

427 West 12800 South Draper, UT 84020

Test Report Certification

FCC ID	SWX-WAVENANO
ISED ID	6545A-WAVENANO
Equipment Under Test	Wave-Nano
Test Report Serial Number	TR7237_01
Date of Test(s)	1 March; 8, 9, 14 and 15 June 2022
Report Issue Date	16 June 2022

Test Specification	Applicant
47 CFR FCC Part 15, Subpart E	Ubiquiti Inc.
	685 Third Avenue
	New York, NY 10017
	U.S.A.

NVLAP LAB CODE 600241-0

Certification of Engineering Report

This report has been prepared by Unified Compliance Laboratory (UCL) to document compliance of the device described below with the requirement of Federal Communication Commissions (FCC) Part 15, Subpart E. This report may be reproduced in full. Partial reproduction of this report may only be made with the written consent of the laboratory. The results in this report apply only to the sample tested.

Applicant	Ubiquiti Inc.	
Manufacturer	Ubiquiti Inc.	
Brand Name	airFiber	
Model Number	Wave-Nano	
FCC ID	SWX-WAVENANO	
ISED ID	6545A-WAVENANO	

On this 16th day of June 2022, I individually and for Unified Compliance Laboratory certify that the statements made in this engineering report are true, complete and correct to the best of my knowledge and are made in good faith.

Although NVLAP has accredited the Unified Compliance Laboratory testing facilities, this report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST or any agency of the U.S. federal government.

Unified Compliance Laboratory

Written By: Joseph W. Jackson

Reviewed By: Richard L. Winter

Revision History		
Revision	Description	Date
01	Original Report Release	16 June 2022

Table of Contents

1	Clie	nt Information	5
	1.1	Applicant	5
	1.2	Manufacturer	
2	-	ipment Under Test (EUT)	
	2.1	Identification of EUT	
	2.2	Description of EUT	
	2.3	EUT and Support Equipment	6
	2.4	Interface Ports on EUT	7
	2.5	Operating Environment	7
	2.6	Operating Modes	7
	2.7	EUT Exercise Software	7
	2.8	Block Diagram of Test Configuration	8
	2.9	Modification Incorporated/Special Accessories on EUT	8
	2.10	Deviation, Opinions Additional Information or Interpretations from Test Standard	8
3	Test	Specification, Method and Procedures	9
	3.1	Test Specification	9
	3.2	Methods & Procedures	9
	3.3	FCC Part 15, Subpart E	9
	3.4	Results	9
	3.5	Test Location	0
4	Test	Equipment1	1
	4.1	Conducted Emissions at Mains Ports1	1
	4.2	Direct Connect at the Antenna Port Tests	1
	4.3	Radiated Emissions	2
	4.4	Equipment Calibration1	3
	4.5	Measurement Uncertainty	3
5	Test	Results	4
	5.1	§15.203 Antenna Requirements14	4
	5.2	Conducted Emissions at Mains Ports Data	4
	5.3	§15.403(i) 26 dB Emissions Bandwidth1	6
	5.4	§15.407(a)(3) Maximum Average Output Power1	7
	5.5	§15.407(b)(7) Spurious Emissions	8
	5.6	§15.407(a) Maximum Power Spectral Density	1

1 Client Information

1.1 Applicant

Company	Ubiquiti Inc. 685 Third Avenue New York, NY 10017 U.S.A.
Contact Name	Mark Feil
Title	Compliance Manager

1.2 Manufacturer

Company	Ubiquiti Inc. 685 Third Avenue New York, NY 10017 U.S.A.
Contact Name	Mark Feil
Title	Compliance Manager

2 Equipment Under Test (EUT)

2.1 Identification of EUT

Brand Name	airFiber
Model Number	Wave-Nano
Serial Number	A2527F
Dimensions (cm)	25.7 x 25.7 x 11.4

2.2 Description of EUT

The 60 GHz Wave Nano (Wave Nano) is a CPE device that connects to a Wave AP functioning as a base station. The Wave Nano has a 1.2+ Gbps throughput rate and can sustain its connection over 5 kilometers. The Wave Nano is also equipped with a 5 GHz WiFi 6 backup radio to sustain connectivity during 60 GHz link disruptions. This easy-to-deploy CPE device can be set up in minutes with the UISPTM application using Bluetooth-powered setup and tracked from anywhere with its built-in GPS antenna.

