

FCC PART 15.407(H) Bay Area DYNAMIC FREQUENCY SELECTION TEST AND MEASUREMENT REPORT

For

Sensity Systems, Inc.

480 Oakmead Parkway, Sunnyvale, CA 94085, USA

FCC ID: SXNLSNM-0002-X

Report Type: Original Report		Product Type: Light Sensory Module		
Prepared By:	Chen Ge Test Engineer	Chen Ge		
Report Number:	R1404241-FC	C DFS		
Report Date:	2014-07-11			
Reviewed By:	Ivan Cao <u>RF Lead</u> Bay Area Com 1274 Anvilwo Sunnyvale, CA Tel: (408) 732 Fax: (408) 732	A 94089, USA -9162		

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. This report **must not** be used by the customer to claim product certification, approval, or endorsement by A2LA* or any agency of the Federal Government.

TABLE OF CONTENTS

1	GEI	NERAL DESCRIPTION	4
	1.1 1.2 1.3 1.4 1.5 1.6	Product Description for Equipment under Test (EUT) Mechanical Description of EUT Objective Related Submittal(s)/Grant(s) Test Methodology Test Facility	4 4 4 4
2	EUT	۲ TESTY CONFIGURATION	7
	2.1 2.2 2.3 2.4 2.5	JUSTIFICATION	7 7 7 7
3		AMARY OF TEST RESULTS	
4	APF	PLICABLE STANDARDS	9
	4.1 4.2 4.3 4.4 4.5 4.6	DFS REQUIREMENTS	11 12 12 14
5	TES	T RESULTS	15
	5.1 5.2 5.3 5.4	DESCRIPTION OF EUT TEST EQUIPMENT LIST AND DETAILS RADAR WAVEFORM CALIBRATION TEST ENVIRONMENTAL CONDITIONS	15 15 16
6	CHA	ANNEL MOVE TIME & CHANNEL CLOSING TRANSMISSION TIME	23
	6.1 6.2	TEST PROCEDURE	
7	NO	N-OCCUPANCY PERIOD	36
	7.1 7.2	TEST PROCEDURE	
8	EXI	HBIT A – TEST SETUP PHOTOGRAPHS	39
	8.1	SETUP VIEW	39
9	EXI	HIBIT C – EUT PHOTOGRAPHS	40
	9.1 9.2 9.3 9.4 9.5	MODULE WITH ENCLOSURE AND THE EXTERNAL ANTENNA VIEW	40 41 41 42
	9.6	ANTENNA 2 VIEW (2.4 GHz)	
	9.7 9.8 9.9	EUT – OPEN CASE VIEW	43

DOCUMENT REVISION HISTORY

Revision Number Report Number		Description of Revision	Date of Revision
0	0 R1404241-FCC DFS		2014-07-11

1 General Description

1.1 Product Description for Equipment under Test (EUT)

This test and measurement report was prepared on behalf of *Sensity Systems, Inc.*, and their product model: *LSNM-0002-X* with *FCC ID: SXNLSNM-0002-X* or the "EUT" as referred to in this report. The EUT is a light sensory module operating in the 2.4, 5.2, 5.3 and 5.6 GHz bands.

1.2 Mechanical Description of EUT

The EUT measures approximately 14cm (L) x 10 cm (W) x 3.8 cm (H) and weighs 230g.

The test data gathered are from typical production sample, serial number: LSNM-0002-X provided by the manufacturer.

1.3 Objective

This report is prepared on behalf of *Sensity Systems, Inc.* in accordance with FCC CFR47 §15.407 (h) and FCC 06-96 Appendix.

The objective is to determine compliance with FCC rules for DFS Detection Threshold, Channel Availability Check Time, Uniform Spreading U-NII Detection Bandwidth, Channel Closing Transmission Time, and Channel Move time

1.4 Related Submittal(s)/Grant(s)

N/A

1.5 Test Methodology

FCC CFR 47 Part2, Part15.407 (h)

FCC 06-96 Appendix "COMPLIANCE MEASUREMENT PROCEDURES FOR UNLICENSED NATIONAL INFORMATION INFRASTRUCTURE DEVICES OPERATING IN THE 5250-5350 MHz AND 5470-5725 MHz BANDS INCORPORATING DYNAMIC FREQUENCY SELECTION"

1.6 Test Facility

Bay Area Compliance Laboratories Corp. (BACL) is:

1- An independent Commercial Test Laboratory accredited to **ISO 17025:2005** by **A2LA**, in the fields of: Electromagnetic Compatibility & Telecommunications covering Emissions, Immunity, Radio, RF Exposure, Safety and Telecom. This includes NEBS (Network Equipment Building System), Wireless RF, Telecommunications Terminal Equipment (TTE); Network Equipment; Information Technology Equipment (ITE); Medical Electrical Equipment; Industrial, Commercial, and Medical Test Equipment; Professional Audio and Video Equipment; Electronic (Digital) Products; Industrial and Scientific Instruments; Cabled Distribution Systems and Energy Efficiency Lighting.

2- An ENERGY STAR Recognized Laboratory, for the LM80 Testing, a wide variety of Luminaires and Computers.

3- A NIST Designated Phase-I and Phase-II CAB including: ACMA (Australian Communication and Media Authority), BSMI (Bureau of Standards, Metrology and Inspection of Taiwan), IDA (Infocomm Development Authority of Singapore), IC (Industry Canada), Korea (Ministry of Communications Radio Research Laboratory), NCC (Formerly DGT; Directorate General of Telecommunication of Chinese Taipei) OFTA (Office of the Telecommunications Authority of Hong Kong), Vietnam, VCCI - Voluntary Control Council for Interference of Japan and a designated EU CAB (Conformity Assessment Body) (Notified Body) for the EMC and R&TTE Directives.

