

427 West 12800 South
Draper, UT 84020

Test Report Certification

FCC ID	SWX-U7PROW
ISED ID	6545A-U7PROW
Equipment Under Test	U7-Pro-Wall
Test Report Serial Number	TR8625_01
Date of Test	26-27, 30 October 2023
Report Issue Date	13 November 2023

Test Specification	Applicant
47 CFR FCC Part 15, Subpart E	Ubiquiti Inc. 685 Third Avenue New York, NY 10017 U.S.A.

NVLAP LAB CODE 600241-0

Certification of Engineering Report

This report has been prepared by Unified Compliance Laboratory (UCL) to document compliance of the device described below with the requirement of Federal Communication Commissions (FCC) Part 15, Subpart E. This report may be reproduced in full. Partial reproduction of this report may only be made with the written consent of the laboratory. The results in this report apply only to the sample tested.

Applicant	Ubiquiti Inc.
Manufacturer	Ubiquiti Inc.
Brand Name	UBIQUITI
Model Number	U7-Pro-Wall
FCC ID	SWX-U7PROW
ISED ID	6545A-U7PROW

On this 13th day of November 2023, I individually and for Unified Compliance Laboratory certify that the statements made in this engineering report are true, complete and correct to the best of my knowledge and are made in good faith.

Although NVLAP has accredited the Unified Compliance Laboratory testing facilities, this report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST or any agency of the U.S. federal government.

Unified Compliance Laboratory

Written By: Kimberly Rodriguez

Reviewed By: Richard L. Winter

Revision History		
Revision	Description	Date
01	Original Report Release	13 November 2023

Table of Contents

1	Client Information.....	5
1.1	Applicant.....	5
1.2	Manufacturer.....	5
2	Equipment Under Test (EUT).....	6
2.1	Identification of EUT	6
2.2	Description of EUT	6
2.3	EUT and Support Equipment.....	6
2.4	Interface Ports on EUT	7
2.5	Operating Environment.....	7
2.6	Operating Modes.....	7
2.7	EUT Exercise Software.....	7
2.8	Block Diagram of Test Configuration	8
2.9	Modification Incorporated/Special Accessories on EUT	8
2.10	Deviation, Opinions Additional Information or Interpretations from Test Standard.....	8
3	Test Specification, Method and Procedures.....	9
3.1	Test Specification.....	9
3.2	Methods & Procedures.....	9
3.3	FCC Part 15, Subpart E.....	9
3.4	Results.....	9
3.5	Test Location	10
4	Test Equipment	11
4.1	Conducted Emissions at Mains Ports.....	11
4.2	Direct Connect at the Antenna Port Tests.....	11
4.3	Radiated Emissions.....	12
4.4	Equipment Calibration	13
4.5	Measurement Uncertainty	13
5	Test Results.....	14
5.1	§15.203 Antenna Requirements	14
5.2	Conducted Emissions at Mains Ports Data	14
5.3	§15.403(i) 26 dB Emissions Bandwidth	16
5.4	§15.407(a)(3) Maximum Average Output Power	17
5.5	§15.407(b)(7) Spurious Emissions.....	18
5.6	§15.407(a) Maximum Power Spectral Density	22

1 Client Information

1.1 Applicant

Company	Ubiquiti Inc. 685 Third Avenue New York, NY 10017 U.S.A.
Contact Name	Alex Macon
Title	Compliance

1.2 Manufacturer

Company	Ubiquiti Inc. 685 Third Avenue New York, NY 10017 U.S.A.
Contact Name	Alex Macon
Title	Compliance

2 Equipment Under Test (EUT)

2.1 Identification of EUT

Brand Name	UBIQUITI
Model Number	U7-Pro-Wall
Serial Number	05BF1C
Dimensions (cm)	15.0 x 10.3 x 3.6

2.2 Description of EUT

The U7-Pro-Wall is WiFi 7 access point that represents the next generation of competitively priced, prosumer wireless technology for home and enterprise users. The U7-Pro-Wall provides high aggregate throughput speeds. The U7-Pro-Wall transmit in the 2.4 GHz, 5 GHz and 6 GHz frequency bands and uses integrated antennas. The U7-Pro-Wall is powered from an 802.3at power adapter.

The table below show the channels used within the different modulation bandwidths.

Band	WiFi Mode	Modulation Bandwidth	Modulation Type	Frequency (MHz)
UNII-3	a	20 MHz	OFDM	5745, 5775, 5825
	ax	20 MHz	HE	5745, 5775, 5825
	ax	40 MHz	HE	5755, 5775, 5795
	ax	80 MHz	HE	5775

This report covers the circuitry of the device subject to FCC Part 15, Subpart E. The circuitry of the device subject to FCC Part 15 Subpart B was found to be compliant and is covered under a separate Unified Compliance Laboratory test report.

2.3 EUT and Support Equipment

The EUT and support equipment used during the test are listed below.

