

427 West 12800 South Draper, UT 84020

Test ReportCertification

FCC ID	SWX-U6MESHR
ISED ID	6545A-U6MESHR
Equipment Under Test	U6-MESH
Test Report Serial Number	TR6054_03
Date of Test(s)	29 January, 17 February, 16 and 31 March 2021
Report Issue Date	6 May 2021

Test Specification	Applicant
47 CFR FCC Part 15, Subpart E	Ubiquiti Inc.
	685 Third Avenue
	New York, NY 10019
	U.S.A.

Certification of Engineering Report

This report has been prepared by Unified Compliance Laboratory (UCL) to document compliance of the device described below with the requirement of Federal Communication Commissions (FCC) Part 15, Subpart E. This report may be reproduced in full. Partial reproduction of this report may only be made with the written consent of the laboratory. The results in this report apply only to the sample tested.

Applicant	Ubiquiti Inc.
Manufacturer	Ubiquiti Inc.
Brand Name	UniFi
Model Number	U6-MESH
FCC ID	SWX-U6MESHR
ISED ID	6545A-U6MESHR

On this 6th day of May 2021, I individually and for Unified Compliance Laboratory certify that the statements made in this engineering report are true, complete, and correct to the best of my knowledge and are made in good faith.

Although NVLAP has accredited the Unified Compliance Laboratory testing facilities, this report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST or any agency of the U.S. federal government.

Unified Compliance Laboratory

Written By: Joseph W. Jackson

Reviewed By: Richard L. Winter

Revision History		
Revision Description		Date
01	Original Report Release	6 May 2021
02	Amended Sections 2.2, 2.3 and 4.3	19 May 2021
03	Amended Section 2.6 and 3.3.1	16 June 2021

Table of Contents

1	Clie	nt Information	5
	1.1	Applicant	5
	1.2	Manufacturer	
2	Equi	ipment Under Test (EUT)	
	2.1	Identification of EUT	6
	2.2	Description of EUT	
	2.3	EUT and Support Equipment	6
	2.4	Interface Ports on EUT	7
	2.5	Operating Environment	7
	2.6	Operating Modes	7
	2.7	EUT Exercise Software	7
	2.8	Block Diagram of Test Configuration	8
	2.9	Modification Incorporated/Special Accessories on EUT	8
	2.10	Deviation, Opinions Additional Information or Interpretations from Test Standard	8
3	Test	Specification, Method and Procedures	9
	3.1	Test Specification	9
	3.2	Methods & Procedures	9
	3.3	FCC Part 15, Subpart E	9
	3.4	Results	9
	3.5	Test Location	9
4	Test	Equipment	11
	4.1	Conducted Emissions at Mains Ports	11
	4.2	Direct Connect at the Antenna Port Tests	11
	4.3	Radiated Emissions	12
	4.4	Equipment Calibration	12
	4.5	Measurement Uncertainty	13
5	Test	Results	14
	5.1	§15.203 Antenna Requirements	14
	5.2	Conducted Emissions at Mains Ports Data	14
	5.3	§15.403(i) 26 dB Emissions Bandwidth	16
	5.4	§15.403(a)(1) Maximum Average Output Power	
	5.5	§15.407(b) Spurious Emissions	
	5.6	§15.407(a) Maximum Power Spectral Density	
		· · · · · · · · · · · · · · · · · · ·	

1 Client Information

1.1 Applicant

Company Ubiquiti Inc. 685 Third Avenue New York, NY 10017 U.S.A.		
Contact Name	Mark Feil	
Title	Compliance Manager	

1.2 Manufacturer

Company Ubiquiti Inc. 685 Third Avenue New York, NY 10017 U.S.A.		
Contact Name	Mark Feil	
Title	Compliance Manager	

2 Equipment Under Test (EUT)

2.1 Identification of EUT

Brand Name	UniFi	
Model Number	U6-MESH	
Serial Number	68D79A1F02AB	
Dimensions (cm)	4.85 x 4.85 x 15.95	

2.2 Description of EUT

The U6-Mesh is a four-stream WiFi 6 access point that provides up to 2.7 Gbps aggregate radio rate with 5 GHz (MU-MIMO and OFDMA) and 2.4 GHz (MIMO) radios. The U6-Mesh has a sleek design and is intended for indoor or outdoor use. The U6-Mesh has an Ethernet port for data transfer and is powered by a UPOE-at PoE power adapter.

