

Polarization: Vertical Power Source: DC 5V Date: 2013/04/14

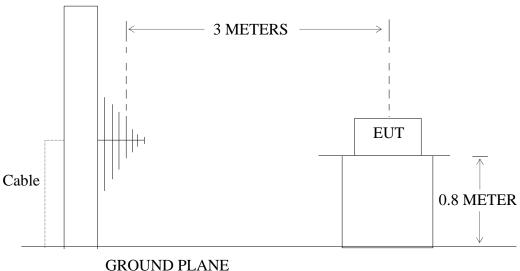
Time: 13:42:54 Engineer Signature: Distance: 3m

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2483.500	44.28	-7.37	36.91	74.00	-37.09	peak	2	×	
2	2483.500	38.91	-7.37	31.54	54.00	-22.46	AVG	7	7	
3	2494.324	46.16	-7.39	38.77	74.00	-35.23	peak	7	7.	
4	2494.324	41.02	-7.39	33.63	54.00	-20.37	AVG	7	7	
5	2500.000	43.74	-7.40	36.34	74.00	-37.66	peak	Ø		
6	2500.000	37.39	-7.40	29.99	54.00	-24.01	AVG	2	/	

11. RADIATED SPURIOUS EMISSION TEST

11.1.Block Diagram of Test Setup

11.1.1.Block diagram of connection between the EUT and simulators


EUT

Setup: Transmitting mode

(EUT: Speaker)

11.1.2.Semi-Anechoic Chamber Test Setup Diagram

ANTENNA ELEVATION VARIES FROM 1 TO 4 METERS

(EUT: Speaker)

11.2.The Limit For Section 15.247(d)

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

11.3.Restricted bands of operation

11.3.1.FCC Part 15.205 Restricted bands of operation

(a) Except as shown in paragraph (d) of this section, Only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	$\binom{2}{}$
13.36-13.41			

¹Until February 1, 1999, this restricted band shall be 0.490-0.510

(b) Except as provided in paragraphs (d) and (e), the field strength of emission appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000MHz, Compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000MHz, compliance with the emission limits in Section15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

²Above 38.6

11.4.Configuration of EUT on Measurement

The following equipment are installed on Radiated Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

11.4.1.Speaker (EUT)

Model Number : KTS-04 Serial Number : N/A

Manufacturer : Shenzhen KingBoard Technology Co., Ltd.

11.5. Operating Condition of EUT

- 11.5.1.Setup the EUT and simulator as shown as Section 11.1.
- 11.5.2. Turn on the power of all equipment.
- 11.5.3.Let the EUT work in TX (Hopping off) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, 2480MHz TX frequency to transmit.

11.6.Test Procedure

The EUT and its simulators are placed on a turntable, which is 0.8 meter high above ground. The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bilog antenna) is used as receiving antenna. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the interface cables must be manipulated according to ANSI C63.4: 2009 on radiated emission measurement. The EUT was tested in 3 orthogonal planes.

The bandwidth of test receiver is set at 9kHz in below 30MHz, and set at 120kHz in 30-1000MHz, and 1MHz in above 1000MHz.

The frequency range from 9kHz to 25GHz is checked.

The final measurement in band 9-90kHz, 110-490kHz and above 1000MHz is performed with Average detector. Except those frequency bands mention above, the final measurement for frequencies below 1000MHz is performed with Quasi Peak detector.

The field strength is calculated by adding the antenna factor, and cable loss, and subtracting the amplifier gain from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

Where Corrected Factor = Antenna Factor + Cable Loss – Amplifier Gain

11.7.The Field Strength of Radiation Emission Measurement Results **PASS.**

Date of Test:	April 13, 2013	Temperature:	25°C
EUT:	Speaker	Humidity:	50%
Model No.:	KTS-04	Power Supply:	DC 5.0V
Test Mode:	TX (2402MHz)	Test Engineer:	Apple

Below 30MHz

Frequency	Reading	Factor(dB)	Result	Limit	Margin	Polarization
(MHz)	(dBµV/m)	Corr.	(dBµV/m)	(dBµV/m)	(dB)	
	QP		QP	QP	QP	
-	-	-	-	-	-	X
-	-	-	-	-	-	Y
-	-	-	-	-	-	Z

For 30MHz-1000MHz

Corrected Factor = Antenna Factor + Cable Loss – Amplifier Gain

Frequency	Reading	Factor	Result	Limit	Margin	Polarization
(MHz)	(dBµV/m)	Corr.	(dBµV/m)	(dBµV/m)	(dB)	
	QP	(dB)	QP	QP	QP	
-	-	-	-	1	1	Vertical
-	-	-	-	-	-	Horizontal

For 1GHz-25GHz

Corrected Factor = Antenna Factor + Cable Loss – Amplifier Gain

Frequenc	Reading	(dBµV/m)	Factor	Result(d	lBμV/m)	Limit(d)	BμV/m)	Margin(d	dBμV/m)	Polarizati
У	AV	PEAK	Corr. (dB)	AV	PEAK	AV	PEAK	AV	PEAK	on
(MHz)										
ı	1	1	-	-	ı	ı	1	-	-	Vertical
-	-	1	-	-	-	-	-	-	-	Horizontal

Note: 1. Emissions attenuated more than 20 dB below the permissible value are not reported.

- 2. *: Denotes restricted band of operation.
- 3. The fundamental radiated emissions were reduced by Band Reject Filter in the attached plots.

