

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

TABLE OF CONTENTS

1. Test Certification		
2. Test Result Summary		4
3. EUT Description		5
4. General Information		6
4.1. Test environment and mode		6
4.2. Description of Support Units		6
5. Facilities and Accreditations		
5.1. Facilities		7
5.2. Location		
5.3. Measurement Uncertainty		7
6. Test Results and Measurement Data		8
6.1. Antenna requirement		
6.2. Conducted Emission		9
6.3. Conducted Output Power		
6.4. Emission Bandwidth		16
6.5. Power Spectral Density	\sim	19
6.6. Test Specification		19
6.7. Conducted Band Edge and Spurious Emission Measurem		
6.8. Radiated Spurious Emission Measurement		
Appendix A: Photographs of Test Setup		
Appendix B: Photographs of EUT		

通测检测 TESTING CENTRE TECHNOLOGY **Test Certification** 1.

Product:	Bluetooth Earphones	
Model No.:	COWON CR5	(Å
Additional Model No.:	N/A	C
Trade Mark:	COWON ()	
Applicant:	COWON SYSTEMS, Inc.	
Address:	6th FI. COWON TOWER, 689-3, Yeoksam-Dong, Gangnam-Gu, Seoul 135-080, South Korea	(C)
Manufacturer:	COWON SYSTEMS, Inc.	
Address:	6th FI. COWON TOWER, 689-3, Yeoksam-Dong, Gangnam-Gu, Seoul 135-080, South Korea	
Date of Test:	Jan. 08, 2019 – Jan. 16, 2019	
Applicable Standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.247 FCC KDB 558074 D01 15.247 Meas Guidance v05r02 ANSI C63.10:2013	

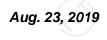
The above equipment has been tested by Shenzhen Tongce Testing Lab. and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Tested By:

Jerry X

Jerry Xie

Reviewed By:


Beryl Zhao omsm

Approved By:

Tomsin

Jan. 16, 2019 Date:

Date: Aug. 23, 2019

Page 3 of 32

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

2. Test Result Summary

	rement		CFR 47 Se	ction		Result		
Antenna r	equirement	§	15.203/§15	.247 (c)	K)	PASS	N.	
	ne Conducted ssion	(c [*])	§15.20	7		PASS		
	Peak Output wer		§15.247 (§2.104			PASS		
6dB Emissio	on Bandwidth		§15.247 (a §2.104		Ś	PASS	K.	
Power Spe	ctral Density		§15.247	(e)		PASS		
Band	Edge		1§5.247 §2.1051, §2			PASS		
				F 000				
2. Fail: Test ite	Emission tem meets the requir m does not meet the	rement. requirement.				PASS		
lote: 1. PASS: Test i 2. Fail: Test ite 3. N/A: Test ca	tem meets the requir	rement. requirement. the test object	§2.1053, §2	2.1057		PASS		
lote: 1. PASS: Test i 2. Fail: Test ite 3. N/A: Test ca	tem meets the requir m does not meet the se does not apply to	rement. requirement. the test object	§2.1053, §2	2.1057		PASS		
lote: 1. PASS: Test i 2. Fail: Test ite 3. N/A: Test ca	tem meets the requir m does not meet the se does not apply to	rement. requirement. the test object	§2.1053, §2	2.1057		PASS		
lote: 1. PASS: Test i 2. Fail: Test ite 3. N/A: Test ca	tem meets the requir m does not meet the se does not apply to	rement. requirement. the test object	§2.1053, §2	2.1057		PASS CO		

3. EUT Description

Product:	Bluetooth Earphones				
Model No.:	COWON CR5				
Additional Model No.:	N/A				
Trade Mark:	COWON				
Hardware Version:	V2.0				
Software Version:	V1.0				
BT Version:	V5.0 (This report is for BLE)				
Operation Frequency:	2402MHz~2480MHz				
Channel Separation:	2MHz				
Number of Channel:	40				
Modulation Technology:	GFSK				
Antenna Type:	Ceramic Antenna				
Antenna Gain:	4.9dBi				
Power Supply:	Rechargeable Li-ion Battery DC 3.7V				

Operation Frequency each of channel

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1 (2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
					····		
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz
Remark:	Channel 0, 1	9 & 39 ha	ave been tes	sted.			le l

4. General Information

4.1. Test environment and mode

Operating Environment:		
Temperature:	25.0 °C	e
Humidity:	56 % RH	< <u>.</u>
Atmospheric Pressure:	1010 mbar	9
Test Mode:		
Engineering mode:	Koop the ELIT in continuous tran	omitting

Engineering mode:	Keep the EUT in continuous transmitting by select channel and modulations(The value of duty cycle is 98.46%) with Fully-charged battery.

The sample was placed (0.8m below 1GHz, 1.5m above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

4.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
Adapter	XC-0501000-06-B	1		ADAPTER

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, 6dB Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

5. Facilities and Accreditations

5.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

- FCC Registration No.: 645098
 - Shenzhen Tongce Testing Lab

The 3m Semi-anechoic chamber has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

• IC - Registration No.: 10668A-1

The 3m Semi-anechoic chamber of Shenzhen TCT Testing Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing

5.2. Location

Shenzhen Tongce Testing Lab

Address: 1B/F., Building 1, Yibaolai Industrial Park, Qiaotou, Fuyong, Baoan District, Shenzhen, Guangdong, China

TEL: +86-755-27673339

5.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

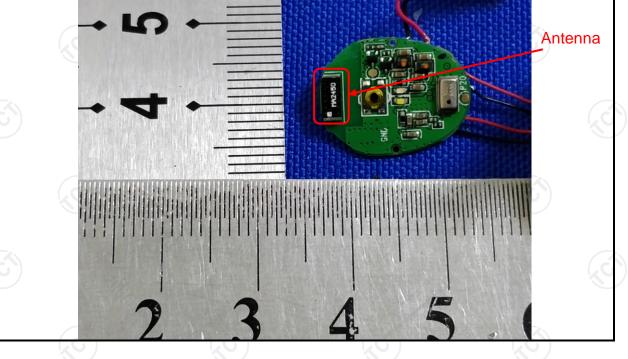
Item	MU
Conducted Emission	±2.56dB
RF power, conducted	±0.12dB
Spurious emissions, conducted	±0.11dB
All emissions, radiated(<1G)	±3.92dB
All emissions, radiated(>1G)	±4.28dB
Temperature	±0.1°C
Humidity	±1.0%
	Conducted Emission RF power, conducted Spurious emissions, conducted All emissions, radiated(<1G)

6. Test Results and Measurement Data

6.1. Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The Bluetooth antenna is ceramic antenna which permanently attached, and the best case gain of the antenna is 4.9dBi.