The U6-Mesh operates in the following Modulation Bandwidths with OFDM, HT, VHT, and HE modulations.

Band	Modulation Bandwidth	Frequency (MHz)	
	20 MHz	5180, 5200, 5210, 5220, 5240	
UNII-1	40 MHz	5190, 5230	
	80 MHz	5210	
	20 MHz	5745, 5765, 5785, 5805, 5825	
UNII-3	40 MHz	5755, 5795	
	80 MHz	5775	

This report covers the circuitry of the device subject to FCC Part 15, Subpart C. The circuitry of the device subject to FCC Part 15 Subpart B was found to be compliant and is covered under a separate Unified Compliance Laboratory test report.

2.3 EUT and Support Equipment

The EUT and support equipment used during the test are listed below.

Brand Name Model Number Serial Number	Description	Name of Interface Ports / Interface Cables
BN: UniFi MN: U6-Mesh (Note 1) SN: 68D79A1F02AB	WiFi Access Point	See Section 2.4
BN: Ubiquiti MN: UPOE-at (Note 1)	PoE Power Adapter	Shielded or Un-Shielded Cat 5e cable (Note 2)

SN: N/A		
BN: Dell MN: XPS 13 SN: N/A	Laptop PC	Shielded or Un-Shielded Cat 5e cable (Note 2)

Notes: (1) EUT

The support equipment listed above was not modified in order to achieve compliance with this standard.

2.4 Interface Ports on EUT

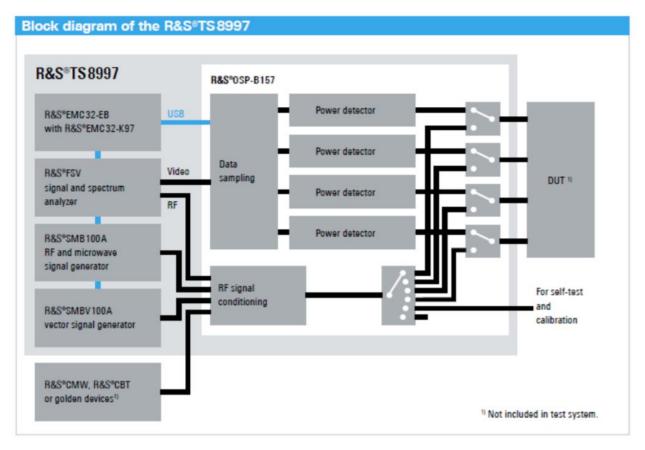
Name of Ports	No. of Ports Fitted to EUT	Cable Description/Length
Data	1	Shielded Cat 5e cable/8meters
AC (PoE Injector)	1	3 conductor power cord/80cm
LAN (PoE Injector)	1	Un-shielded Cat 5e cable/1
LAN (FOL Injector)	1	meter

2.5 Operating Environment

Power Supply	120 Vac to 48 Volts PoE Power
AC Mains Frequency	60 Hz
Temperature	19.9 – 22.7 °C
Humidity	17.5 – 26.1 %
Barometric Pressure	1009 mBar

2.6 Operating Modes

The U6-Mesh was connected to a personal computer laptop through the PoE Adapter. Test software was used in order to enable a constant duty cycle. The measurements within this report are corrected to reference a 100% duty cycle. Emissions modes of 802.11 a/n/ac/ax were investigated. All measurements are reports with the worst-case mode (802.11ax) unless otherwise stated.


2.7 EUT Exercise Software

EUT firmware version 1.0 was used to operate the transmitter using a constant transmit mode. (ART)

⁽²⁾ Interface port connected to EUT (See Section 2.4)

2.8 Block Diagram of Test Configuration

Diagram 1: Test Configuration Block Diagram

2.9 Modification Incorporated/Special Accessories on EUT

There were no modifications made to the EUT during testing to comply with the specification.

2.10 Deviation, Opinions Additional Information or Interpretations from Test Standard

There were no deviations, opinions, additional information or interpretations from the test specification.