4 - A Product Certification Body accredited to ISO Guide 65:1996 by A2LA to certify:

1- Unlicensed, Licensed radio frequency devices and Telephone Terminal Equipment for the FCC. Scope A1, A2, A3, A4, B1, B2, B3, B4 & C.

2. Radio Standards Specifications (RSS) in the Category I Equipment Standards List and All Broadcasting Technical Standards (BETS) in Category I Equipment Standards List for Industry Canada.

3. Radio Communication Equipment for Singapore.

4. Radio Equipment Specifications, GMDSS Marine Radio Equipment Specifications, and Fixed Network Equipment Specifications for Hong Kong.

5. Japan MIC Telecommunication Business Law (A1, A2) and Radio Law (B1, B2 and B3).

6. Audio/Video, Battery Charging Systems, Computers, Displays, Enterprise Servers, Imaging Equipment, Set-Top Boxes, Telephony, Televisions, Ceiling Fans, CFLs (including GU24s), Decorative Light Strings, Integral LED Lamps, Luminaires, Residential Ventilating Fans.

The test site used by BACL Corp. to collect radiated and conducted emissions measurement data is located at its facility in Sunnyvale, California, USA.

The test site at BACL Corp. has been fully described in reports submitted to the Federal Communication Commission (FCC) and Voluntary Control Council for Interference (VCCI). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on February 11 and December 10, 1997, and Article 8 of the VCCI regulations on December 25, 1997. The test site also complies with the test methods and procedures set forth in CISPR 22:2008 §10.4 for measurements below 1 GHz and §10.6 for measurements above 1 GHz, as well as ANSI C63.4-2009, ANSI C63.4-2009, TIA/EIA-603 & CISPR 24:2010.

The Federal Communications Commission and Voluntary Control Council for Interference have the reports on file and they are listed under FCC registration number: 90464 and VCCI Registration No.: A-0027. The test site has been approved by the FCC and VCCI for public use and is listed in the FCC Public Access Link (PAL) database.

Additionally, BACL Corp. is an American Association for Laboratory Accreditation (A2LA) accredited laboratory (Lab Code 3297-02). The current scope of accreditations can be found at

http://www.a2la.org/scopepdf/3297-02.pdf?CFID=1132286&CFTOKEN=e42a3240dac3f6ba-6DE17DCB-1851-9E57-477422F667031258&jsessionid=8430d44f1f47cf2996124343c704b367816b

2 EUT Testy Configuration

2.1 Justification

The EUT was configured for testing according to FCC Part 15.407(H) Standard.

2.2 EUT Exercise Software

N/A

2.3 EUT Internal Configuration Details

Manufacturer	Description	Model	Serial Number
Sensity Systems	Main Board	LF1B	ASI86386

2.4 External I/O Cabling List and AC Cord

Cable Description	Length (M)	From	То
RS45 x 2	< 1.0	Laptop	Router

2.5 Local Support Equipment

Manufacturer	Description	Model	FCC ID
Ruckus Wireless	Router	ZF7372	S9GZF7372
Lenovo	Laptop	X230	R9-VWWFK12/12

3 Summary of Test Results

The following result table represents the list of measurements required under the CFR47 §47 Part15.407 (h) and FCC 06-96.

Items	Description of Test	Results
Detection Bandwidth	UNII Detection Bandwidth	N/A
Darfarmonaa	Initial Channel Availability Check Time (CAC)	N/A
Performance Requirements Check —	Radar Burst at the Beginning of the CAC	N/A
	Radar Burst at the End of the CAC	N/A
	Channel Move Time	Compliant
In-Service Monitoring	Channel Closing Transmission Time	Compliant
	Non-Occupancy Period	Compliant
Radar Detection	Statistical Performance Check	N/A

Note: N/A EUT is a client device without the radar detection function.

4 Applicable Standards

4.1 DFS Requirements

FCC CFR47 §15.407 (h) and FCC 06-96 Appendix.

Table 1: Applicability of DFS requirements prior to use of a channel

	Operational Mode			
Requirement	Master	Client (Without radar detection)	Client (With radar detection)	
Non-Occupancy Period	Yes	Not Required	Yes	
DFS Detection Threshold	Yes	Not Required	Yes	
Channel Availability Check Time	Yes	Not Required	Not Required	
Uniform Spreading	Yes	Not Required	Not Required	
U-NII Detection Bandwidth	Yes	Not Required	Yes	

Table 2: Applicability of DFS requirements during normal operation

Doguinement	Operational Mode			
Requirement	Master	Client (Without DFS)	Client (With DFS)	
DFS Detection Threshold	Yes	Not Required	Yes	
Channel Closing Transmission Time	Yes	Yes	Yes	
Channel Move Time	Yes	Yes	Yes	

Table 3: Interference Threshold values, Master or Client incorporating In-Service Monitoring

Maximum Transmit Power	Value (See Notes 1 and 2)	
\geq 200 milliwatt	-64 dBm	
< 200 milliwatt	-62 dBm	
Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna. Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.		

