Shenzhen CTA Testing Technology Co., Ltd. Room 106 Building 1 Yihaolai Industrial Pa

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

FCC PART 15 SUBPART C TEST REPORT

FCC PART 15.247

Report Reference No....... CTA23022200201 FCC ID....... SXX-KTS806

Compiled by

(position+printed name+signature)..: File administrators Zoey Cao

Supervised by

(position+printed name+signature)... Project Engineer Amy Wen

Approved by

(position+printed name+signature)..: RF Manager Eric Wang

Date of issue...... Feb. 27, 2023

Testing Laboratory Name Shenzhen CTA Testing Technology Co., Ltd.

Fuhai Street, Bao'an District, Shenzhen, China

Applicant's name...... Shenzhen KingBoard Technology Co., Ltd.

Address Bldg. A, Dakanglong Industry Zone Dabuxiang, Guanlan,

ShenZhen, China

Test specification:

Result....:

Standard FCC Part 15.247

Shenzhen CTA Testing Technology Co., Ltd. All rights reserved.

Test item descriptionPortable Bluetooth Speaker

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTA Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTA Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Trade Mark: Emerson, Naxa Manufacturer: Shenzhen KingBoard Technology Co., Ltd. Model/Type reference..... EAS-3001 EAS-3002, EAS-3003, EAS-3004, EAS-3005, EAS-3006, EAS-3007, EAS-3008, EAS-3009, EAS-3010, EAS-3011, Listed Models: EAS-3012, EAS-3013, EAS-3014, EAS-3015, EAS-3016, EAS-3017, EAS-3018, EAS-3019, EAS-3020, EAS-3021 Modulation: GFSK, Π/4DQPSK Frequency..... From 2402MHz to 2480MHz Rating: DC 3.7V From Battery and DC 5.0V From external circuit

PASS

Shenzhen CTA Testing Technology Co., Ltd.

Page 2 of 44 Report No.: CTA23022200201

TEST REPORT

Equipment under Test Portable Bluetooth Speaker

Model /Type EAS-3001

EAS-3002, EAS-3003, EAS-3004, EAS-3005, EAS-3006, Listed Models

EAS-3007, EAS-3008, EAS-3009, EAS-3010, EAS-3011, EAS-3012, EAS-3013, EAS-3014, EAS-3015, EAS-3016, EAS-3017, EAS-3018, EAS-3019, EAS-3020, EAS-3021

Applicant Shenzhen KingBoard Technology Co., Ltd.

Address Bldg. A, Dakanglong Industry Zone Dabuxiang, Guanlan, ShenZhen,

China

Manufacturer Shenzhen KingBoard Technology Co., Ltd.

Bldg. A, Dakanglong Industry Zone Dabuxiang, Guanlan, ShenZhen, Address

China

Test Result:	PASS
--------------	------

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test CTATESTING laboratory.

Page 3 of 44 Report No.: CTA23022200201

Contents

		Contents
	1	TEST STANDARDS4
	C	CTIVE CONTRACTOR OF THE CONTRA
	CALLY.	TES.
	<u>2</u>	<u>SUMMARY5</u>
		General Remarks 5 Product Description 5 Equipment Under Test 5
	2.1	General Remarks 5
	2.2	Product Description 5
	2.3	Equipment Under Test 5
	2.4	Equipment Under Test 5 Short description of the Equipment under Test (EUT) 5
	2.5	EUT operation mode
	2.6	Block Diagram of Test Setup 6
	2.7	Related Submittal(s) / Grant (s) 6
	2.8	Modifications 6
C_{I_1}	2.0	Woullications
j.		
	<u>3</u>	TEST ENVIRONMENT7
		Address of the test laboratory Test Facility 7
	3.1	Address of the test laboratory 7
	3.2	Test Facility 7
	3.3	Environmental conditions 7
	3.4	Summary of measurement results 8
	3.5	Address of the test laboratory Test Facility Environmental conditions Summary of measurement results Statement of the measurement uncertainty Fauinments Used during the Test
	3.6	Equipments Used during the Test 9
	<u>4</u>	TEST CONDITIONS AND RESULTS
	<u> </u>	TEGICONDITIONS AND RESOLIS
	4.1	AC Power Conducted Emission 10 Radiated Emission 13 Maximum Peak Output Power 19 20dB Bandwidth 20 Frequency Separation 23 Number of hopping frequency 25 Time of Occupancy (Dwell Time) 27
	4.2	Radiated Emission 13
	4.3	Maximum Peak Output Power 19
	4.4	20dB Bandwidth 20
	4.5	Frequency Separation 23
	4.6	Number of hopping frequency 25
	4.7	Time of Occupancy (Dwell Time)
	4.8	Out-of-band Emissions 30
	4.9 G	Antenna Requirement 37
CTATE		
	_	
	<u>5</u>	TEST SETUP PHOTOS OF THE EUT 38
	<u>6</u>	PHOTOS OF THE EUT
	<u>u</u>	FIIO 103 01 111L L01
		CTATESTING CTATESTING
		TES!
		CTA
1		

Report No.: CTA23022200201 Page 4 of 44

1 TEST STANDARDS

The tests were performed according to following standards:

<u>FCC Rules Part 15.247</u>: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz. ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices

CTATE

Page 5 of 44 Report No.: CTA23022200201

SUMMARY

2.1 General Remarks

Date of receipt of test sample		Feb. 22, 2023
	34	
Testing commenced on	De Hanning	Feb. 22, 2023
Testing concluded on	:	Feb. 27, 2023