3 Test Specification, Method and Procedures

3.1 Test Specification

Title	47 CFR FCC Part 15, Subpart E, Section 15.407 Limits and methods of measurement of radio interference characteristics of Unlicensed National Information Infrastructure Devices
Purpose of Test	The tests were performed to demonstrate initial compliance

3.2 Methods & Procedures

3.2.1 47 CFR FCC Part 15 Section 15.407

See test standard for details.

3.3 FCC Part 15, Subpart E

3.3.1 Summary of Tests

FCC Section	ISED Section	Environmental Phenomena	Frequency Range (MHZ)	Result
15.407(a)	N/A	Antenna requirements	Structural Requirement	Compliant
15.407(b)	RSS-Gen	Conducted Disturbance at Mains Port	0.15 to 30	Compliant
15.407(c)	RSS-247 §6.2.2, §6.2.3	Bandwidth Requirement	2400 to 2483.5	Compliant
15.407(e)	RSS-247 §6.2.2, §6.2.3	Peak Output Power	2400 to 2483.5	Compliant
15.407(f)	RSS-247 §6.2.2, §6.2.3	Antenna Conducted Spurious Emissions	0.009 to 40000	Compliant
15.407(g)	RSS-247 §6.2.2, §6.2.3	Radiated Spurious Emissions	0.009 to 40000	Compliant
15.407(h)	RSS-247 §6.2.2, §6.2.3	Peak Power Spectral Density	2400 to 2483.5	Compliant

The testing was performed according to the procedures in ANSI C63.10-2013, KDB 789033 and 47 CFR Part 15. Where applicable, KDB 662911 was followed to sum required measurements.

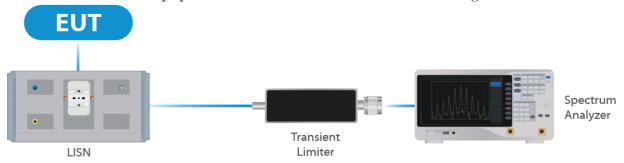
3.4 Results

In the configuration tested, the EUT complied with the requirements of the specification.

3.5 Test Location

Testing was performed at the Unified Compliance Laboratory 10-Meter chamber located at 427 West 12800 South, Draper, UT 84020. Unified Compliance Laboratory is accredited by National Voluntary

Laboratory Accreditation Program (NVLAP); NVLAP Code 600241-0 which is effective until 30 June 2021. This site has also been registered with Innovations, Science and Economic Development (ISED) department as was accepted under Appendix B, Phase 1 procedures of the APEC Tel MRA for Canadian recognition. ISED No.: 25346, effective until June 30, 2021. Unified Compliance Laboratory has been assigned Conformity Assessment Number US0223 by ISED.

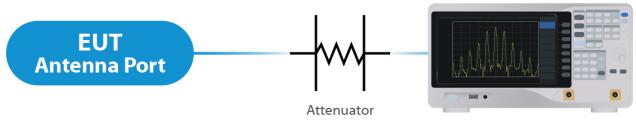


4 Test Equipment

4.1 Conducted Emissions at Mains Ports

Type of Equipment	Manufacturer	Model Number	Asset Number	Date of Last Calibration	Due Date of Calibration
EMI Receiver	AFJ	FFT3010	UCL-2500	9/18/2020	9/18/2021
LISN	AFJ	LS16C/10	UCL-2512	5/26/2020	5/26/2021
Cat6 ISN	Teseq	ISN T8- Cat6	UCL-2971	5/18/2020	5/18/2021
ISN	Teseq	ISN T800	UCL-2974	6/1/2020	6/1/2021
LISN	Com-Power	LIN-120C	UCL-2612	5/19/2020	5/19/2021
AC Power Source	Laplace Instruments	AC1000A	UCL-2857	N/A	N/A
Test Software	UCL	Revision 1	UCL-3107	N/A	N/A

