

FCC DFS TEST REPORT

Applicant	:	Ubiquiti Inc.
Address	:	685 Third Avenue, New York, New York 10017, USA
Equipment	:	UniFi Protect G3 mini
Model No.	:	UVC-G3-mini
Trade Name	:	UBIQUITI
FCC ID.	:	SWX-UVCG3MI

I HEREBY CERTIFY THAT :

The sample was received on Jul. 20, 2020 and the testing was completed on Aug. 07, 2020 at Cerpass Technology Corp. The test result refers exclusively to the test presented test model / sample. Without written approval of Cerpass Technology Corp., the test report shall not be reproduced except in full.

Approved by:

Larc

Mark Liao / Supervisor

Laboratory Accreditation:

Cerpass Technology Corporation Test Laboratory

CERPASS TECHNOLOGY CORP.

1.	Summ	nary of Test Procedure and Test Results	4
	1.1.	Applicable Standards	4
2.	Test C	Configuration of Equipment under Test	5
	2.1.	Feature of Equipment under Test	5
	2.2.	Description of Test System	5
	2.3.	General Information of Test	6
	2.4.	Measurement Uncertainty	6
3.	Test E	quipment and Ancillaries Used for Tests	7
4.	Anten	na Requirements	8
	4.1.	Standard Applicable	8
	4.2.	Antenna Construction and Directional Gain	8
5.	Dynar	nic Frequency Selection	9
	5.1.	List of Measurement and Examinations	9
	5.2.	Test Setup	11
	5.3.	DFS Detection Threshold	13
	5.4.	Channel Availability Check Time	15
	5.5.	Radar Burst at the Beginning of the Channel Availability Check Time	16
	5.6.	Radar Burst at the End of the Channel Availability Check Time	17
	5.7.	U-NII Detection Bandwidth	18
	5.8.	Statistical Performance Check	19
	5.9.	In-Service Monitoring	20
	5.10.	Non-Occupancy Period	22
	5.11.	EUT Setup Photos	24

History of this test report

Issue Date	Description
Aug. 10, 2020	Original

1. Summary of Test Procedure and Test Results

1.1. Applicable Standards

ANSI C63.10:2013

FCC Rules and Regulations Part 15 Subpart E §15.407

KDB789033

KDB905462

FCC Rule	Description of Test	Result
15.407	Dynamic Frequency Selection	PASS

*The lab has reduced the uncertainty risk factor from test equipment, environment and staff technicians which according to the standard on contract. Therefore, the test result will only be determined by standard requirement.

2. Test Configuration of Equipment under Test

2.1. Feature of Equipment under Test

	BT / BLE: 2400-2483.5MHz
Frequency Range	802.11b/g/n: 2400-2483.5MHz
Thequency Kange	802.11a/n/ac: 5150-5250MHz, 5250-5350MHz,
	5470-5725MHz, 5725-5850MHz
	BT: GFSK, π /4-DQPSK, 8DPSK
	BLE: GFSK
Modulation Type	802.11b: CCK, DQPSK, DBPSK
	802.11g/n/a: BPSK, QPSK, 16QAM, 64QAM
	802.11ac: BPSK, QPSK, 16QAM, 64QAM, 256QAM
Modulation Technology	DSSS, OFDM, FHSS, DTS
	BT:
	GFSK: 1Mbps, π /4-DQPSK: 2Mbps, 8DPSK: 3Mbps
	BLE:
	GFSK: 1Mbps, GFSK: 2Mbps
Data Rate	WLAN:
Data Hato	802.11b: 1, 2, 5.5, 11Mbps
	802.11g: 6, 9, 12, 18, 24, 36, 48, 54Mbps
	802.11n: MCS0 – MCS7, HT20/40
	802.11a: 6, 9, 12, 18, 24, 36, 48, 54Mbps
	802.11ac: MCS0 – MCS9, VHT20/40/80
Antenna Type	Internal Antenna
	For BT/BLE:
	2402-2480MHz ANT A: 2.60dBi
Antenna Gain	For WLAN 2.4G:
	2412-2462MHz ANT A:2.60dBi
	For WLAN 5G:
	5150-5850MHz ANT A: 4.60dBi
USB TYPE-C Cable	Brand: N/A
	Model: N/A
Adapter	Brand: Ubiquiti
•	Model: NY-PW0H1-05002000
Serial Number	2027A FCECDAFF2B64

