

243 Jubug-Ri, Yangji-Myeon, Yongin-Si, Gyeonggi-Do, Korea 449-822 Tel: +82-31-323-6008 Fax: +82-31-323-6010 http://www.ltalab.com



Dates of Tests: Mar 19 ~ 22, 2007 Test Report S/N: LR500190703E Test Site: LTA CO., LTD.

# CERTIFICATIO OF COMPLIANCE

FCC ID.

APPLICANT

SXV-COWON-CR1

**COWON SYSTEMS, Inc.** 

FCC Classification : Low Power Communication Device Transmitter

Manufacturing Description : Cradle for PMP

Manufacturer : COWON SYSTEMS, Inc.

Model name : COWON CR1

Test Device Serial No.: : Identical prototype

Rule Part(s) : FCC Part 15.239 Subpart C; ANSI C-63.4-2003

Frequency Range : 88.1 MHz, 88.5MHz, 88.9MHz

Data of issue : March 23, 2007

This test report is issued under the authority of:

The test was supervised by:

Dong -Min JUNG, Technical Manager

Kyung-Taek LEE, Test Engineer

This test result only responds to the tested sample. It is not allowed to copy this report even partly without the allowance of the test laboratory. This report must not be used by the applicant to claim product endorsement by any agency.

NVLAP

NVLAP LAB Code.: 200723-0

# TABLE OF CONTENTS

| 1. GENERAL INFORMATION'S                                                | 3  |
|-------------------------------------------------------------------------|----|
| 2. INFORMATION'S ABOUT TEST ITEM                                        | 4  |
| 3. TEST REPORT                                                          | 5  |
| 3.1 SUMMARY OF TESTS                                                    | 5  |
| 3.2 TECHNICAL CHARACTERISTICS TEST                                      | 6  |
| 3.2.1 Field Strength of Fundamental and Emissions within Permitted Band | 6  |
| 3.2.2 Radiated Emissions                                                | 7  |
| 3.2.3 AC Conducted Emissions                                            | 11 |
| 3.2.4 20dB Bandwidth                                                    | 12 |
| 3.2.5 Antenna Requirement                                               | 14 |
| 4 DDELYDAY                                                              |    |
| APPENDIX                                                                |    |
| APPENDIX TEST EQUIPMENT USED FOR TESTS                                  | 15 |

## 1. General information's

## 1-1 Test Performed

Company name : LTA Co., Ltd.

Address : 243, Jubug-ri, Yangji-Myeon, Youngin-Si, Kyunggi-Do, Korea. 449-822

Web site : <a href="http://www.ltalab.com">http://www.ltalab.com</a>
E-mail : <a href="mailto:chahn@ltalab.com">chahn@ltalab.com</a>
Telephone : +82-31-323-6008
Facsimile +82-31-323-6010

Quality control in the testing laboratory is implemented as per ISO/IEC 17025 which is the "General requirements for the competent of calibration and testing laboratory".

## 1-2 Accredited agencies

LTA Co., Ltd. is approved to perform EMC testing by the following agencies:

| Agency | Country | Accreditation No. | on No. Validity Refer |                     |
|--------|---------|-------------------|-----------------------|---------------------|
| NVLAP  | U.S.A   | 200723-0          | 2007-09-30            | ECT accredited Lab. |
| RRL    | KOREA   | KR0049            | 2007-07-13            | EMC accredited Lab. |
| FCC    | U.S.A   | 610755            | 2008-03-28            | FCC filing          |
| VCCI   | JAPAN   | R2133, C2307      | 2008-06-22            | VCCI registration   |
| IC     | CANADA  | IC5799            | 2008-04-23            | IC filing           |

## 2. Information's about test item

## 2-1 Client

Company name : COWON SYSTEMS, Inc.

Address : COWON Tower, 689-3, Yeoksam-dong, Gangnam-gu, Seoul 135-080, Korea

Telephone / Facsimile : +82-2-6900-0000 / +82-2-6900-0011

### **2-2 Manufacturer**

Company name : Enersen Co., Ltd.