Brand Name Model Number Serial Number	Description	Name of Interface Ports / Interface Cables
BN: UBIQUITI MN: U7-Pro-Wall (Note 1) SN: 05BF1C	WiFi Access Point	See Section 2.4
BN: UBIQUITI MN: U-POE-at SN: N/A	PoE Power Adapter	Unshielded Cat 5e cable/1 meters

BN: Dell MN: XPS 13 SN: N/A	Laptop Personal Computer	Unshielded Cat 5e cable/1 meters
-----------------------------------	--------------------------	----------------------------------

Notes: (1) EUT

(2) Interface port connected to EUT (See Section 2.4)

The support equipment listed above was not modified in order to achieve compliance with this standard.

2.4 Interface Ports on EUT

Name of Ports	No. of Ports Fitted to EUT	Cable Description/Length
AC Mains	1	3 conductor power cord/80 cm
POE (POE Injector)	1	Unshielded Cat 5e cable/8 meters
LAN (POE Injector)	1	Unshielded Cat 5e cable/1 meters

2.5 Operating Environment

Power Supply	120 Volts AC Mains to 48 Volts PoE
AC Mains Frequency	60 Hz
Temperature	21.9 – 23.8 C
Humidity	16.9 – 28.9 %
Barometric Pressure	1012 mBar

2.6 Operating Modes

The U7-Pro-Wall was tested using test software in order to enable a constant transmission. The measurements within this report are corrected to reference a 100% duty cycle. All emission modes of 802.11 a/ax were investigated.

2.7 EUT Exercise Software

EUT firmware version 1.0 was used to operate the transmitter using a constant transmit mode.

2.8 Block Diagram of Test Configuration

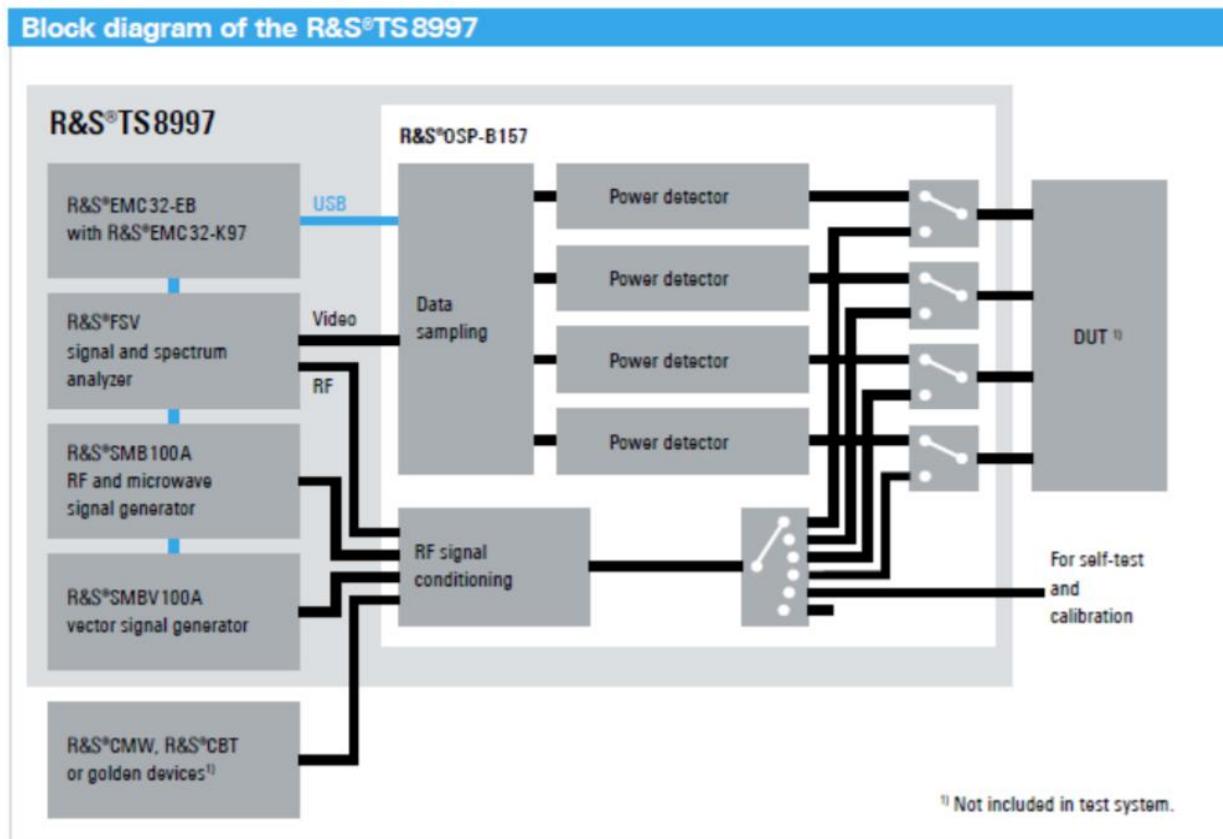


Diagram 1: Test Configuration Block Diagram

2.9 Modification Incorporated/Special Accessories on EUT

There were no modifications made to the EUT during testing to comply with the specification.