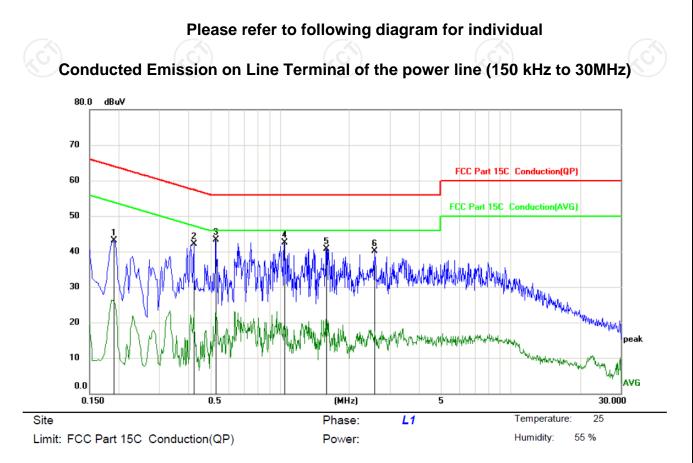
6.2. Conducted Emission

6.2.1. Test Specification

Test Requirement:	FCC Part15 C Section	15.207				
Test Method:	ANSI C63.10:2013					
Frequency Range:	150 kHz to 30 MHz	(C ¹)	$\left(\begin{array}{c} \\ \\ \\ \end{array} \right)$			
Receiver setup:	RBW=9 kHz, VBW=30) kHz, Sweep time	=auto			
	Frequency range	Limit (dBuV)			
	(MHz)	Quasi-peak	Average			
Limits:	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
	Refere	nce Plane				
Test Setup:	E.U.T Adap Test table/Insulation pla Remark: E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Test table height=0.8m	ne	ter — AC power			
Test Mode:	Charging + Transmitting Mode					
	 The E.U.T is connering equipme The peripheral device power through a L 	zation network 50uH coupling im nt. ces are also conne	(L.I.S.N.). This pedance for the			
Test Procedure:	 coupling impedance refer to the block photographs). 3. Both sides of A.C. conducted interferent emission, the relative the interface cables 	e with 50ohm term diagram of the . line are checkence. In order to fir e positions of equ s must be chang	test setup and d for maximun nd the maximun ipment and all c ed according to			
Test Procedure: Test Result:	 coupling impedance refer to the block photographs). 3. Both sides of A.C. conducted interferent emission, the relative 	e with 50ohm term diagram of the . line are checkence. In order to fir e positions of equ s must be chang	test setup and d for maximun nd the maximun ipment and all o ed according to			

6.2.2. Test Instruments

TCT通测检测 TESTING CENTRE TECHNOLOGY


Conducted Emission Shielding Room Test Site (843)							
Equipment	Manufacturer	Model	Serial Number	Calibration Due			
Test Receiver	R&S	ESPI	101402	Jul. 17, 2019			
LISN	Schwarzbeck	NSLK 8126	8126453	Sep. 20, 2019			
Coax cable (9KHz-30MHz)	тст	CE-05	N/A	Sep. 16, 2019			
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A			

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Page 10 of 32

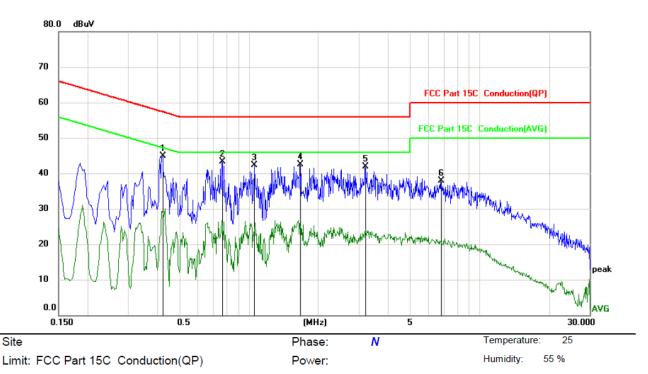
Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

6.2.3. Test data

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment	
1		0.1905	32.90	10.12	43.02	64.01	-20.99	peak		
2		0.4245	32.02	10.13	42.15	57.36	-15.21	peak		
3	*	0.5280	33.15	10.13	43.28	56.00	-12.72	peak		
4		1.0455	32.32	10.12	42.44	56.00	-13.56	peak		
5		1.5900	30.60	10.12	40.72	56.00	-15.28	peak		
6		2.5755	29.95	10.12	40.07	56.00	-15.93	peak		

Note:

Freq. = Emission frequency in MHz Reading level $(dB\mu V)$ = Receiver reading Corr. Factor (dB) = LISN factor + Cable loss Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)Limit $(dB\mu V)$ = Limit stated in standard


Margin (dB) = Measurement (dB μ V) – Limits (dB μ V)

Q.P. =Quasi-Peak

AVG =average

Any value more than 10dB below limit have not been specifically reported.