Table 1:List of equipment used for Conducted Emissions Testing at Mains Port


Figure 1: Conducted Emissions Test

4.2 Direct Connect at the Antenna Port Tests

Type of Equipment	Manufacturer	Model Number	Asset Number	Date of Last Calibration	Due Date of Calibration
Spectrum Analyzer	R&S	FSV40	UCL-2861	8/24/2020	8/24/2021
Signal Generator	R&S	SMB100A	UCL-2864	N/A	N/A
Vector Signal Generator	R&S	SMBV100A	UCL-2873	N/A	N/A
Switch Extension	R&S	OSP- B157WX	UCL-2867	8/25/2020	8/25/2021
Switch Extension	R&S	OSP-150W	UCL-2870	8/21/2020	8/21/2021

Table 2:List of equipment used for Direct Connect at the Antenna Port

Spectrum Analyzer

Figure 2: Direct Connect at the Antenna Port Test

4.3 Radiated Emissions

Type of Equipment	Manufacturer	Model Number	Asset Number	Date of Last Calibration	Due Date of Calibration
EMI Receiver	Keysight	N9038A	UCL-2778	6/1/2020	6/1/2021
Pre-Amplifier 9 kHz – 1 GHz	Sonoma Instruments	310N	UCL-2889	6/21/2019	6/21/2020
Double Ridge Horn Antenna	Scwarzbeck	BBHA 9120D	UCL-3065	4/11/2019	6/3/2020
Log Periodic	Scwarzbeck	STLP 9129	UCL-3068	5/20/2020	5/20/2021
15 - 40 GHz Horn Antenna	Scwarzbeck	BBHA 9170	UCL-2487	5/21/2020	5/21/2021
1 – 18 GHz Amplifier	Com-Power	PAM 118A	UCL-3833	9/29/2020	9/29/2021
Test Software	UCL	Revision 1	UCL-3108	N/A	N/A

Table 3:List of equipment used for Radiated Emissions

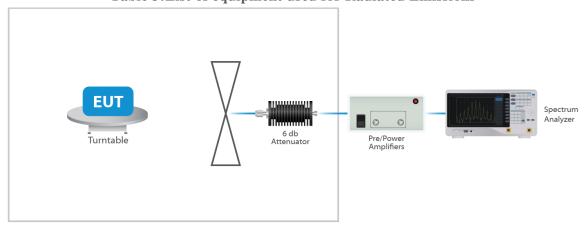


Figure 3: Radiated Emissions Test

4.4 Equipment Calibration

All applicable equipment is calibrated using either an independent calibration laboratory or Unified Compliance Laboratory personnel at intervals defined in ANSI C63.4:2014 following outlined calibration procedures. All measurement instrumentation is traceable to the National Institute of Standards and

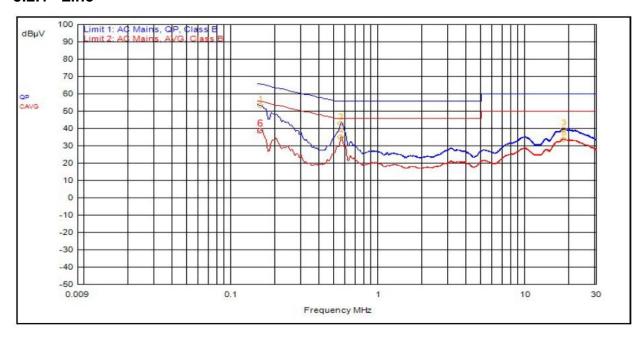
Technology (NIST). Supporting documentation relative to traceability is on file and is available for examination upon request.

4.5 Measurement Uncertainty

Test	Uncertainty (<u>+</u> dB)	Confidence (%)
Conducted Emissions	1.44	95
Radiated Emissions (9 kHz to 30 MHz)	2.50	95
Radiated Emissions (30 MHz to 1 GHz)	4.38	95
Radiated Emissions (1 GHz to 18 GHz)	4.37	95
Radiated Emissions (18 GHz to 40 GHz)	3.93	95
Direct Connect Tests	K Factor	Value
Emissions Bandwidth	2	2.0%
Output Power	2	1.0 dB
Peak Power Spectral Density	2	1.3 dB
Band Edge	2	0.8 dB
Transmitter Spurious Emissions	2	1.8 dB