Band	WiFi Mode	Modulation Bandwidth	Modulation Type	Frequency (MHz)
	ax	20 MHz	HE	5740, 5790, 5835
UNII-3	ax	40 MHz	HE	5750, 5790, 5825
	ax	80 MHz	HE	5770, 5790, 5805

The table below show the channels used within the different modulation bandwidths.

This report covers the circuitry of the device subject to FCC Part 15, Subpart E. The circuitry of the device subject to FCC Part 15 Subpart B was found to be compliant and is covered under a separate Unified Compliance Laboratory test report.

2.3 EUT and Support Equipment

The EUT and support equipment used during the test are listed below.

Brand Name Model Number Serial Number	Description	Name of Interface Ports / Interface Cables
BN: airFiber MN: Wave-Nano SN: A2527F	Wireless Access Point	See Section 2.4
BN: Ubiquiti, Inc. MN: U-POE-at SN: N/A	PoE Injector Power Supply	Shielded or Un-shielded Cat 5e cable (Note 2)
BN: Dell MN: XPS 13	Laptop Computer	Shielded or Un-shielded Cat 5e cable (Note 2)

TR7237_Wave-Nano_FCC_15.407_UNII-3_01

SN: N/A

Notes: (1) EUT

(2) Interface port connected to EUT (See Section 2.4)

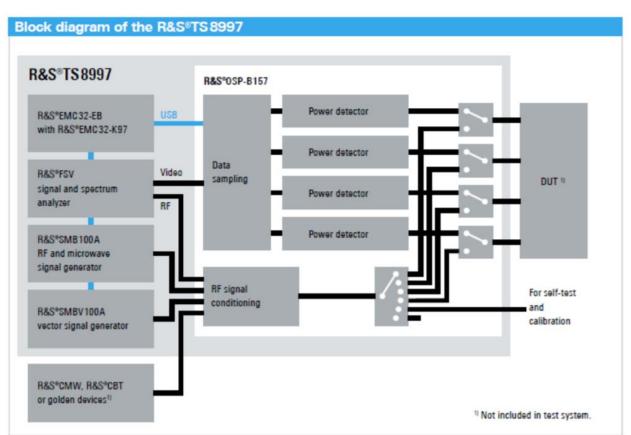
The support equipment listed above was not modified in order to achieve compliance with this standard.

2.4 Interface Ports on EUT

Name of Ports	No. of Ports Fitted to EUT	Cable Description/Length
AC (PoE Injector)	1	3 conductor power cord/80cm
LAN (PoE Injector)	1	Shielded or Un-shielded cat 5e cable/1 meter
Data	1	Shielded or Un-shielded cat 5e cable/1 meter

2.5 **Operating Environment**

Power Supply	120 Volts AC to 48 Volts PoE	
AC Mains Frequency	60 Hz	
Temperature	22.1 – 23.3 °C	
Humidity	19.7 – 25.7 %	
Barometric Pressure	1019 mBar	


2.6 Operating Modes

The Wave-Nano was tested using test software in order to enable a constant transmission. The measurements within this report are corrected to reference a 100% duty cycle. All emission modes of 802.11 ax were investigated. All measurements are reported with the worst-case mode (802.11ax) unless otherwise stated.

2.7 EUT Exercise Software

EUT firmware version 1.0 was used to operate the transmitter using a constant transmit mode.

2.8 Block Diagram of Test Configuration

Diagram 1: Test Configuration Block Diagram

2.9 Modification Incorporated/Special Accessories on EUT

There were no modifications made to the EUT during testing to comply with the specification.