2.2 **Product Description**

Testing commenced on	The state of the s	Feb. 22, 2023	- CTA	
Testing concluded on	:	Feb. 27, 2023		CTAT
2.2 Product Descript	tion			
Product Name:	Portable	Bluetooth Speaker		
Model/Type reference:	EAS-300	1		
Power supply:	DC 3.7V	From Battery and DC	5.0V From external circuit	
Adapter information (Auxiliary test supplied by test Lab):	Input: AC	P-TA20CBC 5 100-240V 50/60Hz DC 5V 2A	TATESTING	3
Hardware version:	V1.0		CENT CI	
Software version:	V1.0			
Testing sample ID:		222002-1# (Engineer s 222002-2# (Normal sar		
Bluetooth :				
Supported Type:	Bluetooth	BR/EDR	:6	
Modulation:	GFSK, π	/4DQPSK	ESTING	
Operation frequency:	2402MHz	z~2480MHz	CTATA	
Channel number:	79			TAT
Channel separation:	1MHz		(EII)	
Antenna type:	PCB ante	enna		1
Antenna gain:	1.50 dBi	NG		1

2.3 Equipment Under Test

2.3 Equipment Under Test			, TES	TING	3	
Power supply system utilised	d					
Power supply voltage	:	0	230V / 50 Hz	0	120V / 60Hz	
		0	12 V DC	0	24 V DC	
		•	Other (specified in blank	below	·)	

DC 3.7V From Battery and DC 5.0V From external circuit

2.4 Short description of the Equipment under Test (EUT)

This is a Portable Bluetooth Speaker.

For more details, refer to the user's manual of the EUT.

Page 6 of 44 Report No.: CTA23022200201

2.5 EUT operation mode

The Applicant provides communication tools software (Engineer mode) to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing .There are 79 channels provided to the EUT and Channel 00/39/78 were selected to test.

provided to the EUT and Channel 00/39/78 were selection	ected to test.
Operation Frequency:	ected to test.
Channel	Frequency (MHz)
00	2402
01	2403
TING	:
38	2440
39	2441
40	2442
	ESTING
77	2479
78	2480

Block Diagram of Test Setup

Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for the device filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.8 **Modifications**

No modifications were implemented to meet testing criteria.

Page 7 of 44 Report No.: CTA23022200201

TEST ENVIRONMENT

Address of the test laboratory

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao 'an District, Shenzhen, China

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement

ISED#: 27890 CAB identifier: CN0127

Shenzhen CTA Testing Technology Co., Ltd. has been listed by Innovation, Science and Economic Development Canada to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

3.3 Environmental conditions

CTA TESTING During the measurement the environmental conditions were within the listed ranges:

Radiated Emission:

Temperature:	24 ° C
Humidity:	45 %
Atmospheric pressure:	950-1050mbar

AC Power Conducted Emission:

Temperature:	25 ° C
7E5	
Humidity:	46 %
(and)	-ES1"
Atmospheric pressure:	950-1050mbar
	Carlo Ci
onducted testing:	
Temperature:	25 ° C

Conducted testina:

Conducted testing.	
Temperature:	25 ° C
Humidity:	44 %
Atmospheric pressure:	950-1050mbar
CTATES.	CTA TESTING

Report No.: CTA23022200201 Page 8 of 44

Summary of measurement results

Test Specification clause	Test case	Test Mode	Test Channel	Reco In Re		Test result
§15.247(a)(1)	Carrier Frequency separation	GFSK Π/4DQPSK	☑ Lowest☑ Middle☑ Highest	GFSK Π/4DQPSK	⊠ Middle	Compliant
§15.247(a)(1)	Number of Hopping channels	GFSK Π/4DQPSK	⊠ Full	GFSK	⊠ Full	Compliant
§15.247(a)(1)	Time of Occupancy (dwell time)	GFSK Π/4DQPSK	☑ Lowest☑ Middle☑ Highest	GFSK П/4DQPSK		Compliant
§15.247(a)(1)	Spectrumbandwidth of aFHSS system20dB bandwidth	GFSK П/4DQPSK	☑ Lowest☑ Middle☑ Highest	GFSK П/4DQPSK	☑ Lowest☑ Middle☑ Highest	Compliant
§15.247(b)(1)	Maximum output peak power	GFSK Π/4DQPSK	☑ Lowest☑ Middle☑ Highest	GFSK Π/4DQPSK	☑ Lowest☑ Middle☑ Highest	Compliant
§15.247(d)	Band edgecompliance conducted	GFSK Π/4DQPSK	☑ Lowest☑ Highest	GFSK Π/4DQPSK	✓ Lowest✓ Highest	Compliant
§15.205	Band edgecompliance radiated	GFSK Π/4DQPSK	☑ Lowest☑ Highest	GFSK Π/4DQPSK	☑ Lowest☑ Highest	Compliant
§15.247(d)	TX spuriousemissions conducted	GFSK Π/4DQPSK	☑ Lowest☑ Middle☑ Highest	GFSK Π/4DQPSK	☐ Lowest☐ Middle☐ Highest	Compliant
§15.247(d)	TX spuriousemissions radiated	GFSK Π/4DQPSK	☑ Lowest☑ Middle☑ Highest	GFSK	☑ Lowest☑ Middle☑ Highest	Compliant
§15.209(a)	TX spurious Emissions radiated Below 1GHz	GFSK П/4DQPSK	☑ Lowest☑ Middle☑ Highest	GFSK	⊠ Middle	Compliant
§15.107(a) §15.207	Conducted Emissions 9KHz-30 MHz	GFSK Π/4DQPSK	☑ Lowest☑ Middle☑ Highest	GFSK	⊠ Middle	Compliant

Remark:

- The measurement uncertainty is not included in the test result. 1.
- We tested all test mode and recorded worst case in report 2.