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1 *	0.4245	34.84	10.13	44.97	57.36	-12.39	peak	
2	0.7665	33.14	10.12	43.26	56.00	-12.74	peak	
3	1.0545	32.24	10.12	42.36	56.00	-13.64	peak	
4	1.6710	32.30	10.12	42.42	56.00	-13.58	peak	
5	3.1965	31.75	10.13	41.88	56.00	-14.12	peak	
6	6.7920	27.85	10.14	37.99	60.00	-22.01	peak	

Note:

TCT通测检测 TESTING CENTRE TECHNOLOGY

> Freq. = Emission frequency in MHz Reading level $(dB\mu V)$ = Receiver reading Corr. Factor (dB) = LISN factor + Cable loss Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)Limit $(dB\mu V)$ = Limit stated in standard Margin (dB) = Measurement $(dB\mu V)$ - Limits $(dB\mu V)$ Q.P. =Quasi-Peak AVG =average Any value more than 10dB below limit have not been specifically reported. * is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

6.3. Conducted Output Power

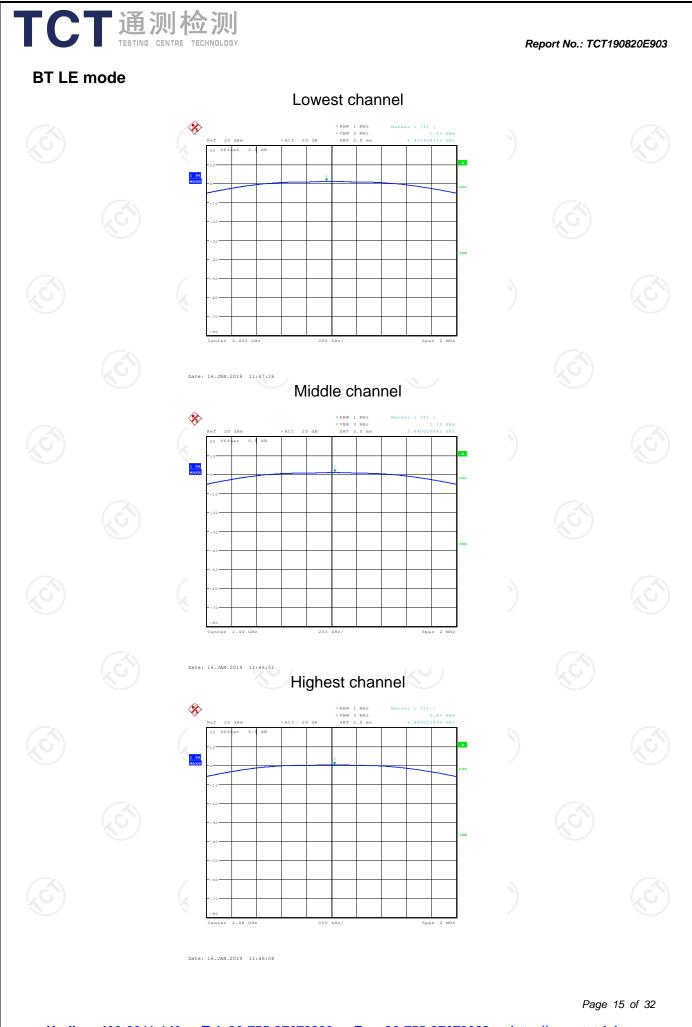
6.3.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)
Test Method:	KDB 558074 D01 v05r02
Limit:	30dBm
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Refer to item 4.1
Test Procedure:	 Set spectrum analyzer as following: a) Set the RBW ≥ DTS bandwidth. b) Set VBW ≥ 3 × RBW. c) Set span ≥ 3 × RBW d) Sweep time = auto couple. e) Detector = peak. f) Trace mode = max hold. g) Allow trace to fully stabilize. h) Use peak marker function to determine the peak amplitude level.
Test Result:	PASS

6.3.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	R&S	FSU	200054	Sep. 20, 2019
RF cable (9kHz-26.5GHz)	тст	RE-06	N/A	Sep. 20, 2019
Antenna Connector	О тст	RFC-01	N/A	Sep. 20, 2019

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).


6.3.3. Test Data

TCT通测检测 TESTING CENTRE TECHNOLOGY

BT LE mode					
Test channel Maximum Conducted Output Power (dBm)		Limit (dBm)	Result		
Lowest	1.23	30.00	PASS		
Middle	1.13	30.00	PASS		
Highest	0.45	30.00	PASS		

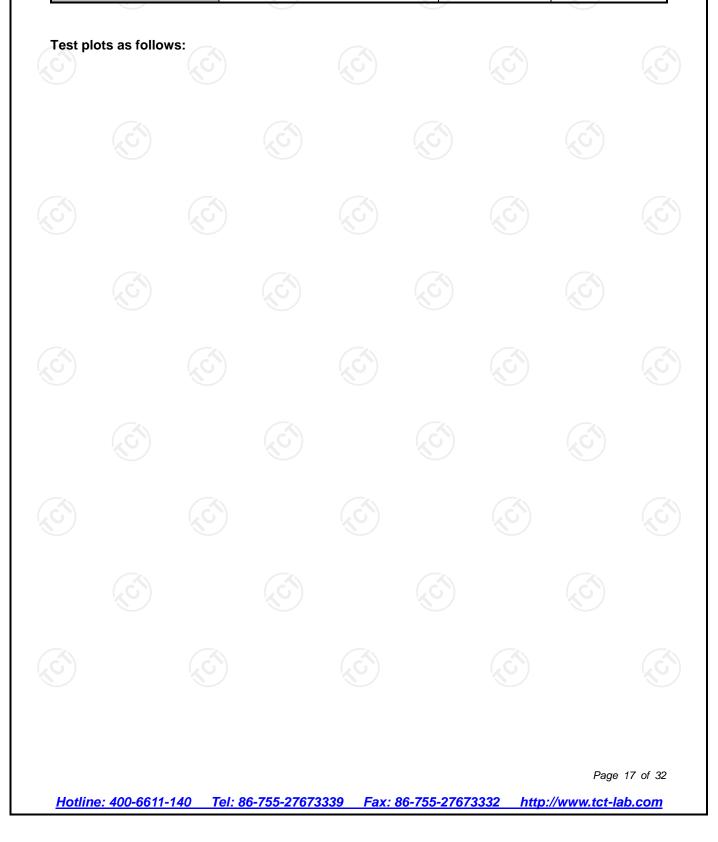
Test plots as follows:

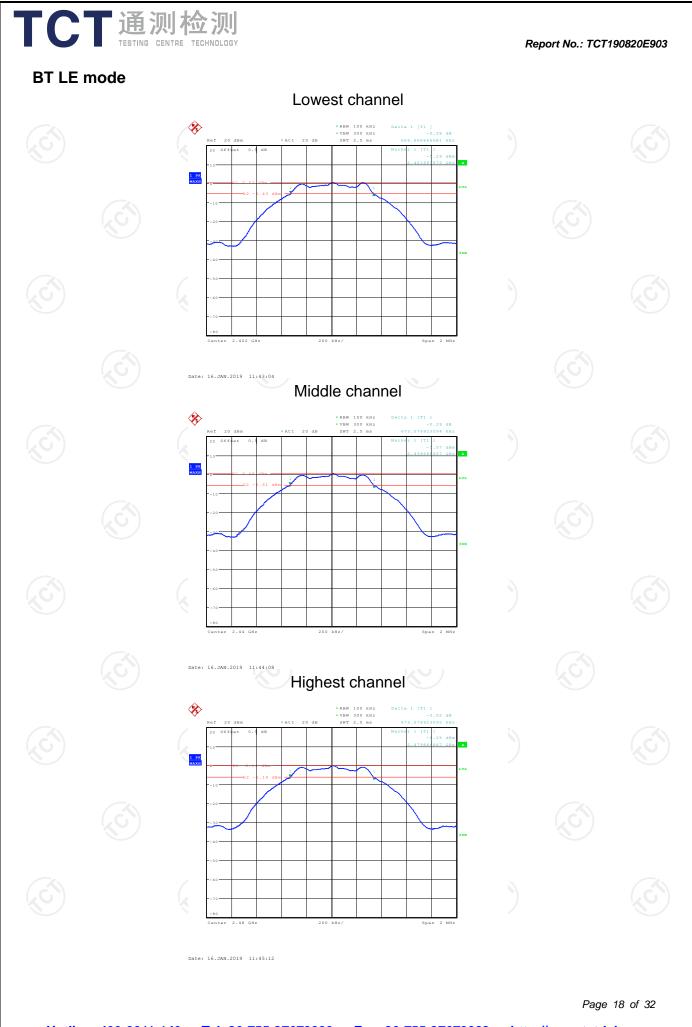
C C	ots as follov	vs.						
							Page	14 of 32
<u>Hotlin</u>	<u>e: 400-6611</u> -	-140 Tel: 8	86-755-27673	3339 Fax:	<u>86-755-2767</u>	' <u>3332 http</u>	://www.tct-la	

6.4. Emission Bandwidth

6.4.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)
Test Method:	KDB 558074 D01 v05r02
Limit:	>500kHz
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Refer to item 4.1
Test Procedure:	 Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz. Measure and record the results in the test report.
Test Result:	PASS


6.4.2. Test Instruments


	RF Test Room							
Equipment	Manufacturer	Model	Serial Number	Calibration Due				
Spectrum Analyzer	R&S	FSU	200054	Sep. 20, 2019				
RF cable (9kHz-26.5GHz)	ТСТ	RE-06	N/A	Sep. 20, 2019				
Antenna Connector	🕥 тст	RFC-01	N/A	Sep. 20, 2019				

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

6.4.3. Test data

	Test channel	6dB Emission Bandwidth (kHz)					
(Test channel	BT LE mode	Limit	Result			
0	Lowest	666.67	>500k	le la			
	Middle	673.08	>500k	PASS			
	Highest	673.08	>500k				

6.5. Power Spectral Density

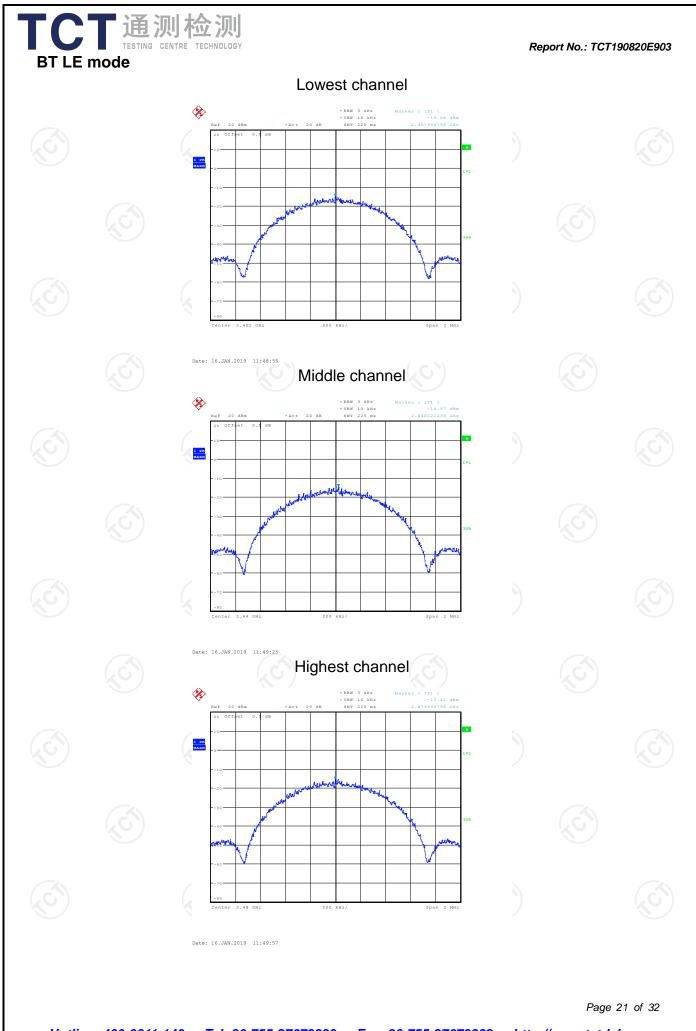
6.6. Test Specification

Test Requirement:	FCC Part15 C Section 1	5.247 (e)	No.					
Test Method:	KDB 558074 D01 v05r0	2						
Limit:	The peak power spect than 8dBm in any 3kH continuous transmission	Iz band at any time						
Test Setup:								
	Spectrum Analyzer	EUT	C.					
Test Mode:	Refer to item 4.1							
Test Procedure:	 The RF output of EUT analyzer by RF cable was compensated to measurement. Set to the maximum p EUT transmit continu Make the measureme resolution bandwidth kHz. Video bandwidt make an accurate m times DTS Channel I Detector = peak, Swe mode = max hold, AI the peak marker func power level. Measure and record t 	e and attenuator. The the results for each ower setting and ena- iously. ent with the spectrum (RBW): $3 \text{ kHz} \le \text{RBV}$ h VBW $\ge 3 \text{ x} \text{RBW}$. In easurement, set the Bandwidth. (6dB BW) op time = auto coupl low trace to fully stab ction to determine the	able the analyzer's $W \le 100$ n order to span to 1.5) e, Trace pilize. Use e maximum					
Test Result:	PASS							
			G)					