2.10 Deviation, Opinions Additional Information or Interpretations from Test Standard

There were no deviations, opinions, additional information or interpretations from the test specification.

3 Test Specification, Method and Procedures

3.1 Test Specification

Title 47 CFR FCC Part 15, Subpart E, Section 15.407 Limits and methods of measurement of radio interference characteristics Unlicensed National Information Infrastructure Devices						
Purpose of Test	The tests were performed to demonstrate initial compliance					

3.2 Methods & Procedures

3.2.1 47 CFR FCC Part 15 Section 15.407

See test standard for details.

3.3 FCC Part 15, Subpart E

3.3.1 Summary of Tests

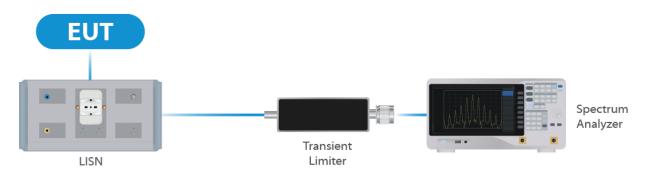
FCC Section	ISED Section	Environmental Phenomena	Frequency Range (MHZ)	Result					
15.407(a)	N/A	Antenna requirements	Structural Requirement	Compliant					
15.407(b)	RSS-Gen	Conducted Disturbance at Mains Port	0.15 to 30	Compliant					
15.407(c)	RSS-247 §6.2.2, §6.2.3	Bandwidth Requirement	5725 to 5850	Compliant					
15.407(e)	RSS-247 §6.2.2, §6.2.3	Peak Output Power	5725 to 5850	Compliant					
15.407(f)	RSS-247 §6.2.2, §6.2.3	Antenna Conducted Spurious Emissions	0.009 to 40000	N/A					
15.407(g)	RSS-247 §6.2.2, §6.2.3	Radiated Spurious Emissions	0.009 to 40000	Compliant					
15.407(h)	15.407(h)RSS-247 §6.2.2, §6.2.3Peak Power Spectral Density5725 to 5850Compliant								
U		procedures in ANSI C63.10-20 11 was followed to sum require							

3.4 Results

In the configuration tested, the EUT complied with the requirements of the specification.

3.5 Test Location

Testing was performed at the Unified Compliance Laboratory 3-Meter and 10-Meter chambers located at 427 West 12800 South, Draper, UT 84020. Unified Compliance Laboratory is accredited by National Voluntary Laboratory Accreditation Program (NVLAP); NVLAP Code 600241-0 which is effective until 30 June 2022. This site has also been registered with Innovations, Science and Economic Development (ISED) department as was accepted under Appendix B, Phase 1 procedures of the APEC Tel MRA for Canadian recognition. ISED No.: 25346, effective until 30 June 2022. Unified Compliance Laboratory has been assigned Conformity Assessment Number US0223 by ISED.

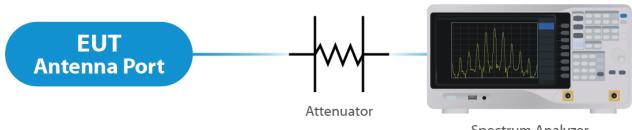


4 Test Equipment

4.1 Conducted Emissions at Mains Ports

Type of Equipment	Manufacturer	Model Number	Asset Number	Date of Last Calibration	Due Date of Calibration
EMI Receiver	AFJ	FFT3010	UCL-6754	12/8/2021	12/8/2022
LISN	AFJ	LS16C/10	UCL-6749	12/6/2021	12/6/2023
Cat6 ISN	Teseq	ISN T8- Cat6	UCL-2971	1/30/2022	1/30/2023
ISN	Teseq	ISN T800	UCL-2974	6/4/2021	6/4/2022
LISN	Com-Power	LIN-120C	UCL-2612	1/6/2022	1/6/2023
AC Power Source	Laplace Instruments	AC1000A	UCL-2857	N/A	N/A
Test Software	UCL	Revision 1	UCL-3107	N/A	N/A