Table 4: DFS Response requirement values

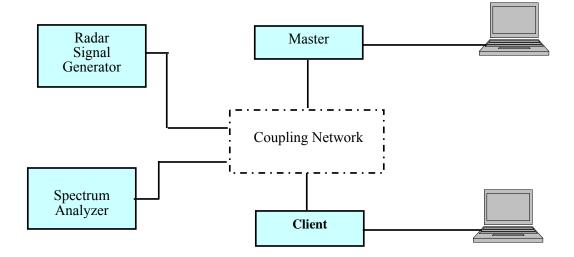
Parameter	Value	
Non-occupancy period	Minimum 30 minutes	
Channel Availability Check Time	60 seconds	
Channel Move Time	10 seconds See Note 1.	
Channel Closing Transmission Time	200 milliseconds + an aggregate of 60 milliseconds over remaining 10 second period. See Notes 1 and 2.	
U-NII Detection Bandwidth Minimum 80% of the UNII 99% transmission power bandwidth. See Note 3.		
 Note 1: The instant that the <i>Channel Move Time</i> and the begins is as follows: For the Short Pulse Radar Test Signals this For the Frequency Hopping radar Test Sign <i>Burst</i> generated. For the Long Pulse Radar Test Signal this i defining the <i>Radar Waveform</i>. Note 2: The <i>Channel Closing Transmission Time</i> is conthe beginning of the <i>Channel Move Time</i> pulse signals required to facilitate a <i>Channel</i> move (at the remainder of the 10 second period. The agg not count quiet periods in between transmission for the detection frequency step the minimum percentage of detection for the detection with no data traffic. 	instant is the end of the <i>Burst</i> . hal, this instant is the end of the last radar instant is the end of the 12 second period mprised of 200 milliseconds starting at any additional intermittent control an aggregate of 60 milliseconds) during gregate duration of control signals will ns. on test, radar type 1 is used and for each	

Radar Type	Pulse Width (Microseconds)	PRI (Microseconds)	Pulses	Minimum Percentage of Successful Detection	Minimum Number of Trials
1	1	1428	18	60%	30
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
	Aggregate (Ra	80%	120		

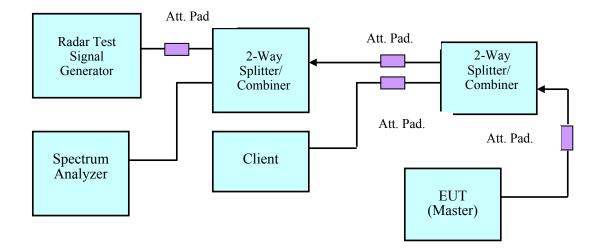
 Table 5: Short Pulse Radar Test Waveforms

Table 6: Long Pulse Radar Test Signal

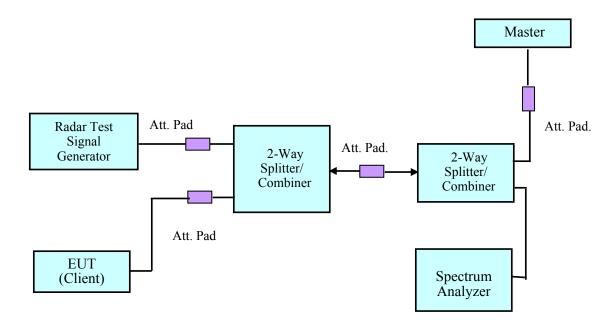
Radar Type	Bursts	Chirp Width (MHz)	PRI (usec)	Number of Pulses per Burst	Number of Bursts	Minimum Percentage of Successful Detection	Minimum Number of Trials
5	50-100	5-20	1000-2000	1-3	8-20	80%	30

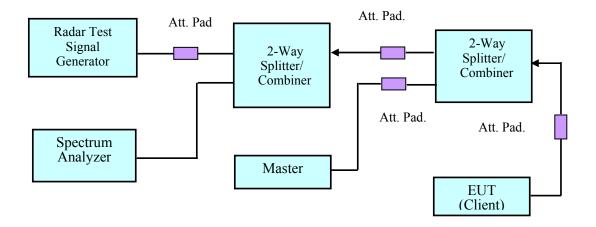

 Table 7: Frequency Hopping Radar Test Signal

Radar Type	Pulse Width (usec)	PRI (usec)	Pulses per Hop	Hopping Rate (kHz)	Hopping Sequence Length (msec)	Minimum Percentage of Successful Detection	Minimum Number of Trials
6	1	333	9	0.333	300	70%	30

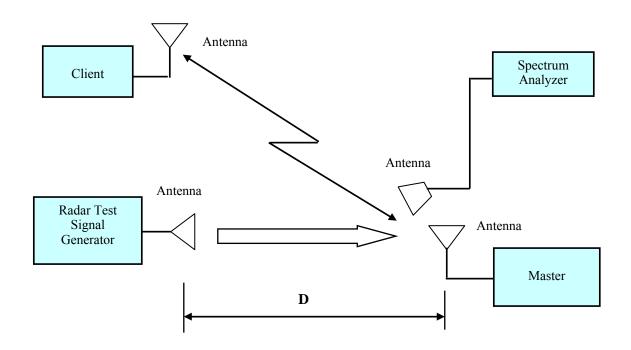

4.2 DFS Measurement System

BACL DFS measurement system consists of two subsystems: (1) The radar signal generating subsystem and (2) the traffic monitoring subsystem.


4.3 System Block Diagram


4.4 Conducted Method

Setup for Master with injection at the Master



Setup for Client with injection at the Master

Setup for Client with injection at the Client

4.5 Radiated Method

4.6 Test Procedure

A spectrum analyzer is used as a monitor verifies that the EUT status including Channel Closing Transmission Time and Channel Move Time, and does not transmit on a Channel during the Non-Occupancy Period after the diction and Channel move. It is also used to monitor EUT transmissions during the Channel Availability Check Time.

5 Test Results

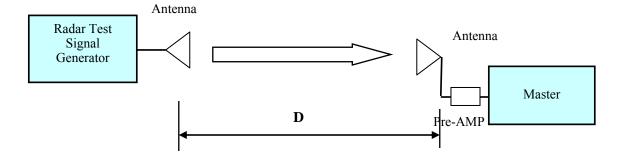
5.1 Description of EUT

The EUT operates in 5230-5350 MHz and 5470-5725 MHz range.

The rated output power of master is >23 dBm (EIRP), Therefore the required interference threshold level is -62 dBm, the required radiated threshold at antenna port is -64dBm.

The calibrated radiated DFS detection threshold level is set to -64 dBm.