3.5 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen CTA Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

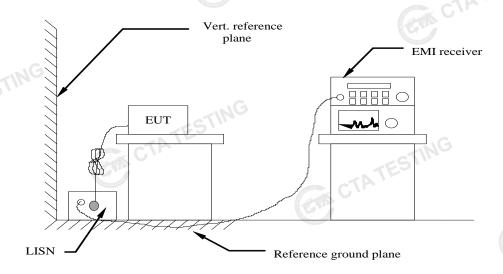
Hereafter the best measurement capability for Shenzhen CTA Testing Technology Co., Ltd.:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	4.06 dB	(1)
Radiated Emission	1~18GHz	5.14 dB	(1)
Radiated Emission	18-40GHz	5.38 dB	(1)
Conducted Disturbance	0.15~30MHz	2.14 dB	(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Page 9 of 44 Report No.: CTA23022200201

3.6 Equipments Used during the Test


	Test Equipment	Manufacturer	Model No.	Equipment No.	Calibration Date	Calibration Due Date
	LISN	R&S	ENV216	CTA-308	2022/08/03	2023/08/02
	LISN	R&S	ENV216	CTA-314	2022/08/03	2023/08/02
	EMI Test Receiver	R&S	ESPI	CTA-307	2022/08/03	2023/08/02
	EMI Test Receiver	R&S	ESCI	CTA-306	2022/08/03	2023/08/02
	Spectrum Analyzer	Agilent	N9020A	CTA-301	2022/08/03	2023/08/02
, \	Spectrum Analyzer	R&S	FSP	CTA-337	2022/08/03	2023/08/02
	Vector Signal generator	Agilent	N5182A	CTA-305	2022/08/03	2023/08/02
	Analog Signal Generator	R&S	SML03	CTA-304	2022/08/03	2023/08/02
	Universal Radio Communication	CMW500	R&S	CTA-302	2022/08/03	2023/08/02
	Temperature and humidity meter	Chigo	ZG-7020	CTA-326	2022/08/03	2023/08/02
	Ultra-Broadband Antenna	Schwarzbeck	VULB9163	CTA-310	2021/08/07	2024/08/06
	Horn Antenna	Schwarzbeck	BBHA 9120D	CTA-309	2021/08/07	2024/08/06
	Loop Antenna	Zhinan	ZN30900C	CTA-311	2021/08/07	2024/08/06
	Horn Antenna	Beijing Hangwei Dayang	OBH100400	CTA-336	2021/08/07	2024/08/06
	Amplifier	Schwarzbeck	BBV 9745	CTA-312	2022/08/03	2023/08/02
	Amplifier	Taiwan chengyi	EMC051845B	CTA-313	2022/08/03	2023/08/02
ATE	Directional coupler	NARDA	4226-10	CTA-303	2022/08/03	2023/08/02
	High-Pass Filter	XingBo	XBLBQ-GTA18	CTA-402	2022/08/03	2023/08/02
	High-Pass Filter	XingBo	XBLBQ-GTA27	CTA-403	2022/08/03	2023/08/02
	Automated filter bank	Tonscend	JS0806-F	CTA-404	2022/08/03	2023/08/02
	Power Sensor	Agilent	U2021XA	CTA-405	2022/08/03	2023/08/02
	Amplifier	Schwarzbeck	BBV9719	CTA-406	2022/08/03	2023/08/02
	Amplifer		TATESTING		.19	
		C			STING	

Report No.: CTA23022200201 Page 10 of 44

TEST CONDITIONS AND RESULTS

AC Power Conducted Emission

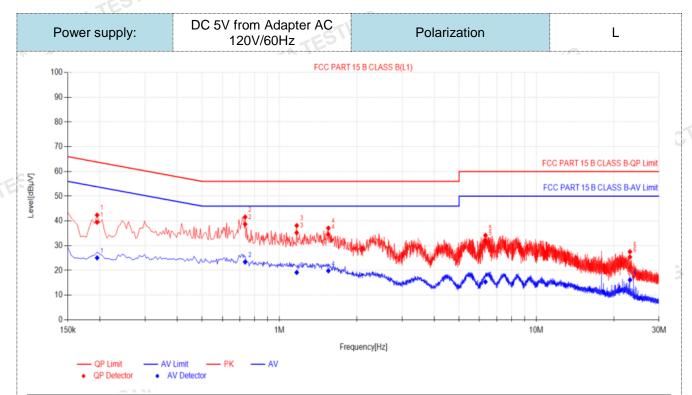
TEST CONFIGURATION

TEST PROCEDURE

- 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.
- 2 Support equipment, if needed, was placed as per ANSI C63.10-2013
- 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013
- 4 The EUT received power from adapter, the adapter received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5 All support equipments received AC power from a second LISN, if any.
- 6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT.The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8 During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following:

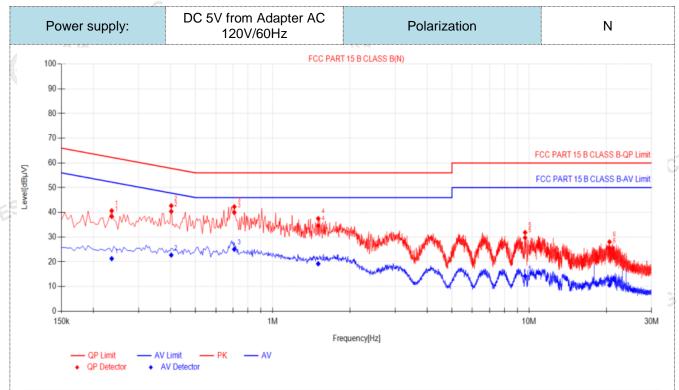

Fraguency range (MHz)	Limit (dBuV)					
Frequency range (MHz)	Quasi-peak	Average				
0.15-0.5	66 to 56*	56 to 46*				
0.5-5	56	46				
5-30	60	50				
* Decreases with the logarithm of the freque	ncy.					