 Table 1: List of equipment used for Conducted Emissions Testing at Mains Port


Figure 1: Conducted Emissions Test

4.2 Direct Connect at the Antenna Port Tests

Type of Equipment	Manufacturer	Model Number	Asset Number	Date of Last Calibration	Due Date of Calibration
Spectrum Analyzer	R&S	FSV40	UCL-2861	1/03/2022	1/03/2023
Signal Generator	R&S	SMB100A	UCL-2864	N/A	N/A
Vector Signal Generator	R&S	SMBV100A	UCL-2873	N/A	N/A
Switch Extension	R&S	OSP- B157WX	UCL-2867	1/03/2022	1/03/2023
Switch Extension	R&S	OSP-150W	UCL-2870	1/03/2022	1/03/2023

 Table 2: List of equipment used for Direct Connect at the Antenna Port

Spectrum Analyzer

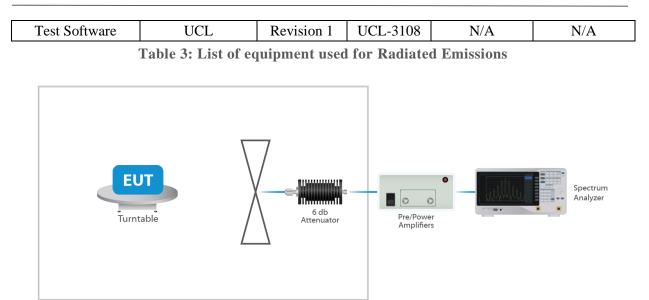
Figure 2: Direct Connect at the Antenna Port Test

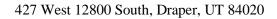
Figure 3	3:	Output	Power	Measurement
----------	----	--------	-------	-------------

Radiated Emissions 4.3

Type of Equipment	Manufacturer	Model Number	Asset Number	Date of Last Calibration	Due Date of Calibration
EMI Receiver	Keysight	N9038A	UCL-2778	6/21/2021	6/21/2022
Pre-Amplifier 9 kHz – 1 GHz	Sonoma Instruments	310N	UCL-2889	10/7/2021	10/7/2022
Pre-Amplifier 9 kHz – 1 GHz	Sonoma Instruments	310N	UCL-4793	10/7/2021	10/7/2022
Pre-Amplifier 1 – 18 GHz	Com-Power	PAM 118A	UCL-3833	10/7/2021	10/7/2022
Pre-Amplifier 1 – 18 GHz	The EMC Shop	PA18G	UCL-5896	3/11/3022	3/11/2023
Pre-Amplifier 15 – 40 GHz	L3 Harris	LNA-40- 18004000- 40-15P	UCL-4465	11/3/2021	11/3/2022
Broadband Antenna	Scwarzbeck	VULB 9163	UCL-3062	8/28/2020	8/27/2022
Broadband Antenna	Scwarzbeck	VULB 9163	UCL-3062	8/28/2020	8/28/2022
Double Ridge Horn Antenna	Scwarzbeck	BBHA 9120D	UCL-3065	7/8/2021	7/8/2022
Log Periodic	Scwarzbeck	STLP 9129	UCL-3068	11/16/2020	11/16/2022
15 - 40 GHz Horn Antenna	ETS-Lindgren	3116C	UCL-7209	6/1/2022	6/6/2024

TR7237_Wave-Nano_FCC_15.407_UNII-3_01




Figure 4: Radiated Emissions Test

4.4 Equipment Calibration

All applicable equipment is calibrated using either an independent calibration laboratory or Unified Compliance Laboratory personnel at intervals defined in ANSI C63.4:2014 following outlined calibration procedures. All measurement instrumentation is traceable to the National Institute of Standards and Technology (NIST). Supporting documentation relative to traceability is on file and is available for examination upon request.