#508 Daeryung Techno Town 6<sup>th</sup>, 493-6, gasan-dong, Keumcheun-gu,

: Seoul, Korea

TEL / FAX : +82-2-866-6823 / +82-2-866-6831

## 2-3 Equipment Under Test (EUT)

Trade name : Cradle for PMP

FCC ID : SXV-COWON-CR1

Model name : COWON CR1

Serial number : Identical prototype

Date of receipt : March 05, 2007

EUT condition : Pre-production, not damaged

Antenna type : Pattern Antenna,

Frequency Range : 88.1MHz, 88.5MHz, 88.9MHz Operator Selection of Operating Frequency: Manual Switch

Power Source : 12VDC

## 2-4 Tested frequency & signal

|          |                 | LOW                                                                           | MID  | HIGH |  |  |
|----------|-----------------|-------------------------------------------------------------------------------|------|------|--|--|
| 1        | Frequency (MHz) | 88.1                                                                          | 88.5 | 88.9 |  |  |
| _        |                 | We tested only under the module of audio input. The device audio input source |      |      |  |  |
| <u>2</u> | Audio signal:   | from maximum audio input for the tested. Test report is recorded the worst    |      |      |  |  |
|          |                 | mode data.                                                                    |      |      |  |  |

## 2-5 Ancillary Equipment

| Equipment | Model No. | Serial No. | Manufacturer |
|-----------|-----------|------------|--------------|
| PMP       | COWON Q5  | N/A        | COWON        |
| -         | -         | -          | -            |

# 3. Test Report

# 3.1 Summary of tests

| FCC Part Section(s) | Parameter                                                          | Limit               | Status (note 1) |
|---------------------|--------------------------------------------------------------------|---------------------|-----------------|
| 15.239              | Field Strength of Fundamental and Emissions within permitted band. | < 250 uV @ 3m       | С               |
| 15.239              | Occupied channel bandwidth                                         | < 200kHz            | С               |
| 15.209              | Radiated Emission                                                  | < FCC 15.209 limits | С               |
| 15.207              | AC Conducted Emissions                                             | < FCC 15.207 limits | NA / Note2      |
| 15.203              | Antenna Requirement                                                | -                   | С               |

<u>Note 1</u>: C=Complies NC=Not Complies NT=Not Tested NA=Not Applicable

Note 2: It is not need to test this requirement, because the EUT shall be operated by car battery

*Note 3*: The data in this test report are traceable to the national or international standards.

The sample was tested according to the following specification:

FCC Parts 15.239; ANSI C-63.4-2003

### 3.2 Transmitter requirements

### 3.2.1 Field Strength of Fundamental and Emissions within permitted band.

#### **Procedure:**

The field strength of emissions from intentional radiators operated within the bands 88 ~108MHz was measured in accordance with FCC Part §15.239. The test set-up was made according to ANSI C 63.4:2003.

The EUT was placed on a 0.8m high wooden table inside a shielded enclosure. An antenna was placed near the EUT and measurements of frequencies and amplitudes of field strengths were recorded for reference during final measurements. For final radiated testing, measurements were performed in an OATS. Measurements were performed with the EUT oriented in 3 orthogonal axis and rotated 360 degrees to determine worst-case orientation for maximum emissions.

### The spectrum analyzer is set to:

Span = 1 MHz

RBW = 120 kHz Sweep = auto

VBW = 300 kHz Detector function = Peak & Average

Trace = max hold

### **Measurement Data: Complies**

Operating Condition: Transmit the audio signal (modulated signal)

| Frequency (MHz) | Pol.<br>(H/V) |      | Level<br>V/m) | C.F<br>(dB) | Result Level (dBuV/m) |       | Limit<br>(dBuV/m) |    | Margin<br>(dB) |       |
|-----------------|---------------|------|---------------|-------------|-----------------------|-------|-------------------|----|----------------|-------|
|                 |               | PK   | AV            |             | PK                    | AV    | PK                | AV | PK             | AV    |
| 88.1            | Н             | 53.3 | 51.5          | -16.25      | 37.05                 | 35.25 | 68                | 48 | 30.95          | 12.75 |
| 88.1            | V             | 58.4 | 57.6          | -16.25      | 42.15                 | 41.35 | 68                | 48 | 25.85          | 6.65  |
| 88.5            | Н             | 50.5 | 48.8          | -15.07      | 35.43                 | 33.73 | 68                | 48 | 32.57          | 14.27 |
| 88.5            | V             | 56.4 | 54.2          | -15.07      | 41.33                 | 39.13 | 68                | 48 | 26.67          | 8.87  |
| 89.1            | Н             | 48   | 46.8          | -14.14      | 33.86                 | 32.66 | 68                | 48 | 34.14          | 15.34 |
| 89.1            | V             | 55.7 | 54            | -14.14      | 41.56                 | 39.86 | 68                | 48 | 26.44          | 8.14  |