Note:

1. WLAN and BT can simultaneously transmission.

2. EUT supports DFS Client Mode, without radar detection.

3. For more details, please refer to the User's manual of the EUT.

2.2. Description of Test System

Equipment	Brand	Model	Length/Type	Power cord/Length/Type	FCC ID
Notebook	ASUS	P2430U	N/A	Adapter / 1.8m / NS	-
AP	NETGEAR	RAX80	NA	Adapter / 1.5m / NS	PY318200414
RJ45 Cable	N/A	N/A	1.2m / NS	N/A	-

2.3. General Information of Test

	Address Taiwan (Tel:+886	Cerpass Technology Corporation Test Laboratory Address: No.10, Ln. 2, Lianfu St., Luzhu Dist., Taoyuan City 33848, Taiwan (R.O.C.) Tel:+886-3-3226-888 Fax:+886-3-3226-881			
Test Site	FCC	TW1439, TW1079			
	IC	4934E-1, 4934E-2			
	VCCI	T-2205 for Telecommunication test C-4663 for Conducted emission test R-4218 for Radiated emission test G-10812, G-10813 for radiated disturbance above 1GHz			
Frequency Range Investigated:	Conducted: from 150kHz to 30 MHz Radiation: from 30 MHz to 40,000MHz				
Test Distance:	The test distance of radiated emission from antenna to EUT is 3 M.				

Test Item	Test Site	Finish Date	Environmental Conditions	Tested By
DFS	RFDFS01-NK	2020/08/07	27 ℃ /52%	Dian Chen

2.4. Measurement Uncertainty

Measurement Item	Uncertainty
Channel Move Time	±2.64%
Channel Closing Transmission Time	±5.36%
Threshold	±1.121dB

3. Test Equipment and Ancillaries Used for Tests

Test Item	Radiated Emissions					
Test Site	Semi Anechoic Room	Semi Anechoic Room(3M02-NK)				
Instrument	Manufacturer	Model No	Serial No	Calibration Date	Valid Date	
Horn Antenna	EMCO	3115	31589	2020/03/26	2021/03/25	
Horn Antenna	EMCO	3115	31601	2019/10/07	2020/10/06	
EXA Signal Analyzer	KEYSIGHT	N9010A	MY54200207	2020/04/14	2021/04/13	
CAX Signal Analyzer	KEYSIGHT	N9000B	MY57100339	2019/11/25	2020/11/24	
MXG Vector Signal Generator	KEYSIGHT	N5182A	MY50141551	2019/10/07	2020/10/06	
N7607B Signal Studio	KEYSIGHT	v3.2.0.0	NA	NA	NA	
InServiceMonitorUtility	Theda	v10.0.0.0	NA	NA	NA	

4. Antenna Requirements

4.1. Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to FCC 47 CFR Section 15.407 (a), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

4.2. Antenna Construction and Directional Gain

Antenna Type	Internal Antenna
Antenna Gain	5180-5825MHz: 4.60 dBi

For Power directional gain= G_{ant} = 4.60 dBi For PSD directional gain = G_{ant} = 4.60 dBi

5. Dynamic Frequency Selection

5.1. List of Measurement and Examinations

EUT Applicability of DFS requirements and Frequency Range

Operation Ma	do	Operating Frequency Range		
Operation Mo	ue	5250-5350MHz	5470-5725MHz	
Master				
Client without radar detection	\checkmark	\checkmark	\checkmark	
Client with radar detection				

DEVICES WITH RADAR DETECTION

MAXIMUM TRANSMIT POWER	VALUE (SEE Note 1 and 2)				
≥ 200 milliwatt	-64 dBm				
EIRP < 200 milliwatt and	-62 dBm				
power spectral density < 10 dBm/MHz					
EIRP < 200 milliwatt that do not meet the	64 dPm				
power spectral density requirement	-64 dBm				
Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna.					
Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the					
test transmission waveforms to account for variations in measurement equipment. This will ensure					

Note3: EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication 662911

Table1: Applicability of DFS requirements prior to use of a channel

that the test signal is at or above the detection threshold level to trigger a DFS response.