6.6.1. Test Instruments

RF Test Room							
2	Equipment	Manufacturer	Model	Serial Number	Calibration Due		
	Spectrum Analyzer	R&S	FSU	200054	Sep. 20, 2019		
	RF cable (9kHz-26.5GHz)	тст	RE-06	N/A	Sep. 20, 2019		
	Antenna Connector	тст	RFC-01	N/A	Sep. 20, 2019		

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).


6.6.2. Test data

TCT通测检测 TESTING CENTRE TECHNOLOGY

	Test channel	Power Spectral Density (dBm/3kHz)					
	Test channel	BT LE mode	Limit	Result			
8	Lowest	-15.08	8 dBm/3kHz				
	Middle	-14.57	8 dBm/3kHz	PASS			
	Highest	-15.42	8 dBm/3kHz				

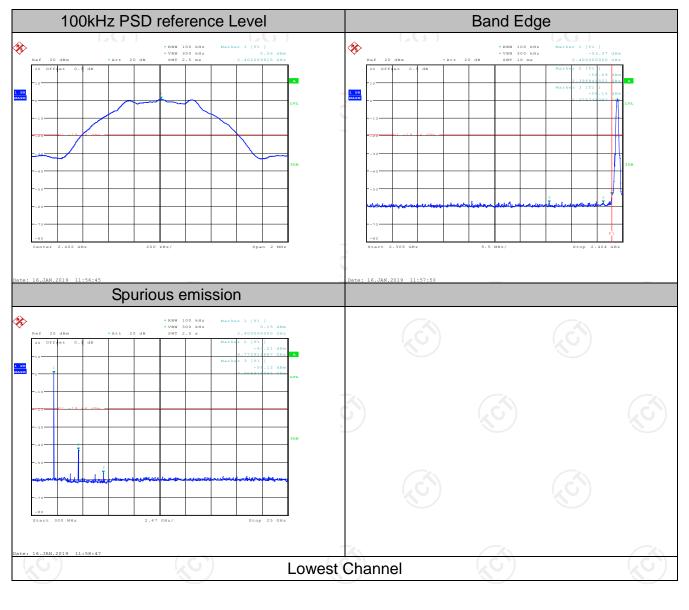
Test plots as follows:

<u>Hotline: 4</u>	Page 20 of 32 <u>Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com</u>							

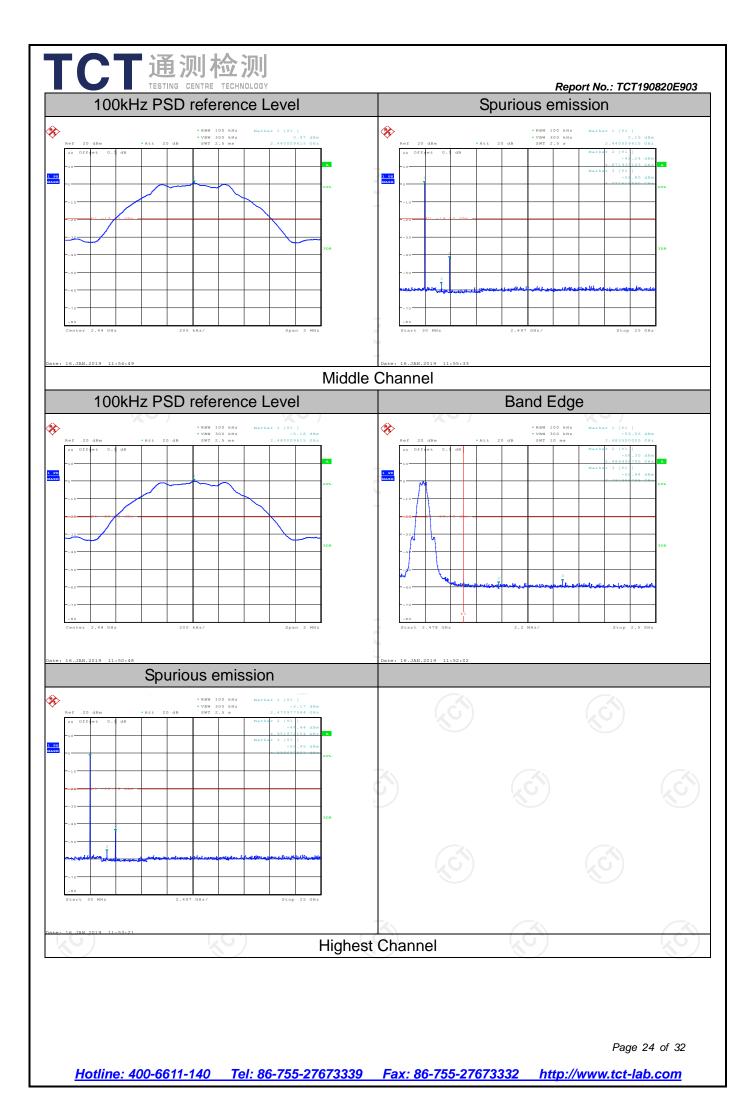
6.7. Conducted Band Edge and Spurious Emission Measurement