Date of Test:	April 13, 2013	Temperature:	25°C
EUT:	Speaker	Humidity:	50%
Model No.:	KTS-04	Power Supply:	DC 5.0V
Test Mode:	TX (2441MHz)	Test Engineer:	Apple

Below 30MHz

Frequency	Reading	Factor(dB)	Result	Limit	Margin	Polarization
(MHz)	(dBµV/m)	Corr.	(dBµV/m)	(dBµV/m)	(dB)	
	QP		QP	QP	QP	
-	-	-	-	-	-	X
-	-	-	-	-	-	Y
-	-	-	-	-	-	Z

For 30MHz-1000MHz

Corrected Factor = Antenna Factor + Cable Loss - Amplifier Gain

- 3													
	Frequency	Reading	Factor	Result	Limit	Margin	Polarization						
	(MHz)	(dBµV/m)	Corr.	(dBµV/m)	(dBµV/m)	(dB)							
		QP	(dB)	QP	QP	QP							
	-	-	1	-	1	-	Vertical						
	-	-	-	-	-	-	Horizontal						

For 1GHz-25GHz

Corrected Factor = Antenna Factor + Cable Loss - Amplifier Gain

Frequenc	Reading	(dBµV/m)	Factor	Result(c	lBμV/m)	Limit(d	BμV/m)	Margin(dBμV/m)	Polarizati
у	AV	PEAK	Corr. (dB)	AV	PEAK	AV	PEAK	AV	PEAK	on
(MHz)										
-	-	-	-	-	-	-	-	-	-	Vertical
-	-	-	-	-	-	-	-	-	-	Horizontal

Note: 1. Emissions attenuated more than 20 dB below the permissible value are not reported.

- 2. *: Denotes restricted band of operation.
- 3. The fundamental radiated emissions were reduced by Band Reject Filter in the attached plots.

Date of Test:	April 13, 2013	Temperature:	25°C
EUT:	Speaker	Humidity:	50%
Model No.:	KTS-04	Power Supply:	DC 5.0V
Test Mode:	TX (2480MHz)	Test Engineer:	Apple

Below 30MHz

Frequency	Reading	Factor(dB)	Result	Limit	Margin	Polarization
(MHz)	(dBµV/m)	Corr.	(dBµV/m)	(dBµV/m)	(dB)	
	QP		QP	QP	QP	
-	-	-	-	-	-	X
-	-	-	-	-	-	Y
-	-	-	-	-	-	Z

For 30MHz-1000MHz

Corrected Factor = Antenna Factor + Cable Loss - Amplifier Gain

Frequency	Reading	Factor	Result	Limit	Margin	Polarization
(MHz)	(dBµV/m)	Corr.	(dBµV/m)	(dBµV/m)	(dB)	
	QP	(dB)	QP	QP	QP	
-	-	-	-	-	-	Vertical
-	-	-	-	-	-	Horizontal

For 1GHz-25GHz

Corrected Factor = Antenna Factor + Cable Loss - Amplifier Gain

Frequency (MHz)	Reading(dBμV/m		Factor Corr. (dB)	Result(dBµV/m)		Limit(dBµV/m)		Margin(dBμV/m)		Polarizati on
(14112)	AV	PEAK		AV	PEAK	AV	PEAK	AV	PEAK	
-	-	-	-	-	-	-	-	-	-	Vertical
-	-	-	-	-	ı	-	-	ı	-	Horizontal

Note: 1. Emissions attenuated more than 20 dB below the permissible value are not reported.

- 2. *: Denotes restricted band of operation.
- 3. The fundamental radiated emissions were reduced by Band Reject Filter in the attached plots.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

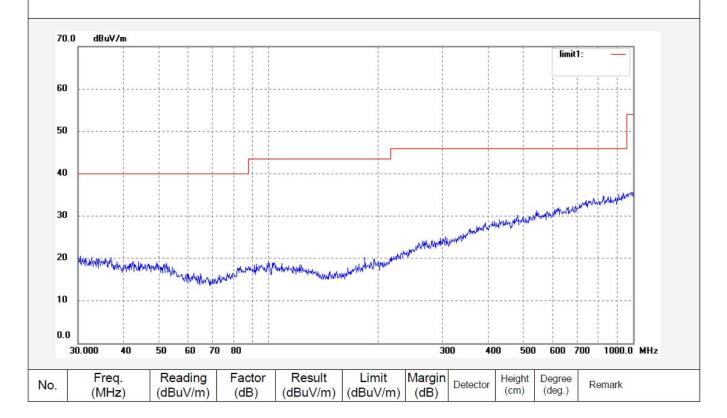
Job No.: STAR #2681

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 49 %

EUT: Speaker


Mode: TX 2402MHz

Model: KTS-04

Manufacturer: KingBoard

Note: Report No.:ATE20130608

Polarization: Horizontal
Power Source: DC 5V
Date: 2013/04/13
Time: 9/01/01
Engineer Signature:
Distance: 3m

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Polarization: Vertical

Power Source: DC 5V

Date: 2013/04/13

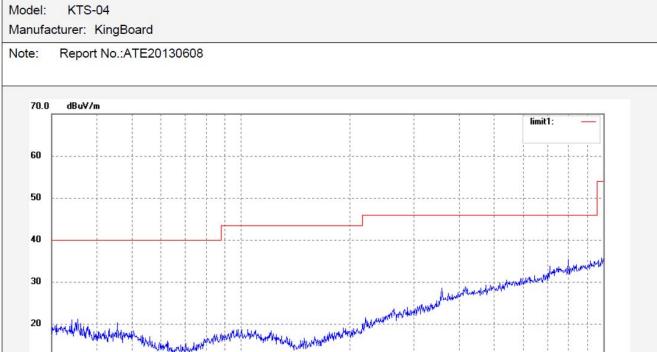
Engineer Signature:

Time: 9/05/55

Distance: 3m

Job No.: STAR #2682

Standard: FCC Class B 3M Radiated


Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 49 %

EUT: Speaker

Mode: TX 2402MHz

Model: KTS-04

20 10 0.0 30.000 60 70 400 600 700 1000.0 MHz Factor Limit Reading Result Margin Freq. Height Degree Detector No. Remark (MHz) (dBuV/m) (dB) (dBuV/m) (dBuV/m) (dB)