5 Test Results

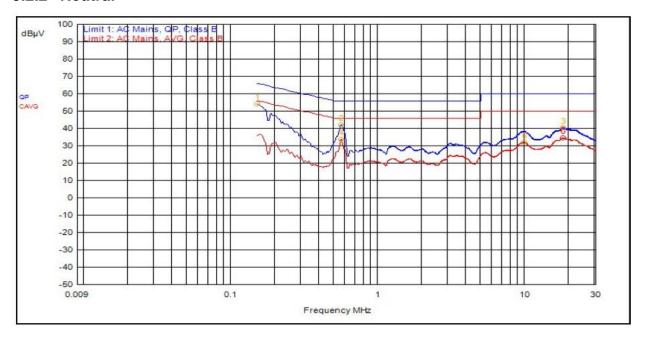
5.1 §15.203 Antenna Requirements


The EUT uses an integral. The Maximum gain of the antenna is 5.0 dBi. The antenna is not user replaceable.

Results

The EUT complied with the specification

5.2 Conducted Emissions at Mains Ports Data


5.2.1 Line

ID	Frequency	Probe	Cable	Atten.	Detector	Meter Read	Meas Level	Limit	Limit Dist.
4	552.000kHz	12.4	0.0		C_AVG	22.7	35.1	46.0	-10.9
1	156.000kHz	12.4	0.0		QPeak	40.8	53.2	65.7	-12.4
2	552.000kHz	12.4	0.0		QPeak	30.7	43.1	56.0	-12.9
5	17.889MHz	12.3	0.2		C_AVG	21.4	33.9	50.0	-16.1
6	156.000kHz	12.4	0.0		C_AVG	26.4	38.8	55.7	-16.9
3	17.958MHz	12.3	0.2		QPeak	27.1	39.6	60.0	-20.4

5.2.2 Neutral

ID	Frequency	Probe	Cable	Atten.	Detector	Meter Read	Meas Level	Limit	Limit Dist.
1	150.000kHz	12.4	0.0		QPeak	41.7	54.1	66.0	-11.9
4	558.000kHz	12.4	0.0		C_AVG	21.5	33.9	46.0	-12.1
2	555.000kHz	12.4	0.0		QPeak	29.6	42.1	56.0	-13.9
6	17.835MHz	12.3	0.2		C_AVG	21.9	34.5	50.0	-15.5
5	9.723MHz	12.3	0.2		C_AVG	19.5	32.0	50.0	-18.0
3	18.036MHz	12.3	0.2		QPeak	27.7	40.3	60.0	-19.7

Result

The EUT complied with the specification limit.

5.3 §15.403(i) 26 dB Emissions Bandwidth

Nominal BW (MHz)	Frequency (MHZ)	99% Bandwidth (MHz)	Emissions 26 dB Bandwidth (MHz)
20	5180	17.7	20.8
20	5210	28.8	47.1
20	5240	32.2	49.1
40	5190	36.25	39.3
40	5230	36.25	48.3
80	5210	75.5	81.0

Result

The 26 dB bandwidths are reported for information purposes. Please see Annex for all bandwidth measurements.

5.4 §15.403(a)(1) Maximum Average Output Power

The maximum average RF conducted output power measured for this device was 29.5 dBm or 891.25 mW. The limit is 30 dBm, or 1 Watt when using antennas with 6 dBi (indoor/outdoor access point) or less gain. The antenna has a gain of 5.0 dBi.

Modulation (BW)	Frequency (MHz)	Data Rate	TP Setting	Conducted Output Power *	Measured EIRP	Measured PSD
OFDM 20	5180	Mcs0	41	23.9	28.90	10.6
OFDM 20	5200	Mcs0	48	27.1	32.10	
OFDM 20	5210	Mcs0	50	28.2	33.20	15.0
OFDM 20	5240	Mcs0	55	29.5	34.50	16.2
HT 20	5180	Mcs0	39	22.6	27.60	8.8
HT 20	5200	Mcs0	48	26.9	31.90	
HT 20	5210	Mcs0	50	28.1	33.10	14.3
HT 20	5240	Mcs0	52	29.0	34.00	15.1
HT 40	5190	Mcs0	27	16.8	21.80	0.8
HT 40	5230	Mcs0	44	25.8	30.80	9.7
VHT 20	5180	Mcs0	40	23.1	28.10	9.2
VHT 20	5200	Mcs0	48	26.9	31.90	
VHT 20	5210	Mcs0	50	28.1	33.10	14.3
VHT 20	5240	Mcs0	52	29.0	34.00	15.1