WLAN traffic is generated by streaming the video file TestFile.mpg, this file is used by IP and Frame based systems for loading the test channel during the In-service compliance testing of the U-NII device. The file is streamed from the Access Point to the Client in full motion video mode using the media player with the V2.61 Codec package.


The EUT will not work on 5600-5650MHz band.

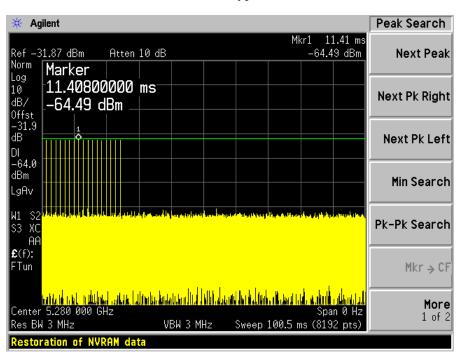
5.2 Test Equipment List and Details

Manufacturer	Equipment Description	Model Number	S/N	Calibration Date	
National Instruments	NI PXI-1042 8-Slot chassis	PXI-1042	V08X01EE1	N/A	
National Instruments	Arbitrary Waveform Generator	PXI-5421	N/A	N/A	
National Instruments	RF Upconverter	PXI-5610	N/A	N/A	
ASCOR	Upconverter	AS-7206	N/A	N/A	
Agilent	Spectrum Analyzer	E4440A	MY44303352	2013-10-16	
A.R.A.	Antenna Horn	DRG-118/A	1132	2014-01-29	
EMCO	Antenna Horn	3115	9511-4627	2013-10-17	
Mini-Circuits	Splitter/Combiner	2FSC-2-10G	0349	N/A	
Narda	Splitter/Combiner	4326B-2	03514	N/A	
Midwest	Attenuator	290-30	N/A	N/A	
Mini-Circuits	Attenuator	BW-S30W2	N/A	N/A	
HP	Pre-Amplifier	8449B	3147A00400	2014-02-04	

Statement of Traceability: BACL Corp. attests that all calibrations have been performed per the A2LA requirements, traceable to the NIST.

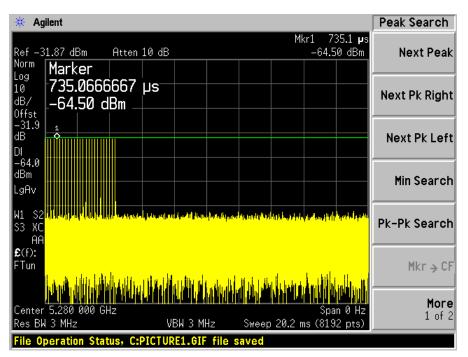
5.3 Radar Waveform Calibration

Radiated Calibration Setup Block Diagram

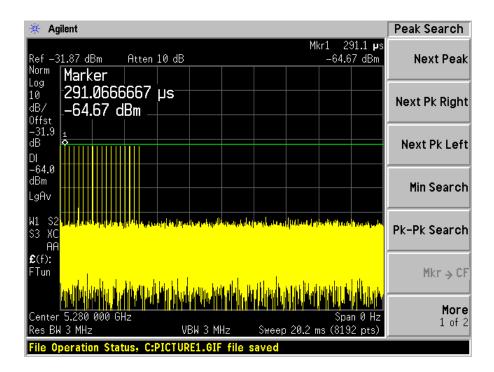

5.4 Test Environmental Conditions

Temperature:	22 °C
Relative Humidity:	43 %
ATM Pressure:	102.5 kpa

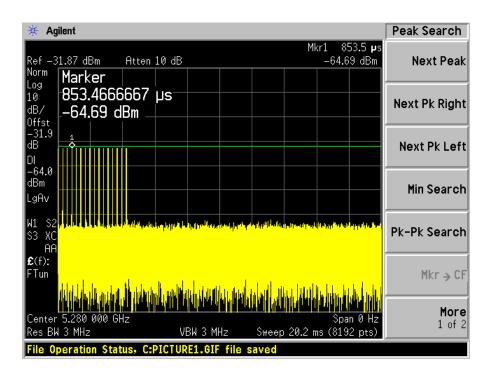
Testing performed by Chen Ge on 2014-06-17 at DFS testing site.