	OPERATIONAL MODE				
REQUIREMENT		CLIENT WITHOUT	CLIENT WITH		
RADAR	MASTER	RADAR	RADAR		
		DETECTION	DETECTION		
Non-Occupancy Period	V	Not required	V		
DFS Detection Threshold	V	Not required	V		
Channel Availability Check Time	V	Not required	Not required		
U-NII Detection Bandwidth	V	Not required	V		

Table2: Applicability of DFS requirements during normal operation

		OPERATIONAL M	ODE
REQUIREMENT		CLIENT WITHOUT	CLIENT WITH
RADAR	MASTER	RADAR	RADAR
		DETECTION	DETECTION
DFS Detection Threshold	V	Not required	V
Channel Closing Transmission Time	V	V	V
Channel Move Time	V	V	V
U-NII Detection Bandwidth	V	Not required	V

Additional requirements for devices with multiple bandwidth modes	Master or Client with radar detection	Client without radar detection		
U-NII Detection Bandwidth and Statistical Performance Check	All BW modes must be tested	Not required		
Channel Move Time and Channel Closing Transmission Time	Test using widest BW mode available	Test using the widest BW mode available for the link		
All other	Any single BW mode	Not required		
Note: Frequencies selected for statistical performance check (Section 7.8.4) should include several frequencies within the radar detection bandwidth and frequencies near the edge of the radar detection bandwidth. For 802.11 devices it is suggested to select frequencies in each of the bonded 20 MHz channels and the channel center frequency.				

5.2. Test Setup

Setup for Master with injection at the Master

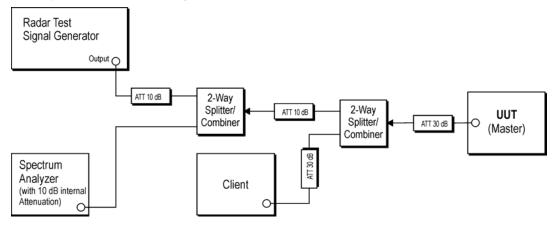
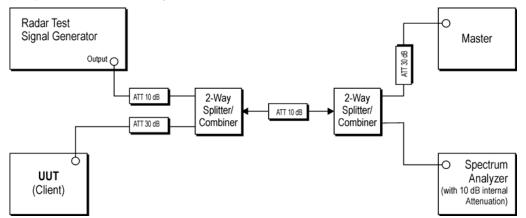



Figure 1: Example Conducted Setup where UUT is a Master and Radar Test Waveforms are injected into the Master

Setup for Client with injection at the Master

Figure 2: Example Conducted Setup where UUT is a Client and Radar Test Waveforms are injected into the Master

Setup for Client with injection at the Client

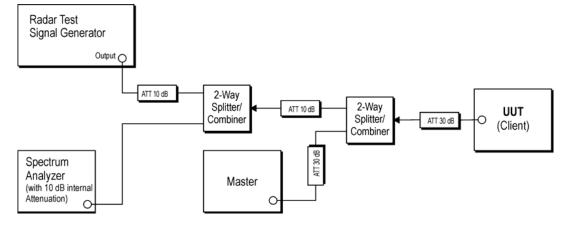


Figure 3: Example Conducted Setup where UUT is a Client and Radar Test Waveforms are injected into the Client

5.3. DFS Detection Threshold

DFS Detection Threshold is the level used by the DFS mechanism to detect radar interference.