2.10 Deviation, Opinions Additional Information or Interpretations from Test Standard

There were no deviations, opinions, additional information or interpretations from the test specification.

3 Test Specification, Method and Procedures

3.1 Test Specification

Title	47 CFR FCC Part 15, Subpart E, Section 15.407 Limits and methods of measurement of radio interference characteristics of Unlicensed National Information Infrastructure Devices
Purpose of Test	The tests were performed to demonstrate initial compliance

3.2 Methods & Procedures

3.2.1 47 CFR FCC Part 15 Section 15.407

See test standard for details.

3.3 FCC Part 15, Subpart E

3.3.1 Summary of Tests

FCC Section	ISED Section	Environmental Phenomena	Frequency Range (MHz)	Result
15.407(a)	N/A	Antenna requirements	Structural Requirement	Compliant
15.407(b)	RSS-Gen	Conducted Disturbance at Mains Port	0.15 to 30	Compliant
15.407(c)	RSS-247 §6.2.2, §6.2.3	Bandwidth Requirement	5745 to 5825	Compliant
15.407(e)	RSS-247 §6.2.2, §6.2.3	Peak Output Power	5745 to 5825	Compliant
15.407(f)	RSS-247 §6.2.2, §6.2.3	Antenna Conducted Spurious Emissions	0.009 to 40000	N/A
15.407(g)	RSS-247 §6.2.2, §6.2.3	Radiated Spurious Emissions	0.009 to 40000	Compliant
15.407(h)	RSS-247 §6.2.2, §6.2.3	Peak Power Spectral Density	5745 to 5825	Compliant

The testing was performed according to the procedures in ANSI C63.10-2013, KDB 789033 and 47 CFR Part 15. Where applicable, KDB 662911 was followed to sum required measurements.

3.4 Results

In the configuration tested, the EUT complied with the requirements of the specification.

3.5 Test Location

Testing was performed at the Unified Compliance Laboratory 3-meter and 10-meter chamber located at 427 West 12800 South, Draper, UT 84020. Unified Compliance Laboratory is accredited by National Voluntary Laboratory Accreditation Program (NVLAP); NVLAP Code 600241-0 which is effective until 30 June 2024. This site has also been registered with Innovations, Science and Economic Development (ISED) department as was accepted under Appendix B, Phase 1 procedures of the APEC Tel MRA for Canadian recognition. ISED No.: 25346, effective until 30 June 2024.

Unified Compliance Laboratory has been assigned Designation Number US5037 by the FCC and Conformity Assessment Number US0223 by ISED.

4 Test Equipment

4.1 Conducted Emissions at Mains Ports

Type of Equipment	Manufacturer	Model Number	Asset Number	Date of Last Calibration	Due Date of Calibration
EMI Receiver	AFJ	FFT3010	UCL-6754	2/22/2023	2/22/2024
LISN	AFJ	LS16C/10	UCL-6749	12/6/2021	12/6/2023
ISN	Teseq	ISN T800	UCL-2974	6/27/2022	6/27/2024
LISN	Com-Power	LIN-120C	UCL-2612	1/24/2023	1/24/2024
AC Power Source	Laplace Instruments	AC1000A	UCL-2857	N/A	N/A
Test Software	UCL	Revision 1	UCL-3107	N/A	N/A

Table 1: List of equipment used for Conducted Emissions Testing at Mains Port

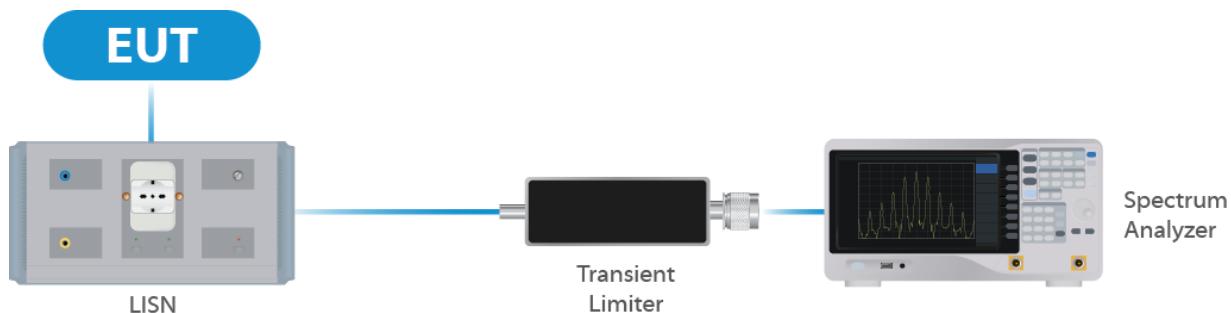


Figure 1: Conducted Emissions Test

4.2 Direct Connect at the Antenna Port Tests

Type of Equipment	Manufacturer	Model Number	Asset Number	Date of Last Calibration	Due Date of Calibration
Spectrum Analyzer	R&S	FSV40	UCL-2861	11/7/2022	11/7/2023
Signal Generator	R&S	SMB100A	UCL-2864	N/A	N/A
Vector Signal Generator	R&S	SMBV100A	UCL-2873	N/A	N/A
Switch Extension	R&S	OSP-B157WX	UCL-2867	2/22/2023	2/22/2024
Switch Extension	R&S	OSP-150W	UCL-2870	2/22/2023	2/22/2024