Note 1: Field Strength Calculation

C.F = Antenna Factor + Cable Loss - Preamp Factor

Margin = Limit - Level

### Minimum Standard: FCC Part 15.239

The maximum Field Strength authorized within 200kHz is 250 uV/m@3m

### 3.2.2 Radiated Emissions

#### **Procedure:**

The EUT was placed on a 0.8m high wooden table inside a shielded enclosure. An antenna was placed near the EUT and measurements of frequencies and amplitudes of field strengths were recorded for reference during final measurements. For final radiated testing, measurements were performed in OATS. Measurements were performed with the EUT oriented in 3 orthogonal axis and rotated 360 degrees to determine worst-case orientation for maximum emissions.

### The spectrum analyzer is set to:

Center frequency = the worst channel

Frequency Range =  $30 \text{ MHz} \sim 10^{\text{th}}$  harmonic.

 $RBW = 100 \text{ kHz} (30 \text{MHz} \sim 1 \text{ GHz})$   $VBW \geq RBW$ 

= 1 MHz  $(1 \text{ GHz} \sim 10^{\text{th}} \text{ harmonic})$ 

Span = 100 MHz Detector function = peak

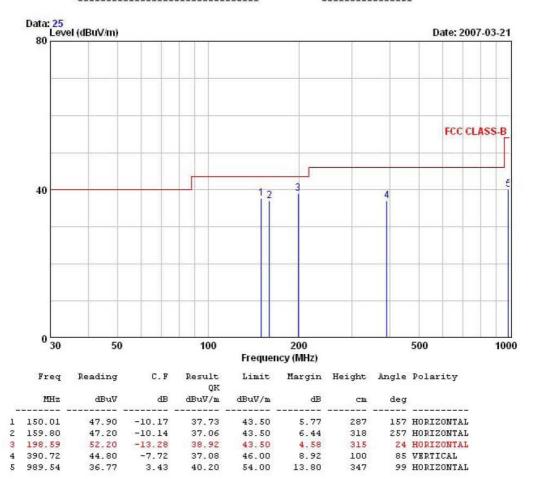
Trace =  $\max \text{ hold}$  Sweep = auto

**Measurement Data: Complies** 

#### Minimum Standard: FCC Part 15.209(a)

| Frequency (MHz) | Limit (uV/m) @ 3m |
|-----------------|-------------------|
| 30 ~ 88         | 100 **            |
| 88 ~ 216        | 150 **            |
| 216 ~ 960       | 200 **            |
| Above 960       | 500               |

<sup>\*\*</sup> Except as provided in 15.209(g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88MHz, 174-216MHz or 470-806MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g. 15.231 and 15.241.


### Frequency: 88.1MHz



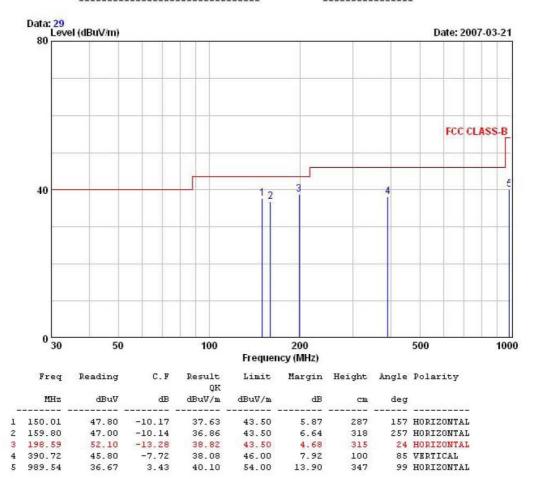
243 Jubug-ri, yangji-Myeon, Youngin-si, Gyeonggi-do 449-822 Korea Tel:+82-31-3236008,9 Fax:+82-31-3236010