5.3.1. Test Limit

Limits Clause 4.7.2.1.2

DFS Detection Thresholds for Master Devices and Client Devices with Radar Detection

MAXIMUM TRANSMIT POWER	VALUE (SEE Note 1 and 2)
≥ 200 milliwatt	-64 dBm
EIRP < 200 milliwatt and power spectral density < 10 dBm/MHz	-62 dBm
EIRP < 200 milliwatt that do not meet the power spectral density requirement	-64 dBm

Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna. Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response. Note3: EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication 662911

5.3.2. Test Result of DFS Detection Threshold

Radar 0 VALUE -64dBm

Modulation Standard: 802.11ac VHT80, 5260MHz

Spectrum Analyz Swept SA	· · · ·	+						\$	Marker	· · 🛣
	input: RF Coupling: AC Nign: Auto	Input Z: 50 0 Corrections: Off Freq Ref. Int (S)	#Atten: 0 dB	PNO: Fast Gate: Off IF Gain: High Sig Track: Off	Awg Type: Lo Trig: Video	g-Power	123456 WWWWWW	Select Ma Marker 1	rker	
1 Spectrum Scale/Div 10 dB	•		ef Lvi Offset -1 ef Level -30.00	0.00 dB			21.41 ms 3.98 dBm	Marker Ti 21.4117		Settings Peak
Log		Ň	el Level -30.00	dem		-0	5.50 abii	Marker M	ode	Search
-40.0								 Norms 		Pk Search Config
-50.0								Delta Fixed	(Δ)	Properties
-60.0	111111						TRIG LVL	Off		Marker Function
-80.0		a ki kasi manja sa mahara	n sealartainada	ulterospiega Unicipio	on tuning de	en e	visitore (For		a Marker	Marker→
-90.0								(Res Marker Ta On	et Delta) able	Counter
-100 alcold bu	a ratali	da comune.	a de la casa	ويعمل ويلال	ان و الارد ال	lis an	nation at a sale	off		
-110	<mark>des pr</mark> ei del	AND HEALTH	HUDDER	A MEDIA		nn, Ph			r Settings agram	
-120					-r 'll		+ '		arkers Off	
Center 5.260000 Res BW 3.0 MH			Video BW 3.0	MHz	Swee	p 101.3 m	Span 0 Hz s (40001 pts)	Couple M On Off	larkers	
1 5		Aug 05, 2020 1:19:59 PM	DД				HX			

Modulation Standard: 802.11ac VHT80, 5500MHz

Spectrum Analyzer 1	8					•	Marker	- *
KEYSIGHT Input: RF RL Align: Auto	Input Z: 50 Ω Corrections: Off Freq Ref: Int (S)	#Atten: 0 dB	PNO:Fast Gate:Off IF Gain:High Sig Track:Off	Avg Type: Log-Powe Trig: Video	123456 WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW	Select Mark Marker 1 Marker Tim		
1 Spectrum 🔹		f Lvi Offset -10.0			1 22.84 ms	22.8405 m		Settings
Scale/Div 10 dB	Re	f Level -30.00 dE	3m		-64.18 dBm	Marker Mos	ie	Peak Search
						 Normal 		Pk Search Config
						Oelta (∆		Properties
-60.0	1					Fixed		Marker
-70.0					TRIG LVL	on		Function
-20 0	estidate miles poste	a Burin Sambian	an teachar teachard little		anti ferratei en	Delta	Aarker	Marker→
-90.0						(Reset	Delta)	Counter
						Marker Tab On	e	Counter
100 Cilentiticalitication	de la Malanta de Mandela	trusted sector Ner	era a da daha da ka	d natalasticizada	เลกโปลงมาเปลา	Off		
-110						K Marker	Settings ram	
					- Prove	All Mar	kers Off	
Center 5.500000000 GHz Res BW 3.0 MHz		Video BW 3.0 M	Hz	Sweep 101.3	Span 0 Hz ms (40001 pts)	Couple Mar On Off	kers	
t ? 🕈 🕈	Aug 05, 2020 1:21:06 PM							

5.4. Channel Availability Check Time

The Channel Availability Check is defined as the mechanism by which an RLAN device checks a channel for the presence of radar signals.