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: STAR #2699

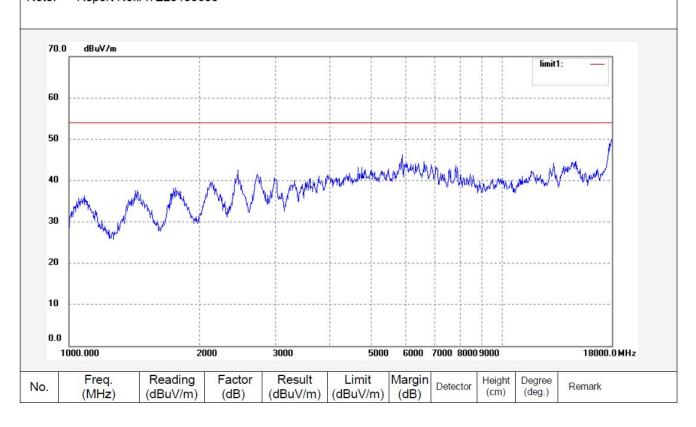
Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 49 %

EUT: Speaker

Mode: TX 2402MHz


Model: KTS-04

Manufacturer: KingBoard

Note: Report No.:ATE20130608

Polarization: Horizontal Power Source: DC 5V Date: 2013/04/13 Time: 22:19:04 Engineer Signature:

Distance: 3m

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

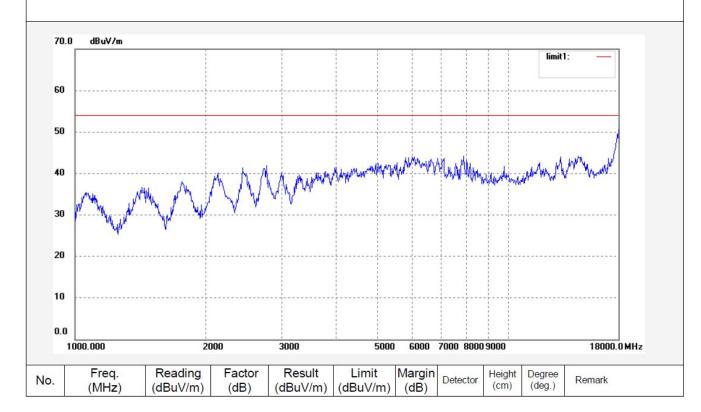
Job No.: STAR #2700

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 49 %

EUT: Speaker


Mode: TX 2402MHz

Model: KTS-04

Manufacturer: KingBoard

Note: Report No.:ATE20130608

Polarization: Vertical
Power Source: DC 5V
Date: 2013/04/13
Time: 22:23:52
Engineer Signature:
Distance: 3m

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: star #887

Standard: FCC Class B 3M Radiated

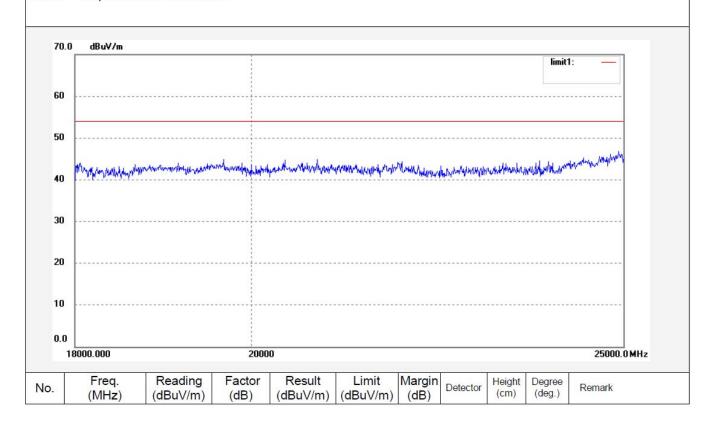
Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 51 %

EUT: Speaker

Mode: TX 2402MHz

Model: KTS-04


Manufacturer: KingBoard

Note: Report No.:ATE20130608

Polarization: Horizontal Power Source: DC 5V Date: 2013/04/13 Time: 20:45:16

Engineer Signature: Star

Distance:

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

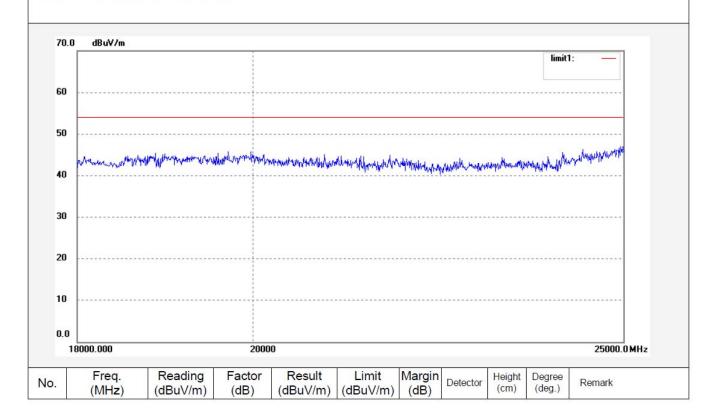
Job No.: star #886

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 51 %

EUT: Speaker Mode: TX 2402MHz Model: KTS-04


Manufacturer: KingBoard

Note: Report No.:ATE20130608

Polarization: Vertical Power Source: DC 5V Date: 2013/04/13 Time: 20:41:55

Engineer Signature: Star

Distance:

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: STAR #2684

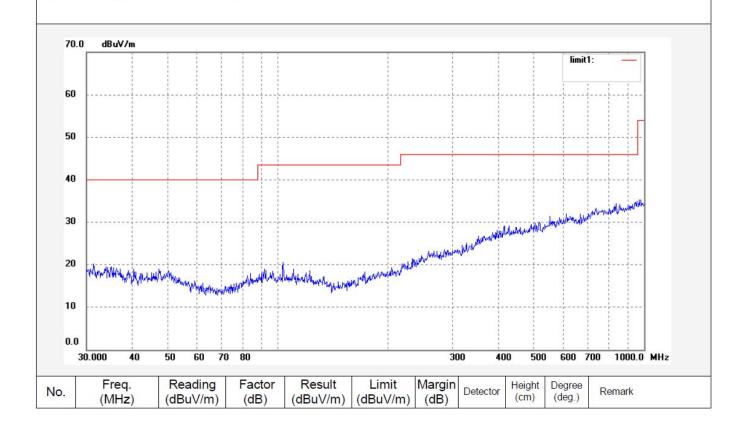
Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 49 %

EUT: Speaker

Mode: TX 2441MHz


Model: KTS-04

Manufacturer: KingBoard

Note: Report No.:ATE20130608

Polarization: Horizontal Power Source: DC 5V

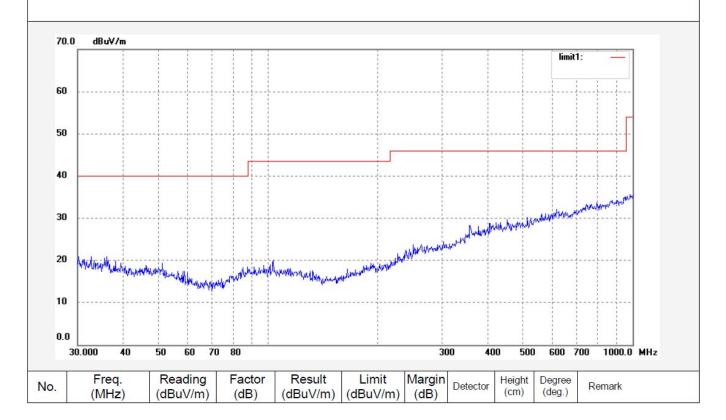
Date: 2013/04/13 Time: 9/14/48 Engineer Signature: Distance: 3m

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: STAR #2683

Standard: FCC Class B 3M Radiated

Test item: Radiation Test


Temp.(C)/Hum.(%) 23 C / 49 %

EUT: Speaker Mode: TX 2441MHz Model: KTS-04

Manufacturer: KingBoard

Note: Report No.:ATE20130608

Polarization: Vertical
Power Source: DC 5V
Date: 2013/04/13
Time: 9/09/12
Engineer Signature:
Distance: 3m

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: STAR #2702

Standard: FCC Class B 3M Radiated

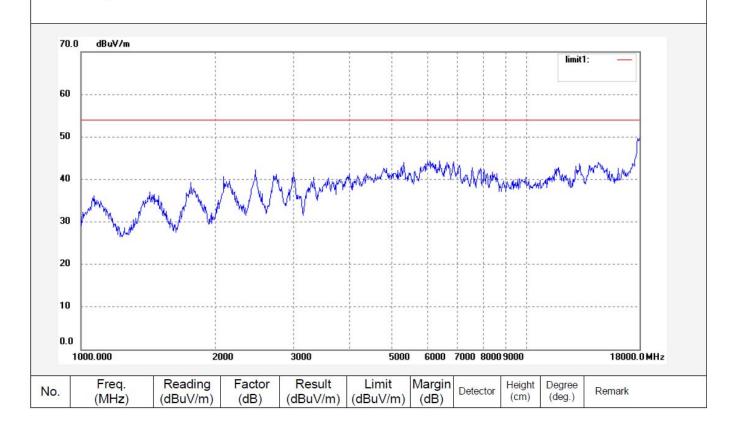
Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 49 %

EUT: Speaker

Mode: TX 2441MHz

Model: KTS-04


Manufacturer: KingBoard

Note: Report No.:ATE20130608

Power Source: DC 5V Date: 2013/04/13 Time: 22:29:56 Engineer Signature: Distance: 3m

Horizontal

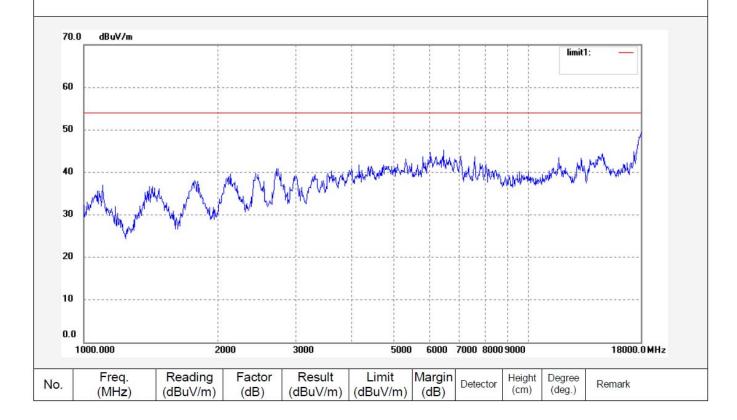
Polarization:

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: STAR #2701

Standard: FCC Class B 3M Radiated

Test item: Radiation Test


Temp.(C)/Hum.(%) 23 C / 49 %

EUT: Speaker
Mode: TX 2441MHz
Model: KTS-04

Manufacturer: KingBoard

Note: Report No.:ATE20130608

Polarization: Vertical Power Source: DC 5V Date: 2013/04/13 Time: 22:25:09 Engineer Signature: Distance: 3m