4.5 Measurement Uncertainty

Test	Uncertainty (<u>+</u> dB)	Confidence (%)
Conducted Emissions	1.44	95
Radiated Emissions (9 kHz to 30 MHz)	2.50	95
Radiated Emissions (30 MHz to 1 GHz)	4.38	95
Radiated Emissions (1 GHz to 18 GHz)	4.37	95
Radiated Emissions (18 GHz to 40 GHz)	3.93	95
Direct Connect Tests	K Factor	Value
Emissions Bandwidth	2	2.0%
Output Power	2	1.0 dB
Peak Power Spectral Density	2	1.3 dB
Band Edge	2	0.8 dB
Transmitter Spurious Emissions	2	1.8 dB

5 Test Results

5.1 §15.203 Antenna Requirements

The EUT uses an integral folding antenna structure. The maximum gain of the antenna per chain is 18.2 dBi. This is an 802.11 device and utilizes CDD as described in KDB 662911 D01. The antenna is not user replaceable.

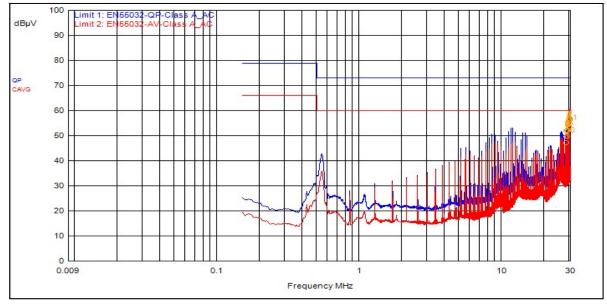
For power measurements on IEEE 802.11 devices, Array Gain = 0 dB for NANT \leq 4;

For PSD measurements when Nss=1: Array Gain = $10 \log(\text{NANT/NSS}) dB = 6.02dB$

Results

The EUT complied with the specification

5.2 Conducted Emissions at Mains Ports Data


100 Limit 1: EN55032-QF dBuV imit 2: EN5503 90 80 CAVG 70 60 50 40 30 20 10 0 0.009 0.1 10 30 1 Frequency MHz

ID	Frequency	Probe	Cable	Atten.	Detector	Meter Read	Meas Level	Limit 1	Limit 1 Dist.	Limit 2	Limit 2 Dist.
1	11.427MHz	9.6	0.3		QPeak	43.8	53.7	73.0	-19.3		
2	11.850MHz	9.6	0.3		QPeak	43.8	53.7	73.0	-19.3		
3	11.004MHz	9.6	0.3		QPeak	42.6	52.5	73.0	-20.5		
4	29.613MHz	10.1	0.3		QPeak	41.1	51.5	73.0	-21.5		

5.2.1 Line

5.2.2 Neutral

ID	Frequency	Probe	Cable	Atten.	Detector	Meter Read	Meas Level	Limit 1	Limit 1 Dist.	Limit 2	Limit 2 Dist.
1	29.613MHz	9.9	0.3		QPeak	46.6	56.7	73.0	-16.3		
2	29.610MHz	9.9	0.3		QPeak	45.9	56.1	73.0	-16.9		
4	29.190MHz	9.9	0.3		QPeak	45.9	56.0	73.0	-17.0		
5	28.767MHz	9.9	0.3		QPeak	44.3	54.5	73.0	-18.5		
9	28.359MHz	9.8	0.3		QPeak	42.2	52.3	73.0	-20.7		
7	27.933MHz	9.8	0.3		QPeak	41.8	52.0	73.0	-21.0		
3	29.190MHz	9.9	0.3		C_AVG	43.5	53.7			60.0	-6.3
6	28.767MHz	9.9	0.3		C_AVG	41.8	52.0			60.0	-8.0
8	27.921MHz	9.8	0.3		C_AVG	37.2	47.3			60.0	-12.7
10	28.344MHz	9.8	0.3		C_AVG	39.5	49.7			60.0	-10.3
11	29.613MHz	9.9	0.3		C_AVG	44.4	54.6			60.0	-5.4

Result

The EUT complied with the specification limit.