There shall be no transmissions by the device within the channel being checked during this process. If no radars have been detected, the channel becomes an Available Channel valid for a period of time.

The RLAN shall only start transmissions on Available Channels.

At power-up, the RLAN is assumed to have no Available Channels.

5.4.1. Test Limit

Limits Clause 4.7.2.1.2 Table D.2: DFS requirement values

Parameter	Value
Channel Availability Check	> 60s

5.4.2. Test Result of Channel Availability Check

CERPASS TECHNOLOGY CORP.

5.5. Radar Burst at the Beginning of the Channel Availability Check Time

The steps below define the procedure to verify successful radar detection on the test Channel during a period equal to the Channel Availability Check Time and avoidance of operation on that Channel when a radar Burst with a level equal to the DFS Detection Threshold + 1 dB occurs at the beginning of the Channel Availability Check Time. This is illustrated in **Figure 15**.

- a) The Radar Waveform generator and UUT are connected using the applicable test setup described in the sections on configuration for Conducted Tests or Radiated Tests and the power of the UUT is switched off.
- b) The UUT is powered on at T0. T1 denotes the instant when the UUT has completed its power-up sequence (Tpower_up). The Channel Availability Check Time commences on Chr at instant T1 and will end no sooner than T1 + Tch_avail_check.
- c) A single Burst of one of the Short Pulse Radar Types 0-4 will commence within a 6 second window starting at T1. An additional 1 dB is added to the radar test signal to ensure it is at or above the DFS Detection Threshold, accounting for equipment variations/errors.
- d) Visual indication or measured results on the UUT of successful detection of the radar Burst will be recorded and reported. Observation of Chr for UUT emissions will continue for 2.5 minutes after the radar Burst has been generated.
- e) Verify that during the 2.5 minute measurement window no UUT transmissions occurred on Chr. The Channel Availability Check results will be recorded.

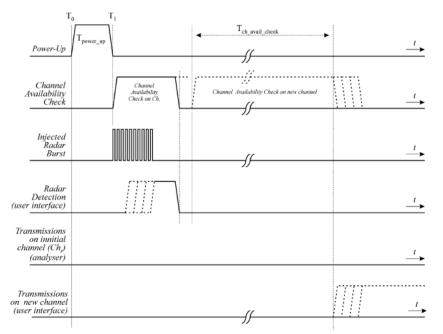


Figure 15: Example of timing for radar testing at the beginning of the Channel Availability Check Time

5.5.1. Test Result of radar burst at the beginning of the Channel Availability Check Time

CERPASS TECHNOLOGY CORP.

5.6. Radar Burst at the End of the Channel Availability Check Time

The steps below define the procedure to verify successful radar detection on the test Channel during a period equal to the Channel Availability Check Time and avoidance of operation on that Channel when a radar Burst with a level equal to the DFS Detection Threshold + 1dB occurs at the end of the Channel Availability Check Time. This is illustrated in **Figure 16**.

- a) The Radar Waveform generator and UUT are connected using the applicable test setup described in the sections for Conducted Tests or Radiated Tests and the power of the UUT is switched off.
- b) The UUT is powered on at T0. T1 denotes the instant when the UUT has completed its power-up sequence (Tpower_up). The Channel Availability Check Time commences on Chr at instant T1 and will end no sooner than T1 + Tch_avail_check.
- c) A single Burst of one of the Short Pulse Radar Types 0-4 will commence within a 6 second window starting at T1 + 54 seconds. An additional 1 dB is added to the radar test signal to ensure it is at or above the DFS Detection Threshold, accounting for equipment variations/errors.
- d) Visual indication or measured results on the UUT of successful detection of the radar Burst will be recorded and reported. Observation of Chr for UUT emissions will continue for 2.5 minutes after the radar Burst has been generated.
- e) Verify that during the 2.5 minute measurement window no UUT transmissions occurred on Chr. The Channel Availability Check results will be recorded.