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: star #888

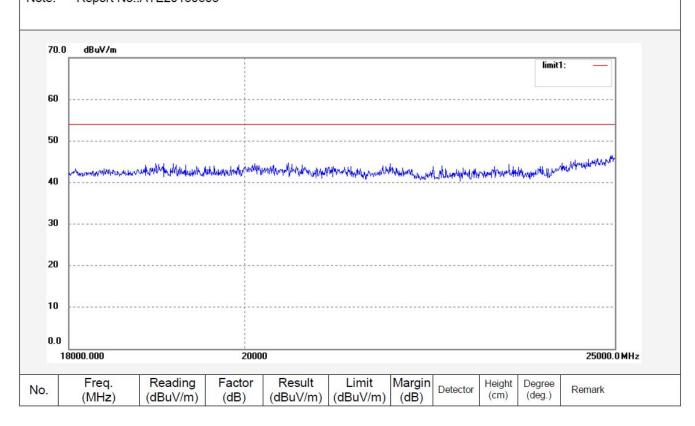
Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 51 %

EUT: Speaker Mode: TX 2441MHz Model: KTS-04

Manufacturer: KingBoard


Note: Report No.:ATE20130608

Polarization: Horizontal Power Source: DC 5V Date: 2013/04/13

Time: 20:47:35

Engineer Signature: Star

Distance:

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: star #889

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

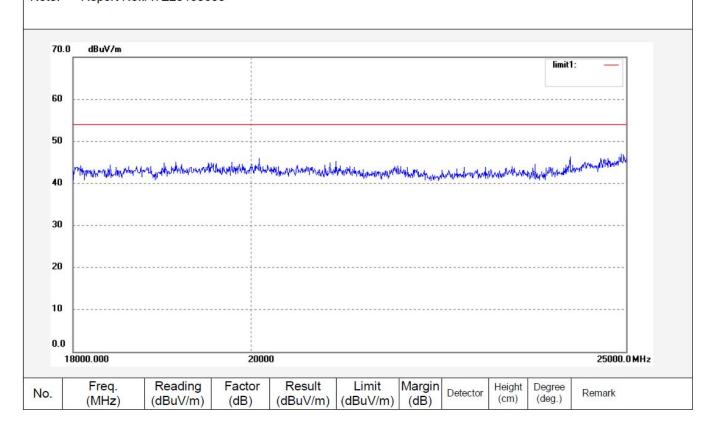
Temp.(C)/Hum.(%) 25 C / 51 %

EUT: Speaker

Mode: TX 2441MHz

Model: KTS-04

Manufacturer: KingBoard


Note: Report No.:ATE20130608

Polarization: Vertical Power Source: DC 5V Date: 2013/04/13

Time: 20:50:54

Engineer Signature: Star

Distance:

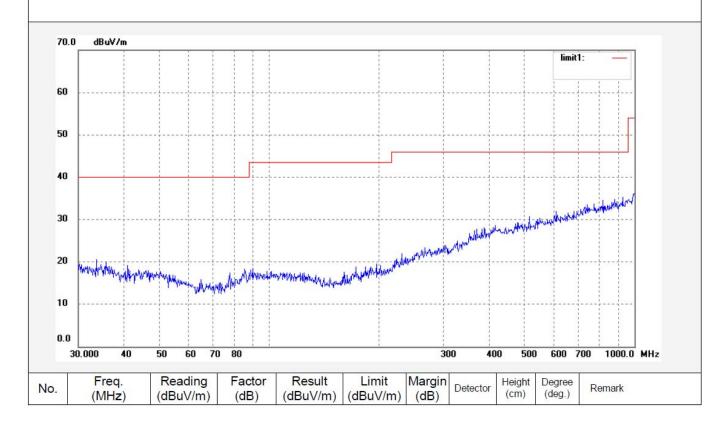
F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: STAR #2685

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 49 %


EUT: Speaker Mode: TX 2480MHz Model: KTS-04

Manufacturer: KingBoard

Note: Report No.:ATE20130608

Polarization: Horizontal Power Source: DC 5V Date: 2013/04/13 Time: 9/18/03 Engineer Signature:

Distance: 3m

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

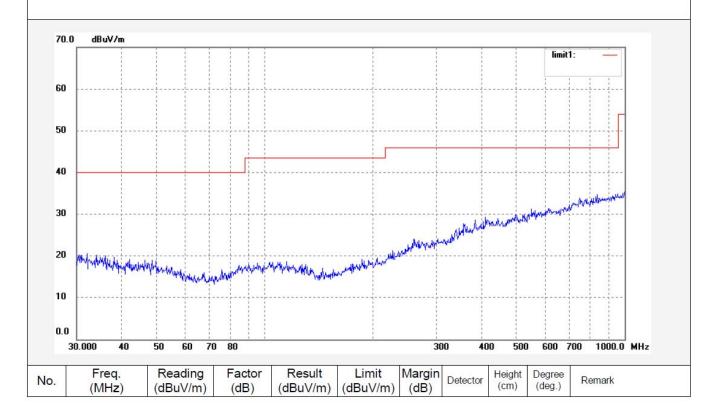
Job No.: STAR #2686

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 49 %

EUT: Speaker


Mode: TX 2480MHz

Model: KTS-04

Manufacturer: KingBoard

Note: Report No.:ATE20130608

Polarization: Vertical Power Source: DC 5V Date: 2013/04/13 Time: 9/22/44 Engineer Signature: Distance: 3m

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Polarization: Horizontal

Power Source: DC 5V

Date: 2013/04/13

Engineer Signature:

Time: 22:32:31

Distance: 3m

Job No.: STAR #2703

Standard: FCC Class B 3M Radiated


Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 49 %

EUT: Speaker
Mode: TX 2480MHz
Model: KTS-04

Manufacturer: KingBoard

Note: Report No.:ATE20130608

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: STAR #2704

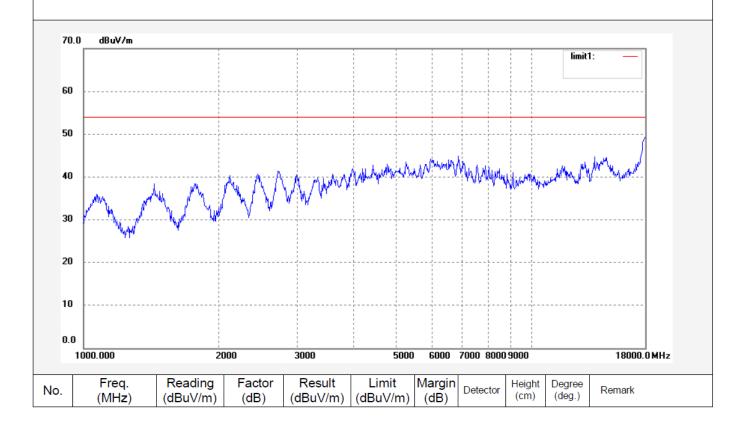
Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 49 %