Table 2: List of equipment used for Direct Connect at the Antenna Port

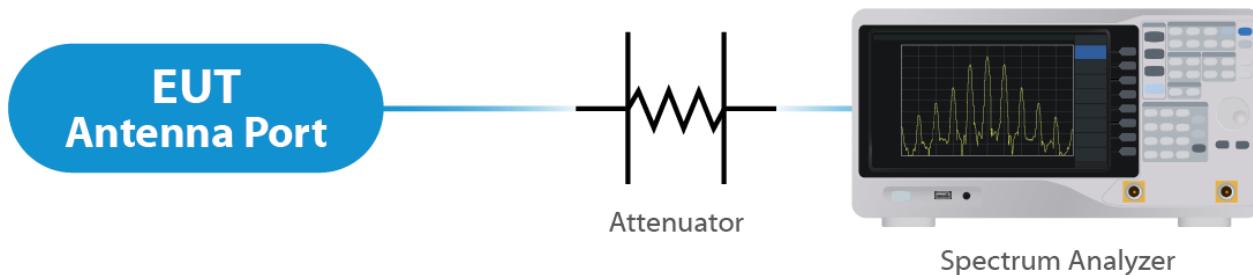


Figure 2: Direct Connect at the Antenna Port Test

Figure 3: Output Power Measurement

4.3 Radiated Emissions

Type of Equipment	Manufacturer	Model Number	Asset Number	Date of Last Calibration	Due Date of Calibration
EMI Receiver	Keysight	N9038A	UCL-2778	1/27/2023	1/27/2024
Pre-Amplifier 9 kHz – 1 GHz	Sonoma Instruments	310N	UCL-2889	10/7/2021	12/7/2023
Broadband Antenna	Scwarzbeck	VULB 9163	UCL-3062	2/22/2023	2/22/2025
Broadband Antenna	Scwarzbeck	VULB 9163	UCL-3071	1/11/2023	1/11/2025
Double Ridge Horn Antenna	Scwarzbeck	BBHA 9120D	UCL-3065	9/22/2022	9/22/2024
Log Periodic	Scwarzbeck	STLP 9129	UCL-3068	1/27/2023	1/27/2025
15 - 40 GHz Horn Antenna	Scwarzbeck	BBHA 9170	UCL-2487	6/09/2022	6/09/2024
1 – 18 GHz Amplifier	Com-Power	PAM 118A	UCL-3833	12/9/2022	12/9/2023
Test Software	UCL	Revision 1	UCL-3108	N/A	N/A

Table 3: List of equipment used for Radiated Emissions

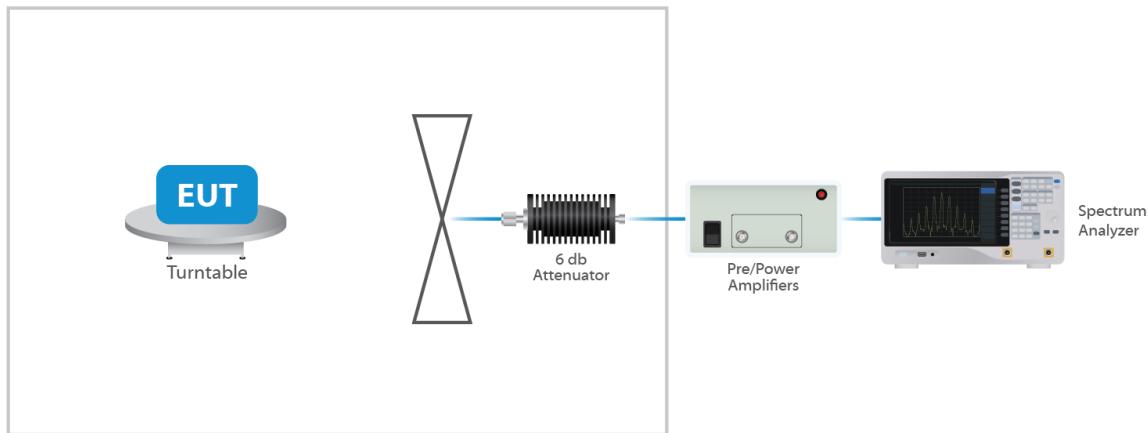


Figure 4: Radiated Emissions Test

4.4 Equipment Calibration

All applicable equipment is calibrated using either an independent calibration laboratory or Unified Compliance Laboratory personnel at intervals defined in ANSI C63.4:2014 following outlined calibration procedures. All measurement instrumentation is traceable to the National Institute of Standards and Technology (NIST). Supporting documentation relative to traceability is on file and is available for examination upon request.