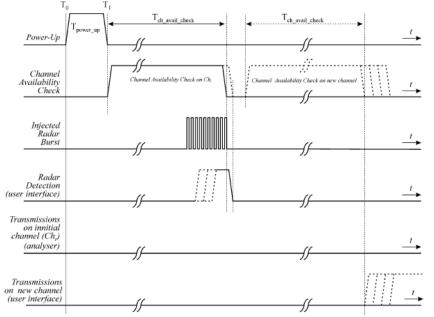


Figure 16: Example of timing for radar testing towards the end of the Channel Availability Check Time

5.6.1. Test Result of radar burst at the end of the Channel Availability Check Time

5.7. U-NII Detection Bandwidth

Additional requirements for devices with	Master or Client with	Client without radar		
multiple bandwidth modes	radar detection	detection		
U-NII Detection Bandwidth and Statistical	All BW modes must be tested	Not required		
Performance Check	All BW modes must be tested	Not required		
Note: Frequencies selected for statistical performance check (Section 7.8.4) should include several				
frequencies within the radar detection bandwidth and frequencies near the edge of the radar				
detection bandwidth. For 802.11 devices it is suggested to select frequencies in each of the bonded				
20 MHz channels and the channel center frequency.				

5.7.1. Test Limit

Limits Clause 4.7.2.1.2 Table D.2: DFS requirement values

Parameter	Value		
U-NII Detection Bandwidth	Minimum 100% of the U-NII 99% transmission		
Note : During the U-NII Detection Bandwidth detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.			

5.7.2. Test Result of U-NII Detection Bandwidth

5.8. Statistical Performance Check

The UUT will select channel by random mode and remember this channel when detect radar signal, so that will select unused channel by random mode.

5.8.1. Test Result of Uniform Spreading

5.9. In-Service Monitoring

The In-Service Monitoring is defined as the process by which an RLAN monitors the Operating Channel for the presence of radar signals.

Additional requirements for devices with multiple bandwidth modes	Master or Client with radar detection	Client without radar detection	
U-NII Detection Bandwidth and Statistical Performance Check	All BW modes must be tested	Not required	
Channel Move Time and Channel Closing Transmission Time	Test using widest BW mode available	Test using the widest BW mode available for the link	
All other	Any single BW mode	Not required	
Note: Frequencies selected for statistical performance check (Section 7.8.4) should include several frequencies within the radar detection bandwidth and frequencies near the edge of the radar detection bandwidth. For 802.11 devices it is suggested to select frequencies in each of the bonded 20 MHz channels and the channel center frequency.			

5.9.1. Test Limit

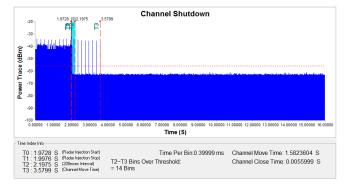
Parameter	Value					
Channel Move Time	< 10 s (See Note 1)					
Channel Closing Transmission Time	< 200 ms+ an aggregate of 60 milliseconds over remaining 10 second period.					
-	(See Notes 1 and Notes 2.)					
with Radar Type 0. The measurement Note 2: The Channel Closing Transmission Ti beginning of the Channel Move Time plus any facilitate a Channel move (an aggregate of 60	Closing Transmission Time should be performed timing begins at the end of the Radar Type 0 burst. me is comprised of 200 milliseconds starting at the additional intermittent control signals required to milliseconds) during the remainder of the 10 trol signals will not count quiet periods in between					

Limits Clause 4.7.2.2.2

The In-Service Monitoring shall be used to continuously monitor an Operating Channel.

The In-Service-Monitoring shall start immediately after the RLAN has started

transmissions on an Operating Channel.