6.7.1. Test Specification

TCT通测检测 TESTING CENTRE TECHNOLOGY


Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	KDB 558074 D01 v05r02
Limit:	In any 100 kHz bandwidth outside of the authorized frequency band, the emissions which fall in the non-restricted bands shall be attenuated at least 20 dB / 30dB relative to the maximum PSD level in 100 kHz by RF conducted measurement and radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).
Test Setup:	
	Spectrum Analyzer EUT
Test Mode:	Refer to item 4.1
	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector.
Test Procedure:	 Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per 15.247(d). 4. Measure and record the results in the test report. 5. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

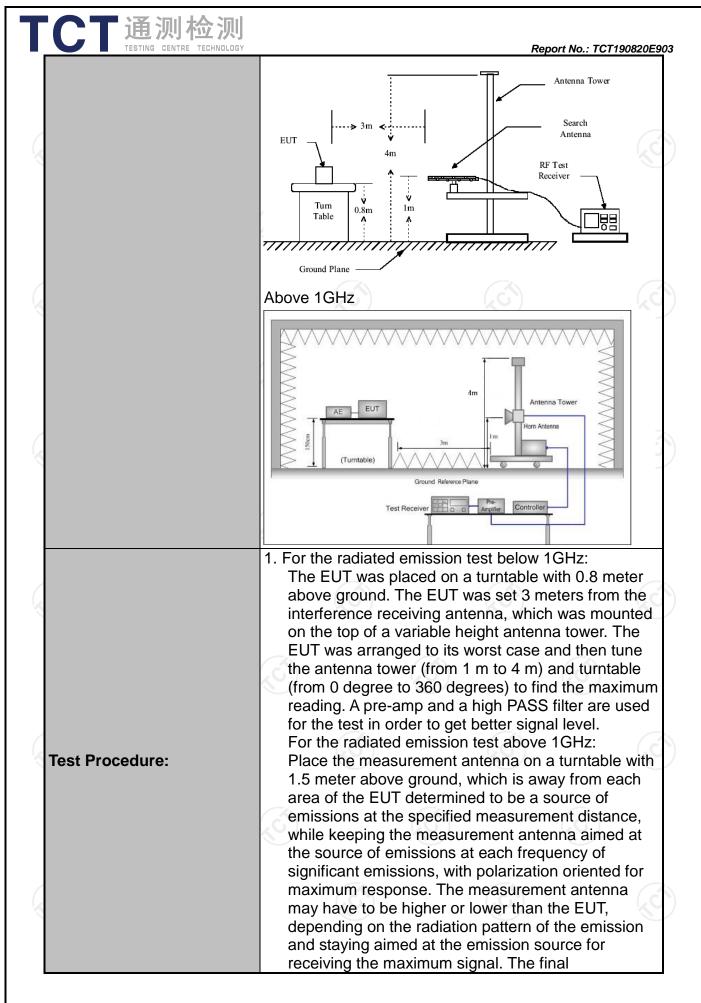
6.7.2. Test Instruments


RF Test Room									
Equipment	Manufacturer	Model	Serial Number	Calibration Due					
Spectrum Analyzer	R&S	FSU	200054	Sep. 20, 2019					
RF cable (9kHz-26.5GHz)	тст	RE-06	N/A	Sep. 20, 2019					
Antenna Connector	тст	RFC-01	N/A	Sep. 20, 2019					