4.5 Measurement Uncertainty

Test	Uncertainty (\pm dB)	Confidence (%)
Conducted Emissions	1.44	95
Radiated Emissions (9 kHz to 30 MHz)	2.50	95
Radiated Emissions (30 MHz to 1 GHz)	4.38	95
Radiated Emissions (1 GHz to 18 GHz)	4.37	95
Radiated Emissions (18 GHz to 40 GHz)	3.93	95
Direct Connect Tests	K Factor	Value
Emissions Bandwidth	2	2.0%
Output Power	2	1.0 dB
Peak Power Spectral Density	2	1.3 dB
Band Edge	2	0.8 dB
Transmitter Spurious Emissions	2	1.8 dB

5 Test Results

5.1 §15.203 Antenna Requirements

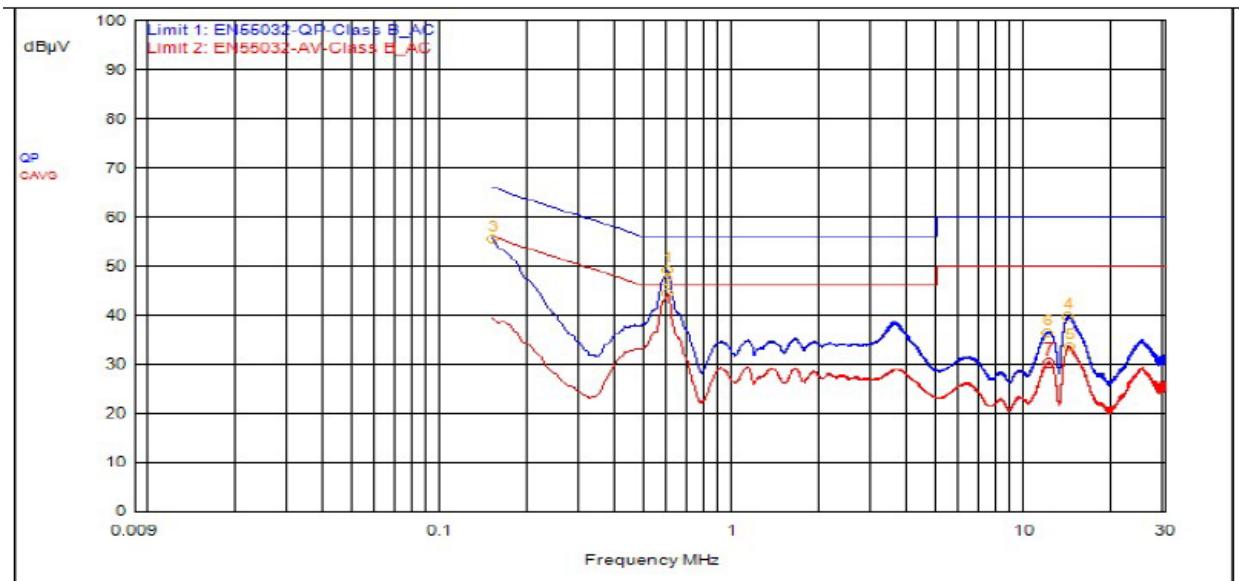
The EUT uses an integral folding antenna structure. Per the manufacturer, the maximum gain of the antenna per chain is 5 dBi. This is an 802.11 device and utilizes CDD as described in KDB 662911 D01. The antenna is not user replaceable.

For power measurements on IEEE 802.11 devices, Array Gain = 0 dB for $N_{ANT} \leq 4$;


For PSD measurements when $N_{SS}=1$: Array Gain = $10 \log(N_{ANT}/N_{SS})$ dB = 3.01dB

Results

The EUT complied with the specification


5.2 Conducted Emissions at Mains Ports Data

5.2.1 Line

ID	Frequency	Probe	Cable	Atten.	Detector	Meter Read	Meas Level	Limit 1	Limit 1 Dist.	Limit 2	Limit 2 Dist.	P/F
MU	MHz	dB	dB	dB	Type	dB μ V	dB μ V	dB μ V	dB	dB μ V	dB	P/F
1	591,000kHz	9.50	0.00		QPeak	39.98	49.48	56.00	-6.52			
4	150,000kHz	9.49	0.00		QPeak	45.58	55.07	66.00	-10.93			
5	13.893	9.67	0.00		QPeak	30.98	40.65	60.00	-19.35			
2	594,000kHz	9.50	0.00		C_AVG	35.43	44.93			46.00	-1.07	
3	570,000kHz	9.49	0.00		C_AVG	33.65	43.14			46.00	-2.86	
6	14.019	9.67	0.00		C_AVG	25.08	34.75			50.00	-15.25	