5.9.2. Test Result of In-Service Monitoring

Modulation Standard: 802.11ac VHT80, 5260MHz

1.976 [0]2.1999 3	5495 Channel Shutdown	
-20 p		
-30-		
40-		
9 -50-		
e		
20 -60 -	na an ann an tha air an tha ann an tha tha an tha ann ann an an tha ann an tha an tha an tha an tha ann tha ann	and a startistic of an increased wave as a starting to a starting of a starting of the startin
Downed Use of the Use		
o _80 -		
-90 -		
-100	00000 5.00000 6.00000 7.00000 8.00000 9.00000 10.0000	0 11.00000 12.00000 13.00000 14.00000 15.00000 16.0000
	Time (S)	
Time Index Info		
T0 : 1.9760 S (Radar Injection Start)	Time Per Bin:0.39999 m	s Channel Move Time: 1.5495613 S
T1 2 0000 S (Radar Injection Stop)	T2~T3 Bins Over Threshold:	Channel Close Time: 0.0055999 S
T2 : 2,1999 S (200msec Interval)		

Modulation Standard: 802.11ac VHT80, 5500MHz

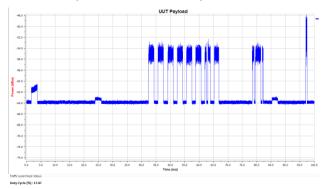
5.10. Non-Occupancy Period

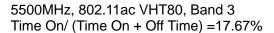
The Channel Shutdown is defined as the process initiated by the RLAN device immediately after a radar signal has been detected on an Operating Channel.

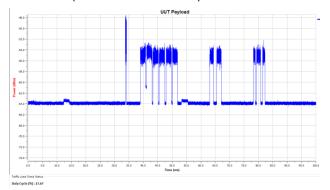
The master device shall instruct all associated slave devices to stop transmitting on this channel, which they shall do within the Channel Move Time.

Slave devices with a Radar Interference Detection function, shall stop their own transmissions within the Channel Move Time.

The aggregate duration of all transmissions of the RLAN device on this channel during the Channel Move Time shall be limited to the Channel Closing Transmission Time. The aggregate duration of all transmissions shall not include quiet periods in between transmissions.

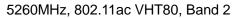

5.10.1.Test Limit


Radar Test Signal	Master (min)	Client (min)		
0	> 30	> 30		


5.10.2. Channel Loading

Timing plots are required with calculations demonstrating a minimum channel loading of approximately 17% or greater. For example, channel loading can be estimated by setting the spectrum analyzer for zero span and approximate the Time On/ (Time On + Off Time). This can be done with any appropriate channel BW and modulation type

5260MHz, 802.11ac VHT80, Band 2 Time On/ (Time On + Off Time) =17.87%





5.10.3. Test Result of Non-Occupancy Period

5500MHz, 802.11ac VHT80, Band 3

KEYSIGHT Input: RF Coupling: AC Coupling: AC Align: Auto Align: Auto	+ Input Z: 50 Ω Corrections: Off Freq Ref. Int (S)	#Atten: 0 dB	PNO:Fast Gato:Off IFGain:High Sig Track:Off	Avg Type: Log- Trig: Free Run	W W W	456	Select Mari Marker 1	Marker ker	
Spectrum v			Sig Track: Utt		Mkr1 58		Marker Tin 58.0000 s	10	Settings
Scale/Div 10 dB		Ref Level -20.00	0 dBm		-24.13			_	Peak
- ^{og} 1							Peak	Search	Search
30.0							Next	Peak	Pk Searc Config
40.0							Next F	% Right	Propertie
50.0							Next	Pk Left	Marker Function
70.0			a file a stilling to one	ude te tracelos			Minim	ım Peak	Marker
80.0							Pk-Pk	Search	Counter
90.0							Marke	er Delta	
-100							Mkr	→CF	
-110							Mkr→	Ref Lvi	
Center 5.50000000 GHz tes BW 3.0 MHz		#Video BW 3.0	MHz	Sweep	Spa 2.000 ks (400	in 0 Hz	Continuou Search On	s Peak	
1 521	Aug 07, 2020					X	or		