5.3 §15.403(i) 26 dB Emissions Bandwidth

All chains were measured under the guidance of KDB 789033 Section II.C. and KDB 66291 D01. Please see associated annex for details on instrument settings.

Nominal BW (MHz)	Frequency (MHz)	99% Bandwidth (MHz)	26 dB Bandwidth (MHz)
20	5740	18.8	20.5
20	5790	18.8	20.5
20	5835	18.7	20.7
40	5750	37.5	39.9
40	5790	37.5	39.9
40	5825	37.5	40.1
80	5770	76.5	82.5
80	5790	76.5	82.5
80	5805	76.5	82.5

Result

All chains were tested and the highest bandwidth per chain is reported above.

The 26 dB bandwidths are reported for information purposes. Please see Annex for all bandwidth measurements.

5.4 §15.407(a)(3) Maximum Average Output Power

All chains were measured and summed under the guidance of KDB 789033 Section II. E.2. and KDB 66291 D01. Please see associated annex for details on instrument settings.

The maximum average RF conducted output power measured for this device was 19.60 dBm or 91.2 mW. The limit is 30 dBm, or 1 Watt when using antennas with 6 dBi or less gain. The antenna has a gain of 18.2 dBi.

Modulation (BW)	Frequency (MHz)	Data Rate	TP Setting Power *		Measured EIRP	Measured PSD
HE 20	5740	Mcs0	36	19.21	37.41	2.80
HE 20	5790	Mcs0	34	18.71	36.91	2.31
HE 20	5835	Mcs0	35	18.80	37.00	1.97
HE 40	5750	Mcs0	36	19.60	37.80	0.30
HE 40	5790	Mcs0	34	18.99	37.19	-0.03
HE 40	5825	Mcs0	35	19.14	37.34	-0.39
HE 80	5770	Mcs0	36	19.43	37.63	-2.16
HE 80	5790	Mcs0	34	18.78	36.98	-2.70
HE 80	5805	Mcs0	35	19.26	37.46	-2.31

Result

In the configuration tested, the maximum summed average RF output power was less than 1 watt; therefore, the EUT compiled with the requirements of the specification (see spectrum analyzer plots in attached Annex).

* Gated EIRP shown in the Annex is the conducted measurement

5.5 §15.407(b)(7) Spurious Emissions

5.5.1 Conducted Spurious Emissions

The frequency ranges from the lowest frequency generated or used in the device to the tenth harmonic of the highest fundamental frequency was investigated to measure any antenna-conducted emissions. The graphs show the measurement data from spurious emissions noted across the frequency range when transmitting at the lowest frequency, middle frequency and upper frequency. Shown within the annex below are plots with the EUT turned to the upper and lower channels with the antenna gain of 18.2 dBi accounted for. These demonstrate compliance with the provisions of this section at the band edges.

All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

Result

Conducted spurious emissions were attenuated below the limit; therefore, the EUT complies with the specification.

5.5.2 Radiated Spurious Emissions in the Restricted Bands of § 15.205

The EUT uses various power settings based on the channel in use. In order to reduce test time, the radiated spurious emissions at the lowest, middle, and highest channel were measured at the maximum power of TP36.

Correction Factor = Antenna Factor + Cable Loss - Pre-Amplifier Gain, and is added to the Receiver reading.

Result

All emissions in the restricted bands of § 15.205 met the limits specified in § 15.209; therefore, the EUT complies with the specification. See Annex for Conducted Band edge plots.