EUT: Speaker

Mode: TX 2480MHz


Model: KTS-04

Manufacturer: KingBoard

Note: Report No.:ATE20130608

Polarization: Vertical Power Source: DC 5V Date: 2013/04/13

Time: 22:34:28
Engineer Signature:
Distance: 3m

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: star #891

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

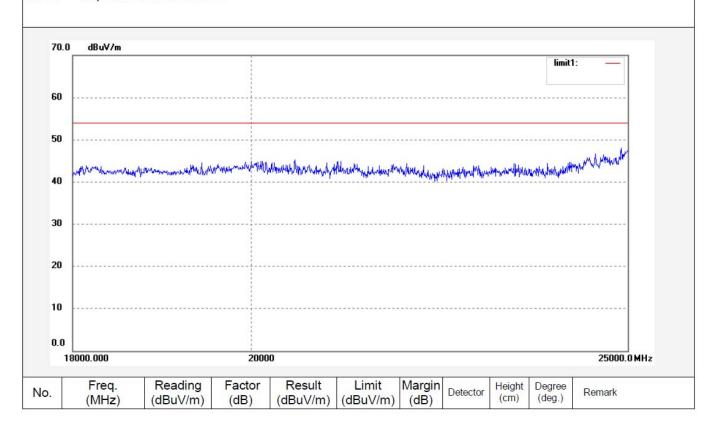
Temp.(C)/Hum.(%) 25 C / 51 %

EUT: Speaker

Mode: TX 2480MHz

Model: KTS-04

Manufacturer: KingBoard


Note: Report No.:ATE20130608

Polarization: Horizontal Power Source: DC 5V Date: 2013/04/13

Time: 20:59:21

Engineer Signature: Star

Distance:

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

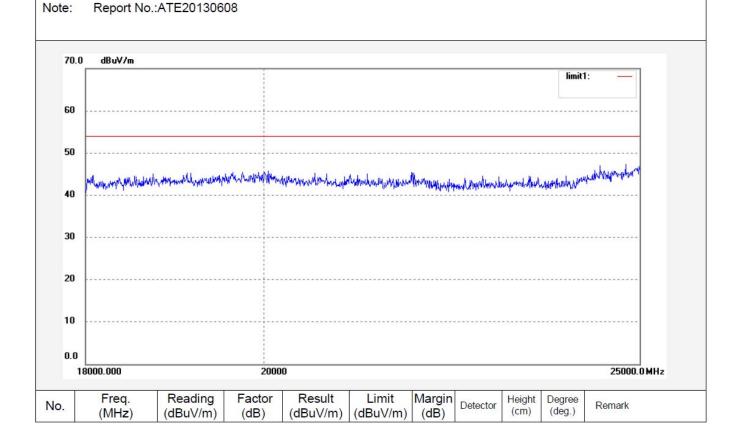
Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: star #890

Standard: FCC Class B 3M Radiated

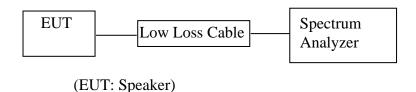
Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 51 %


EUT: Speaker Mode: TX 2480MHz Model: **KTS-04**

Manufacturer: KingBoard

Polarization: Vertical Power Source: DC 5V Date: 2013/04/13 Time: 20:53:10


Engineer Signature: Star

Distance:

12. CONDUCTED SPURIOUS EMISSION COMPLIANCE TEST

12.1.Block Diagram of Test Setup

12.2. The Requirement For Section 15.247(d)

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

12.3.EUT Configuration on Measurement

The following equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

12.3.1.Speaker (EUT)

Model Number : KTS-04 Serial Number : N/A

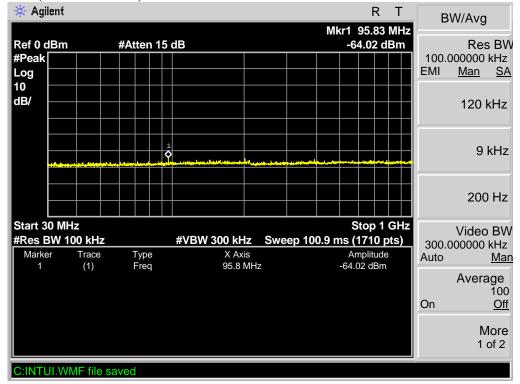
Manufacturer : Shenzhen KingBoard Technology Co., Ltd.

12.4. Operating Condition of EUT

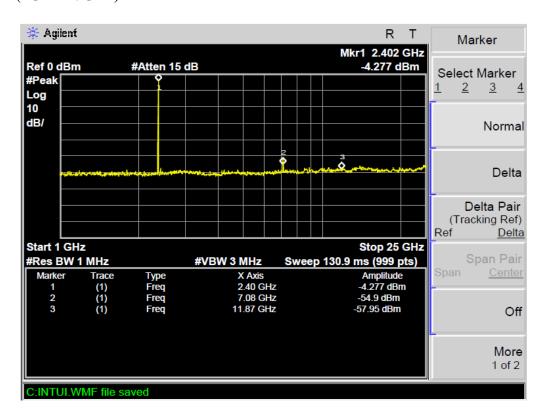
- 12.4.1. Setup the EUT and simulator as shown as Section 12.1.
- 12.4.2.Turn on the power of all equipment.
- 12.4.3.Let the EUT work in TX (Hopping off) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, 2480MHz TX frequency to transmit.