5.2.2 Neutral

ID	Frequency	Probe	Cable	Atten.	Detector	Meter Read	Meas Level	Limit 1	Limit 1 Dist.	Limit 2	Limit 2 Dist.	P/F
MU	MHz	dB	dB	dB	Type	dB μ V	dB μ V	dB μ V	dB	dB μ V	dB	P/F
1	594,000kHz	9.59	0.00		QPeak	39.62	49.21	56.00	-6.79			
3	150,000kHz	9.62	0.00		QPeak	45.80	55.42	66.00	-10.58			
4	13.935	9.72	0.00		QPeak	29.91	39.63	60.00	-20.37			
6	11.739	9.67	0.00		QPeak	26.82	36.49	60.00	-23.51			
2	597,000kHz	9.59	0.00		C_AVG	34.97	44.56			46.00	-1.44	
5	13.998	9.73	0.00		C_AVG	23.77	33.50			50.00	-16.50	
7	11.952	9.68	0.00		C_AVG	20.65	30.33			50.00	-19.67	

Result

The EUT complied with the specification limit.

5.3 §15.403(i) 26 dB Emissions Bandwidth

All chains were measured under the guidance of KDB 789033 Section II.C. and KDB 66291 D01. Please see associated annex for details on instrument settings.

Nominal BW (MHz)	Frequency (MHz)	99% Bandwidth (MHz)	26 dB Bandwidth (MHz)
20	5745	20.80	38.30
20	5775	23.10	41.90
20	5825	29.00	44.00
20	5745	21.20	47.70
20	5775	24.70	49.20
20	5825	31.00	54.00
40	5755	39.00	78.41
40	5775	39.75	94.54
40	5795	57.00	101.75
80	5775	78.00	87.00

Result

All chains were tested and the highest bandwidth per chain is reported above.

The 26 dB bandwidths are reported for information purposes. Please see Annex for all bandwidth measurements.

5.4 §15.407(a)(3) Maximum Average Output Power

All chains were measured and summed under the guidance of KDB 789033 Section II. E.2. and KDB 66291 D01. Please see associated annex for details on instrument settings.

The maximum average RF conducted output power measured for this device was 27.53 dBm or 566.24 mW. The limit is 30 dBm, or 1 Watt when using antennas with 6 dBi or less gain. The antenna has a gain of 5 dBi.

Modulation (BW)	Frequency (MHz)	Data Rate	TP Setting	Conducted Output Power *	Measured EIRP	Measured PSD
OFDM 20	5745	Mcs0	27	27.53	32.53	11.74
OFDM 20	5775	Mcs0	27	27.26	32.26	11.48
OFDM 20	5825	Mcs0	27	26.43	31.43	10.46
HE 20	5745	Mcs0	27	27.40	32.40	11.10
HE 20	5775	Mcs0	27	27.18	32.18	10.78
HE 20	5825	Mcs0	27	26.35	31.35	9.85
HE 40	5755	Mcs0	26	26.78	31.78	7.72
HE 40	5775	Mcs0	27	26.75	31.75	7.50
HE 40	5795	Mcs0	27	27.53	32.53	8.42
HE 80	5775	Mcs0	23	23.62	28.62	1.62

Result

In the configuration tested, the maximum summed average RF output power was less than 1 watt; therefore, the EUT compiled with the requirements of the specification (see spectrum analyzer plots in attached Annex).