VHT 40	5190	Mcs0	27	16.8	21.80	0.7
VHT 40	5230	Mcs0	44	25.8	30.80	9.8
VHT 80	5210	Mcs0	26	16.3	21.30	-2.8
HE 20	5180	Mcs0	37	21.9	26.90	7.9
HE 20	5200	Mcs0	46	26.2	31.20	
HE 20	5210	Mcs0	48	27.0	32.00	13.0
HE 20	5240	Mcs0	52	29.1	34.10	15.1
HE 40	5190	Mcs0	27	17.0	22.00	0.7
HE 40	5230	Mcs0	43	25.3	30.30	9.0
HE 80	5210	Mcs0	25	16.0	21.00	-3.1

Result

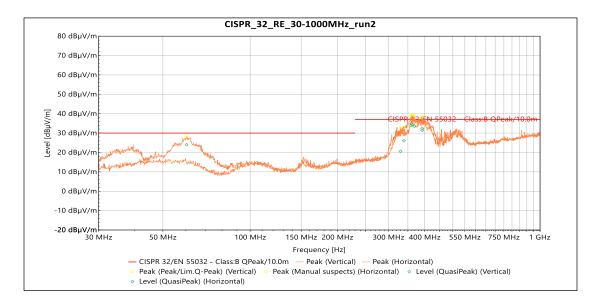
In the configuration tested, the maximum average RF outpower was less than 1 watt; therefore, the EUT compiled with the requirements of the specification (see spectrum analyzer plots in attached Annex).

^{*} Gated EIRP as shown in the Annex is the conducted measurement

5.5 §15.407(b) Spurious Emissions

5.5.1 Conducted Spurious Emissions

The frequency ranges from the lowest frequency generated or used in the device to the tenth harmonic of the highest fundamental frequency was investigated to measure any antenna-conducted emissions. The graphs show the measurement data from spurious emissions noted across the frequency range when transmitting at the lowest frequency, middle frequency and upper frequency. Shown below are plots with the EUT turned to the upper and lower channels with the antenna gain of 12 dBi accounted for. These demonstrate compliance with the provisions of this section at the band edges.

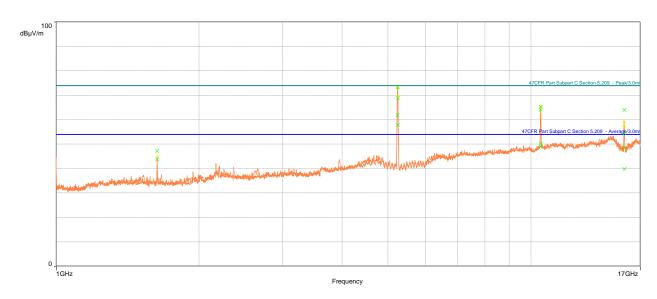

The emissions must remain below -27 dBm EIRP.

Result

Conducted spurious emissions were below -27 dBm; therefore, the EUT complies with the specification.

5.5.2 Radiated Spurious Emissions in the Restricted Bands of § 15.205

The EUT uses various power settings based on the channel in use. In order to reduce test time, the radiated spurious emissions at the lowest, middle, and highest channel were measured at the maximum power of 29.5, as this setting was found to be worst case for spurious emissions. Power was subsequently reduced during in-band and band edge testing. The band edge at the restricted band ending at 5240 MHz was measured using conducted measurement at the antenna port methods. The worse-case band edge at 5180 MHz is shown for each channel that steps up in power as shown in the table of above. The radiated band edges show the peak emission compared to the average limit.