12.5.Test Procedure

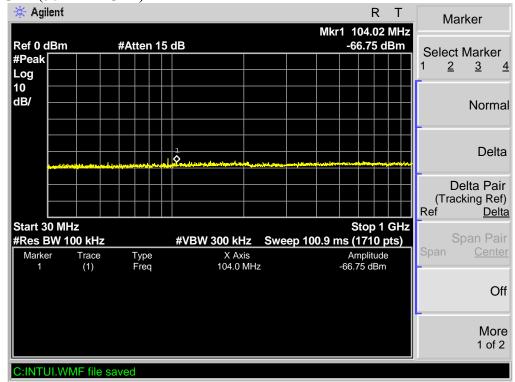
- 12.5.1. The transmitter output was connected to the spectrum analyzer via a low loss cable.
- 12.5.2.Set RBW of spectrum analyzer to 100kHz and VBW to 300kHz (below 1GHz). Set RBW of spectrum analyzer to 1MHz and VBW to 3MHz (above 1GHz).
- 12.5.3. The Conducted Spurious Emission was measured and recorded.

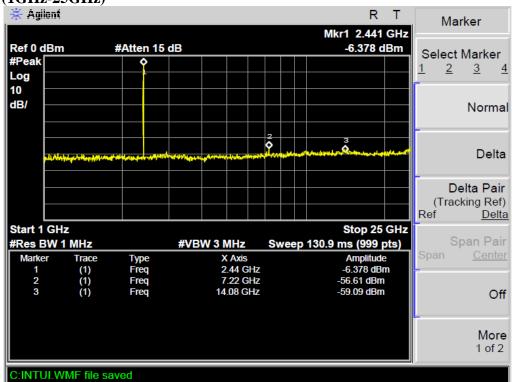

12.6.Test Result

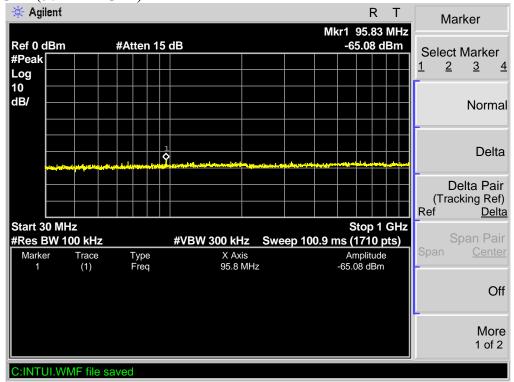
Pass.

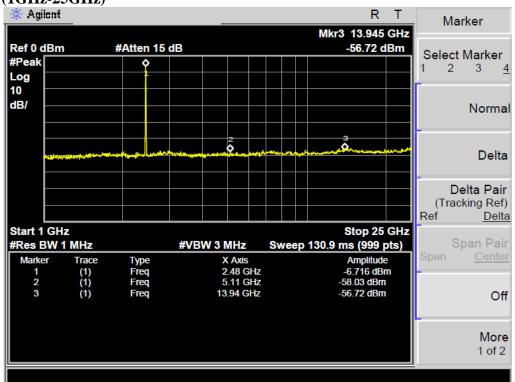

The spectrum analyzer plots are attached as below.

"Spectrum analyzer" is Agilent

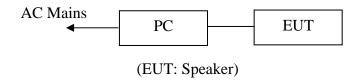

TX 2402GHz (30MHz-1GHz)

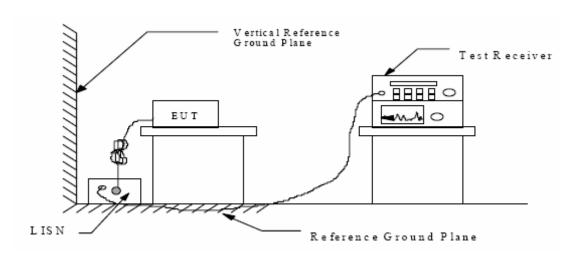

(1GHz-25GHz)


TX 2441GHz (30MHz-1GHz)


(1GHz-25GHz)

TX 2480GHz (30MHz-1GHz)


(1GHz-25GHz)


13.AC POWER LINE CONDUCTED EMISSION FOR FCC PART 15 SECTION 15.207(A)

13.1.Block Diagram of Test Setup

13.1.1.Block diagram of connection between the EUT and simulators

13.1.2. Shielding Room Test Setup Diagram

(EUT: Speaker)

13.2. The Emission Limit

13.2.1.Conducted Emission Measurement Limits According to Section 15.207(a)

Frequency	Limit dB(μV)				
(MHz)	Quasi-peak Level	Average Level			
0.15 - 0.50	66.0 – 56.0 *	56.0 – 46.0 *			
0.50 - 5.00	56.0	46.0			
5.00 - 30.00	60.0	50.0			

^{*} Decreases with the logarithm of the frequency.

13.3.Configuration of EUT on Measurement

The following equipment are installed on the Conducted Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

13.3.1.Speaker (EUT)

Model Number : KTS-04 Serial Number : N/A

Manufacturer : Shenzhen KingBoard Technology Co., Ltd.

13.4. Operating Condition of EUT

13.4.1. Setup the EUT and simulator as shown as Section 13.1.

13.4.2. Turn on the power of all equipment.

13.4.3.Let the EUT work in (Tx) mode measure it.

13.5.Test Procedure

The EUT is put on the plane 0.8m high above the ground by insulating support and is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 500hm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC lines are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to ANSI C63.4: 2009 on Conducted Emission Measurement.

The bandwidth of test receiver (R & S ESCS30) is set at 9kHz.