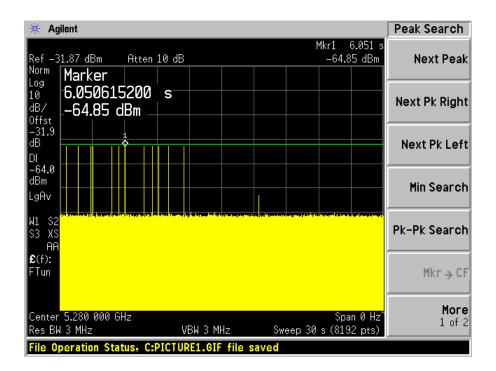

Plots of Radar Waveforms

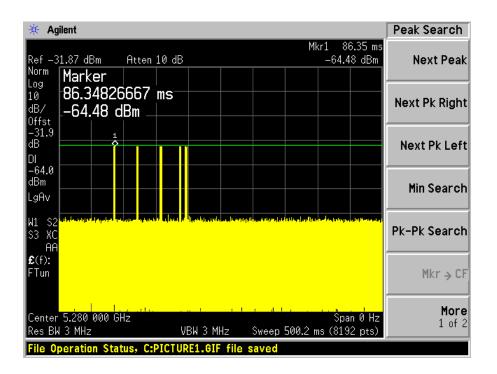
5280 MHz

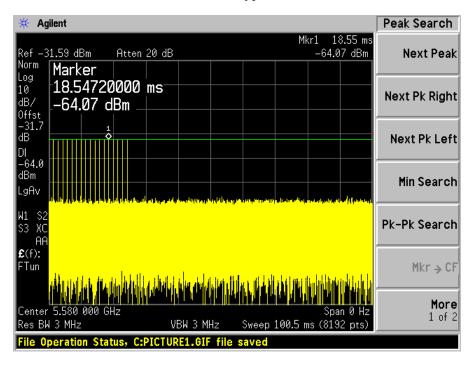


Radar Type 1

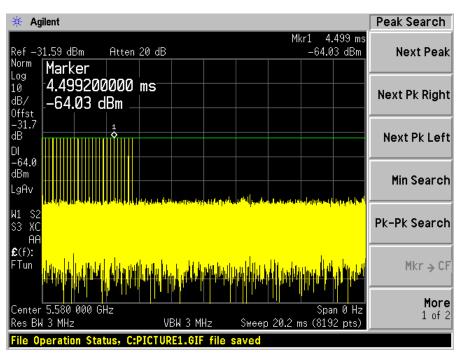

Radar Type 2



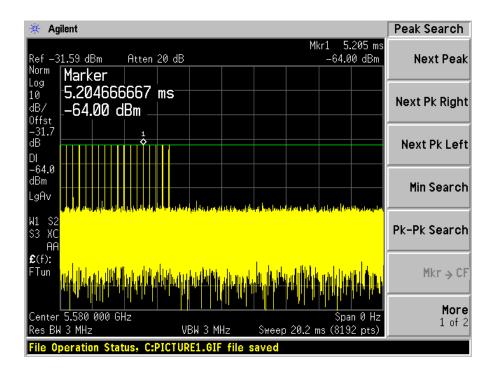

Radar Type 4

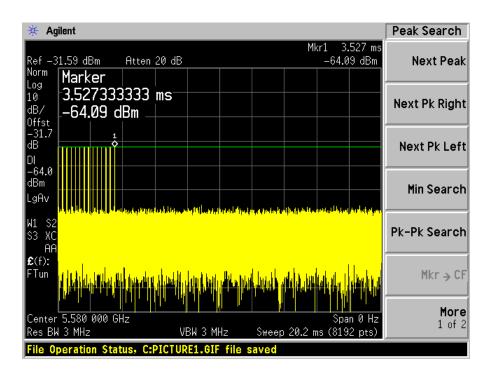


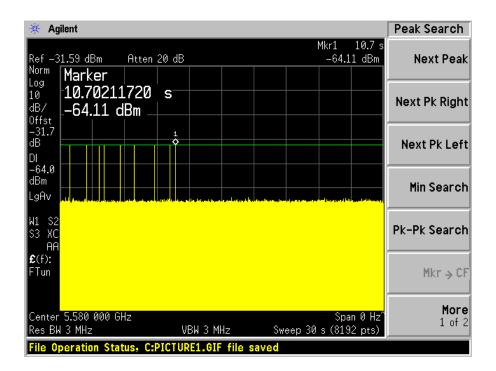
Radar Type 6

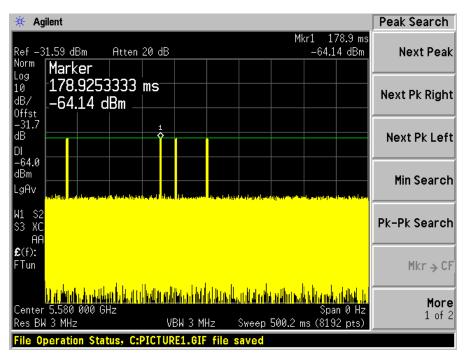


5580 MHz


Radar Type 1


Radar Type 2




Radar Type 4

Radar Type 6

6 Channel Move Time & Channel Closing Transmission Time

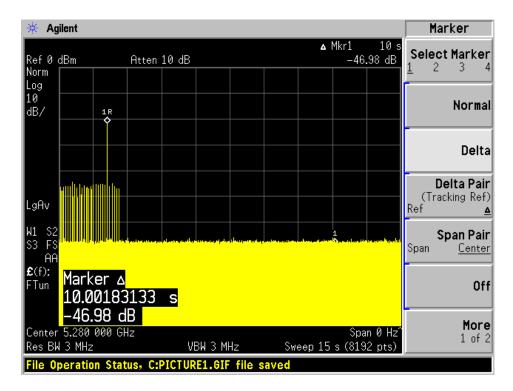
6.1 Test Procedure

Perform one of the type1 to type 4 short pulse radar waveform, BACL use type 1 radar signal, repeat using a long pulse radar type5 waveform.

The aggregate channel closing transmission time is calculated as follows:

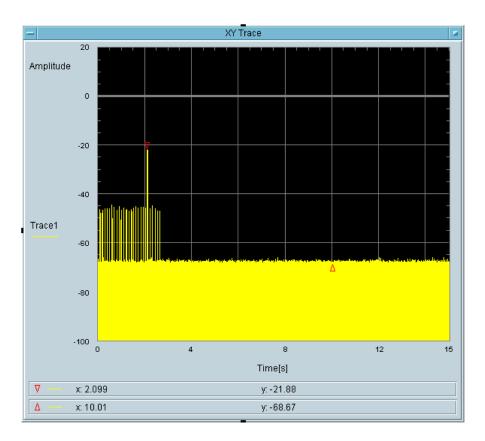
Aggregate Transmission Time = N * Dwell Time

N is the number of spectrum analyzer bins showing a device transmission Dwell Time is the dwell time per bin (i.e. Dwell Time = S/B, S is the sweep time and B is the number of bin, i.e. 8192)


6.2 Test Results

Frequency (MHz)	Bandwidth (MHz)	Radar Type	Results
5280	20	Type 1	Compliant
5280	20	Type 5	Compliant
5580	20	Type 1	Compliant
5580	20	Type 5	Compliant
5270	40	Type 1	Compliant
5270	40	Type 5	Compliant
5550	40	Type 1	Compliant
5550	40	Type 5	Compliant