Source	Frequency	Level (dBµV/m)	Limit (dBµV/m)	Margin	Azimuth (°)	Height	Pol.	Correction (dB)
QuasiPeak	60.366 MHz	24.005	30	-5.995	197	3.364	Vertical	-13.501
QuasiPeak	329.7 MHz	20.569	37	-16.431	85	1.304	Vertical	-11.089
QuasiPeak	339.04 MHz	26.006	37	-10.994	333	0.994	Vertical	-10.592
QuasiPeak	362.31 MHz	34.472	37	-2.528	168	3.9	Vertical	-10.194

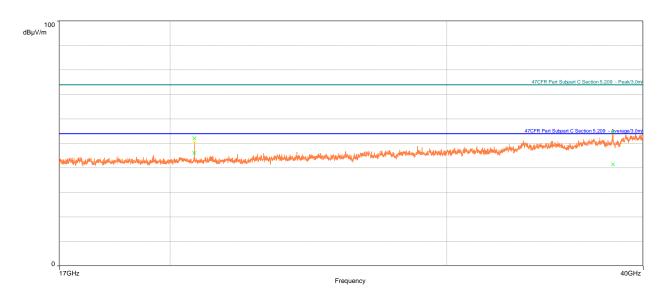
Source	Frequency	Level (dBµV/m)	Limit (dBµV/m)	Margin	Azimuth (°)	Height	Pol.	Correction (dB)
QuasiPeak	392.33 MHz	31.485	37	-5.515	134	3.756	Vertical	-9.193

Source	Frequency	Level (dBµV/m)	Limit (dBµV/m)	Margin	Azimuth (°)	Height	Pol.	Correction (dB)
QuasiPeak	359.24 MHz	33.842	37	-3.158	269	2.812	Horizontal	-10.362
QuasiPeak	368.35 MHz	33.581	37	-3.419	269	2.697	Horizontal	-9.994
QuasiPeak	392.08 MHz	32.41	37	-4.59	245	2.073	Horizontal	-9.2

Table 4: Radiated Emissions 30 - 1000 MHz

Avg

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Azimuth (°)	Height (m)	Pol.	Correction (dB)
10478	49.01	54.00	-4.99	112.00	3.79	Vertical	13.80
15722	39.84	54.00	-14.16	98.00	3.20	Vertical	13.46
1632	43.71	54.00	-10.29	88.00	1.50	Horizontal	-7.26
10485	50.30	54.00	-3.70	197.00	1.65	Horizontal	13.83
15723	48.66	54.00	-5.34	273.00	1.89	Horizontal	13.46

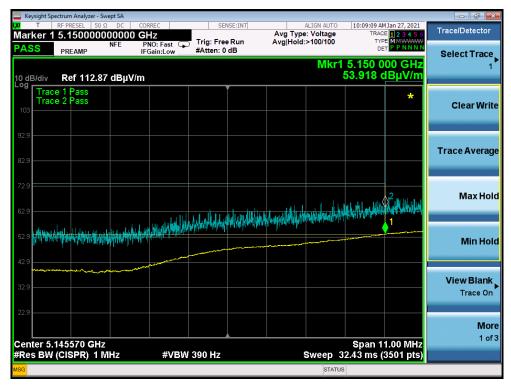

Peak

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Azimuth (°)	Height (m)	Pol.	Correction (dB)
10478	64.03	74.00	-9.97	112.00	3.79	Vertical	13.80
15722	54.50	74.00	-19.50	98.00	3.20	Vertical	13.46

1632	47.20	74.00	-26.80	88.00	1.50	Horizontal	-7.26
10485	65.35	74.00	-8.65	197.00	1.65	Horizontal	13.83
15723	63.94	74.00	-10.06	273.00	1.89	Horizontal	13.46

Table 5: Radiated Emissions 1 – 17 GHz – 5240 MHz (High – Worse Case)

Avg


Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Azimuth (°)	Pol.	Correction (dB)
20720	46.15	54.00	-7.85	97.00	Horizontal	-5.44
38267	41.45	54.00	-12.55	286.00	Horizontal	1.43

Peak (2)