EUT/Model No.: COWON CRl Test Mode: TX:88.1 mode

Temp Humi : 9 / 53 Tested by: B. S. KIM



Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain


### Frequency: 88.5MHz



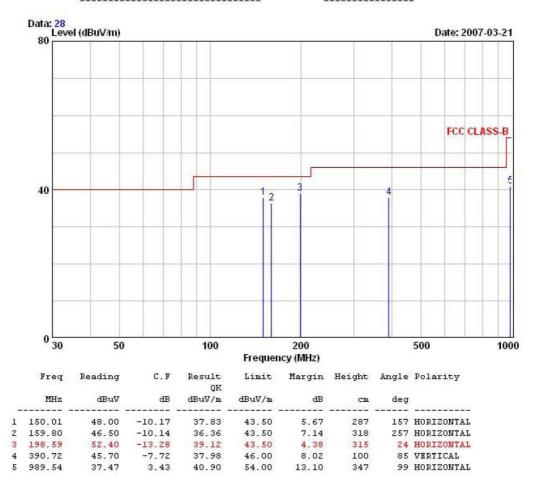
243 Jubug-ri, yangji-Myeon, Youngin-si, Gyeonggi-do 449-822 Korea Tel:+82-31-3236008,9 Fax:+82-31-3236010

EUT/Model No.: COWON CRl Test Mode: TX: 88.5 mode

Temp Humi : 9 /53 Tested by: B. S. KIM



Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain


### Frequency: 88.9MHz



243 Jubug-ri, yangji-Myeon, Youngin-si, Gyeonggi-do 449-822 Korea Tel:+82-31-3236008,9 Fax:+82-31-3236010

EUT/Model No.: COWON CRl Test Mode: TX:88.9 mode

Temp Humi : 9 /53 Tested by: B. S. KIM



Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain

### 3.2.3 AC Conducted Emissions

### **Procedure:**

The conducted emissions are measured in the shielded room with a spectrum analyzer in peak hold. While the measurement, EUT had its hopping function disabled at the middle channels in line with Section 15.31(m). Emissions closest to the limit are measured in the quasi-peak mode (QP) with the tuned receiver using a bandwidth of 9 kHz. The emissions are maximized further by cable manipulation and Exerciser operation. The highest emissions relative to the limit are listed.

### **Measurement Data: Not Applicable**

- It is not need to test this requirement, because the EUT shall be operated by car battery

### Minimum Standard: FCC Part 15.207(a)/EN 55022

| Frequency Range | Conducted Limit (dBuV) |            |  |  |
|-----------------|------------------------|------------|--|--|
| (MHz)           | Quasi-Peak             | Average    |  |  |
| 0.15 ~ 0.5      | 66 to 56 *             | 56 to 46 * |  |  |
| 0.5 ~ 5         | 56                     | 46         |  |  |
| 5 ~ 30          | 60                     | 50         |  |  |

<sup>\*</sup> Decreases with the logarithm of the frequency

### 3.2.4 20dB Bandwidth

#### **Procedure:**

The channel Bandwidth is defined as the minimum declared bandwidth within which the transmitter's necessary bandwidth can be contained. The transmitter was adjusted to work at the selected channels. The Channel BW was measured at an amplitude level reduced from the reference level by the 20dB.

Occupied Bandwidth was measured as shown in the below.

The EUT was placed on a 0.8m high wooden table. An antenna was placed near the EUT and measurements of frequencies were recorded for reference during final measurements. Measurements were performed with the EUT rotated 360 degrees to determine worst-case orientation for maximum emissions.

 $\rightarrow$ 

The spectrum analyzer is set to:

Frequency Range = 88 ~ 108MHz

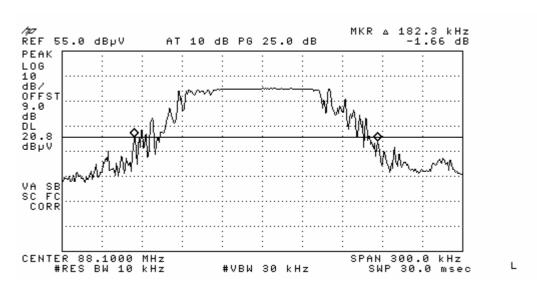
RBW = 10 kHz VBW = 30 kHz

Trace = max hold Detector function = Peak

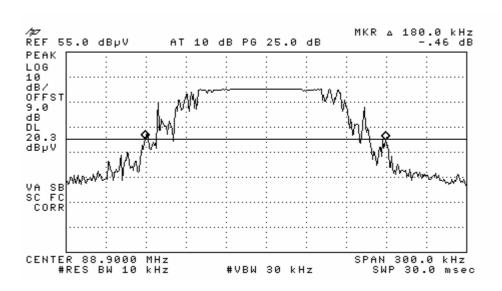
Sweep = auto Span = 300 kHz

Operating Condition: Transmit the maximum audio signal (modulation)

we played a song from the COWON Q5 with the maximum audio input.