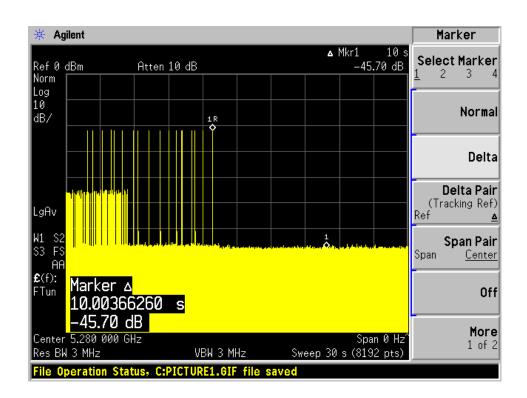
Please refer to the following tables and plots.


5280 MHz, 20 MHz Bandwidth

Type 1 radar channel move time result:

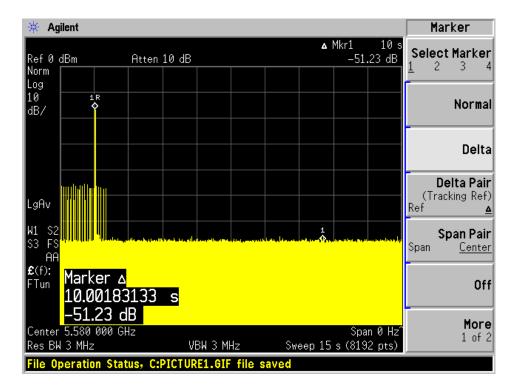
Type1 radar channel closing transmission time result:

		Channel Closing Transmission Time				Channel Move Time	
Frequency (MHz)	Radar Type	Test	Limit	Aggregate Transmission Time	Limit	Test	Limit
5280	1	< 200 ms	200 ms	43.95 ms	60 ms	< 10 s	10 s

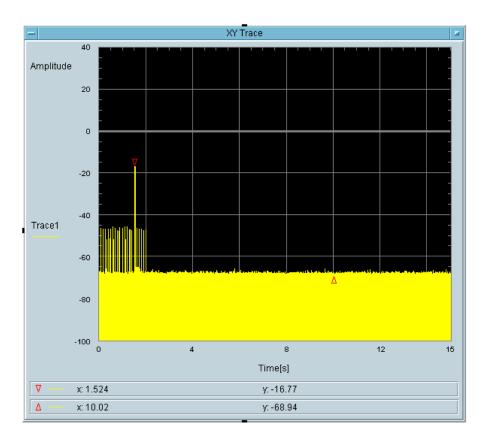


— Total On Time After Delay [s]	
43.95m	

Type 5 radar channel move time result:


The traffic ceases at the end of the radar waveform, therefore it compliance with the Channel move time as 10 seconds after the end of the radar waveform

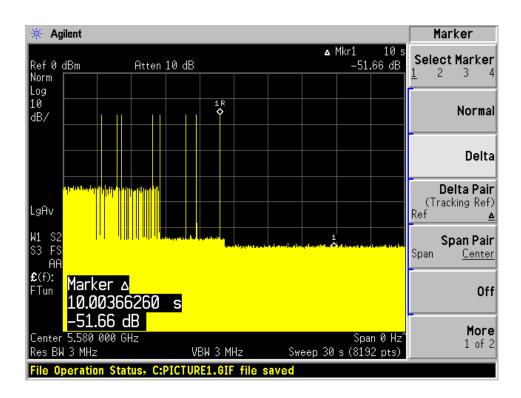
	D 1	Channel Closing Transmission Time				Channel Move Time	
Frequency (MHz)	Radar Type	Test	Limit	Aggregate Transmission Time	Transmission Limit		Limit
5280	5	< 200 ms	200 ms	0 ms	60 ms	< 10 s	10 s


5580 MHz Bandwidth 20 MHz

Type 1 radar channel move time result:

Type 1 radar channel closing transmission time result:

		Channel Closing Transmission Time				Channel Move Time	
Frequency (MHz)	Radar Type	Test	Limit	Aggregate Transmission Time	Limit	Test	Limit
5580	1	< 200 ms	200 ms	5.493 ms	60 ms	< 10 s	10 s

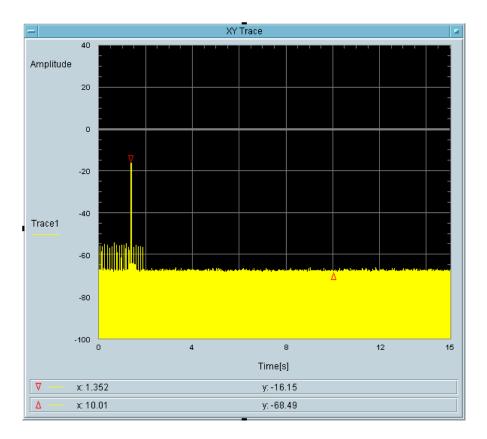


— Total On Time	After Delay [s] 🛛 🛥	ł
5.4	93m	

Type 5 radar channel move time result:

The traffic ceases at the end of the radar waveform, therefore it compliance with the Channel move time as 10 seconds after the end of the radar waveform

		Channel Closing Transmission Time				Channel Move Time	
Frequency (MHz)	Radar Type	Test	Test Limit Aggregate Time		Limit	Test	Limit
5580	5	< 200 ms	200 ms	0 ms	60 ms	< 10 s	10 s