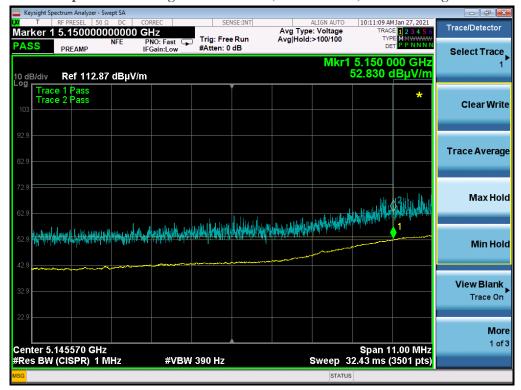
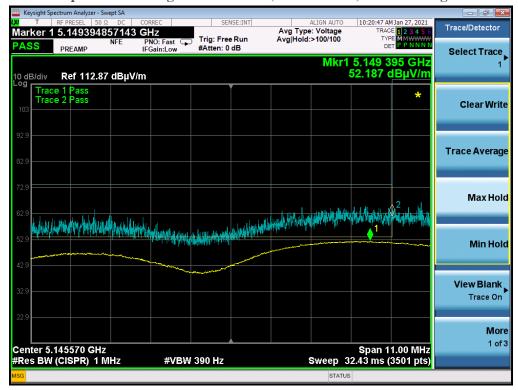

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Azimuth (°)	Pol.	Correction (dB)
20720	52.12	74.00	-21.88	97.00	Horizontal	-5.44
38267	54.79	74.00	-19.21	286.00	Horizontal	1.43

Table 6: Radiated Emissions 17 – 40 GHz – 5180 MHz (Low – Worse Case)

Graph 1: Band Edge - 5180 MHz (20 MHz BW) - TP Setting T40



Graph 2: Band Edge – 5200 MHz (20 MHz BW) – TP Setting T48

Graph 3: Band Edge - 5190 MHz (40 MHz BW) - TP Setting T52

Graph 4: Band Edge - 5230 MHz (40 MHz BW) - TP Setting T44

Graph 5: Band Edge - 5210 MHz (80 MHz BW) - TP Setting T26

Result

All emissions in the restricted bands of § 15.205 met the limits specified in § 15.209; therefore, the EUT complies with the specification. See Annex for Conducted Band edge plots.

5.6 §15.407(a) Maximum Power Spectral Density

The maximum average power spectral density conducted from the intentional radiator of the antenna shall not be greater than 17 dBm in any 1 MHz band during any time interval of continuous transmission. Results of this testing are summarized.

Modulation (BW)	Frequency (MHz)	Data Rate	TP Setting	Conducted Output Power	Measured EIRP	Measured PSD
OFDM 20	5180	Mcs0	41	23.9	28.90	10.6
OFDM 20	5200	Mcs0	48	27.1	32.10	
OFDM 20	5210	Mcs0	50	28.2	33.20	15.0
OFDM 20	5240	Mcs0	55	29.5	34.50	16.2
HT 20	5180	Mcs0	39	22.6	27.60	8.8
HT 20	5200	Mcs0	48	26.9	31.90	
HT 20	5210	Mcs0	50	28.1	33.10	14.3
HT 20	5240	Mcs0	52	29.0	34.00	15.1
HT 40	5190	Mcs0	27	16.8	21.80	0.8
HT 40	5230	Mcs0	44	25.8	30.80	9.7
VHT 20	5180	Mcs0	40	23.1	28.10	9.2
VHT 20	5200	Mcs0	48	26.9	31.90	
VHT 20	5210	Mcs0	50	28.1	33.10	14.3
VHT 20	5240	Mcs0	52	29.0	34.00	15.1
VHT 40	5190	Mcs0	27	16.8	21.80	0.7
VHT 40	5230	Mcs0	44	25.8	30.80	9.8
VHT 80	5210	Mcs0	26	16.3	21.30	-2.8
HE 20	5180	Mcs0	37	21.9	26.90	7.9
HE 20	5200	Mcs0	46	26.2	31.20	
HE 20	5210	Mcs0	48	27.0	32.00	13.0
HE 20	5240	Mcs0	52	29.1	34.10	15.1
HE 40	5190	Mcs0	27	17.0	22.00	0.7
HE 40	5230	Mcs0	43	25.3	30.30	9.0
HE 80	5210	Mcs0	25	16.0	21.00	-3.1

Result

The maximum average power spectral density was less than the limit of 17dBm; therefore, the EUT complies with the specification.

-- End of Test Report --