TEST RESULTS

1. All modes of GFSK, П/4 DQPSK were test at Low, Middle, and High channel; only the worst result of GFSK Middle Channel was reported as below:

Report No.: CTA23022200201

2. Both 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz power supply have been tested, only the worst result of 120 VAC, 60 Hz was reported as below:



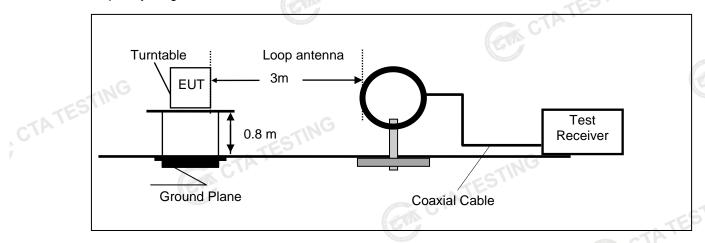
Fina	Final Data List												
NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB μV]	QP Value [dΒμV]	QP Limit [dΒμV]	QP Margin [dB]	AV Reading [dΒμV]	AV Value [dΒμV]	AV Limit [dΒμV]	AV Margin [dB]	Verdict		
1	0.195	10.50	28.98	39.48	63.82	24.34	14.57	25.07	53.82	28.75	PASS		
2	0.735	10.50	28.18	38.68	56.00	17.32	12.90	23.40	46.00	22.60	PASS		
3	1.167	10.50	24.74	35.24	56.00	20.76	8.68	19.18	46.00	26.82	PASS		
4	1.5495	10.50	24.10	34.60	56.00	21.40	9.34	19.84	46.00	26.16	PASS		
5	6.333	10.50	21.59	32.09	60.00	27.91	4.87	15.37	50.00	34.63	PASS		
6	23.1315	10.50	14.93	25.43	60.00	34.57	5.66	16.16	50.00	33.84	PASS		

Note:1).QP Value ($dB\mu V$)= QP Reading ($dB\mu V$)+ Factor (dB)

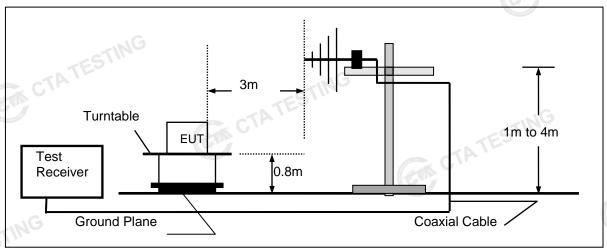
- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). QPMargin(dB) = QP Limit (dB μ V) QP Value (dB μ V)
 - 4). $AVMargin(dB) = AV Limit (dB\mu V) AV Value (dB\mu V)$ CTATES

Page 12 of 44 Report No.: CTA23022200201

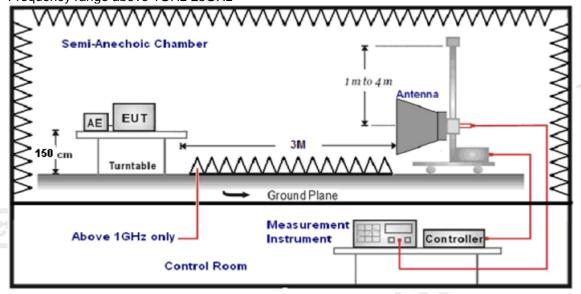
Final	l Data Lis	at										
NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB μV]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading [dΒμV]	AV Value [dBµV]	AV Limit [dΒμV]	AV Margin [dB]	Verdict	
1	0.2355	10.50	27.85	38.35	62.25	23.90	10.79	21.29	52.25	30.96	PASS	
2	0.402	10.50	29.88	40.38	57.81	17.43	12.23	22.73	47.81	25.08	PASS	
3	0.708	10.50	29.49	39.99	56.00	16.01	14.57	25.07	46.00	20.93	PASS	
4	1.5045	10.50	24.12	34.62	56.00	21.38	8.71	19.21	46.00	26.79	PASS	
5	9.6405	10.50	19.26	29.76	60.00	30.24	3.71	14.21	50.00	35.79	PASS	
6	20.571	10.50	15.06	25.56	60.00	34.44	0.09	10.59	50.00	39.41	PASS	- A
).QP Value tor (dB)=in:			• .	. ,	•	•				GVA	


- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). $QPMargin(dB) = QP Limit (dB\mu V) QP Value (dB\mu V)$
 - 4). $AVMargin(dB) = AV Limit (dB\mu V) AV Value (dB\mu V)$ CTA TESTING

Page 13 of 44 Report No.: CTA23022200201


4.2 **Radiated Emission**


TEST CONFIGURATION


Frequency range 9 KHz - 30MHz

Frequency range 30MHz - 1000MHz

Page 14 of 44 Report No.: CTA23022200201

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz -1GHz; the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz - 25GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° to 360° to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- Repeat above procedures until all frequency measurements have been completed.
- Radiated emission test frequency band from 9KHz to 25GHz. 5.
- The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance	
9KHz-30MHz	Active Loop Antenna	3	72 uses
30MHz-1GHz	Ultra-Broadband Antenna	3	
1GHz-18GHz	Double Ridged Horn Antenna	3	
18GHz-25GHz	Horn Anternna	1	

Setting test receiver/spectrum as following table states:

Test Frequency range	Test Receiver/Spectrum Setting	Detector
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP
	Peak Value: RBW=1MHz/VBW=3MHz,	
104-1004-	Sweep time=Auto	Peak
1GHz-40GHz	Average Value: RBW=1MHz/VBW=10Hz,	reak
	Sweep time=Auto	

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

sample calculation is as follows:	
FS = RA + AF + CL - AG	CTATES
Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	CAL

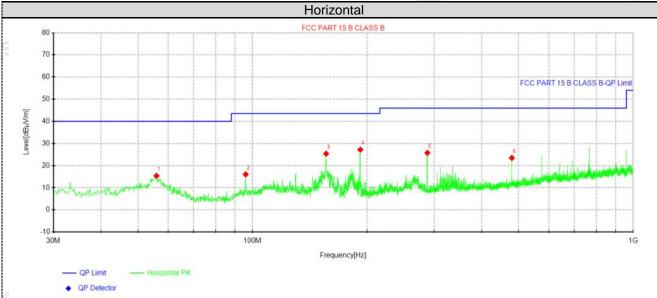
Transd=AF +CL-AG

RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the100kHz bandwidth within the band that contains the highest level of desired power.