The frequency range from 150kHz to 30MHz is checked.

13.6.Power Line Conducted Emission Measurement Results

PASS.

The frequency range from 150kHz to 30MHz is checked.

Date of Test:April 12, 2013Temperature:25°CEUT:SpeakerHumidity:50%Model No.:KTS-04Power Supply:AC 120V/60HzTest Mode:TxTest Engineer:Kai

Frequency (MHz)	Result (dBμV)	Limit (dBµV)	Margin (dB)	Detector	Line
0.153636	51.90	66	-13.90	QP	
0.490912	40.90	56	-15.30	QP	N
0.492876	36.90	46	-9.20	AV	Neutral
2.423757	24.50	46	-21.50	AV	
0.153636	51.20	66	-14.60	QP	
0.490912	40.70	56	-15.50	QP	
0.492876	36.70	46	-9.40	AV	Live
2.025219	25.80	46	-20.20	AV	

Emissions attenuated more than 20 dB below the permissible value are not reported. The spectral diagrams are attached as below.

ACCURATE TECHNOLOGY CO., LTD

CONDUCTED EMISSION STANDARD FCC PART 15C

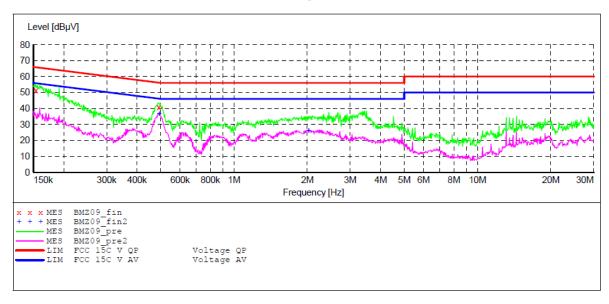
EUT: Speaker M/N:KTS-04

Manufacturer: KingBoard

Operating Condition: Tx

Test Site: 1#Shielding Room

Star Operator:


Test Specification: L 120V/60Hz

Report No.:ATE20130608 Comment: Start of Test: 4/12/2013 / 6:22:54PM

SCAN TABLE: "V 150K-30MHz fin"
Short Description: SUB_STD_VTERM2 1.70

Detector Meas. IF Transducer
Time Bandw.
QuasiPeak 1.0 s 9 kHz NSLK8126 2008 Start Stop Step
Frequency Frequency Width
150.0 kHz 30.0 MHz 4.5 kHz

Average

MEASUREMENT RESULT: "BMZ09 fin"

1/12/2013 6:24PM

4/12/2013 6:2	4 PM					
Frequency MHz		Transd dB		Detector	Line	PE
0.153636 0.490912				~	L1 L1	GND GND

MEASUREMENT RESULT: "BMZ09 fin2"

4/12/2013 6:24PM

1/12/2010						
Freque	4	Transd dB	_	Detector	Line	PE
		 12.6	 	AV AV	L1	GND

ACCURATE TECHNOLOGY CO., LTD

CONDUCTED EMISSION STANDARD FCC PART 15C

EUT: Speaker M/N:KTS-04

Manufacturer: KingBoard

Operating Condition: Tx

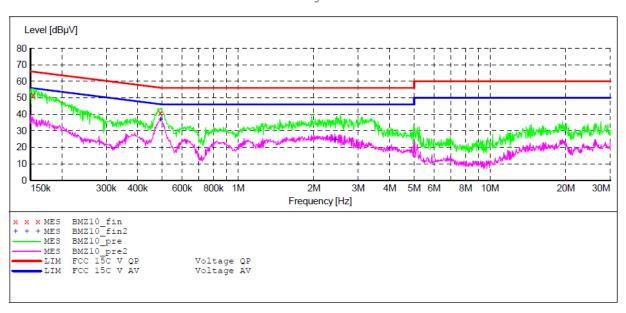
Test Site: 1#Shielding Room

Operator: Star

Test Specification: N 120V/60Hz

Report No.:ATE20130608 Comment: Start of Test: 4/12/2013 / 6:25:16PM

SCAN TABLE: "V 150K-30MHz fin"


_SUB_STD_VTERM2 1.70 Short Description:

Start Stop Step Detector Meas. ΙF Transducer

Bandw. Width Time

Frequency Frequency 150.0 kHz 30.0 MHz 4.5 kHz QuasiPeak 1.0 s 9 kHz NSLK8126 2008

Average

MEASUREMENT RESULT: "BMZ10 fin"

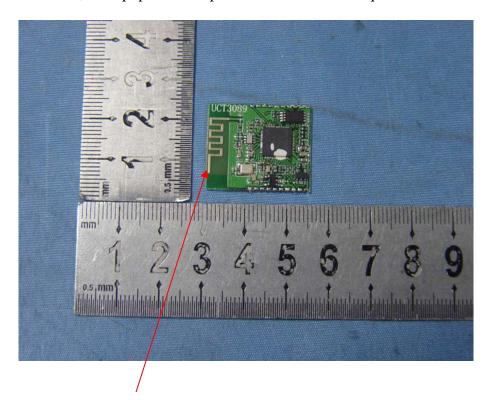
4/12/2013 6:27PM

4/12/2013 0.2	/ 1 1 1					
Frequency MHz		Transd dB		Detector	Line	PE
0.153636 0.490912				~	N N	GND GND

MEASUREMENT RESULT: "BMZ10 fin2"

4/12/2013 6:27PM

1/12/2010 0.2	7 2 2 2					
Frequency MHz		Transd dB		Detector	Line	PE
0.492876 2.423757			 		N N	GND GND


14.ANTENNA REQUIREMENT

14.1.The Requirement

According to Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

14.2.Antenna Construction

Device is equipped with unique antenna, which isn't displaced by other antenna. Therefore, the equipment complies with the antenna requirement of Section 15.203.