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

6.7.3. Test Data

Page 23 of 32


6.8. Radiated Spurious Emission Measurement

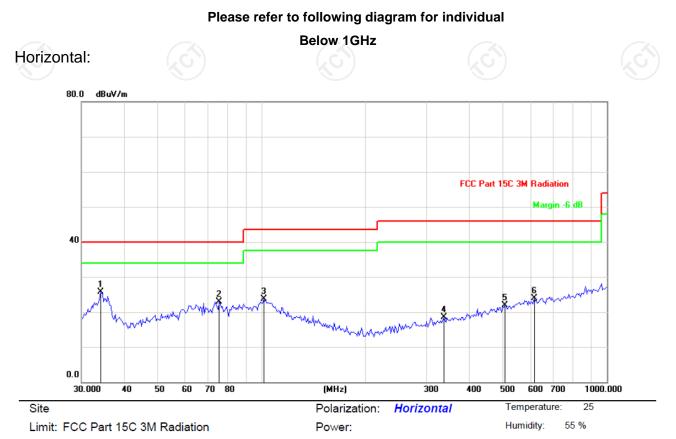
6.8.1. Test Specification

TCT 通测检测 TESTING CENTRE TECHNOLOGY

FCC Part15 C Section 15.209							
ANSI C63.10: 2013							
9 kHz to 25 GHz							
3 m							
Horizontal &	Vertical						
Refer to item	4.1	((\mathbf{c})				
Frequency 9kHz- 150kHz	Detector Quasi-peal	RBW < 200Hz	VBW 1kHz	Qua	Remark si-peak Value		
150kHz- 30MHz	Quasi-peal	9kHz	30kHz	Qua	si-peak Value		
30MHz-1GHz			300KHz		si-peak Value		
Above 1GHz					Peak Value		
	Реак	TMHZ	10HZ	AV	erage Value		
Frequen	су				easurement ance (meters)		
0.009-0.490		2400/F(I	KHz)	300			
0.490-1.705		24000/F(KHz)		30			
				30			
				3			
				3			
				3			
	5)	(, C)					
Frequency		Field Strength (microvolts/meter)		nce Detecto			
		500	3	6	Average		
Above 1GHz	5000		3	8	Peak		
For radiated	emission	s below 30	OMHz				
Dis	stance = 3m			Comp	uter		
EUT	, \	Ύ́́Т			-		
0.8m							
	Ground	d Plane	L		-		
30MHz to 1GHz							
	ANSI C63.10 9 kHz to 25 0 3 m Horizontal & Refer to item Frequency 9kHz- 150kHz 150kHz- 30MHz-1GHz Above 1GHz Frequency 0.009-0.4 0.490-1.7 1.705-3 30-88 88-216 216-96 Above 9 Frequency Above 1GHz	ANSI C63.10: 2013 9 kHz to 25 GHz 3 m Horizontal & Vertical Refer to item 4.1	ANSI C63.10: 2013 9 kHz to 25 GHz 3 m Horizontal & Vertical Refer to item 4.1 Frequency Detector RBW 9kHz- 150kHz Quasi-peak 200Hz 150kHz- Quasi-peak 120KHz 30MHz-1GHz Quasi-peak 120KHz Above 1GHz Peak 1MHz Frequency Field Strate 0.009-0.490 2400/F(0 0.490-1.705 24000/F(0 1.705-30 30 30-88 1000 88-216 150 216-960 2000 Above 960 500 Frequency Field Strength (microvolts/meter) Above 1GHz 500 500 Frequency Field Strength (microvolts/meter) Above 1GHz 500 S00 Frequency Field Strength (microvolts/meter) Above 1GHz 500 missions below 30	ANSI C63.10: 2013 9 kHz to 25 GHz 3 m Horizontal & Vertical Refer to item 4.1 Frequency Detector RBW VBW 9 kHz 9 kHz 150kHz Quasi-peak 200Hz 1 kHz 30MHz- Quasi-peak 9 kHz 30KHz 30MHz-1GHz Quasi-peak 120KHz 300KHz 30MHz-1GHz Quasi-peak 120KHz 300KHz 300KHz 300KHz 100KHz 300KHz 300KHz 10Hz Signification Frequency Field Strength (microvolts/meter) 0.009-0.490 24000/F(KHz) 1.705-30 30 30-88 100 88-216 150 216-960 200 Above 960 500 3 For radiated emissions below 30MHz Distance = 3m Image: Similar and the strength of the strength o	ANSI C63.10: 2013 9 kHz to 25 GHz 3 m Horizontal & Vertical Refer to item 4.1 Frequency Detector 9kHz.150kHz Quasi-peak 20Hz 1kHz Quasi-peak 9kHz 30MHz Quasi-peak 30MHz-1GHz Quasi-peak 150kHz- Quasi-peak 20MHz-1GHz Quasi-peak Above 1GHz Peak Peak 1MHz 10Hz 10Hz Above 1GHz Peak 1.705-30 30 30-88 100 88-216 150 216-960 200 Above 960 500 Above 1GHz 500 30-88 100 8-216 150 216-960 200 Above 960 500		

Page 25 of 32

	אני
	 measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported. Use the following spectrum analyzer settings: Span shall wide enough to fully capture the emission being measured; Set RBW=120 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold; Set RBW = 1 MHz, VBW= 3MHz for f > 1 GHz for peak measurement. For average measurement: VBW = 10 Hz, when duty cycle is no less than 98 percent. VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.
Test mode:	Refer to section 4.1 for details
Test results:	PASS


6.8.2. Test Instruments

Radiated Emission Test Site (966)									
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due					
Test Receiver	ROHDE&SCHW ARZ	ESIB7	100197	Jul. 17, 2019					
Spectrum Analyzer	ROHDE&SCHW ARZ	FSQ40	200061	Sep. 20, 2019					
Pre-amplifier	EM Electronics Corporation CO.,LTD	EM30265	07032613	Sep. 16, 2019					
Pre-amplifier	HP	8447D	2727A05017	Sep. 16, 2019					
Loop antenna	ZHINAN	ZN30900A	12024	Oct. 20, 2019					
Broadband Antenna	Schwarzbeck	VULB9163	340	Sep. 02, 2019					
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Oct. 20, 2019					
Horn Antenna	A-INFO	LB-180400-KF	J211020657	Sep. 16, 2019					
Antenna Mast	Keleto	RE-AM	N/A	N/A					
Coax cable (9KHz-1GHz)	тст	RE-low-01	N/A	Sep. 16, 2019					
Coax cable (9KHz-40GHz)	тст	RE-high-02	N/A	Sep. 16, 2019					
Coax cable (9KHz-1GHz)	ТСТ	RE-low-03	N/A	Sep. 16, 2019					
Coax cable (9KHz-40GHz)	тст	RE-high-04	N/A	Sep. 16, 2019					
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A					

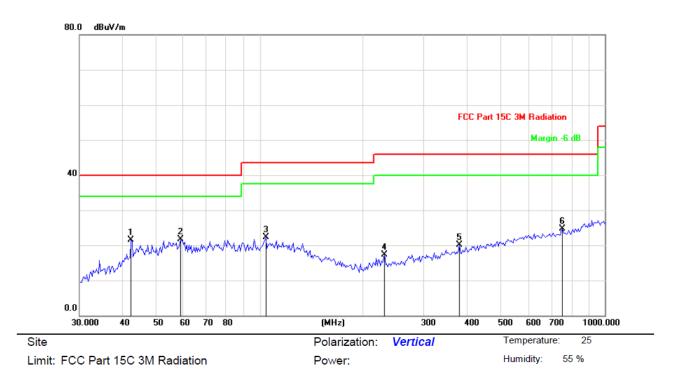
Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

6.8.3. Test Data

TCT通测检测 TCT通测检测

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1	*	34.0449	36.66	-11.02	25.64	40.00	-14.36	peak
2		75.3208	39.16	-16.21	22.95	40.00	-17.05	peak
3		101.1795	31.75	-8.11	23.64	43.50	-19.86	peak
4		336.4816	28.43	-10.01	18.42	46.00	-27.58	peak
5		505.7891	29.22	-7.35	21.87	46.00	-24.13	peak
6		615.7743	29.65	-5.73	23.92	46.00	-22.08	peak

×~



Report No.: TCT190820E903

Vertical:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1		42.3314	32.34	-10.81	21.53	40.00	-18.47	peak
2	*	58.8978	33.88	-12.12	21.76	40.00	-18.24	peak
3		104.0639	30.61	-8.36	22.25	43.50	-21.25	peak
4		230.2295	30.36	-13.13	17.23	46.00	-28.77	peak
5		379.1779	29.38	-9.25	20.13	46.00	-25.87	peak
6		754.9628	29.16	-4.49	24.67	46.00	-21.33	peak

- **Note:** 1. The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported
 - 2. Measurements were conducted in all three channels (high, middle, low), and the worst case Mode (Lowest channel) was submitted only.