**Measurement Data:** Complies

Refer to the next page.


#### **Minimum Standard:**

Occupied Bandwidth < 200kHz.

## 20 dB Occupied Bandwidth








## 3.2.5 Antenna Requirement

### **Define:**

An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the applicant can be used with the device. The use of permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with this requirement.

- --- The antenna Type: PCB Pattern antenna
- --- Refer to below Photograph



## **APPENDIX**

# TEST EQUIPMENT USED FOR TESTS

| No. | Description         | Model No. | Serial No.    | Manufacturer | Cal. Due |
|-----|---------------------|-----------|---------------|--------------|----------|
| 1   | Spectrum Analyzer   | 8594E     | 3624A03247    | HP           | Jan-08   |
| 2   | Spectrum Analyzer   | 8594E     | 3649A03649    | HP           | Mar-08   |
| 3   | Spectrum Analyzer   | 8594E     | 3624A03313    | HP           | Mar-08   |
| 4   | Spectrum Analyzer   | 8563E     | 3425A02505    | HP           | Mar-08   |
| 5   | EMI Test Receiver   | ESVD      | 843748/001    | R&S          | Jan-08   |
| 6   | EMI Test Receiver   | ESHS10    | 828404/009    | R&S          | Jan-08   |
| 7   | LogPer. Antenna     | VULP 9118 | 9118 A 401    | SCHWARZBECK  | Feb-08   |
| 8   | Biconical Antenna   | BBA 9106  | VHA 9103-2315 | SCHWARZBECK  | Feb-08   |
| 9   | TRILOG Antenna      | VULB 9160 | 9160-3172     | SCHWARZBECK  | Feb-08   |
| 10  | Horn Antenna        | 3115      | 00055005      | ETS          | Jun-07   |
| 11  | Dipole Antenna      | VHA9103   | 2116          | SCHWARZBECK  | Nov-07   |
| 12  | Dipole Antenna      | VHA9103   | 2117          | SCHWARZBECK  | Nov-07   |
| 13  | Dipole Antenna      | UHA9105   | 2261          | SCHWARZBECK  | Nov-07   |
| 14  | Dipole Antenna      | UHA9105   | 2262          | SCHWARZBECK  | Nov-07   |
| 15  | RF Amplifier        | 8447D     | 2439A09058    | НР           | Jan-08   |
| 16  | RF Amplifier        | 8447D     | 2944A07882    | НР           | May-07   |
| 17  | RF Amplifier        | 8449B     | 3008A02126    | Agilent      | Jun-07   |
| 18  | LISN                | KNW-407   | 8-1430-1      | Kyoritsu     | Jan-08   |
| 19  | Two-Line V-Network  | ESH3-Z5   | 893045/017    | R&S          | Jan-08   |
| 20  | V-NETWORK           | ESH3-Z6   | 100378        | R&S          | Feb-08   |
| 21  | Attenuator          | 8491A     | 37822         | HP           | Nov-07   |
| 22  | Attenuator          | 8491A     | 63196         | HP           | Nov-07   |
| 23  | Attenuator          | 8498A     | 1801A06689    | HP           | Nov-07   |
| 24  | Power Divider       | 11636A    | 6243          | HP           | Nov-07   |
| 25  | Digital Multi Meter | 34401A    | US36062141    | HP           | Apr-07   |
| 26  | DC Power Supply     | 6622A     | 3448A03079    | HP           | Oct-07   |
| 27  | Power Meter         | EPM-441A  | GB32481702    | HP           | Apr-07   |
| 28  | Power Sensor        | 8481A     | 2702A64048    | HP           | Apr-07   |
| 29  | Audio Analyzer      | 8903B     | 3729A18901    | HP           | Nov-07   |
| 30  | Modulation Analyzer | 8901B     | 3749A05878    | HP           | Nov-07   |
| 31  | Temp/Humi Chamber   | YJ-500    | LTAS06041     | 진영테크         | Oct-07   |
| 32  | Signal Generator    | 8371B     | US34490456    | HP           | Mar-08   |
| 33  | Signal Generator    | 8648C     | 3623A02597    | HP           | Mar-08   |
| 34  | Frequency Counter   | 5342A     | 2826A12411    | HP           | Mar-08   |
| -   | -                   | -         | -             | -            | -        |