Frequency	Level (dBµV/m)	Limit (dBµV/m)	Margin	Azimuth (°)	Height	Pol.	Correction (dB)
35.483 MHz	30.648	40	-9.352	255	1.038	Vertical	-14.486
58.092 MHz	23.539	40	-16.461	150	1.985	Vertical	-12.898
287.98 MHz	33.097	47	-13.903	349	0.999	Vertical	-11.568
671.99 MHz	40.174	47	-6.826	98	2.441	Vertical	-4.319
318.82 MHz	30.182	47	-16.818	35	2.459	Horizontal	-11.184
671.98 MHz	43.86	47	-3.14	23	1.201	Horizontal	-4.319

Table 4: Radiated Emissions 30 – 1000 MHz

Peak

Frequency	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Azimuth (°)	Height (m)	Pol.	Correction (dB)
1.6322 GHz	53.35	74	-20.65	143	1.5	Vertical	-20.467
4.8001 GHz	51.061	74	-22.939	66	1.632	Vertical	-11.774
11.483 GHz	54.7	74	-19.3	307	3.149	Vertical	3.213
4.7998 GHz	44.379	74	-29.621	38	1.5	Horizontal	-11.769
11.48 GHz	56.859	74	-17.141	340	1.632	Horizontal	3.27
16.776 GHz	53.885	74	-20.115	198	3.652	Horizontal	8.798

Avg

Frequency	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Azimuth (°)	Height (m)	Pol.	Correction (dB)
1.6322 GHz	50.881	54	-3.119	143	1.5	Vertical	-20.467
4.8001 GHz	45.993	54	-8.007	66	1.632	Vertical	-11.774
11.483 GHz	40.709	54	-13.291	307	3.149	Vertical	3.213
4.7998 GHz	35.173	54	-18.827	38	1.5	Horizontal	-11.769
11.48 GHz	44.071	54	-9.929	340	1.632	Horizontal	3.27
16.776 GHz	39.266	54	-14.734	198	3.652	Horizontal	8.798

Table 5: Transmitting on the Lowest Frequency 5740 MHz 1 – 17 GHz

Peak

Frequency	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Azimuth (°)	Height (m)	Pol.	Correction (dB)
1.632 GHz	53.762	74	-20.238	197	2.14	Vertical	-20.471
4.7998 GHz	51.694	74	-22.306	59	1.637	Vertical	-11.769
11.58 GHz	56.186	74	-17.814	305	1.634	Vertical	3.076
1.44 GHz	50.102	74	-23.898	295	2.142	Horizontal	-19.523
4.7997 GHz	46.782	74	-27.218	44	1.638	Horizontal	-11.768
11.582 GHz	56.69	74	-17.31	343	2.139	Horizontal	3.053

Avg

Frequency	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Azimuth (°)	Height (m)	Pol.	Correction (dB)
1.632 GHz	52.088	54	-1.912	197	2.14	Vertical	-20.471
4.7998 GHz	38.767	54	-15.233	59	1.637	Vertical	-11.769
11.58 GHz	42.397	54	-11.603	305	1.634	Vertical	3.076
1.44 GHz	47.971	54	-6.029	295	2.142	Horizontal	-19.523
4.7997 GHz	33.957	54	-20.043	44	1.638	Horizontal	-11.768
11.582 GHz	37.385	54	-16.615	343	2.139	Horizontal	3.053

Table 6: Transmitting on the Middle Frequency 5790 MHz 1 – 17 GHz

Peak

Frequency	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Azimuth (°)	Height (m)	Pol.	Correction (dB)
1.632 GHz	53.301	74	-20.699	193	1.634	Vertical	-20.471
4.7996 GHz	49	74	-25	59	1.632	Vertical	-11.766
11.672 GHz	64.185	74	-9.815	305	1.632	Vertical	2.773
11.671 GHz	62.529	74	-11.471	293	1.822	Horizontal	2.775
15.021 GHz	51.769	74	-22.231	245	1.633	Horizontal	7.053
16.89 GHz	52.118	74	-21.882	55	2.137	Horizontal	9.292