*Gated EIRP shown in the Annex is the conducted measurement

5.5 §15.407(b)(7) Spurious Emissions

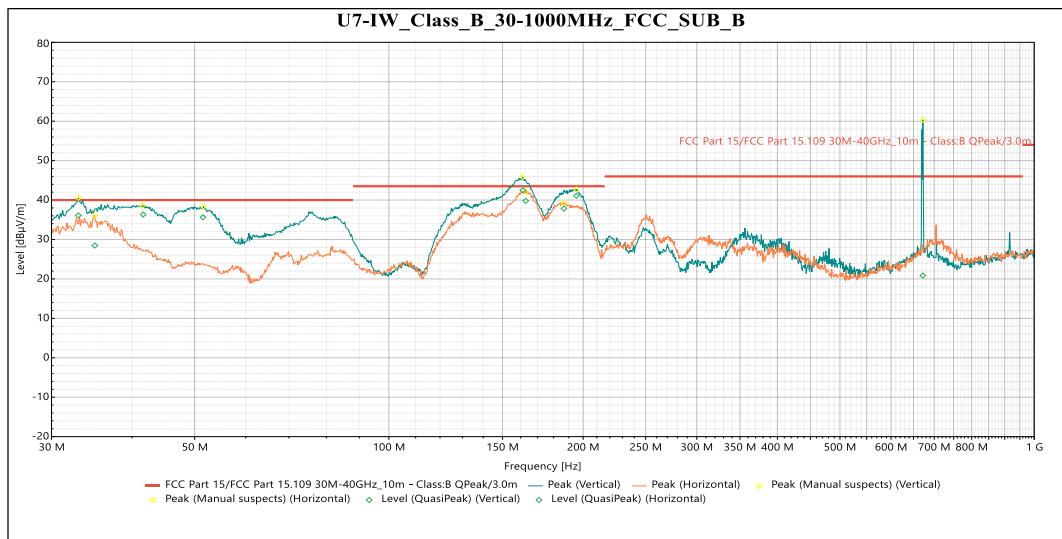
5.5.1 Conducted Spurious Emissions

The frequency ranges from the lowest frequency generated or used in the device to the tenth harmonic of the highest fundamental frequency was investigated to measure any antenna-conducted emissions. The graphs show the measurement data from spurious emissions noted across the frequency range when transmitting at the lowest frequency, middle frequency and upper frequency. Shown within the annex are plots with the EUT turned to the upper and lower channels with the antenna gain of 5 dBi accounted for. These demonstrate compliance with the provisions of this section at the band edges.

All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

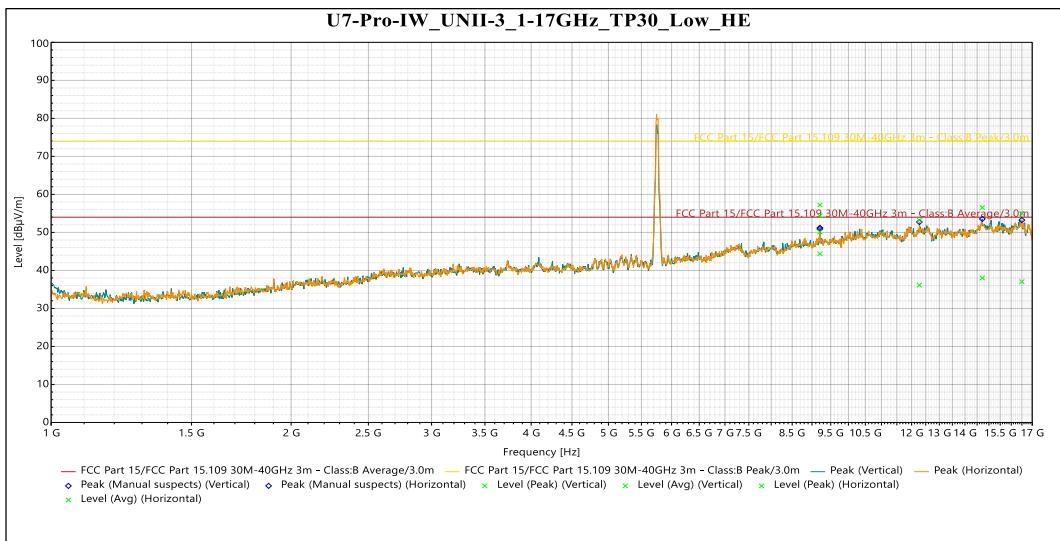
Result

Conducted spurious emissions were attenuated below the limit; therefore, the EUT complies with the specification.


5.5.2 Radiated Spurious Emissions in the Restricted Bands of § 15.205

The EUT uses various power settings based on the channel in use. In order to reduce test time, the radiated spurious emissions at the lowest, middle, and highest channel were measured at the maximum power of TP27.

Correction Factor = Antenna Factor + Cable Loss - Pre-Amplifier Gain, and is added to the Receiver reading.


Result

All emissions in the restricted bands of § 15.205 met the limits specified in § 15.209; therefore, the EUT complies with the specification. See Annex for Conducted Band edge plots.

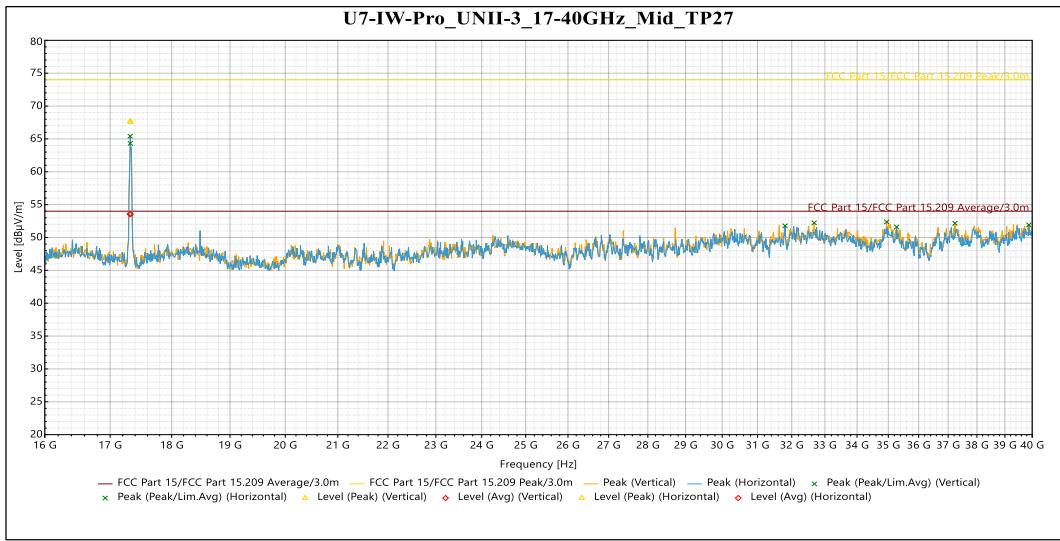

Frequency	Meas.	Level (dB μ V/m)	Limit (dB μ V/m)	Margin	Azimuth (°)	Height	Pol.	Correction (dB)
33.017 MHz	QP	36.111	40	-3.889	204	1.129	Vertical	-9.415
41.61 MHz	QP	36.345	40	-3.655	359	1.129	Vertical	-15.523
51.502 MHz	QP	35.629	40	-4.371	359	1.129	Vertical	-21.223
161.28 MHz	QP	42.492	43.5	-1.008	358	1.132	Vertical	-16.039
195.23 MHz	QP	41.094	43.5	-2.406	353	1.129	Vertical	-15.934
672.08 MHz	QP	20.853	46	-25.147	83	1.667	Vertical	-6.922
35.016 MHz	QP	28.469	40	-11.531	171	3.65	Horizontal	-10.579
162.92 MHz	QP	39.812	43.5	-3.688	103	1.489	Horizontal	-16.105
186.7 MHz	QP	37.853	43.5	-5.647	274	1.712	Horizontal	-16.813

Table 4: Radiated Emissions within 30-1000MHz

Frequency	SR #	Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Azimuth (°)	Height (m)	Pol.	Meas. Time (s)	Correction (dB)
9.2081 GHz	Peak	57.224	74	-16.776	50	1.812	Vertical	15	13.162
14.719 GHz	Peak	56.531	74	-17.469	345	2.533	Vertical	15	17.264
9.2081 GHz	AVG	50.107	54	-3.893	50	1.812	Vertical	15	13.162
14.719 GHz	AVG	38.025	54	-15.975	345	2.533	Vertical	15	17.264
9.2079 GHz	Peak	54.323	74	-19.677	80	2.528	Horizontal	15	13.161
12.273 GHz	Peak	53.219	74	-20.781	288	3.61	Horizontal	15	16.514
16.5 GHz	Peak	54.961	74	-19.039	231	3.811	Horizontal	15	18.279
9.2079 GHz	AVG	44.355	54	-9.645	80	2.528	Horizontal	15	13.161
12.273 GHz	AVG	36.122	54	-17.878	288	3.61	Horizontal	15	16.514
16.5 GHz	AVG	37.043	54	-16.957	231	3.811	Horizontal	15	18.279

Table 5: Transmitting on the Low Frequency 5745 MHz

Frequency	SR #	Level (dBμV/m)	Limit (dBμV/m)	Margin (dB)	Azimuth (°)	Pol.	Correction (dB)
17.321 GHz	Peak	67.733	74	-6.267	353	Vertical	-0.34
17.321 GHz	AVG	53.533	54	-0.467	353	Vertical	-0.34
17.32 GHz	Peak	67.544	74	-6.456	342	Horizontal	-0.34
17.32 GHz	AVG	53.616	54	-0.384	342	Horizontal	-0.34

Table 6: Transmitting on the Middle Frequency 5775 MHz

5.6 §15.407(a) Maximum Power Spectral Density

All chains were measured and summed under the guidance of KDB 789033 Section II. F. and KDB 66291 D01. Please see associated annex for details on instrument settings.

The maximum average power spectral density conducted from the intentional radiator of the antenna shall not be greater than 30 dBm in any 500 kHz band during any time interval of continuous transmission. Results of this testing are summarized.

As per KDB 662911, When the EUT is using spatial-multiplexing in HE modes, there is not additional array gain to accommodate. When the EUT uses $N_{ss}=1$ data rates, the antenna gain is 5 dBi + Array gain of 3.01 dB which is a total of 8.01 dBi

Modulation (BW)	Frequency (MHz)	Data Rate	TP Setting	Conducted Output Power	Measured EIRP	Measured PSD
OFDM 20	5745	Mcs0	27	27.53	32.53	11.74
OFDM 20	5775	Mcs0	27	27.26	32.26	11.48
OFDM 20	5825	Mcs0	27	26.43	31.43	10.46
HE 20	5745	Mcs0	27	27.40	32.40	11.10
HE 20	5775	Mcs0	27	27.18	32.18	10.78
HE 20	5825	Mcs0	27	26.35	31.35	9.85
HE 40	5755	Mcs0	26	26.78	31.78	7.72
HE 40	5775	Mcs0	27	26.75	31.75	7.50
HE 40	5795	Mcs0	27	27.53	32.53	8.42
HE 80	5775	Mcs0	23	23.62	28.62	1.62

Result

The maximum summed average power spectral density was less than the limit of 30 dBm; therefore, the EUT complies with the specification.

-- End of Test Report --