The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-30	3	20log(30)+ 40log(30/3)	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500

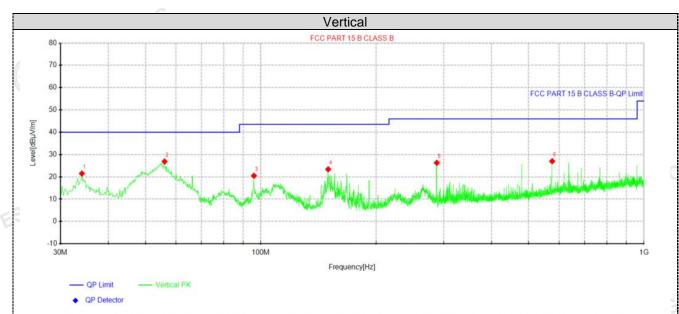

Page 15 of 44 Report No.: CTA23022200201

TEST RESULTS

Remark:

- This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X
- We measured Radiated Emission at GFSK, π/4 DQPSK mode from 9 KHz to 25GHz and recorded worst case at GFSK DH5 mode.
- For below 1GHz testing recorded worst at GFSK DH5 middle channel. 3.
- Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report.

For 30MHz-1GHz


Suspe	ected Data	List								
NO.	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Doloritu	
NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity	
1	55.9475	32.73	15.39	-17.34	40.00	24.61	100	360	Horizontal	
2	95.96	35.05	16.05	-19.00	43.50	27.45	100	360	Horizontal	
3	156.1	47.05	25.38	-21.67	43.50	18.12	100	3	Horizontal	
4	191.99	47.00	27.21	-19.79	43.50	16.29	100	359	Horizontal	
5	288.02	43.31	25.77	-17.54	46.00	20.23	100	10	Horizontal	
6	480.08	38.02	23.45	-14.57	46.00	22.55	100	269	Horizontal	

CTATESTING

Note:1).Level ($dB\mu V/m$)= Reading ($dB\mu V$)+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m)

Page 16 of 44 Report No.: CTA23022200201

Susp	ected Data	List								
NO	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Dolovitu	
NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity	
1	34.1225	39.48	21.48	-18.00	40.00	18.52	100	357	Vertical	
2	56.0688	44.23	26.87	-17.36	40.00	13.13	100	0	Vertical	
3	95.96	39.48	20.48	-19.00	43.50	23.02	100	316	Vertical	
4	149.916	45.15	23.39	-21.76	43.50	20.11	100	334	Vertical	
5	288.02	43.83	26.29	-17.54	46.00	19.71	100	34	Vertical	
6	575.988	39.87	27.00	-12.87	46.00	19.00	100	240	Vertical	

CTATE

Note:1).Level (dBµV/m)= Reading (dBµV)+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m)

For 1GHz to 25GHz

Note: GFSK , $\pi/4$ DQPSK all have been tested, only worse case GFSK is reported.

GFSK (above 1GHz)

Freque	Frequency(MHz):			2402		Polarity:		HORIZONTAL			
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)		
4804.00	61.51	PK	74	12.49	65.78	32.33	5.12	41.72	-4.27		
4804.00	43.63	AV	54	10.37	47.90	32.33	5.12	41.72	-4.27		
7206.00	52.84	PK	74	21.16	53.36	36.6	6.49	43.61	-0.52		
7206.00	41.09	AV	54	12.91	41.61	36.6	6.49	43.61	-0.52		

_	- 117										
	Freque	Frequency(MHz):			2402		Polarity:		VERTICAL		
	Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
ſ	4804.00	59.90	PK	74	14.10	64.17	32.33	5.12	41.72	-4.27	
	4804.00	44.37	AV	54	9.63	48.64	32.33	5.12	41.72	-4.27	
	7206.00	53.12	PK	74	20.88	53.64	36.6	6.49	43.61	-0.52	
Ī	7206.00	41.84	AV	54	12.16	42.36	36.6	6.49	43.61	-0.52	

Freque	ncy(MHz)	:	2441		Polarity:		HORIZONTAL		
Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4882.00	60.78	PK	74	13.22	64.66	32.6	5.34	41.82	-3.88
4882.00	45.26	AV	54	8.74	49.14	32.6	5.34	41.82	-3.88
7323.00	53.09	PK	74	20.91	53.20	36.8	6.81	43.72	-0.11
7323.00 43.15 AV		54	10.85	43.26	36.8	6.81	343.72	-0.11	
			Carlo U	STILL					

Frequency(MHz):		2441		Polarity:		VERTICAL			
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4882.00	60.71	PK	74	13.29	64.59	32.6	5.34	41.82	-3.88
4882.00	45.00	AV	54	9.00	48.88	32.6	5.34	41.82	-3.88
7323.00	52.68	PK	74	21.32	52.79	36.8	6.81	43.72	-0.11
7323.00	43.06	AV	54	10.94	43.17	36.8	6.81	43.72	-0.11