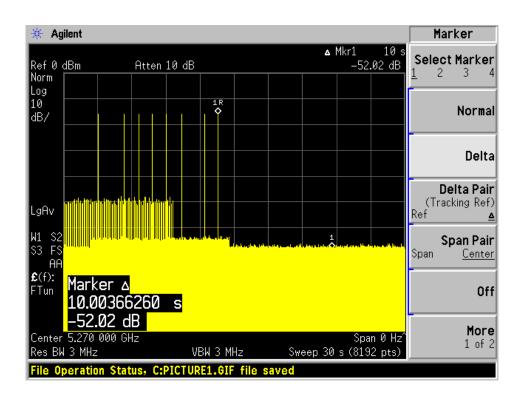

5270 MHz, 40 MHz Bandwidth

Type 1 radar channel move time result:

🔆 Agilent Marker ▲ Mkr1 10 s Select Marker Ref 0 dBm Atten 10 dB -52.31 dB 2 3 1 4 Norm Log 10 dB/ 1R Normal Delta Delta Pair (Tracking Ref) Ref LgAv ₩1 S3 S2 Span Pair FS Span <u>Center</u> ĤΑ **£**(f): Marker ∆ 10.00183133 s FTun Off -52.31 dB More Center **5.**270 000 GHz Span 0 Hz[^] Sweep 15 s (8192 pts) 1 of 2 Res BW 3 MHz VBW 3 MHz File Operation Status, C:PICTURE1.GIF file saved

Type1 radar	channel	closing	transmission	time result:

	Trequency Radar (MHz) Type	C	hannel Closii	Channel Move Time			
		Test	Limit	Aggregate Transmission Time	Limit	Test	Limit
5270	1	< 200 ms	200 ms	7.324 ms	60 ms	< 10 s	10 s

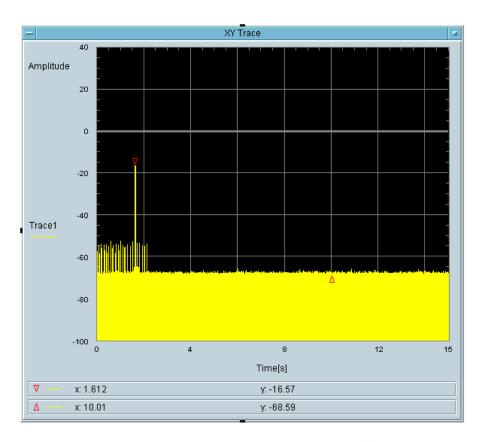


— Total On Time After Delay [s]	
7.324m	

Type 5 radar channel move time result:

The traffic ceases at the end of the radar waveform, therefore it compliance with the Channel move time as 10 seconds after the end of the radar waveform

		C	Channel Closing Transmission Time				Channel Move Time	
Frequency (MHz)	Radar Type	Test	Limit	Aggregate Transmission Time	Limit	Test	Limit	
5270	5	< 200 ms	200 ms	0 ms	60 ms	< 10 s	10 s	

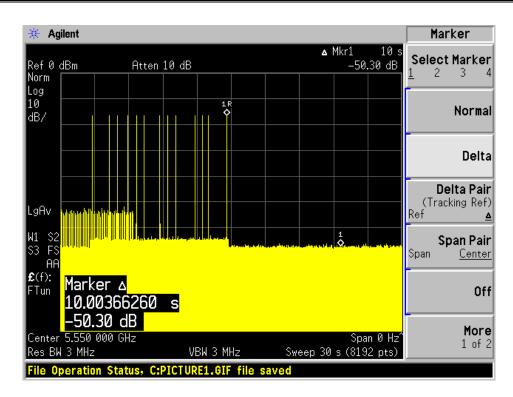

5550 MHz, 40 MHz Bandwidth

Type 1 radar channel move time result:

🔆 Agilent					Marker	
Ref 0 dBm	Atten 10	dB	۵	Mkr1 10 s -50.76 dB	Select Marker	
Norm Log					± = • ·	
10 1R dB∕ ♦					Normal	
					Delta	
					Delta Pair	
LgAv Indiana					(Tracking Ref) Ref <u>▲</u>	
W1 S2				aph	Span Pair Span Center	
AA AKO:						
£(f): FTun Marke 10.00	r A <mark></mark>				Off	
-50.7					- More	
Center 5.550 00 Res BW 3 MHz	00 GHz	VBW 3 MHz	Sweep 15	Span 0 Hz^ s (8192 pts)	1 of 2	
File Operation	File Operation Status, C:PICTURE1.GIF file saved					

Type1 radar channel closing transmission time result:

		C	hannel Closii	Channel Move Time			
Frequency (MHz)	Radar Type	Test Limit		Aggregate Transmission Time	Limit	Test	Limit
5550	1	< 200 ms	200 ms	5.493 ms	60 ms	< 10 s	10 s



— Total On Time After Delay [s]	
5.493m	

Type 5 radar channel move time result:

The traffic ceases at the end of the radar waveform, therefore it compliance with the Channel move time as 10 seconds after the end of the radar waveform

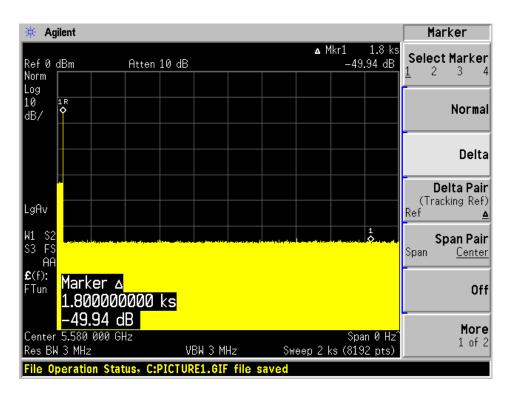
		Channel Closing Transmission Time				Channel Move Time	
Frequency (MHz)	Frequency Radar (MHz) Type	Test	Limit	Aggregate Transmission Time	Limit	Test	Limit
5550	5	< 200 ms	200 ms	0 ms	60 ms	< 10 s	10 s