Avg

Frequency	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Azimuth (°)	Height (m)	Pol.	Correction (dB)
1.632 GHz	51.576	54	-2.424	193	1.634	Vertical	-20.471
4.7996 GHz	42.79	54	-11.21	59	1.632	Vertical	-11.766
11.672 GHz	47.867	54	-6.133	305	1.632	Vertical	2.773
11.671 GHz	44.694	54	-9.306	293	1.822	Horizontal	2.775
15.021 GHz	38.076	54	-15.924	245	1.633	Horizontal	7.053
16.89 GHz	39.198	54	-14.802	55	2.137	Horizontal	9.292

Table 7: Transmitting on the Highest Frequency 5835 MHz 1 – 17 GHz

Peak

Frequency	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Azimuth (°)	Pol.	Correction (dB)
17.501 GHz	71.264	74	-2.736	250	Vertical	1.137
20.697 GHz	52.48	74	-21.52	101	Vertical	2.089
24.685 GHz	53.523	74	-20.477	29	Vertical	1.67
33.808 GHz	56.669	74	-17.331	141	Vertical	7.485
36.197 GHz	56.592	74	-17.408	275	Vertical	5.257
39.979 GHz	58.141	74	-15.859	69	Vertical	7.543
17.488 GHz	67.237	74	-6.763	280	Horizontal	1.151
17.511 GHz	72.866	74	-1.134	292	Horizontal	1.127
21.287 GHz	52.533	74	-21.467	333	Horizontal	2.483
24.965 GHz	52.699	74	-21.301	315	Horizontal	1.649
33.097 GHz	57.575	74	-16.425	136	Horizontal	8.449
35.296 GHz	56.636	74	-17.364	219	Horizontal	6.242
37.885 GHz	56.517	74	-17.483	8	Horizontal	5.956

Avg

Frequency	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Azimuth (°)	Pol.	Correction (dB)
17.501 GHz	47.176	54	-6.824	250	Vertical	1.137
20.697 GHz	38.826	54	-15.174	101	Vertical	2.089
24.685 GHz	38.789	54	-15.211	29	Vertical	1.67
33.808 GHz	41.668	54	-12.332	141	Vertical	7.485
36.197 GHz	40.223	54	-13.777	275	Vertical	5.257
39.979 GHz	40.895	54	-13.105	69	Vertical	7.543
17.488 GHz	43.025	54	-10.975	280	Horizontal	1.151
17.511 GHz	48.251	54	-5.749	292	Horizontal	1.127
21.287 GHz	38.729	54	-15.271	333	Horizontal	2.483
24.965 GHz	38.835	54	-15.165	315	Horizontal	1.649
33.097 GHz	42.288	54	-11.712	136	Horizontal	8.449
35.296 GHz	41.138	54	-12.862	219	Horizontal	6.242
37.885 GHz	40.761	54	-13.239	8	Horizontal	5.956

 Table 8: Transmitting on the Highest Frequency 5835 MHz 17 – GHz (worse-case)

5.6 §15.407(a) Maximum Power Spectral Density

All chains were measured and summed under the guidance of KDB 789033 Section II. F. and KDB 66291 D01. Please see associated annex for details on instrument settings.

The maximum average power spectral density conducted from the intentional radiator of the antenna shall not be greater than 30 dBm in any 500 kHz band during any time interval of continuous transmission. Results of this testing are summarized.

Modulation (BW)	Frequency (MHz)	Data Rate	TP Setting	Measured PSD
HE 20	5740	Mcs0	36	2.80
HE 20	5790	Mcs0	34	2.31
HE 20	5835	Mcs0	35	1.97
HE 40	5750	Mcs0	36	0.30
HE 40	5790	Mcs0	34	-0.03
HE 40	5825	Mcs0	35	-0.39
HE 80	5770	Mcs0	36	-2.16
HE 80	5790	Mcs0	34	-2.70
HE 80	5805	Mcs0	35	-2.31

Result

The maximum summed average power spectral density was less than the limit of 30 dBm; therefore, the EUT complies with the specification.

-- End of Test Report --