Frequency(MHz):			2480		Polarity:		HORIZONTAL		AL.
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4960.00	60.18	PK	74	13.82	63.26	32.73	5.66	41.47	-3.08
4960.00	44.14	AV	54	9.86	47.22	32.73	5.66	41.47	-3.08
7440.00	54.92	PK	74	19.08	54.47	37.04	7.25	43.84	0.45
7440.00	43.54	PK	54	10.46	43.09	37.04	7.25	43.84	0.45

		JG.								
Frequei	Frequency(MHz):		2480		Polarity:		VERTICAL			
Fraguency	Emis	sion	Limit	Margin	Raw	Antenna	Cable	Pre-	Correction	
	Frequency Level (dBuV/m)					Value	Factor	Factor	amplifier	Factor
(IVITZ)			(dBuV/m)	(dB)	(dBuV)	(dB/m)	(dB)	(dB)	(dB/m)	
4960.00	61.41	PK	74	12.59	64.49	32.73	5.66	41.47	-3.08	
4960.00	43.38	AV	54	10.62	46.46	32.73	5.66	41.47	-3.08	
7440.00	53.57	PK	74	20.43	53.12	37.04	7.25	43.84	0.45	
7440.00	43.97	PK	54	10.03	43.52	37.04	7.25	43.84	0.45	

Page 18 of 44 Report No.: CTA23022200201

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier
- 3. Margin value = Limit value- Emission level.
- 4. -- Mean the PK detector measured value is below average limit.
- 5. The other emission levels were very low against the limit.

Results of Band Edges Test (Radiated)

Note: GFSK, Pi/4 DQPSK all have been tested, only worse case GFSK is reported.

GFSK

Freque	ncy(MHz)	:	24	02	Pola	rity:	HORIZONTAL		\L
Frequency (MHz)	Emis Lev (dBu)	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	60.81	PK	74	13.19	71.23	27.42	4.31	42.15	-10.42
2390.00	41.92	AV	54	12.08	52.34	27.42	4.31	42.15	-10.42
Freque	ncy(MHz)	:	24	02	Pola	rity:		VERTICAL	
Frequency (MHz)	Emis Lev (dBu)	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	59.06	PK	74	14.94	69.48	27.42	4.31	42.15	-10.42
2390.00	42.71	ΑV	54	11.29	53.13	27.42	4.31	42.15	-10.42
Freque	ncy(MHz)	:	2480		Polarity:		HORIZONTAL		
Frequency (MHz)	Emis Lev (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	54.43	PK	74	19.57	64.54	27.7	4.47	42.28	-10.11
2483.50	40.94	AV	54	13.06	51.05	27.7	4.47	42.28	-10.11
Freque	ncy(MHz)	:	24	80	Polarity:		VERTICAL		
Frequency (MHz)	Emis Lev (dBu)	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	53.05	PK	74	20.95	63.16	27.7	4.47	42.28	-10.11
2483.50	41.18	AV	54	12.82	51.29	27.7	4.47	42.28	-10.11

REMARKS:

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier
- 3. Margin value = Limit value- Emission level.
- 4. -- Mean the PK detector measured value is below average limit.
- CTATESTING 5. The other emission levels were very low against the limit.

Page 19 of 44 Report No.: CTA23022200201

Maximum Peak Output Power

Limit

The Maximum Peak Output Power Measurement is 125mW (20.97).

Test Procedure

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to CTATE the powersensor.

Test Configuration

Test Results

Туре	Channel	Output power (dBm)	Limit (dBm)	Result
	00	-9.66		TES
GFSK	39	-9.26	20.97	Pass
	78	-9.33		
-118	3 00	-8.81		
π/4DQPSK	39	-8.48	20.97	Pass
CTA	78	-8.71		
Note: 1.The test res	ults including the	cable lose.	CTATESTING	

Page 20 of 44 Report No.: CTA23022200201

20dB Bandwidth

Limit

For frequency hopping systems operating in the 2400MHz-2483.5MHz no limit for 20dB bandwidth.

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 30 KHz RBW and 100 KHz VBW.

The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

Test Configuration

Test Results

t Results			CTATESTING
Modulation	Channel	20dB bandwidth (MHz)	Result
TING	CH00	0.930	
GFSK	CH39	0.954	
CTA,	CH78	0.948	Dage
1	CH00	1.335	Pass
π/4DQPSK	CH39	1.329	STING
	CH78	1.281	
		CON	CT CT

Test plot as follows:

Report No.: CTA23022200201

Report No.: CTA23022200201

Page 23 of 44 Report No.: CTA23022200201

4.5 Frequency Separation

LIMIT

According to 15.247(a)(1), frequency hopping systems shall have hopping channel carrier frequencies separated by minimum of 25KHz or the 2/3*20dB bandwidth of the hopping channel, whichever is greater.

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100 KHz RBW and 300 KHz VBW.

TEST CONFIGURATION

TEST RESULTS

		ANALIZ		
TEST RESULTS				TATESTING
Modulation	Channel	Channel Separation (MHz)	Limit(MHz)	Result
GFSK	CH38	1.036	25KHz or 2/3*20dB	Pass
Gran	CH39	1.030	bandwidth	F 455
#/4DODSK	CH38	4 224	25KHz or 2/3*20dB	Door
π/4DQPSK	CH39	1.324	bandwidth	Pass

Note:

We have tested all mode at high, middle and low channel, and recorded worst case at middle

Test plot as follows:

Report No.: CTA23022200201 Page 24 of 44

Page 25 of 44 Report No.: CTA23022200201

Number of hopping frequency

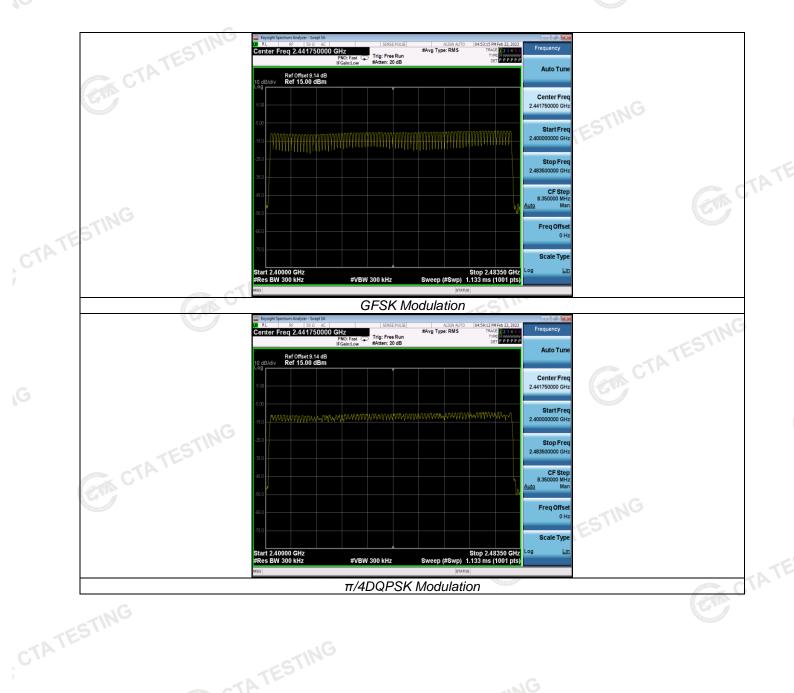
Limit

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels.

Test Procedure

CTATE The transmitter output was connected to the spectrum analyzer through an attenuator. Set spectrum analyzer start 2400MHz to 2483.5MHz with 100 KHz RBW and 300 KHz VBW.

Test Configuration



Test Results

Test Results	CTAT	ES	STING
Modulation	Number of Hopping Channel	Limit	Result
GFSK	79	≥15	Pass
π/4DQPSK	79	215	Pass

Test plot as follows: CTATES

Page 26 of 44 Report No.: CTA23022200201

Page 27 of 44 Report No.: CTA23022200201

Time of Occupancy (Dwell Time)

Limit

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

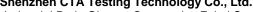
Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. Set center frequency of spectrum analyzer=operating frequency with 1MHz RBW and 1MHz VBW, Span 0Hz.

Test Configuration

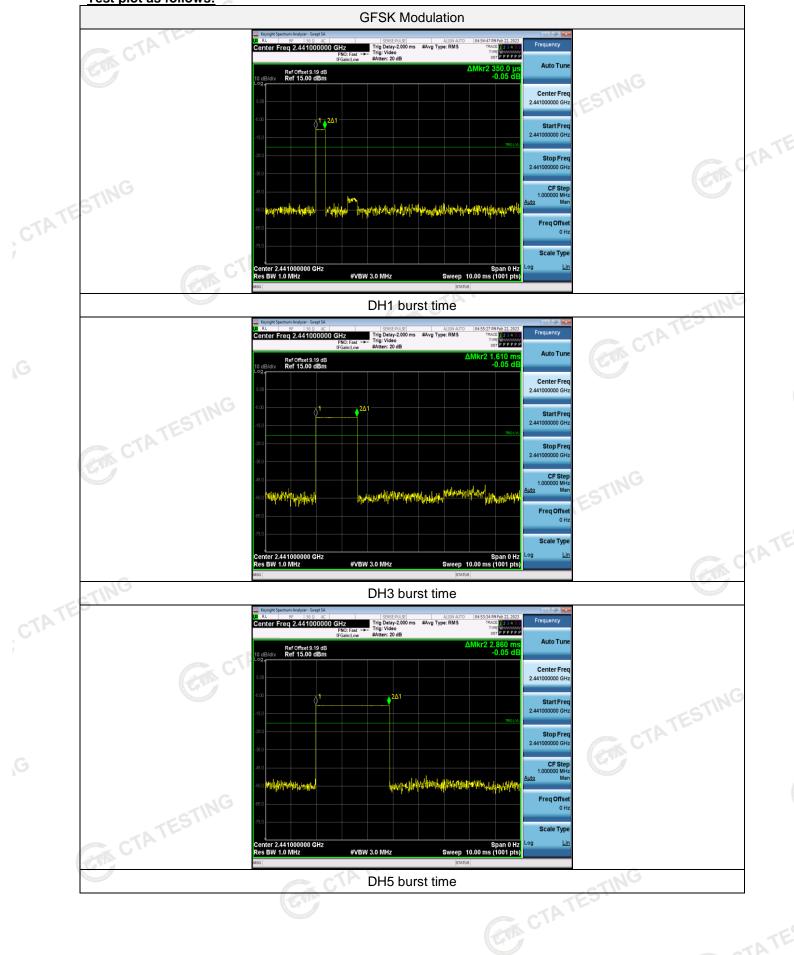
Test Results

Test Results		CI	CTATES		TESTING
Modulation	Packet	Burst time (ms)	Dwell time (s)	Limit (s)	Result
	DH1	0.35	0.119		
GFSK	DH3	1.61	0.274	0.40	Pass
TES	DH5	2.86	0.343		
CIL	2-DH1	0.37	0.118		
π/4DQPSK	2-DH3	1.62	0.308	0.40	Pass
	2-DH5	2.87	0.287	TESTIN	