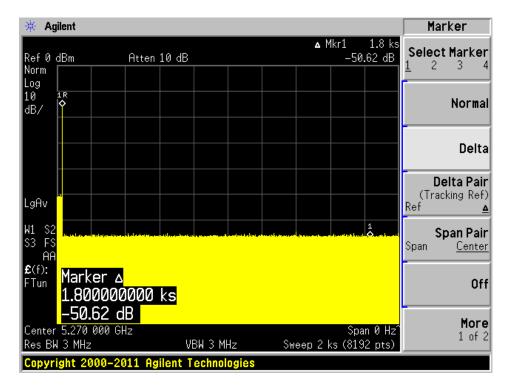
7 Non-Occupancy Period

7.1 Test Procedure

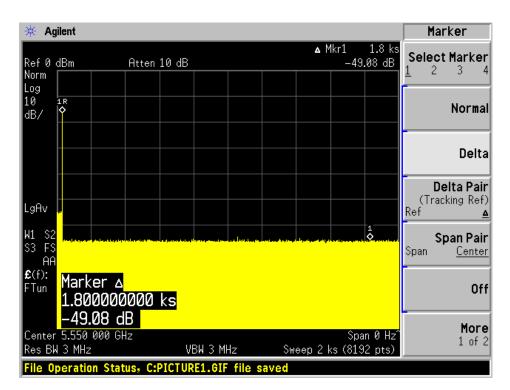
Measure the EUT for more than 30 minutes following the channel close/move time to very that the EUT does not resume any transmissions on this channel. Provide one plot to demonstrate no transmission on the channel for the non-occupancy period (30 minutes observation time)

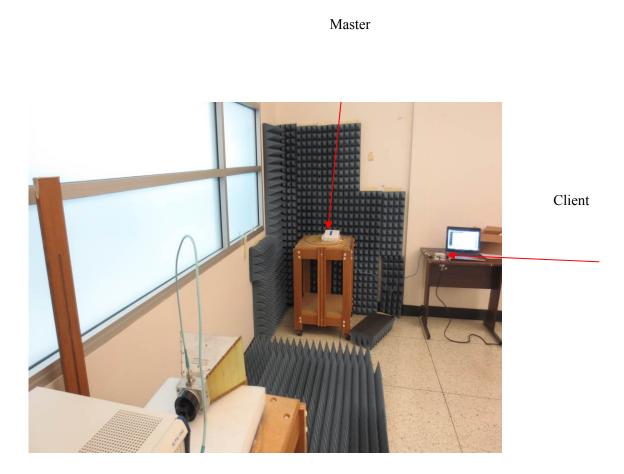
7.2 Test Results


Frequency (MHz)	Bandwidth (MHz)	Spectrum Analyzer Display
5280	20	No transmission within 30 minutes
5580	20	No transmission within 30 minutes
5270	40	No transmission within 30 minutes
5550	40	No transmission within 30 minutes

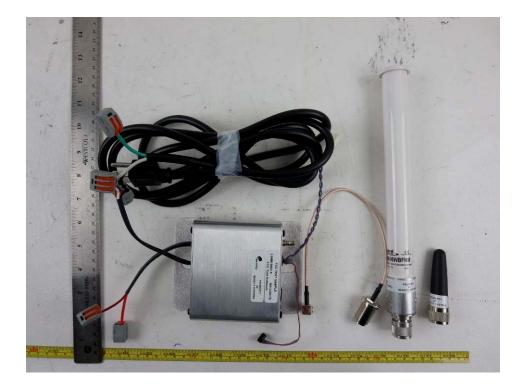

Please refer to the following plots.

5280 MHz, 20 MHz Bandwidth


5580 MHz, 20 MHz Bandwidth


5270 MHz, 40 MHz Bandwidth

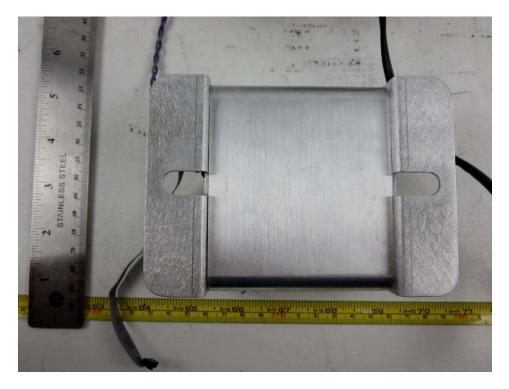
5550 MHz, 40 MHz Bandwidth



8 Exhibit A – Test Setup Photographs

8.1 Setup View

9 Exhibit C – EUT Photographs



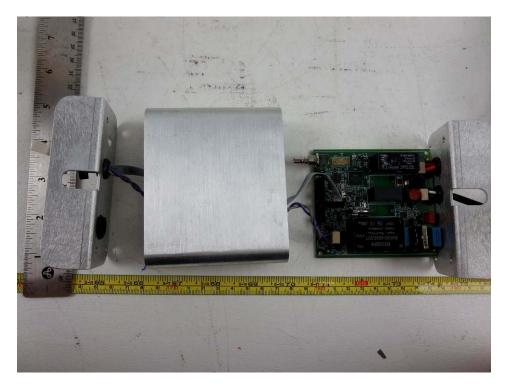
9.1 Module with Enclosure and the External Antenna View

9.2 EUT - Top View

9.3 EUT - Bottom View

9.4 EUT - Side View

9.5 Antenna 1 View (5 GHz)


9.6 Antenna 2 View (2.4 GHz)


Report Number: R1404241-FCC DFS

FCC 15.407(H) DFS Test Report

9.7 EUT – Open Case View

9.8 Sensor Board Component Top View

9.9 Sensor Board Component Bottom View

--- END OF REPORT ---