Report No.: TCT190820E903

Above 1GHz

				-				
el: 2402 N	1Hz							
Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Peak	AV			Margin (dB)
Н	46.04		-8.27	37.77		74	54	-16.23
Н	45.97		0.66	46.63		74	54	-7.37
Н	38.12		9.50	47.62		74	54	-6.38
Н								
.G)				(.G		(\mathbf{G})	
V	43.69		-8.27	35.42		74	54	-18.58
V	44.33		0.66	44.99		74	54	-9.01
V	38.47		9.50	47.97		74	54	-6.03
V			(×				
	(χG)			5)		(\mathcal{O})		2
nnel: 2440) MHz		e e					and a second sec
Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)			Margin (dB)
KCH)	42.35	- X	0.99	43.34	<u>, C -</u>	74	54	-10.66
	Ant. Pol. H/V H H H H V V V V V V Ant. Pol. H/V	Ant. Pol. H/V reading (dBµV) H 46.04 H 45.97 H 38.12 H V 43.69 V 44.33 V 38.47 V 38.47 V Ant. Pol. H/V Peak reading (dBµV)	Ant. Pol. H/V Peak reading (dBµV) AV reading (dBuV) H 46.04 H 45.97 H 38.12 H 38.12 H 38.12 V 43.69 V 43.83 V 38.47 V 38.47 V Ant. Pol. H/V Peak (dBµV) AV reading (dBµV)	Ant. Pol. H/V Peak reading (dBµV) AV reading (dBuV) Correction Factor (dB/m) H 46.04 -8.27 H 45.97 0.66 H 38.12 9.50 H V 43.69 -8.27 V 43.69 -8.27 V 43.812 9.50 H V 43.69 -8.27 V 43.69 9.50 V 38.47 9.50 V nnel: 2440 MHz Ant. Pol. H/V Peak (dBµV) AV (dBµV) Correction Factor (dBµV)	Ant. Pol. H/V Peak reading (dBµV) AV reading (dBµV) Correction (dB/m) Emissic Peak (dBµV/m) H 46.04 -8.27 37.77 H 45.97 0.66 46.63 H 38.12 9.50 47.62 H V 43.69 -8.27 35.42 V 44.33 0.66 44.99 V 38.47 9.50 47.97 V 38.47 9.50 47.97 V 38.47 9.50 47.97 V nnel: 2440 MHz H/V Peak reading (dBµV) (dBµV) Emissic Peak (dBµV) Peak (dBµV)	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

7320	H	38.01	9.87	47.88	 74	54	-6.12
	Н		 		 		
4880	V	43.16	 0.99	44.15	 74	54	-9.85
7320	V	37.24	 9.87	47.11	 74	54	-6.89
	V))

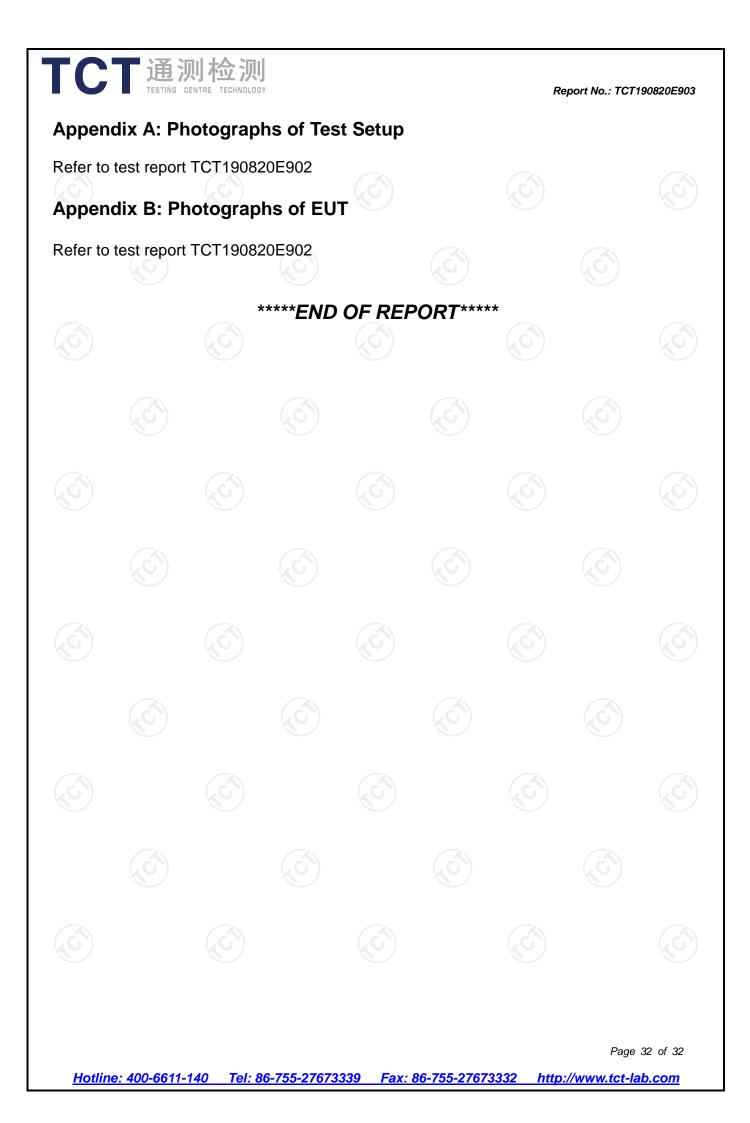
High channel: 2480 MHz

				P					
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Peak	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
2483.5	Н	46.13		-7.83	38.30		74	54	-15.70
4960	Н	47.04		1.33	48.37		74	54	-5.63
7440	Н	39.27		10.22	49.49		74	54	-4.51
<u> </u>	Н			🚫	·)				
2483.5	V	48.64		-7.83	40.81		74	54	-13.19
4960	V	47.52		1.33	48.85	~~	74	54	-5.15
7440	S V	38.79	-420	10.22	49.01	$\langle G^{2} \rangle$	74	54	-4.99
	V								

Note:

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)


3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

6. All the restriction bands are compliance with the limit of 15.209.

Page 31 of 32