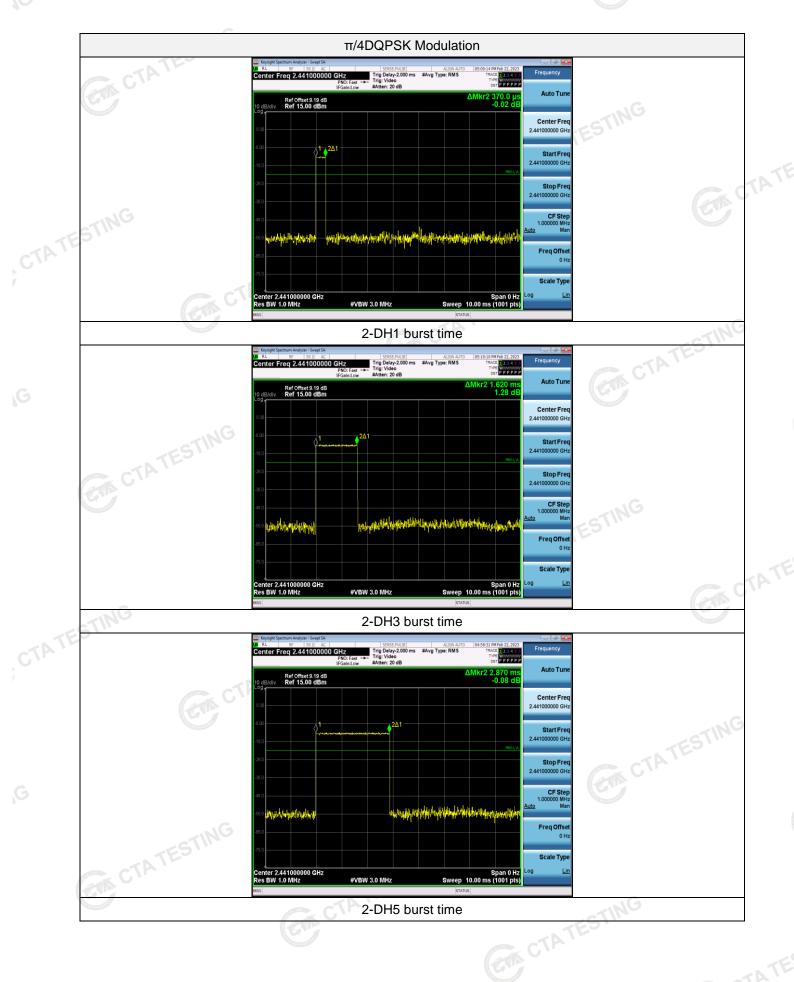

Note:We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel.

Dwell time=Pulse time (ms) x (1600 ÷ 2 ÷ 79) x31.6 Second for DH1, 2-DH1

Dwell time=Pulse time (ms) \times (1600 \div 4 \div 79) \times 31.6 Second for DH3, 2-DH3


Dwell time=Pulse time (ms) \times (1600 \div 6 \div 79) \times 31.6 Second for DH5, 2-DH5

CTA TESTING



Page 28 of 44 Report No.: CTA23022200201

Test plot as follows:

Page 29 of 44 Report No.: CTA23022200201

Page 30 of 44 Report No.: CTA23022200201

Out-of-band Emissions 4.8

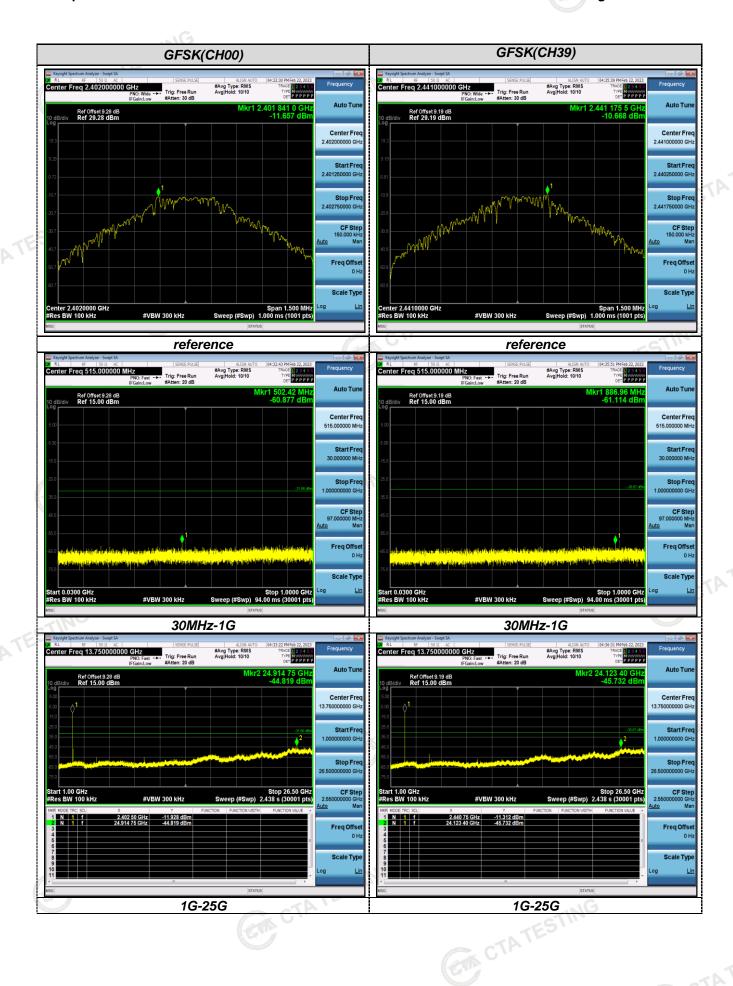
Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF con-ducted or a radiated measurement, pro-vided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter com-plies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

Test Procedure

Connect the transmitter output to spectrum analyzer using a low loss RF cable, and set the spectrum analyzer to RBW=100 kHz, VBW= 300 kHz, peak detector, and max hold. Measurements utilizing these setting are made of the in-band reference level, bandedge and out-of-band emissions.

Test Configuration




Test Results

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandage measurement data.

We measured all conditions (DH1, DH3, DH5) and recorded worst case at DH5

Test plot as follows:

