

NTS Silicon Valley www.nts.com 41089 Boyce Road Fremont, CA 94538 510-578-3500 Phone 510-440-9525 Fax

EMC Test Report

Application for Grant of Equipment Authorization

Industry Canada RSS-Gen Issue 3 / RSS 210 Issue 8 FCC Part 15 Subpart C

Model: RocketM5 Titanium

IC CERTIFICATION #: FCC ID:	6545A-RM5T SWX-RM5T
APPLICANT:	Ubiquiti Networks 91 E. Tasman Drive San Jose, CA 95134
TEST SITE(S):	NTS Silicon Valley 41039 Boyce Road. Fremont, CA. 94538-2435
IC SITE REGISTRATION #:	2845B-3; 2845B-4, 2845B-5, 2845B-7
REPORT DATE:	August 27, 2012
REISSUE DATE:	September 6, 2012
FINAL TEST DATES:	February 22, July 12, 17, 18, 19, 20, 24 and 25, 2012
TOTAL NUMBER OF PAGES:	91

PROGRAM MGR / TECHNICAL REVIEWER:

Mark E Hill Staff Engineer

QUALITY ASSURANCE DELEGATE / FINAL REPORT PREPARER:

David Guidotti Senior Technical Writer

NTS Silicon Valley is accredited by the A2LA, certificate number 0214.26, to perform the test(s) listed in this report, except where noted otherwise. This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full

REVISION HISTORY

Rev#	Date	Comments	Modified By
-	08-27-2012	First release	
1	09-06-2012	Reissued to correct output power limit	Dave Guidotti

TABLE OF CONTENTS

REVISION HISTORY	2
TABLE OF CONTENTS	3
SCOPE	4
OBJECTIVE	4
STATEMENT OF COMPLIANCE	5
DEVIATIONS FROM THE STANDARDS	
TEST RESULTS SUMMARY	
DIGITAL TRANSMISSION SYSTEMS (5725 –5850 MHZ)	
GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS	7
MEASUREMENT UNCERTAINTIES	
EQUIPMENT UNDER TEST (EUT) DETAILS	
GENERAL	
OTHER EUT DETAILS	
ANTENNA SYSTEM	
ENCLOSURE	
SUPPORT EQUIPMENT	
EUT INTERFACE PORTS	10
EUT OPERATION	
TEST SITE	
GENERAL INFORMATION	
CONDUCTED EMISSIONS CONSIDERATIONS	12
RADIATED EMISSIONS CONSIDERATIONS	
MEASUREMENT INSTRUMENTATION	
RECEIVER SYSTEM	
INSTRUMENT CONTROL COMPUTER	
LINE IMPEDANCE STABILIZATION NETWORK (LISN)	
FILTERS/ATTENUATORS	
ANTENNAS	
ANTENNA MAST AND EQUIPMENT TURNTABLE INSTRUMENT CALIBRATION	14
TEST PROCEDURES EUT AND CABLE PLACEMENT	15
CONDUCTED EMISSIONS	
RADIATED EMISSIONS	
CONDUCTED EMISSIONS FROM ANTENNA PORT	
BANDWIDTH MEASUREMENTS	
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	
CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(A), RSS GEN	19
GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS	
RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS	
OUTPUT POWER LIMITS – DIGITAL TRANSMISSION SYSTEMS	
TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS – FHSS AND DTS SYSTEMS SAMPLE CALCULATIONS - CONDUCTED EMISSIONS	
SAMPLE CALCULATIONS - CONDUCTED EMISSIONS	
SAMI LE CALCULATIONS - KADIATED EMISSIONS SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION	23
APPENDIX A TEST EQUIPMENT CALIBRATION DATA	
APPENDIX & TEST EQUIPMENT CALIBRATION DATA	
END OF REPORT	91

SCOPE

An electromagnetic emissions test has been performed on the Ubiquiti Networks model RocketM5 Titanium, pursuant to the following rules:

Industry Canada RSS-Gen Issue 3 RSS 210 Issue 8 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" FCC Part 15 Subpart C

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in NTS Silicon Valley test procedures:

ANSI C63.4:2003 FCC DTS Measurement Procedure KDB558074, March 2005

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Industry Canada performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA, all unlicensed transmitters and transceivers require certification. Receive-only devices operating between 30 MHz and 960 MHz are subject to either certification or a manufacturer's declaration of conformity, with all other receive-only devices exempt from the technical requirements.

Prior to marketing in Canada, Class I transmitters, receivers and transceivers require certification. Class II devices are required to meet the appropriate technical requirements but are exempt from certification requirements.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

STATEMENT OF COMPLIANCE

The tested sample of Ubiquiti Networks model RocketM5 Titanium complied with the requirements of the following regulations:

Industry Canada RSS-Gen Issue 3 RSS 210 Issue 8 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" FCC Part 15 Subpart C

Maintenance of compliance is the responsibility of the manufacturer. Any modifications to the product should be assessed to determine their potential impact on the compliance status of the device with respect to the standards detailed in this test report.

The test results recorded herein are based on a single type test of Ubiquiti Networks model RocketM5 Titanium and therefore apply only to the tested sample. The sample was selected and prepared by Jennifer Sanchez of Ubiquiti Networks.

DEVIATIONS FROM THE STANDARDS

No deviations were made from the published requirements listed in the scope of this report.

TEST RESULTS SUMMARY

DIGITAL TRANSMISSION SYSTEMS (5725 –5850 MHz)

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
15.247(a)	RSS 210 A8.2	Digital Modulation	Systems uses OFDM techniques	System must utilize a digital transmission technology	Complies
15.247 (a) (2)	RSS 210 A8.2 (1)	6dB Bandwidth	802.11a: 16.3 MHz HT20: 17.6 MHz HT40: 35.8 MHz HT10: 8.2 MHz	>500kHz	Complies
15.247 (b)	RSS 210 A8.2 (4)	Output Power (point- to-point systems) Sector Antenna	802.11a: 28.5 dBm HT20: 28.3 dBm HT40: 28.0 dBm HT10: 28.7 dBm (0.737 Watts) EIRP = 49.7 dBm ^{Note 1}	1 Watt	Complies
15.247 (b)	RSS 210 A8.2 (4)	Output Power (point- to-point systems) Dish Antenna	802.11a: 28.5 dBm HT20: 27.7 dBm HT40: 28.0 dBm HT10: 28.1 dBm (0.70 Watts) EIRP = 58.5 dBm ^{Note 1}	1 Watt.	Complies
15.247(d)	RSS 210 A8.2 (2)	Power Spectral Density	802.11a: 1.4 dBm/3kHz HT20: -1.7 dBm/3kHz HT40: -4.4 dBm/3kHz HT10: 1.0 dBm/3kHz	Maximum permitted is 8dBm/3kHz	Complies
15.247(c)	RSS 210 A8.5	Antenna Port Spurious Emissions – 30MHz – 40 GHz	All spurious emissions < -20dBc	< -20dBc	Complies
15.247(c) / 15.209	RSS 210 A8.5 Table 2, 3	Radiated Spurious Emissions 30MHz – 40 GHz Sector Antenna	42.6 dBµV/m @ 2340.0 MHz (-11.4 dB)	15.207 in restricted bands, all others < -20dBc	Complies
15.247(c) / 15.209	RSS 210 A8.5 Table 2, 3	Radiated Spurious Emissions 30MHz – 40 GHz Dish Antenna	53.9 dBµV/m @ 11577.8 MHz (-0.1 dB)	15.207 in restricted bands, all others < -20dBc	Complies
	calculated usin EIRP point-to-		for the sector antenna and	1 30dBi for the dish ante	enna for the

FCC Rule Part	RSS Rule part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)
15.203	-	RF Connector	EUT uses reverse SMA connectors	Unique or integral antenna required	Complies
15.207	RSS GEN Table 2	AC Conducted Emissions	53.7 dBµV @ 4.864 MHz (-6.3 dB)	Refer to page 19	Complies
15.109	RSS GEN 7.2.3 Table 1	Receiver spurious emissions	N/A – Receiver tunes above 960MHz	-	N/A
15.247 (b) (5) 15.407 (f)	RSS 102	RF Exposure Requirements	Refer to MPE calculations in Exhibit 11, RSS 102 declaration and User Manual statements.	Refer to OET 65, FCC Part 1 and RSS 102	Complies
-	RSP 100 RSS GEN 7.1.5	User Manual	-	Statement required regarding non- interference	Complies
-	RSP 100 RSS GEN 7.1.5	User Manual	-	Statement for products with detachable antenna	Complies
-	RSP 100 RSS GEN 4.4.1	99% Bandwidth	802.11a: 20.17 MHz HT20: 19.30 MHz HT40: 38.10 MHz HT10: 9.75 MHz	Information only	N/A

GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS

MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with UKAS document LAB 34.

Measurement Type	Measurement Unit	Frequency Range	Expanded Uncertainty
RF power, conducted (power meter)	dBm	25 to 7000 MHz	$\pm 0.52 \text{ dB}$
RF power, conducted (Spectrum analyzer)	dBm	25 to 7000 MHz	$\pm 0.7 \text{ dB}$
Conducted emission of transmitter	dBm	25 to 26500 MHz	$\pm 0.7 \text{ dB}$
Conducted emission of receiver	dBm	25 to 26500 MHz	$\pm 0.7 \text{ dB}$
Radiated emission (substitution method)	dBm	25 to 26500 MHz	± 2.5 dB
Radiated emission (field strength)	dBµV/m	25 to 1000 MHz 1000 to 40000 MHz	$\frac{\pm 3.6 \text{ dB}}{\pm 6.0 \text{ dB}}$
Conducted Emissions (AC Power)	dBµV	0.15 to 30 MHz	± 2.4 dB

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Ubiquiti Networks model RocketM5 Titanium is a 2x2, PoE, outdoor access point in the 5 GHz bands, supporting 802.11a/n20/n40. Since the EUT would normally be pole mounted during operation, the EUT was treated as floor-standing equipment during testing to simulate the end-user environment. The electrical rating of the EUT is 48 VDC, .5 Amps.

The sample was received on February 22, 2012 and tested on February 22, July 12, 17, 18, 19, 20, 24 and 25, 2012. The EUT consisted of the following component(s):

Company	Model	Description	Serial Number	FCC ID
Ubiquiti	Rocket M5 Titanium	2x2 outdoor AP	Prototype	SWX-RM5T
Ubiquiti	Rocket dish	30 dBi dish antenna	-	-
Ubiquiti	Rocket Sector	20 dBi dish antenna	-	-

OTHER EUT DETAILS

The following EUT details should be noted: the EUT contains a GPS receiver, but this has already been tested.

ANTENNA SYSTEM

The EUT antenna is a 30 dBi dish. A sector antenna can also be used, which has a gain of 21 dBi @ 60 degrees, 20 dBi @ 90 degrees and 19 dBi @ 120 degrees

The antenna connects to the EUT via a reverse sex SMA connector, thereby meeting the requirements of FCC 15.203.

ENCLOSURE

The EUT enclosure is primarily constructed of cast aluminum. It measures approximately 7 cm wide by 17 cm deep by 4 cm high.

MODIFICATIONS

No modifications were made to the EUT during the time the product was at NTS Silicon Valley.

SUPPORT EQUIPMENT

The following equipment was used as local support equipment for testing:

Configuration #1				
Company	Model	Description	Serial Number	FCC ID
None	-	-	-	-

_		Co	nfiguration #2		
	Company	Model	Description	Serial Number	FCC ID
	Ubiquiti	-	GPS antenna	-	-

The following equipment was used as remote support equipment for testing:

Configuration #1					
Company Model Description Serial Number FCC ID					
Dell	Vostro	Laptop	Elliot # 2011-	-	
			1626		
Ubiquiti	UBI-POE-48-5	PoE injector	NA	-	

Configuration #2

Company	Model	Description	Serial Number	FCC ID
Dell	Vostro	Laptop	Elliot # 2011-	-
			1626	
Ubiquiti	UBI-POE-48-5	PoE injector	NA	-

EUT INTERFACE PORTS

The I/O cabling configuration during testing was as follows:

Configuration #1				
Por	t		Cable(s)	
From	То	Description	Shielded/Unshielded	Length(m)
Chain 0	Dish antenna	Coax	Shielded	-
Chain 1	Dish antenna	Coax	Shielded	-
Ethernet main	PoE port (injector)	Cat 6	Shielded	10
LAN (PoE injector)	Ethernet (laptop)	Cat 5	Unshielded	1

Configuration #2

Por	t	Cable(s)			
From	То	Description Shielded/Unshielde		Length(m)	
Chain 0	Dish antenna	Coax	Shielded	-	
Chain 1	Dish antenna	Coax	Shielded	-	
GPS	GPS antenna	Coax	Shielded	1	
Ethernet main	PoE port	Cat 6		10	
Ethernet mani	(injector)	Callo	Shielded	10	
LAN (PoE	Ethernet	Cat 5		1	
injector)	(laptop)	Cat 5	Unshielded	1	

EUT OPERATION

During emissions testing the EUT was transmitting on the channel at the power level called out in the individual tests.

TEST SITE

GENERAL INFORMATION

Final test measurements were taken at the test sites listed below. Pursuant to section 2.948 of the FCC's Rules and section 3.3 of RSP-100, construction, calibration, and equipment data has been filed with the Commission and with industry Canada.

Site	Registratio	Location			
Site	FCC	Canada	Location		
Chamber 3	769238	2845B-3			
Chamber 4	211948	2845B-4	41039 Boyce Road		
Chamber 5	211948	2845B-5	Fremont,		
Chamber 7	A2LA	2845B-7	CA 94538-2435		
	accreditation	204JD-7			

ANSI C63.4:2003 recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement. The test site(s) contain separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements of ANSI C63.4:2003.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.4:2003. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment or in a semi-anechoic chamber. The test sites are maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4:2003 guidelines and meet the Normalized Site Attenuation (NSA) requirements of ANSI C63.4:2003.

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements. If the repetition frequency of the signal being measured is below 20Hz, peak measurements are made in lieu of Quasi-Peak measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz, unless the signal is pulsed in which case the average (or video) bandwidth of the measuring instrument is reduced to onset of pulse desensitization and then increased.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde & Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A loop antenna is used below 30 MHz. For the measurement range 30 MHz to 1000 MHz either a combination of a biconical antenna and a log periodic or a bi-log antenna is used. Above 1000 MHz, horn antennas are used. The antenna calibration factors to convert the received voltage to an electric field strength are included with appropriate cable loss and amplifier gain factors to determine an overall site factor, which is then programmed into the test receivers or incorporated into the test software.

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a nonconductive antenna mast equipped with a motor-drive to vary the antenna height. Measurements below 30 MHz are made with the loop antenna at a fixed height of 1m above the ground plane.

ANSI C63.4:2003 specifies that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

TEST PROCEDURES

EUT AND CABLE PLACEMENT

The regulations require that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4:2003, and the worst-case orientation is used for final measurements.

CONDUCTED EMISSIONS

Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.

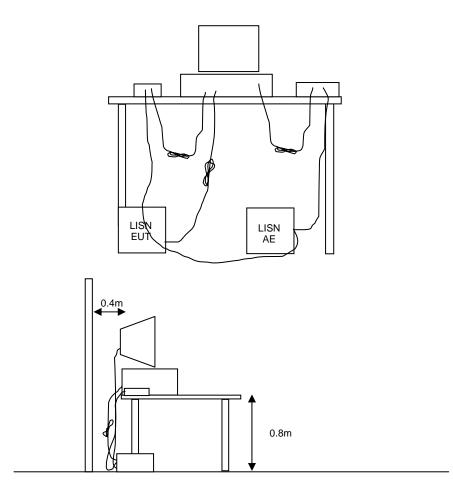
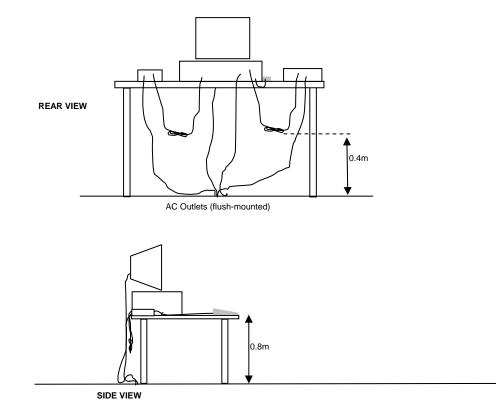
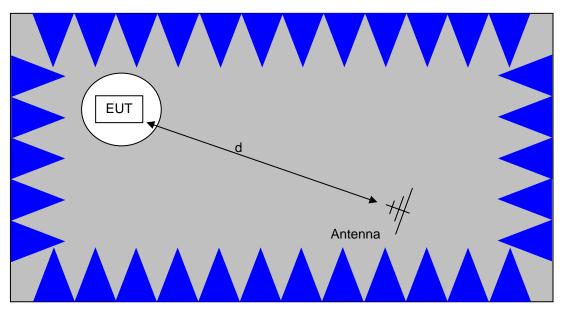


Figure 1 Typical Conducted Emissions Test Configuration

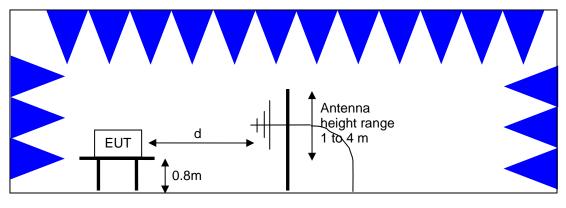

RADIATED EMISSIONS

A preliminary scan of the radiated emissions is performed in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed, one scan for each antenna polarization (horizontal and vertical; loop parallel and perpendicular to the EUT). During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied (for measurements above 30 MHz) and cable positions are varied to determine the highest emission relative to the limit. Preliminary scans may be performed in a fully anechoic chamber for the purposes of identifying the frequencies of the highest emissions from the EUT.


A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

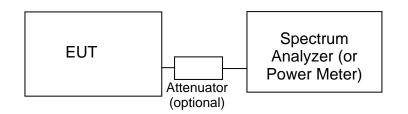
Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth, which results in the highest emission is then maintained while varying the antenna height from one to four meters (for measurements above 30 MHz, measurements below 30 MHz are made with the loop antenna at a fixed height of 1m). The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain.

When testing above 18 GHz, the receive antenna is located at 1 meter from the EUT and the antenna height is restricted to a maximum of 2.5 meters.



Typical Test Configuration for Radiated Field Strength Measurements

The anechoic materials on the walls and ceiling ensure compliance with the normalized site attenuation requirements of CISPR 16 / CISPR 22 / ANSI C63.4 for an alternate test site at the measurement distances used.


Floor-standing equipment is placed on the floor with insulating supports between the unit and the ground plane.

<u>Test Configuration for Radiated Field Strength Measurements</u> <u>Semi-Anechoic Chamber, Plan and Side Views</u>

CONDUCTED EMISSIONS FROM ANTENNA PORT

Direct measurements of power, bandwidth and power spectral density are performed, where possible, with the antenna port of the EUT connected to either the power meter or spectrum analyzer via a suitable attenuator and/or filter. These are used to ensure that the front end of the measurement instrument is not overloaded by the fundamental transmission.

Test Configuration for Antenna Port Measurements

Measurement bandwidths (video and resolution) are set in accordance with the relevant standards and NTS Silicon Valley's test procedures for the type of radio being tested. When power measurements are made using a resolution bandwidth less than the signal bandwidth the power is calculated by summing the power across the signal bandwidth using either the analyzer channel power function or by capturing the trace data and calculating the power using software. In both cases the summed power is corrected to account for the equivalent noise bandwidth (ENBW) of the resolution bandwidth used.

If power averaging is used (typically for certain digital modulation techniques), the EUT is configured to transmit continuously. Power averaging is performed using either the built-in function of the analyzer or, if the analyzer does not feature power averaging, using external software. In both cases the average power is calculated over a number of sweeps (typically 100). When the EUT cannot be configured to continuously transmit then either the analyzer is configured to perform a gated sweep to ensure that the power is averaged over periods that the device is transmitting or power averaging is disabled and a max-hold feature is used.

If a power meter is used to make output power measurements the sensor head type (peak or average) is stated in the test data table.

BANDWIDTH MEASUREMENTS

The 6dB, 20dB and/or 26dB signal bandwidth is measured in using the bandwidths recommended by ANSI C63.4. When required, the 99% bandwidth is measured using the methods detailed in RSS GEN.

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions are given in units of microvolts, and the limits for radiated emissions are given in units of microvolts per meter at a specified test distance. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

For reference, converting the specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. These limits in both linear and logarithmic form are as follows:

CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(a), RSS GEN

The table below shows the limits for the emissions on the AC power line from an intentional radiator and a receiver.

Frequency (MHz)	Average Limit (dBuV)	Quasi Peak Limit (dBuV)
0.150 to 0.500	Linear decrease on logarithmic frequency axis between 56.0 and 46.0	Linear decrease on logarithmic frequency axis between 66.0 and 56.0
0.500 to 5.000	46.0	56.0
5.000 to 30.000	50.0	60.0

GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from transmitters that fall in restricted bands¹ (with the exception of transmitters operating under FCC Part 15 Subpart D and RSS 210 Annex 9), the limits for all emissions from a low power device operating under the general rules of RSS 310 (tables 3 and 4), RSS 210 (table 2) and FCC Part 15 Subpart C section 15.209.

Frequency Range (MHz)	Limit (uV/m)	Limit (dBuV/m @ 3m)
0.009-0.490	2400/F _{KHz} @ 300m	67.6-20*log ₁₀ (F _{KHz}) @ 300m
0.490-1.705	24000/F _{KHz} @ 30m	87.6-20*log ₁₀ (F _{KHz}) @ 30m
1.705 to 30	30 @ 30m	29.5 @ 30m
30 to 88	100 @ 3m	40 @ 3m
88 to 216	150 @ 3m	43.5 @ 3m
216 to 960	200 @ 3m	46.0 @ 3m
Above 960	500 @ 3m	54.0 @ 3m

RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from receivers as detailed in FCC Part 15.109, RSS 210 Table 2, RSS GEN Table 1 and RSS 310 Table 3. Note that receivers operating outside of the frequency range 30 MHz – 960 MHz are exempt from the requirements of 15.109.

Frequency Range (MHz)	Limit (uV/m @ 3m)	Limit (dBuV/m @ 3m)
30 to 88	100	40
88 to 216	150	43.5
216 to 960	200	46.0
Above 960	500	54.0

¹ The restricted bands are detailed in FCC 15.203, RSS 210 Table 1 and RSS 310 Table 2

OUTPUT POWER LIMITS - DIGITAL TRANSMISSION SYSTEMS

The table below shows the limits for output power and output power density. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency (MHz)	Output Power	Power Spectral Density		
902 - 928	1 Watt (30 dBm)	8 dBm/3kHz		
2400 - 2483.5	1 Watt (30 dBm)	8 dBm/3kHz		
5725 - 5850	1 Watt (30 dBm)	8 dBm/3kHz		

The maximum permitted output power is reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 - 5850 MHz band are not subject to this restriction.

TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS – FHSS and DTS SYSTEMS

The limits for unwanted (spurious) emissions from the transmitter falling in the restricted bands are those specified in the general limits sections of FCC Part 15 and RSS 210. All other unwanted (spurious) emissions shall be at least 20dB below the level of the highest in-band signal level (30dB if the power is measured using the sample detector/power averaging method).

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$R_r - S = M$$

where:

 $R_r = Receiver Reading in dBuV$

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor, when used for electric field measurements above 30MHz, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB D_m = Measurement Distance in meters D_s = Specification Distance in meters

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

$$F_d = 40*LOG_{10} (D_m/D_s)$$

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

 $M = R_c - L_s$

where:

 R_r = Receiver Reading in dBuV/m

 F_d = Distance Factor in dB

 R_c = Corrected Reading in dBuV/m

 L_S = Specification Limit in dBuV/m

M = Margin in dB Relative to Spec

SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION

Where the radiated electric field strength is expressed in terms of the equivalent isotropic radiated power (eirp), or where a field strength measurement of output power is made in lieu of a direct measurement, the following formula is used to convert between eirp and field strength at a distance of d (meters) from the equipment under test:

 $E = \underline{1000000 \sqrt{30 P}} \text{ microvolts per meter}$

d

where P is the eirp (Watts)

For a measurement at 3m the conversion from a logarithmic value for field strength (dBuV/m) to an eirp power (dBm) is -95.3dB.

Appendix A Test Equipment Calibration Data

Manufacturer	Description s - AC Power Ports, 22-Feb-12	Model	Asset #	Cal Due
Rohde & Schwarz Rohde & Schwarz	Pulse Limiter EMI Test Receiver, 20 Hz-7 GHz	ESH3 Z2 ESIB7	1594 1630	5/17/2012 4/13/2012
Fischer Custom Comm	LISN, 25A, 150kHz to 30MHz, 25 Amp,	FCC-LISN-50-25-2- 09	2001	9/15/2012
Radiated Emissions, 7 EMCO	1,000 - 12,000 MHz, 12-Jul-12 Antenna, Horn, 1-18 GHz	3115	1142	8/2/2012
Hewlett Packard	(SA40-Red) SpecAn 30 Hz -40 GHz, SV (SA40) Red	8564E (84125C)	1148	8/15/2012
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	1780	11/22/2012
Micro-Tronics	Band Reject Filter, 5725-5875 MHz	BRC50705-02	2241	10/4/2012
Rohde & Schwarz	EMI Test Receiver, 20 Hz-40 GHz	ESIB40 (1088.7490.40)	2493	12/9/2012
Radiated Emissions,	1,000 - 40,000 MHz, 17,18,19-Jul-1	2		
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	263	3/29/2013
EMCO	Antenna, Horn, 1-18 GHz (SA40-Blu)	3115	1386	9/21/2012
Hewlett Packard	SpecAn 9 kHz - 40 GHz, FT (SA40) Blue	8564E (84125C)	1393	5/1/2013
Micro-Tronics	Band Reject Filter, 5725-5875 MHz	BRC50705-02	1682	3/23/2013
Rohde & Schwarz Hewlett Packard	EMI Test Receiver, 20 Hz-7 GHz Microwave Preamplifier, 1- 26.5GHz	ESIB7 8449B	1756 2199	5/21/2013 2/23/2013
Hewlett Packard	SpecAn 9 kHz - 40 GHz, (SA40) Purple	8564E (84125C)	2415	7/28/2012
Radio Antenna Port,	20-Jul-12			
Agilent	PSA, Spectrum Analyzer, (installed options, 111, 115, 123, 1DS, B7J, HYX,	E4446A	2139	2/23/2013
Radio Antenna Port, 2	24-Jul-12			
Rohde & Schwarz Rohde & Schwarz	Power Meter, Single Channel Power Sensor 100 uW - 2 Watts (w/ 20 dB pad, SN BJ5155)	NRVS NRV-Z32	1422 1536	12/13/2012 12/8/2012
Anritsu	Anritsu 68347C Signal Generator, 10MHz-20GHz	68347C	1785	6/29/2013
Agilent	PSA, Spectrum Analyzer, (installed options, 111, 115, 123, 1DS, B7J, HYX,	E4446A	2139	2/23/2013
Radio Antenna Port, 2	25-Jul-12			
Agilent	PSA, Spectrum Analyzer, (installed options, 111, 115, 123, 1DS, B7J, HYX,	E4446A	2139	2/23/2013
Anritsu	Anritsu 68347C Signal Generator, 10MHz-20GHz	68347C	1785	6/29/2013

Appendix B Test Data

T88118 Pages 26 - 90

EMC Test Data

WE ENGLAND COOL	
Client: Ubiquiti Networks	Job Number: J86352
Model: Rocket M5 Titanium	T-Log Number: T88118
	Account Manager: Susan Pelzl
Contact: Jennifer Sanchez	-
Emissions Standard(s): FCC 15.247, RSS-210, RSS-310, FCC 15B	Class: -
Immunity Standard(s): -	Environment: -

EMC Test Data

For The

Ubiquiti Networks

Model

Rocket M5 Titanium

Date of Last Test: 8/17/2012

WE ENGINEER SUCCESS	EMO	C Test Data	
Client: Ubiquiti Networks	Job Number:	J86352	
Model: Rocket M5 Titanium	T-Log Number: T88118		
	Account Manager:	Susan Pelzl	
Contact: Jennifer Sanchez	01	N1/A	
Standard: FCC 15.247, RSS-210, RSS-310, FCC 15B	Class:	N/A	
RSS 210 and FCC 15.247 (DTS) Antenna Po MIMO and Smart Antenna Sys Power, PSD, Bandwidth and Spurious E	tems	5	
Test Specific Details			
Objective: The objective of this test session is to perform final qualification specification listed above.	testing of the EUT with r	espect to the	
Date of Test: 7/20/2012, 7/24/2012, 7/25/2012Config. Used:Test Engineer: Rafael Varelas / Deniz DemirciConfig Change:Test Location: FT Lab #4EUT Voltage:	None		
The EUT was connected to the spectrum analyzer or power meter via a suitable attenua chain. All measurements have been corrected to allow for the external attenuators used.	tor. All measurements w	ere made on a single	
Ambient Conditions:			
Temperature: 20.4 °C Rel. Humidity: 35 %			

	NTS				EM	C Test Data
Client:	Ubiquiti Networks				Job Number:	J86352
Model	Rocket M5 Titanium			T-	Log Number:	T88118
				Ассо	unt Manager:	Susan Pelzl
	Jennifer Sanchez					
Standard:	FCC 15.247, RSS-210, F	RSS-310, FCC 15B			Class:	N/A
Summary	of Results					
Run #	Pwr setting	Test Performed	nit	Pass / Fail	Result / Margin	
1	19	Output Power (Sector Antenna)	15.247(b)		Pass	802.11a: 28.5 dBm HT20: 28.3 dBm HT40: 28.0 dBm HT10: 28.7 dBm
2	See details below	Output Power (Dish Antenna)	15.247(b)		Pass	802.11a: 28.5 dBm HT20: 27.7 dBm HT40: 28.0 dBm HT10: 28.1 dBm
3	19	Power spectral Density (PSD)	15.2	47(d)	Pass	802.11a: 1.4 dBm/3kHz HT20: -1.7 dBm/3kHz HT40: -4.4 dBm/3kHz HT10: 1.0 dBm/3kHz
4	19	Minimum 6dB Bandwidth	15.247(a)		Pass	802.11a: 16.3 MHz HT20: 17.6 MHz HT40: 35.8 MHz HT10: 8.2 MHz
5	19	99% Bandwidth	RSS	RSS GEN		802.11a: 20.17 MHz HT20: 19.30 MHz HT40: 38.10 MHz HT10: 9.75 MHz
6	19	Spurious emissions	15.2 [,]	47(b)	Pass	All emissions below -20dBc and -30dBc limits

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Notes:

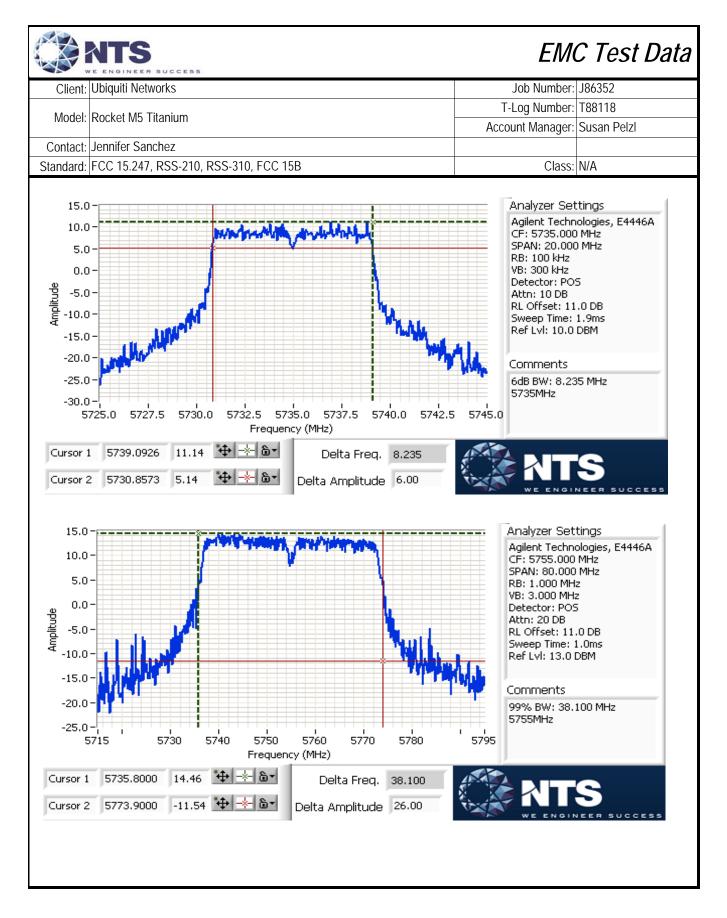
Antennas used are cross polarized. Point-to-point operation. For spurious emissions, a limit of -30dBc was applied. This is a worse case limit, as the power was measured peak.

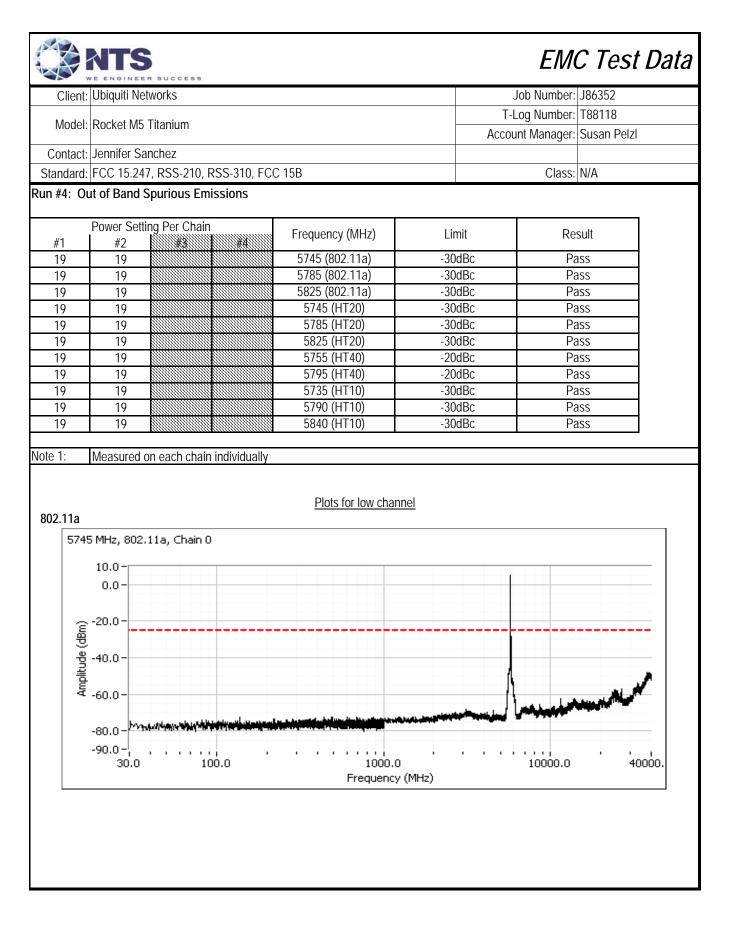
	ENGINEER SUCCESS						EM	C Test	Data
Model: Ro	biquiti Networks					J	lob Number:	J86352	
VIODELLIRG						T-Log Number: T8811		T88118	
	ocket M5 Titanium					Accou	nt Manager:	Susan Pelzl	
Contact: Je	Contact: Jennifer Sanchez								
Standard: FC	CC 15.247, RSS-210, F	RSS-310, FC	C 15B			Class: N/A			
	out Power - 21dBi Sec Oper mitted signal on chain is	rating Mode:	802.11a	on cross pola	arized antenn	as			
5	745 MHz	Chain 1	Chain 2	Chain 3	() (Citalia 4				
Power Setting ^{Note 3}		19.0	19.0			Total Acros	s All Chains	Lin	nit
Output Power ((dBm) Note 1	27.2	22.5			28.5 dBm	0.703 W	30.0 dBm	1.000 W
Antenna Gain ((dBi) Note 2	21	21				21.0 dBi	Do	20
eirp (dBm) ^{Note 2}	2	48.2	43.5			49.5 dBm 88.457 W		Pa	SS
				-					
5785 MHz Power Setting ^{Note 3}		Chain 1	Chain 2	Chain 3	Chain 4	Total Across All Chains		Limit	
		19.0	19.0						
Output Power (26.8	22			28.0 dBm 0.637 W		30.0 dBm	1.000 W
Antenna Gain (dBi) Note 2		21	21			10.0.15	21.0 dBi	Pa	SS
eirp (dBm) ^{Note 2}	2	47.8	43			49.0 dBm 80.209 W		<u> </u>	
59	825 MHz	Chain 1	Chain 2	Chain 3	Chain 4				
Power Setting ^N		19.0	19.0		CANVENAN 4	Total Acros	s All Chains	Limit	
Output Power (26.1	21.9			27.5 dBm	0.562 W	30.0 dBm	1.000 W
Antenna Gain (21	21				21.0 dBi		
eirp (dBm) Note 2	2	47.1	42.9			48.5 dBm	70.785 W	Pa	SS
	utput power measured	8 1			6.11				
	s there is no coherency e eirp divide by the sur				sum of the in	dividual EIRI	Ps and effect	ive antenna g	jain equals
	ower setting - if a single			r setting was uld indicate p					

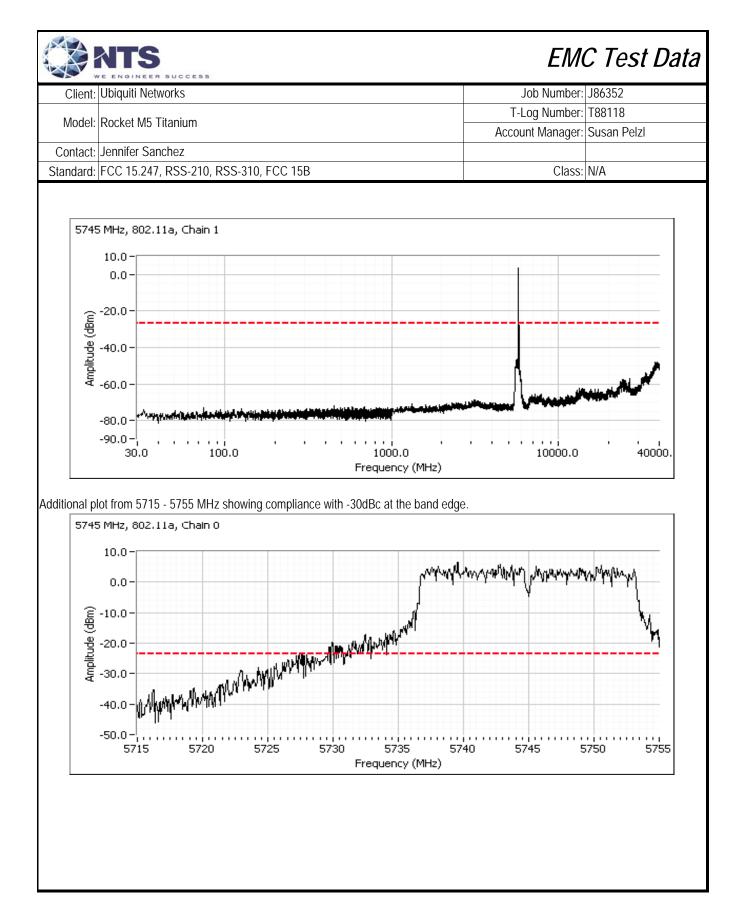
Client: Ubiquiti Networks						Job Number:	J86352	
Martal Darket ME There's ser					T-Log Number: T88118			
Model: Rocket M5 Titanium					Accou	int Manager:	Susan Pelzl	
Contact: Jennifer Sanchez								
Standard: FCC 15.247, RSS-210	, RSS-310, FC	C 15B				Class:	N/A	
Op	erating Mode:	HT20						
5745 MHz	Chain 1	Chain 2	Chain 3	Chain 4	Tabal Assas		1.1	
ower Setting ^{Note 3}	19.0	19.0			Total Acros	s All Chains	Limit	
Output Power (dBm) Note 1	27	22.3			28.3 dBm	0.671 W	30.0 dBm 1.000 V	
ntenna Gain (dBi) ^{Note 2}	21	21				21.0 dBi	Pass	
irp (dBm) Note 2	48	43.3			49.3 dBm	84.475 W	1 035	
					4		1	
5785 MHz	Chain 1	Chain 2	Chain 3	Cihain 4	Total Acros	s All Chains	Limit	
ower Setting ^{Note 3}	19.0	19.0					20.0 dDm 1.000 \	
Julpul Powel (ubiii)	26.3	22			27.7 dBm 0.585 W 21.0 dBi		30.0 dBm 1.000	
ntenna Gain (dBi) Note 2	21	21					Pass	
irp (dBm) Note 2	47.3	43			48.7 dBm	73.656 W		
5825 MHz	Chain 1	Chain 2	Chain 3	Chain 4				
ower Setting ^{Note 3}	19.0	19.0		COUNCINU V	Total Across All Chains		Limit	
Putput Power (dBm) Note 1	25.8	21.9			27.3 dBm	0.535 W	30.0 dBm 1.000 \	
ntenna Gain (dBi) Note 2	21	21				21.0 dBi		
rip (dBm) Note 2	46.8	42.9			48.3 dBm	67.361 W	Pass	
Op	erating Mode:	-			4		1	
5755 MHz	Chain 1	Chain 2	Chain 3	Chain 4	Total Acros	s All Chains	Limit	
Power Setting ^{Note 3}	19.0	19.0			00.0.15	0 (0 ()))		
Output Power (dBm) Note 1	26.7	22.2			28.0 dBm	0.634 W	30.0 dBm 1.000 V	
ntenna Gain (dBi) Note 2	21	21			40.0.10	21.0 dBi	Pass	
irp (dBm) Note 2	47.7	43.2			49.0 dBm	79.777 W		
5795 MHz	Chain 1	Chain 2	Chain 3	Chain 4				
ower Setting ^{Note 3}	19.0	19.0		COUNCINU V	Total Acros	s All Chains	Limit	
Putput Power (dBm) Note 1	26.1	21.9			27.5 dBm	0.562 W	30.0 dBm 1.000 V	
	21	21				21.0 dBi		
ntenna Gain (dBi) ^{Note 2}		42.9			48.5 dBm	70.785 W	Pass	

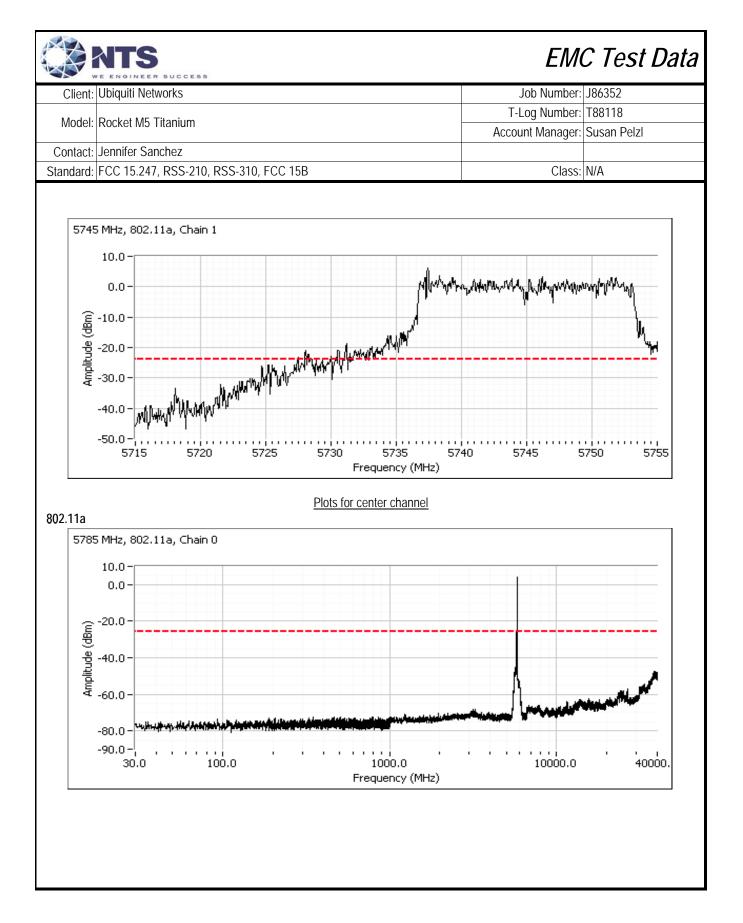
T-Log Number: T-Log Number: T-Log Number: T-Log Number: Teles Contact: Jennifer Sanchez Standard: FCC 15.247, RSS-210, RSS-310, FCC 15B Class: N/A Operating Mode: HT10 Standard: FCC 15.247, RSS-210, RSS-310, FCC 15B Class: N/A Operating Mode: HT10 Total Across All Chains Limit Operating Mode: HT10 Standard: Total Across All Chains Limit Operating Mode: 2 21 21 Operating Mode: 1 27.3 23 A8.3 44 49.7 dBm 0.737 W 30.0 dBm 1.000 Total Across All Chains Limit Total Across All Chains Limit Total Across All Chains Limit Total Across All Chains Lim	Client	Ubiquiti Networks	54					lob Number:	J86352
Account Manager: Susan Peizi Contact: Jennifer Sanchez Class: N/A Standard: FCC 15.247, RSS-210, RSS-310, FCC 15B Class: N/A Operating Mode: HT10 Standard: FCC 15.247, RSS-210, RSS-310, FCC 15B Class: N/A Operating Mode: HT10 Standard: FCC 15.247, RSS-210, RSS-310, FCC 15B Total Across All Chains Limit tower Setting ^{Mole 3} 19.0 19.0 28.7 dBm 0.737 W 30.0 dBm 1.000 standard: Chain 1 Chain 2 Chain 3 28.7 dBm 0.737 W 30.0 dBm 1.000 Interna Gain (dB) Note 2 21 21 21 Pass Stood Bm 0.627 W 30.0 dBm 1.000 Interna Gain (dB) Note 1 26.6 22.3 28.0 dBm 0.627 W 30.0 dBm 1.000 Interna Gain (dB) Note 1 26.6 22.3 21.0 dBi Pass Pass									

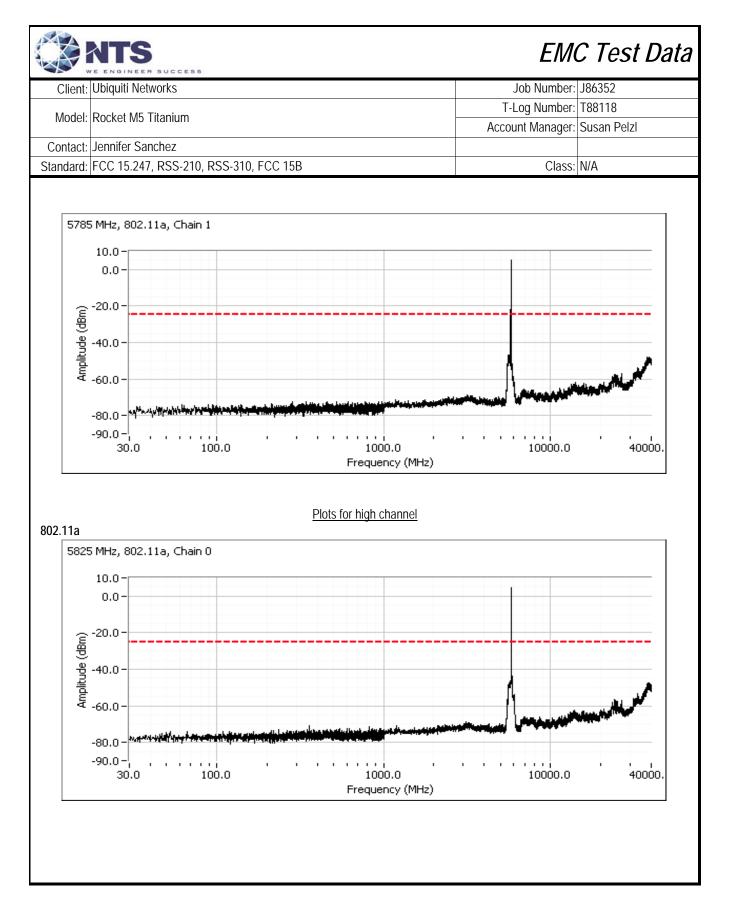
WE ENGINEER SUCCESS						EM	C Test	Data
Client: Ubiquiti Networks						lob Number:	J86352	
Model: Rocket M5 Titanium						og Number:		
					Accou	nt Manager:	Susan Pelzl	
Contact: Jennifer Sanchez								
Standard: FCC 15.247, RSS-210, R	SS-310, FC	C 15B				Class:	N/A	
Run #2: Output Power - 30dBi Dish Opera Transmitted signal on chain is	ating Mode:		on cross pola	rized antenn	as			
5745 MHz	Chain 1	Chain 2	Chain 3	Chann 4	Total Aaroo	o All Choine	1 :-	
Power Setting ^{Note 3}	19.0	19.0			I OLAI ACTOS	s All Chains	Lir	1110
Output Power (dBm) Note 1	27.2	22.5			28.5 dBm	0.703 W	30.0 dBm	1.000 W
Antenna Gain (dBi) Note 2	30	30				30.0 dBi	Pa	22
eirp (dBm) Note 2	57.2	52.5			58.5 dBm	702.635 W	га	33
							-	
5785 MHz	Chain 1	Chain 2	Chain 3	Chain 4	Total Acros	s All Chains	Lir	nit
Power Setting ^{Note 3}	19.0	19.0				-		
Output Power (dBm) Note 1	26.8	22			28.0 dBm	0.637 W	30.0 dBm	1.000 W
Antenna Gain (dBi) Note 2	30	30			50.0.10	30.0 dBi	Pa	SS
eirp (dBm) Note 2	56.8	52			58.0 dBm	637.119 W		
5825 MHz	Chain 1	Chain 2	Chain 3	Chain 4				
Power Setting ^{Note 3}	19.0	19.0	enem e	64000014 4	Total Acros	s All Chains	Lir	nit
Output Power (dBm) Note 1	26.1	21.9			27.5 dBm	0.562 W	30.0 dBm	1.000 W
Antenna Gain (dBi) Note 2	30	30				30.0 dBi		
eirp (dBm) Note 2	56.1	51.9			57.5 dBm	562.262 W	Pa	SS

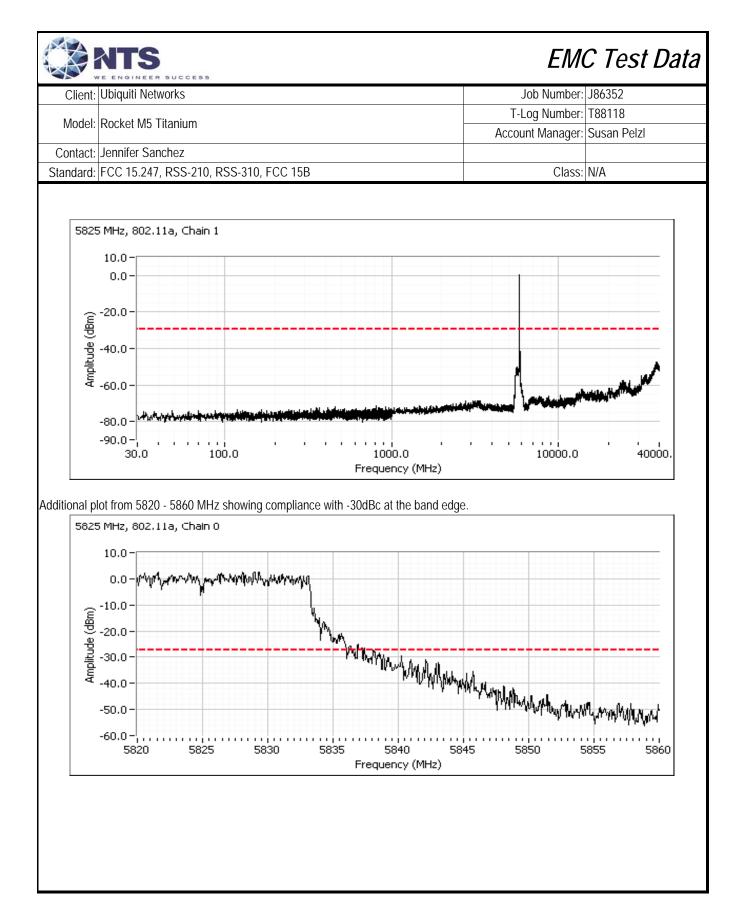

Model: Rocket M5 Titanium T-Log Number: T88118 Contact: Jennifer Sanchez Susan Pelz Susan Pelz Standard: FCC 15.247, RSS-210, RSS-310, FCC 15B Class: N/A Operating Mode: HT20 Standard: FCC 15.247, RSS-210, RSS-310, FCC 15B Class: N/A Operating Mode: HT20 Station Note: 3 17.0 17.0 Total Across All Chains Limit utput Power (dBm) Note: 1 25.5 21.6 27.0 dBm 0.499 W 30.0 dBm 1.000 Note: 1 Stass MHz Chain 1 Chain 2 Chain 2 Chain 3 27.0 dBm 0.499 W 30.0 dBm 1.000 Note: 1 Stass MHz Chain 1 Chain 2 Chain 3 20.0 dBm 1.000 Note: 1 26.3 22 27.7 dBm 0.585 W 30.0 dBm 1.000 Note: 1 27.3 dBm 0.585 W 30.0 dBm 1.000 Note: 1 0.00 dBm 1.000 Note: 1 27.3 dBm 0.535 W 30.0 dBm 1.000 Note: 1 0.00 dBm 1.000 Note: 1 <	Client	: Ubiquiti Networks					~	Job Number:	J86352		
Contact: Jennifer Sanchez Susan Pelzi Standard: FCC 15.247, RSS-210, RSS-310, FCC 15B Class: N/A Operating Mode: HT20 Standard: FCC 15.247, RSS-210, RSS-310, FCC 15B Class: N/A Operating Mode: HT20 Station 1 Chain 1 Chain 2 Stating Mode: A Total Across All Chains Limit ultiput Power (dBm) Note 1 25.5 21.6 27.0 dBm 0.499 W 30.0 dBm 1.000 V nema Gain (dB) Note 2 30 30 30.0 dBm 499.357 W Pass Stating Mole: 1 Chain 1 Chain 2 Statin 3 Chain 499.30.0 dBm 1.000 V ower Setting Mole: 3 19.0 19.0 19.0 Total Across All Chains Limit ultiput Power (dBm) Note 1 26.3 22 57.7 dBm 585.069 W Pass Stating Note 2 30 30 30.0 dBm 1.000 V Imit: Uppt Power (dBm) Note 1 25.8 21.9 27.3 dBm							T-L	og Number:	T88118		
Standard: FCC 15.247, RSS-210, RSS-310, FCC 15B Class: N/A Operating Mode: HT20 Standard: Chain 1 Chain 2 Chain 3 Limit ower Setting ^{Note 3} 17.0 17.0 Total Across All Chains Limit ower GBm Note 1 25.5 21.6 Colspan="4">Colspan="4">Across All Chains Limit Standard: Chain 1 Chain 2 Chain 1 Chain 2 Standard: Chains Limit Station 1 Chain 2 Statin 3 Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan= 499.357 W Station 1 Chain 1 Chain 2 Station 3 Colspan= 30.0 dBm 1.000 Note 2 Station 1 Chain 2 Chain 1 Chain 2 Chain 1 Chain	IVIODEI	ROCKET M5 TITANIUM					Accou	int Manager:	Susan Pelzl		
Operating Mode: HT20 5745 MHz Chain 1 Chain 2 Chain 3 Total Across All Chains Limit ower Setting ^{Note 3} 17.0 17.0 27.0 dBm 0.499 W 30.0 dBm 1.000 Note 1 iputp Power (dBm) Note 1 25.5 21.6 27.0 dBm 0.499 W 30.0 dBm 1.000 Note 2 iputp Power (dBm) Note 2 30 30 30 30.0 dBm 1.000 Note 2 5785 MHz Chain 1 Chain 2 Chain 3 Chain 499.357 W Pass ower Setting Note 2 55.5 51.6 57.0 dBm 499.357 W Pass interna Gain (dBi) Note 1 26.3 22 27.7 dBm 0.585 W 30.0 dBm 1.000 Note 1 ip (dBm) Note 1 26.3 22 27.7 dBm 0.585 W 30.0 dBm 1.000 Note 2 ip (dBm) Note 2 30 30 30 30.0 dBm 1.000 Note 2 ip (dBm) Note 2 56.3 52 57.7 dBm 585.069 W Pass ip (dBm) Note 2 56.3 52 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>											
5745 MHz Chain 1 Chain 2 Chain 3 Chain 4 Total Across All Chains Limit ower Setting ^{Note 3} 17.0 17.0 17.0 27.0 dBm 0.499 W 30.0 dBm 1.000 V ntenna Gain (dBi) Note 2 30 30 30.0 dBi Pass Pass 5785 MHz Chain 1 Chain 2 Chain 3 Chain 4 Pass Pass 5785 MHz Chain 1 Chain 2 Chain 3 Chain 4 Pass Pass ower Setting ^{Note 3} 19.0 19.0 19.0 19.0 19.0 10.00 V Pass ower GBm) Note 1 26.3 22 27.7 dBm 0.585 W 30.0 dBm 1.000 V ntenna Gain (dB) Note 2 30 30 30.0 dBm 1.000 V Pass strp (dBm) Note 2 30 30 30.0 dBm 1.000 V Pass strp (dBm) Note 2 30 30 30.0 dBm 1.000 V Pass strp (dBm) Note 2 30 30 30.0 dBm 1.000 V	Standard	: FCC 15.247, RSS-210	0, RSS-310, FC	C 15B				Class:	N/A		
Ower Setting ^{Note 3} 17.0 17.0<		0	perating Mode:	HT20							
ower Setting ^{Note 3} 17.0 10.00 10.00 10.00 30.0 dBi 10.00 10		5745 MHz	Chain 1	Chain 2	Chain 3	Chain 4	Total Aaroo		Limit		
Note 1 25.5 21.6 27.0 dBm 0.499 W 30.0 dBm 1.000 V ntenna Gain (dBi) Note 2 30 30 30.0 dBi Pass frp (dBm) Note 2 55.5 51.6 57.0 dBm 499.357 W Pass S785 MHz Chain 1 Chain 2 Chain 3 Chain 4 Pass S785 MHz Chain 1 Chain 2 Chain 3 Chain 4 Pass S785 MHz Chain 1 Chain 2 Chain 3 Chain 4 Pass S785 MHz Chain 1 Chain 2 Chain 1 Chain 2 Chain 3 Chain 3 Chain 3 S0.0 dBm Pass S825 MHz Chain 1 Chain 2 Chain 3 Chain 3 Chain 1 Chain 2 Chain 1 Chain 2 S85.069 W <th co<="" td=""><td>ower Setti</td><td>ng^{Note 3}</td><td>17.0</td><td>17.0</td><td></td><td></td><td>Total Acros</td><td>s All Chains</td><td></td><td></td></th>	<td>ower Setti</td> <td>ng^{Note 3}</td> <td>17.0</td> <td>17.0</td> <td></td> <td></td> <td>Total Acros</td> <td>s All Chains</td> <td></td> <td></td>	ower Setti	ng ^{Note 3}	17.0	17.0			Total Acros	s All Chains		
Interna Gain (dBi) Note 2 30 30 30 30 30 30.0 dBi Pass irp (dBm) Note 2 55.5 51.6 57.0 dBm 499.357 W Pass S785 MHz Chain 1 Chain 2 Chain 3 Chain 499.357 W S785 MHz Chain 1 Chain 2 Chain 3 Chain 499.357 W Total Across All Chains Limit ower Setting Note 1 26.3 22 27.7 dBm 0.585 W 30.0 dBm 1.000 N ntenna Gain (dBi) Note 2 30 30 30 S825 MHz Chain 1 Chain 2 Chain 3 Chain 4 Setting Note 2 S825 MHz Chain 1 Chain 2 Chain 3 Chain 4 Setting Note 2 S825 MHz Chain 1 Chain 2 Chain 3 Chain 4 Setting Note 2 S825 MHz Chai	Output Pow	/er (dBm) ^{Note 1}	25.5	21.6			27.0 dBm		30.0 dBm 1.0)00 V	
State State State State State State State State S	ntenna Ga	ain (dBi) ^{Note 2}							Pass		
ower Setting ^{Note 3} 19.0 19.0 101al Across All Chains Limit interna Gain (dBi) Note 2 30 30 30.0 dBi Pass irip (dBm) Note 2 56.3 52 57.7 dBm 585.069 W Pass S825 MHz Chain 1 Chain 2 Chain 3 Chain 4 Chain 5 Limit ower Setting ^{Note 3} 19.0 19.0 19.0 Total Across All Chains Limit ower Setting ^{Note 3} 19.0 19.0 19.0 19.0 Pass Total Across All Chains Limit ower Setting ^{Note 3} 19.0 19.0 19.0 19.0 Pass Pass Pass ower GBm) Note 1 25.8 21.9 Z7.3 dBm 0.535 W 30.0 dBm 1.000 V ntenna Gain (dBi) Note 2 30 30 30.0 dBi Pass Pass Note 1: Output power measured using a peak power meter S7.3 dBm 535.071 W Pass Note 2: As there is no coherency between chains the total EIRP is the sum of the individual EIRPs and effective antenna gain equate the eirp divide by the sum of the power on each chain. Power setting - if a single number the same power setting was u	irp (dBm)	Note 2	55.5	51.6			57.0 dBm	499.357 W	1 435		
ower Setting ^{Note 3} 19.0 19.0 101al Across All Chains Limit interna Gain (dBi) Note 2 30 30 30.0 dBi Pass irip (dBm) Note 2 56.3 52 57.7 dBm 585.069 W Pass S825 MHz Chain 1 Chain 2 Chain 3 Chain 4 Chain 5 Limit ower Setting ^{Note 3} 19.0 19.0 19.0 Total Across All Chains Limit ower Setting ^{Note 3} 19.0 19.0 19.0 19.0 Pass Total Across All Chains Limit ower Setting ^{Note 3} 19.0 19.0 19.0 19.0 Pass Pass Pass ower GBm) Note 1 25.8 21.9 Z7.3 dBm 0.535 W 30.0 dBm 1.000 V ntenna Gain (dBi) Note 2 30 30 30.0 dBi Pass Pass Note 1: Output power measured using a peak power meter S7.3 dBm 535.071 W Pass Note 2: As there is no coherency between chains the total EIRP is the sum of the individual EIRPs and effective antenna gain equate the eirp divide by the sum of the power on each chain. Power setting - if a single number the same power setting was u		5785 MHz	Chain 1	Chain 2	S died X	N. Kriner (C)					
Note 126.32227.7 dBm0.585 W30.0 dBm1.000 Vntenna Gain (dBi)Note 230303030.0 dBiPassS825 MHzChain 1Chain 2Chain 3Chain 3Chain 4Total Across All ChainsLimitower Setting Note 319.019.019.027.3 dBm0.535 W30.0 dBm1.000 Vower (dBm) Note 125.821.927.3 dBm0.535 W30.0 dBm1.000 Vntenna Gain (dBi) Note 125.821.927.3 dBm0.535 W30.0 dBm1.000 Vntenna Gain (dBi) Note 230303030.0 dBiPassNote 255.851.957.3 dBm535.071 WNote 1:Output power measured using a peak power meterNote 1:Output power measured using a peak power on each chain.Note 2:As there is no coherency between chains the total EIRP is the sum of the individual EIRPs and effective antenna gain equal the eirp divide by the sum of the power on each chain.Note 2:Power setting - if a single number the same power setting was used for each chain.Note 2:Power setting - if a single number the same power setting was used for each chain.	Power Setti			1			Total Acros	s All Chains	Limit		
Intenna Gain (dBi) Note 2 30 30 30 30.0 dBi Pass irp (dBm) Note 2 56.3 52 57.7 dBm 585.069 W Pass S825 MHz Chain 1 Chain 2 Chain 3	otroi eeu	ver (dBm) ^{Note 1}					27.7 dBm	0.585 W	30.0 dBm 1.0	000 V	
Section	ntenna Ga	ain (dBi) ^{Note 2}		30							
5825 MHzChain 1Chain 2Chain 3Chain 3Chain 4Total Across All ChainsLimitower Setting Note 319.019.019.027.3 dBm0.535 W30.0 dBm1.000 Vnutput Power (dBm) Note 125.821.927.3 dBm0.535 W30.0 dBm1.000 Vntenna Gain (dBi) Note 230303030.0 dBiPassirp (dBm) Note 255.851.957.3 dBm535.071 WPassNote 1:Note 1:Output power measured using a peak power meterNote 2:As there is no coherency between chains the total EIRP is the sum of the individual EIRPs and effective antenna gain equation the eirp divide by the sum of the power on each chain.Power setting - if a single number the same power setting was used for each chain. If multiple numbers the power setting	irp (dBm)	Note 2	56.3	52			57.7 dBm	585.069 W	Pass		
ower Setting Note 3 19.0 19.0 19.0 10.0					• •						
ower Setting ^{Note 3} 19.0 10.0 10.0 <td< td=""><td></td><td>5825 MHz</td><td></td><td>Î</td><td>Chain 3</td><td>Chain 4</td><td>Total Acros</td><td>s All Chains</td><td>Limit</td><td></td></td<>		5825 MHz		Î	Chain 3	Chain 4	Total Acros	s All Chains	Limit		
Note 1: Output power measured using a peak power meter Note 2: As there is no coherency between chains the total EIRP is the sum of the individual EIRPs and effective antenna gain equation the eirp divide by the sum of the power on each chain. Note 2: Power setting - if a single number the same power setting was used for each chain.	ower Sett	ing ^{Note 3}									
Note 1: Output power measured using a peak power meter Note 1: Output power measured using a peak power meter Note 2: As there is no coherency between chains the total EIRP is the sum of the individual EIRPs and effective antenna gain equation the eirp divide by the sum of the power on each chain. Note 2: Power setting - if a single number the same power setting was used for each chain.							27.3 dBm		30.0 dBm 1.0)00 V	
Note 1: Output power measured using a peak power meter Note 2: As there is no coherency between chains the total EIRP is the sum of the individual EIRPs and effective antenna gain equations the eirp divide by the sum of the power on each chain. Note 2: Power setting - if a single number the same power setting was used for each chain. If multiple numbers the power setting	Intenna Ga	ain (dBi) ^{Note 2}					57.0 ID		Pass		
Note 2: As there is no coherency between chains the total EIRP is the sum of the individual EIRPs and effective antenna gain equation the eirp divide by the sum of the power on each chain. Note 2: Power setting - if a single number the same power setting was used for each chain.	irp (dBm)	Note 2	55.8	51.9			57.3 dBm	535.071 W			
Note 2: As there is no coherency between chains the total EIRP is the sum of the individual EIRPs and effective antenna gain equation the eirp divide by the sum of the power on each chain. Note 2: Power setting - if a single number the same power setting was used for each chain.	Note 1	Output power measur	ed using a neal	(nower met	er						
Note 2: the eirp divide by the sum of the power on each chain. Note 2: Power setting - if a single number the same power setting was used for each chain. If multiple numbers the power setting						sum of the in	dividual FIRI	Ps and effect	live antenna gain	equa	
Note 2: Power setting - if a single number the same power setting was used for each chain. If multiple numbers the power setting	Note 2:								ave unterniti guiri	oquu	
		. ,				used for eac	h chain If m	nultiple numb	ers the power set	tina f	
\Box	Note 3:									ung i	

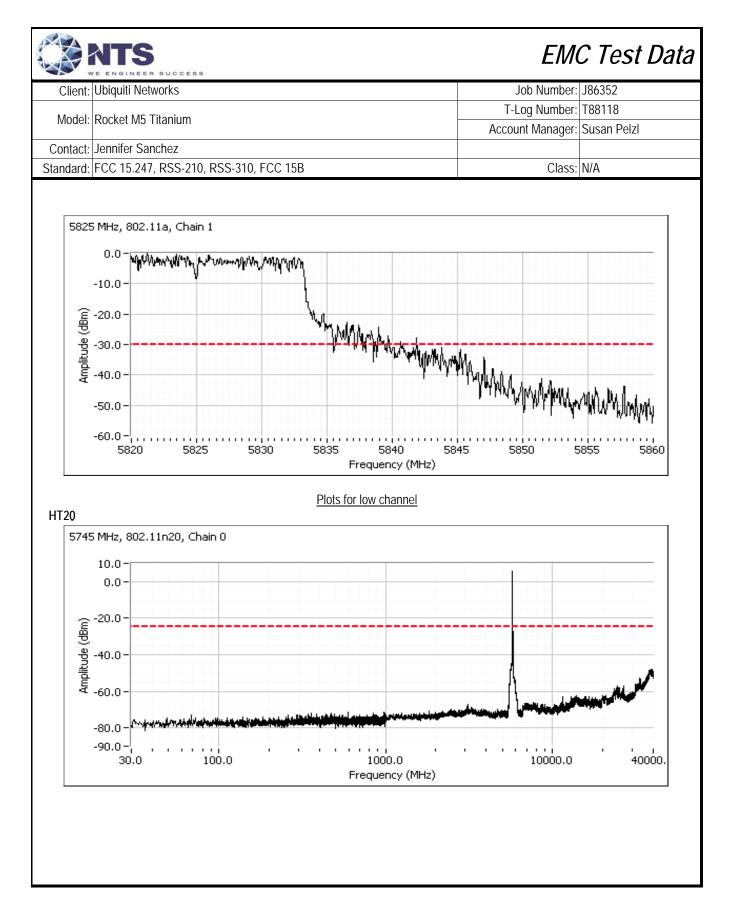

	WE ENGINEER SUCCES	5 5					EIVI	C Test L	Jata
Client:	Ubiquiti Networks					~	Job Number:	J86352	
Madal	Rocket M5 Titanium					T-L	og Number:	T88118	
						Accou	int Manager:	Susan Pelzl	
Contact:	Jennifer Sanchez								
Standard:	FCC 15.247, RSS-21	10, RSS-310, FC	C 15B				Class:	N/A	
	(Operating Mode:	HT40						
	5755 MHz	Chain 1	Chain 2	Chain 3	Chain 4	Table		L loc h	
Power Setti	ng ^{Note 3}	19.0	19.0			I otal Acros	s All Chains	Limit	
Dutput Pow	ver (dBm) ^{Note 1}	26.7	22.2			28.0 dBm	0.634 W	30.0 dBm 1	.000 W
Antenna Ga	ain (dBi) ^{Note 2}	30	30				30.0 dBi	Pass	
eirp (dBm) ^r	Note 2	56.7	52.2			58.0 dBm	633.694 W	F 033	
		Ohalia 1	Cheir 2		11/11/24/21/14/11/1/1	8			
	5795 MHz	Chain 1 19.0	Chain 2 19.0	Chain 3	Chain 4	Total Acros	s All Chains	Limit	
Power Setti		26.1	21.9			27.5 dBm	0.562 W	30.0 dBm 1	.000 W
Dutput Pow	ain (dBi) ^{Note 2}	30	30			27.5 UDIII	30.0 dBi	30.0 UDIII	.000 00
eirp (dBm) ¹	Note 2	56.1	51.9			57 5 dBm	562.262 W	Pass	
	the eirp divide by the	sum of the powe	er on each c	hain					

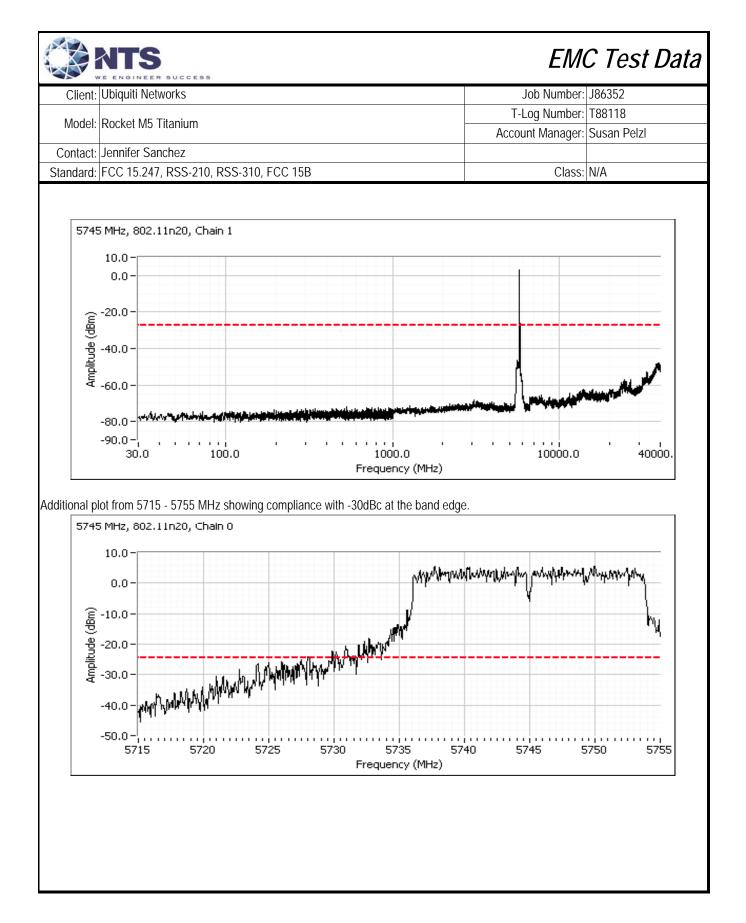

Client:	Ubiquiti Networks						lob Number:	J86352	
	•					T-L	og Number:	T88118	
	Rocket M5 Titanium					Accou	nt Manager:	Susan Pelzl	
	Jennifer Sanchez								
Standard:	FCC 15.247, RSS-210	, RSS-310, FC	C 15B				Class:	N/A	
	Op	perating Mode:	HT10						
	5735 MHz	Chain 1	Chain 2	Chain 3	Chain 4	Total Acros	s All Chains	Limit	,
ower Setti	ng ^{Note 3}	16.5	16.5				-		
utput Pow	ver (dBm) ^{Note 1}	26.7	22.6			28.1 dBm	0.650 W	30.0 dBm 1.00	00 \
ntenna Ga	ain (dBi) Note 2	30	30				30.0 dBi	Pass	
irp (dBm) ^N	vote 2	56.7	52.6			58.1 dBm	649.705 W		
	5790 MHz	Chain 1	Chain 2	Chain 3	Chain 4				
ower Setti	na ^{Note 3}	18.0	18.0	<u>, , , , , , , , , , , , , , , , , , , </u>		Total Acros	s All Chains	Limit	
utput Pow	ver (dBm) Note 1	26.6	22.2			27.9 dBm	0.623 W	30.0 dBm 1.00	00 \
ntenna Ga	ain (dBi) ^{Note 2}	30	30				30.0 dBi		
irp (dBm) ^N	Note 2	56.6	52.2			57.9 dBm	623.047 W	Pass	
<u> </u>									
	5840 MHz	Chain 1	Chain 2	Chain 3	Chain 4	Total Acros	s All Chains	Limit	
ower Setti	ng ^{Note 3}	12.5	12.5						
utput Pow	ver (dBm) Note 1	24.2	20			25.6 dBm	0.363 W	30.0 dBm 1.00	00 \
ntenna Ga	ain (dBi) ^{Note 2}	30	30			55 (IB	30.0 dBi	Pass	
irp (dBm) [№]	1018 2	54.2	50			55.6 dBm	363.027 W		
Note 1:	Output power measure	d using a neal	nower met	٥r					
	As there is no coheren				sum of the in	dividual EIRI	Os and effect	tive antenna gain e	ans
Note 2:	the eirp divide by the s						3 driu ellec	ive antenna ganre	que
	Power setting - if a sing				used for eac	hchain Ifm	ultinla numh	ors the nower setti	ina
	FUWEI SELLING - ILA SILI								ng i
Note 3:	each chain is separate	d by a comma		uld indicate n	nwer setting			na v tor chain 7	

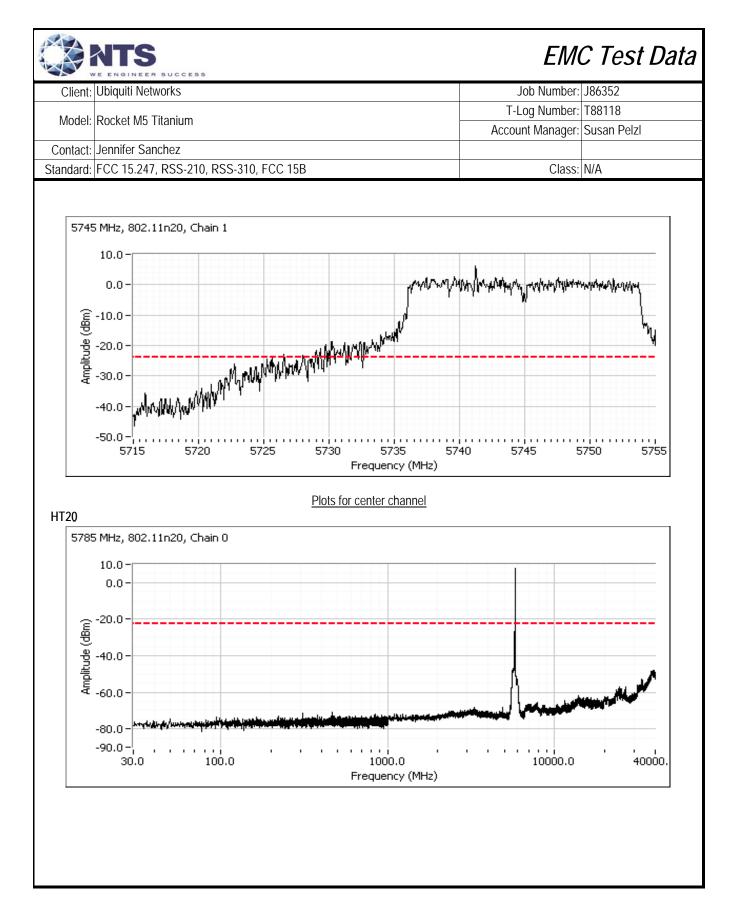

Client	Ubiquiti Networks					Job Number:	J86352
					T·	Log Number:	T88118
Model	Rocket M5 Titanium					unt Manager:	
Contact	Jennifer Sanchez						
Standard	FCC 15.247, RSS-210, F	RSS-310, FC	C 15B			Class:	N/A
un #3: Po 02.11a Mo	ower spectral Density						
Power			PSE	D (dBm/3kHz) Note 1		Limit	Decult
Setting	Frequency (MHz)	Chain 1	Chain 2	Chain 3 Chain 4	Total	dBm/3kHz	Result
19	5751.829 / 5744.956	-4.8	-5.9		-2.3	8.0	Pass
19	5784.956 / 5784.956	-1.6	-1.6		1.4	8.0	Pass
19	5823.707 / 5824.956	-8.0	-4.3		-2.8	8.0	Pass
20 Mode							
19	5739.957 / 5748.360	-4.3	-8.1		-2.8	8.0	Pass
19	5784.957 / 5788.077	-2.7	-8.9		-1.7	8.0	Pass
19	5819.649 / 5824.957	-7.8	-3.9		-2.4	8.0	Pass
40 Mode						-	-
19	5748.082 / 5754.956	-8.0	-6.9		-4.4	8.0	Pass
19	5789.955 / 5781.207	-9.0	-9.2		-6.1	8.0	Pass
10						-	1
19	5737.452 / 5734.952	-1.4	-2.8		1.0	8.0	Pass
19	5787.452 / 5789.954	-3.6	-2.6		0.0	8.0	Pass
19	5837.017 / 5840.579	-5.7	-5.9		-2.8	8.0	Pass
ote 1:	ensure a dwell time of at	least 1 seco	nd per 3kHz	z, VB=10kHz, analyzer with . The measurement is made sweeps at a faster rate over	e at the fre	equency of PP	

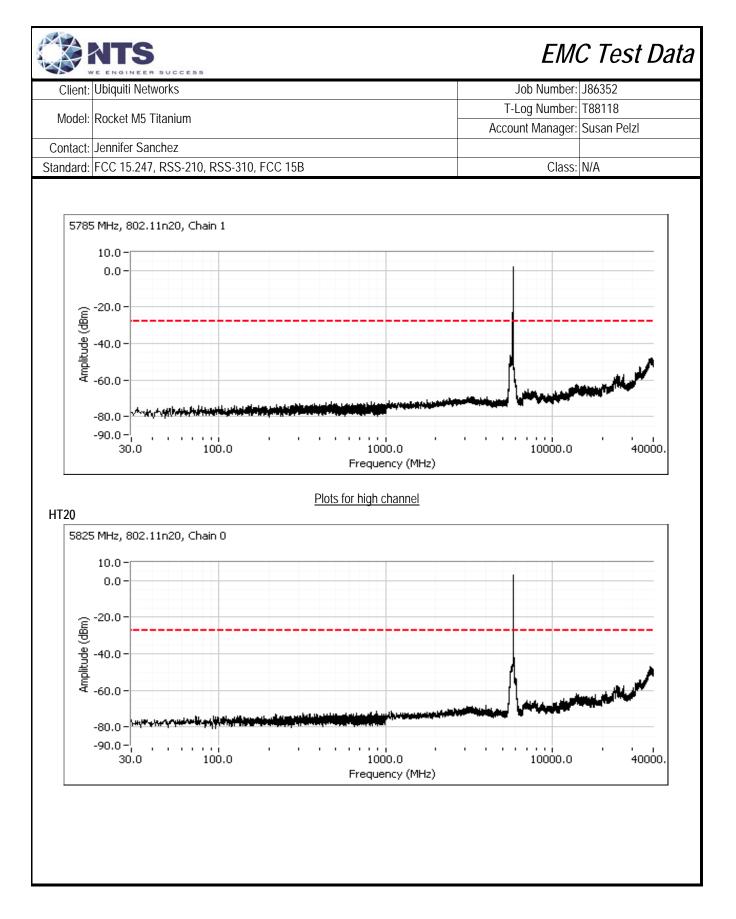

Onerit.	Ubiquiti Netv	vorks				Job Number	: J86352
				T-Log Number			
Model:	Rocket M5 T	ïtanium	F	Account Manager			
Contact:	Jennifer San	chez		g.			
Standard:	FCC 15.247,	RSS-210, RSS-310, F		Class	: N/A		
Run #3: Si	gnal Bandwi	dth					
802.11a Mo			1				
	Power	Frequency (MHz)	Resolution		lth (MHz)		
	Setting		Bandwidth	6dB	99%		
	19	5745	100kHz	16.3	19.97		
	19	5785	100kHz	16.3	20.17		
	19	5825	100kHz	16.4	19.70		
HT20 Mode			Resolution	Donduik	th (MLI-)		
	Power	Frequency (MHz)		6dB	dth (MHz)		
	Setting 19	5745	Bandwidth 100kHz	17.6	99% 19.30		
	19	5785	100kHz	17.6	19.30		
	19	5825	100kHz	17.6	19.04		
HT40 Mode		JUZJ	TUUNTIZ	17.0	10.77		
	Power		Resolution	Bandwir	dth (MHz)		
	Setting	Frequency (MHz)	Bandwidth	6dB	99%		
	19	5755	100kHz	36	38.10		
	19	5795	100kHz	35.8	37.90		
HT10 Mode	; ;		1 1				
	Power	Fraguanay (MUT)	Resolution	Bandwid	dth (MHz)		
	Setting	Frequency (MHz)	Bandwidth	6dB	99%		
	19	5735	100kHz	8.2	9.65		
	19	5790	100kHz	8.3	9.75		
	19	5840	100kHz	8.2	9.65		
Mala 4	Management	a abada abatu					
Note 1: Note 2:		n a single chain	anco with DCC	CEN with	DR < 10/ of th	e span and VB > 3xRB	
	77% Danawi	um measureu in accord	ance with KSS	GEN, WIN	к¤> 1 % 01 [ľ	e suali aliu VB > 3XRB	

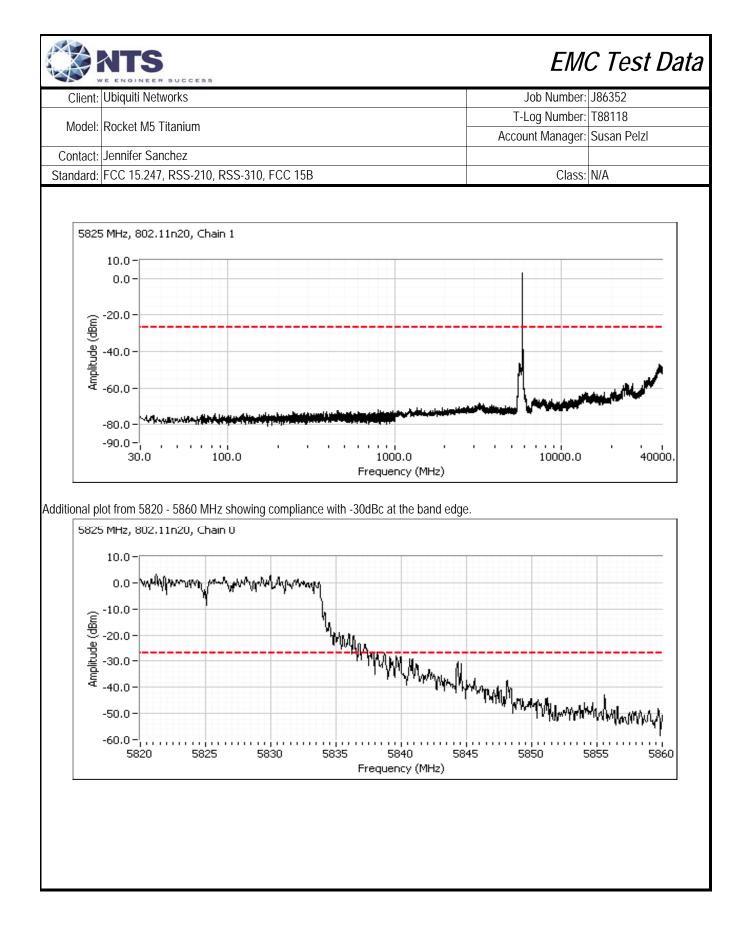


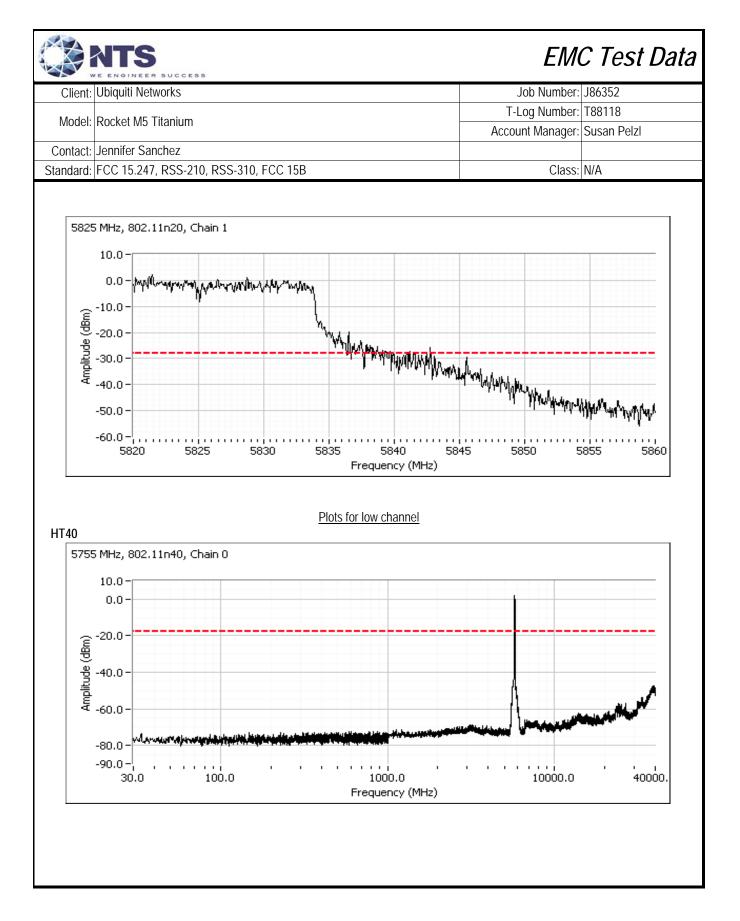


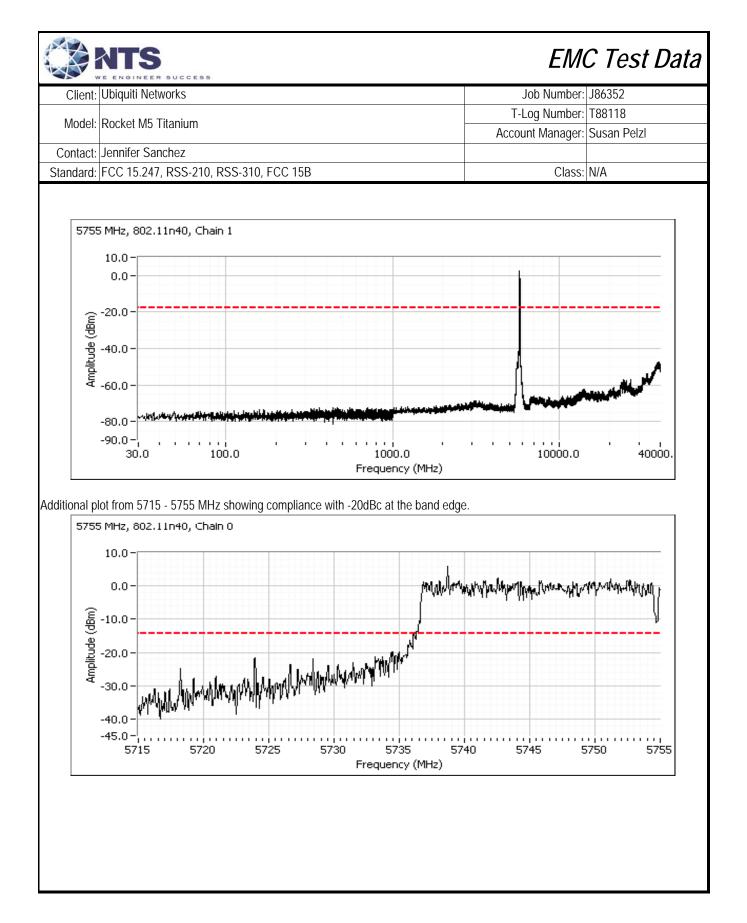


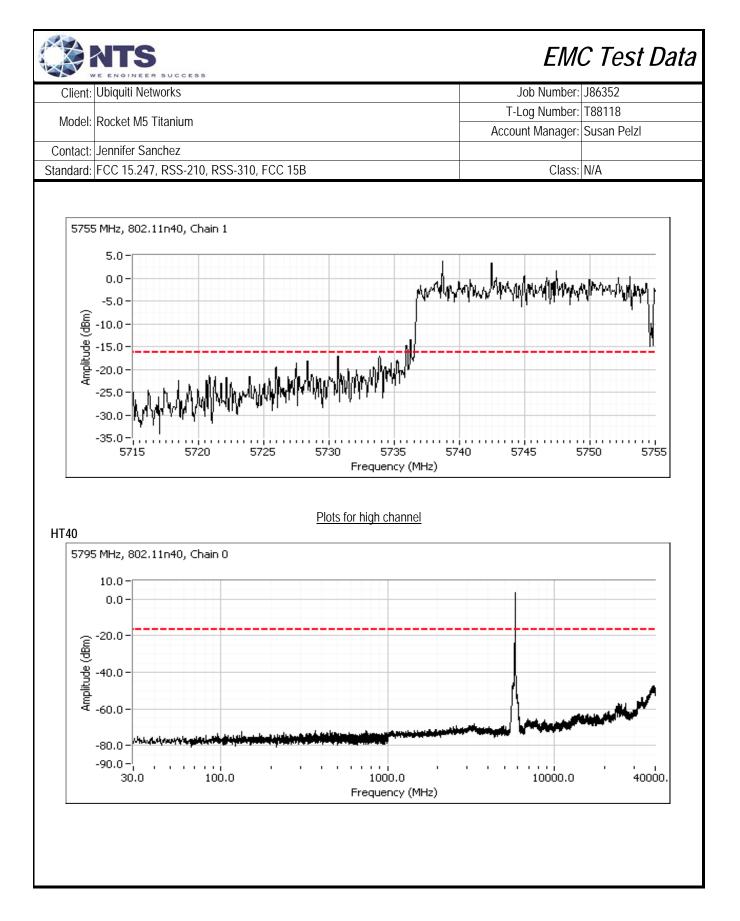


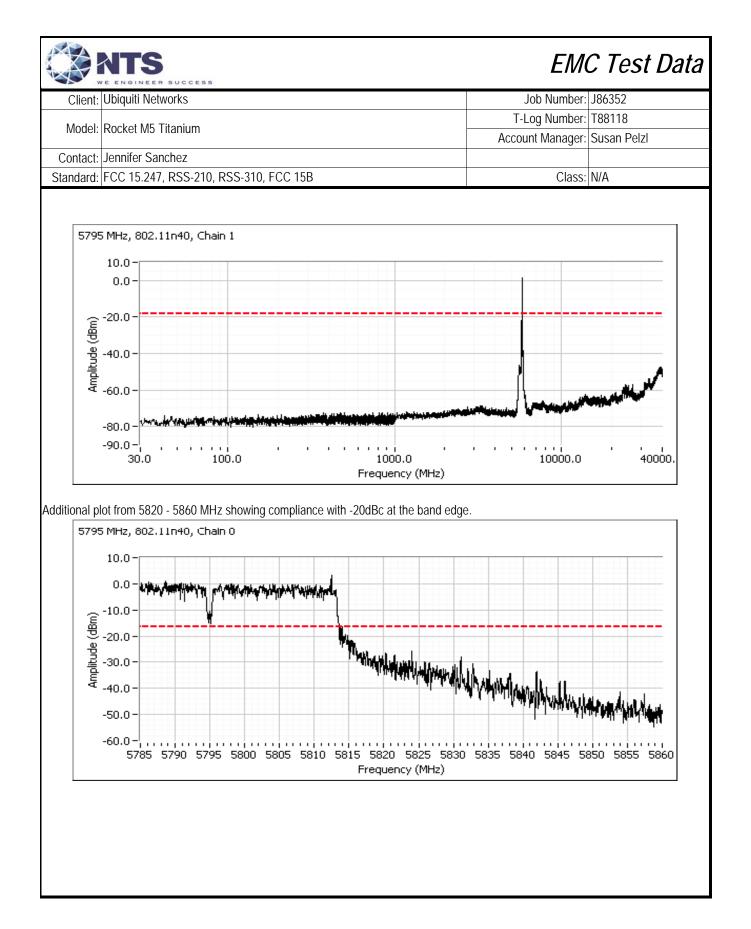


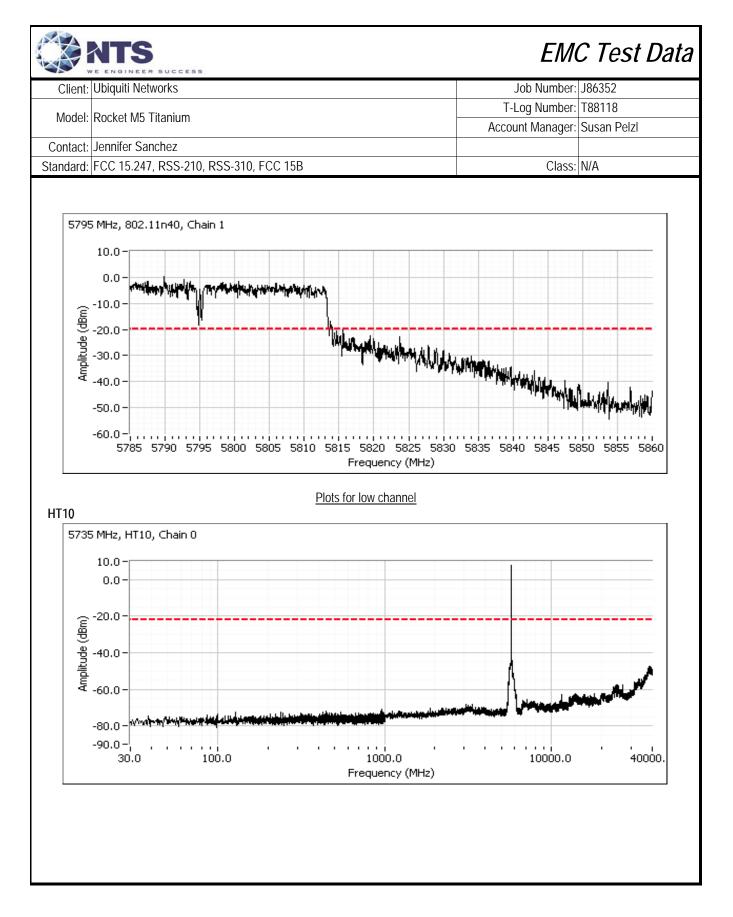


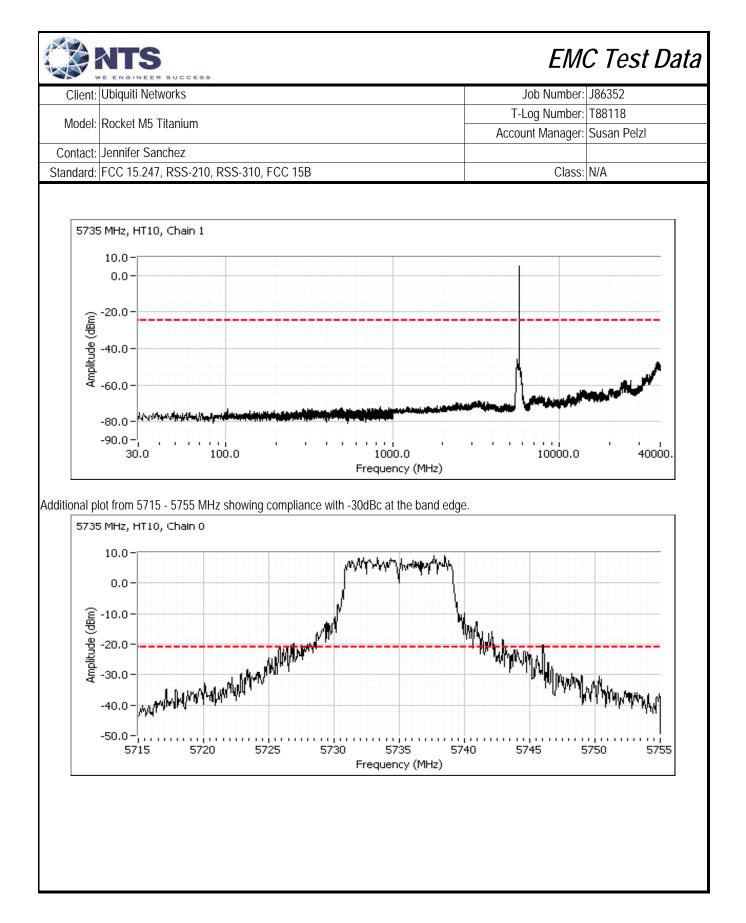


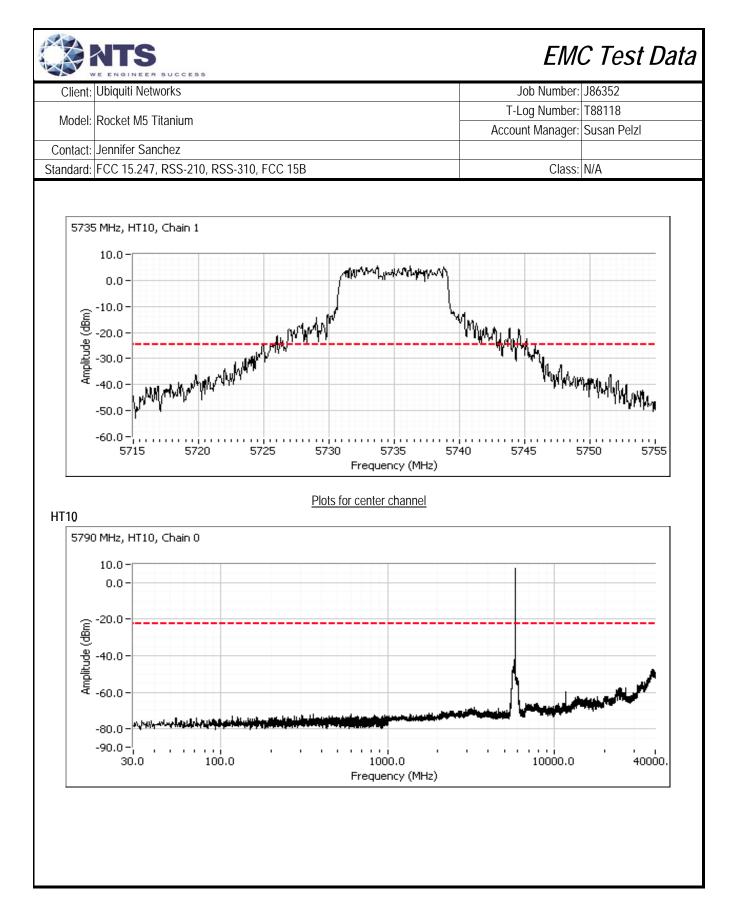


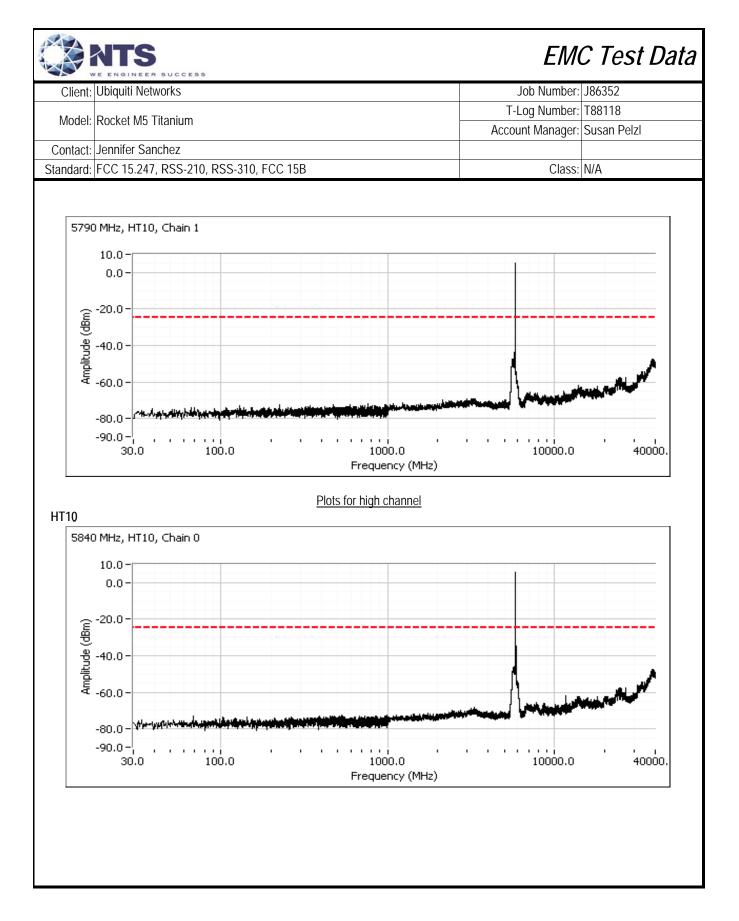


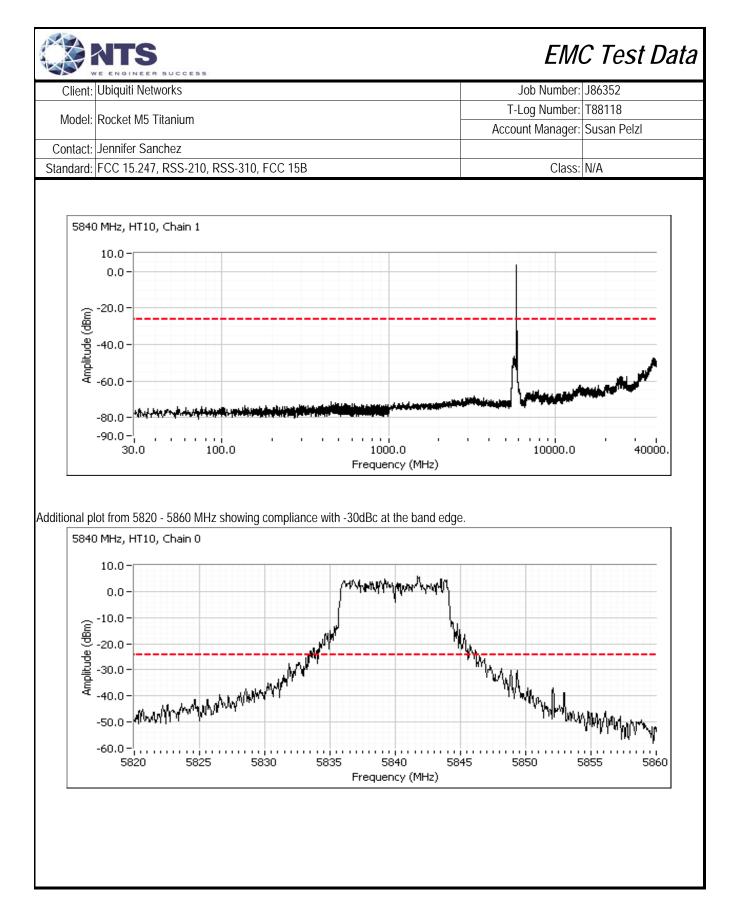


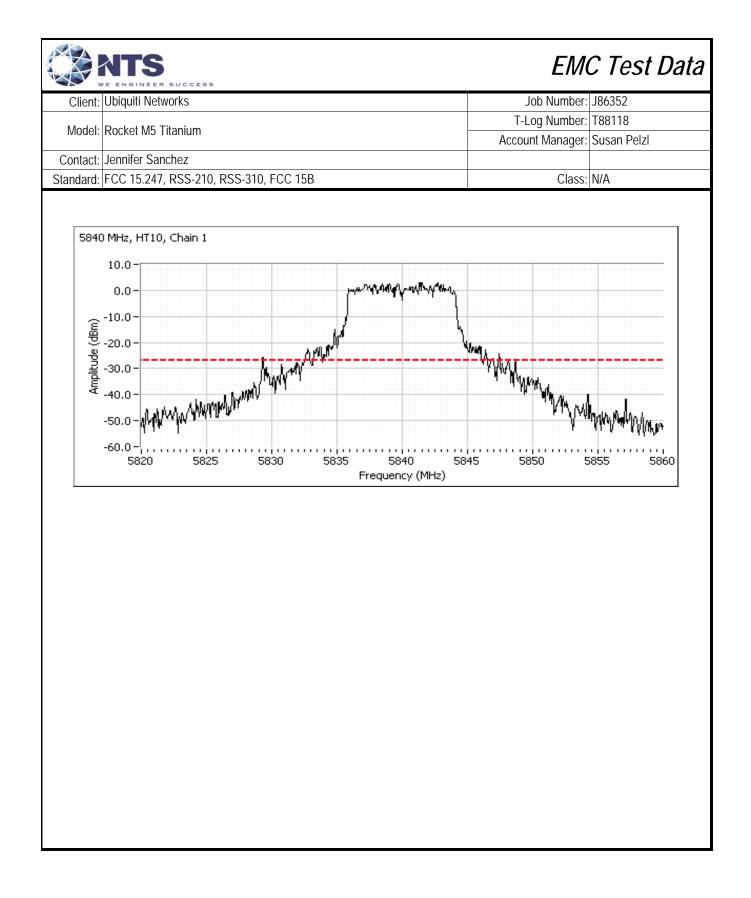












EMC Test Data

Client:	Ubiquiti Networks	Job Number:	J86352
Madal	Rocket M5 Titanium	T-Log Number:	T88118
wouer.		Account Manager:	Susan Pelzl
Contact:	Jennifer Sanchez		
Standard:	FCC 15.247, RSS-210, RSS-310, FCC 15B	Class:	N/A

RSS 210 and FCC 15.247 (DTS) Radiated Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

rs

SUCCESS

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. All remote support equipment was located approximately 30 meters from the EUT.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions:

Temperature:	20.6 °C
Rel. Humidity:	33 %

Summary of Results - Device Operating in the 5725 - 5850 MHz Band

Sammary	of Recount			9	25 5050 MITE Duriu			
Run #	Mode	Channel	Power Setting	Measured Power	Test Performed	Limit	Result / Margin	
10	802.11a	100			Radiated Emissions,	FCC Part 15.209 /	42.6 dBµV/m @ 2340.	
1a	802.118	low	19	-	1 - 40GHz	15.247(c)	MHz (-11.4 dB)	
1b	802.11a	contor	19		Radiated Emissions,	FCC Part 15.209 /	42.5 dBµV/m @ 2340.	
ŭ	802.118	center	19	-	1 - 40GHz	15.247(c)	MHz (-11.5 dB)	
1c	802.11a	high	19		Radiated Emissions,	FCC Part 15.209 /	All emissions are unde	
ΤC	002.11d	high	19	-	1 - 40GHz	15.247(c)	limit	
2a	HT20	low	19		Radiated Emissions,	FCC Part 15.209 /	All emissions are unde	
Zđ	підо	low	19	-	1 - 40GHz	15.247(c)	limit	
2b	HT20	IT20 contor	contor	19		Radiated Emissions,	FCC Part 15.209 /	All emissions are unde
20	піди	center	19	-	1 - 40GHz	15.247(c)	limit	
2c	HT20	00 bigb	20 high	19		Radiated Emissions,	FCC Part 15.209 /	All emissions are unde
ZU	підо	Tilgit	19	-	1 - 40GHz	15.247(c)	limit	
3a			HT40 low	19		Radiated Emissions,	FCC Part 15.209 /	All emissions are unde
Ja	H140	IUW	19	-	1 - 40GHz	15.247(c)	limit	
3b	UT40 bigb	HT40 high	high	19		Radiated Emissions,	FCC Part 15.209 /	All emissions are unde
30	11140	nign	17	-	1 - 40GHz	15.247(c)	limit	
4a	HT10	low	19		Radiated Emissions,	FCC Part 15.209 /	All emissions are unde	
40	11110	1010	17	-	1 - 40GHz	15.247(c)	limit	
4b	HT10	center	19		Radiated Emissions,	FCC Part 15.209 /	All emissions are unde	
40	11110	CEITTE	17	-	1 - 40GHz	15.247(c)	limit	
4c	HT10	high	19		Radiated Emissions,	FCC Part 15.209 /	42.3 dBµV/m @ 2340.	
46	HIIU	riigi i	17	-	1 - 40GHz	15.247(c)	MHz (-11.7 dB)	

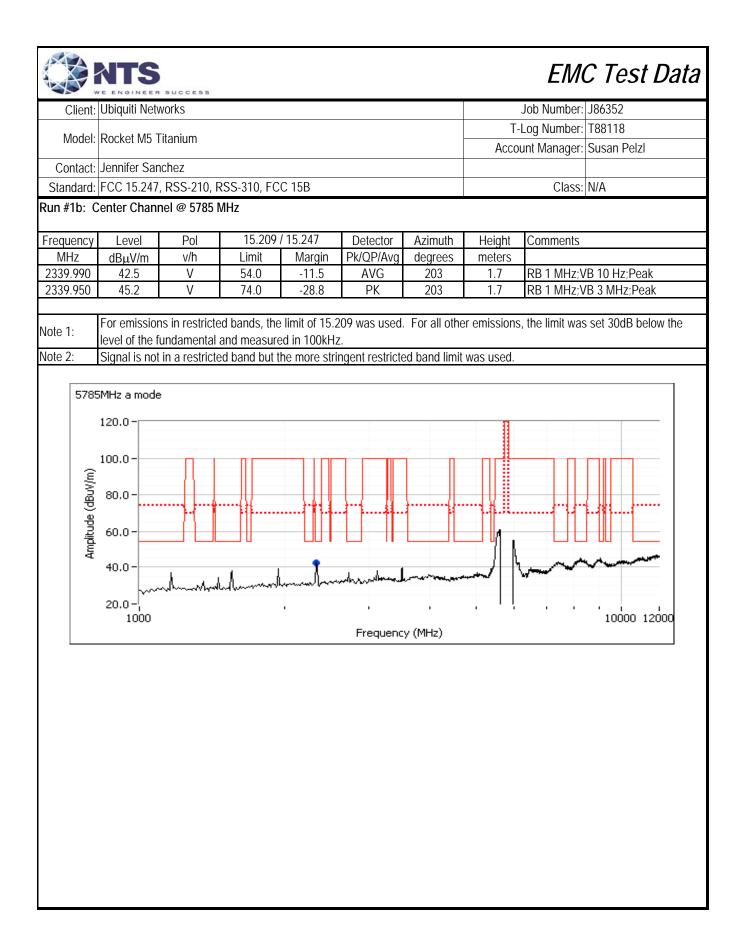
	NTS	EMO	C Test Data
Client:	Ubiquiti Networks	Job Number:	J86352
Madalı	Rocket M5 Titanium	T-Log Number:	T88118
wouer.		Account Manager:	Susan Pelzl
Contact:	Jennifer Sanchez		
Standard:	FCC 15.247, RSS-210, RSS-310, FCC 15B	Class:	N/A

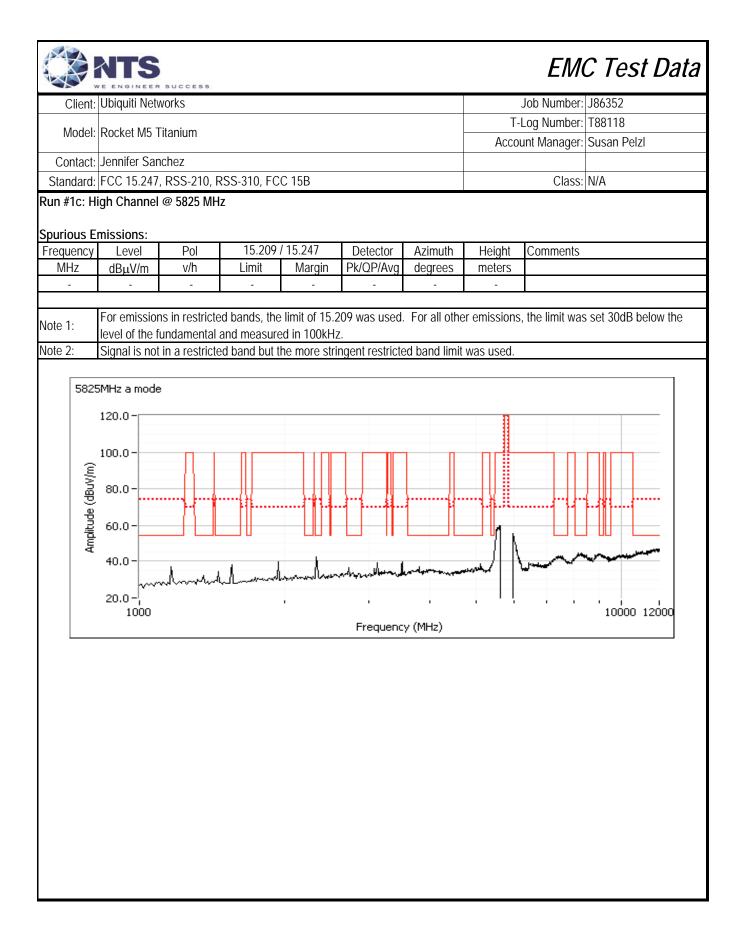
Modifications Made During Testing

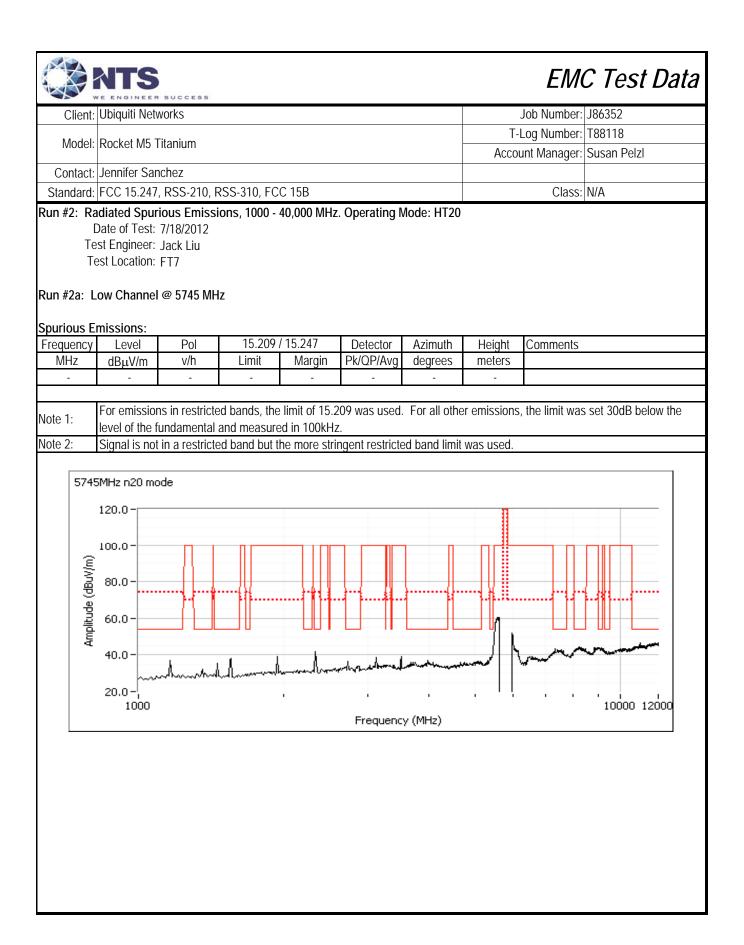
No modifications were made to the EUT during testing

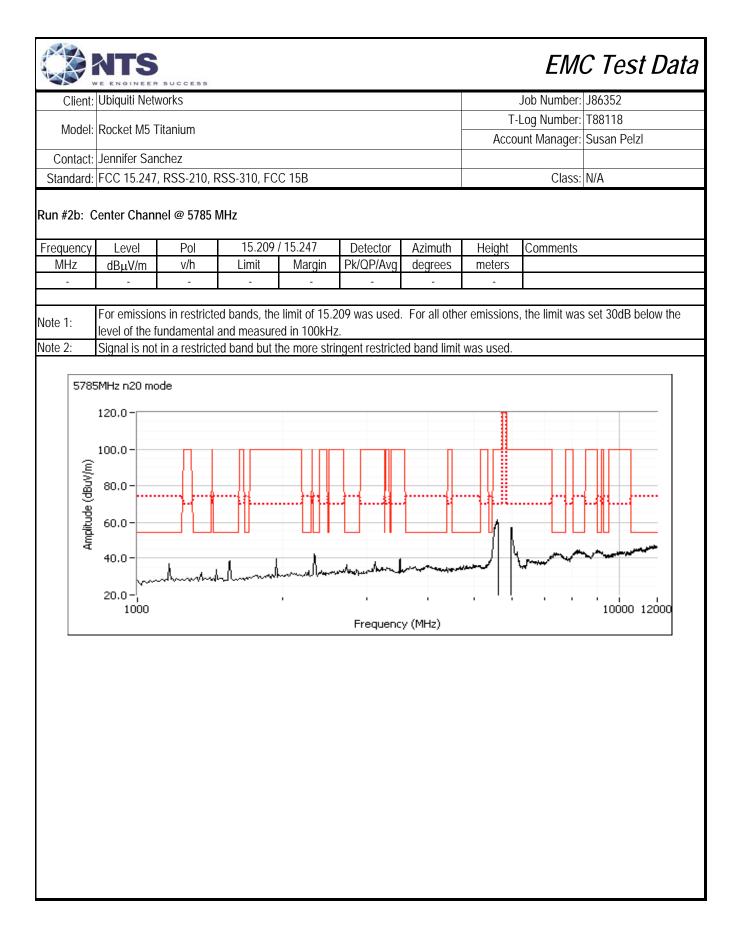
Deviations From The Standard

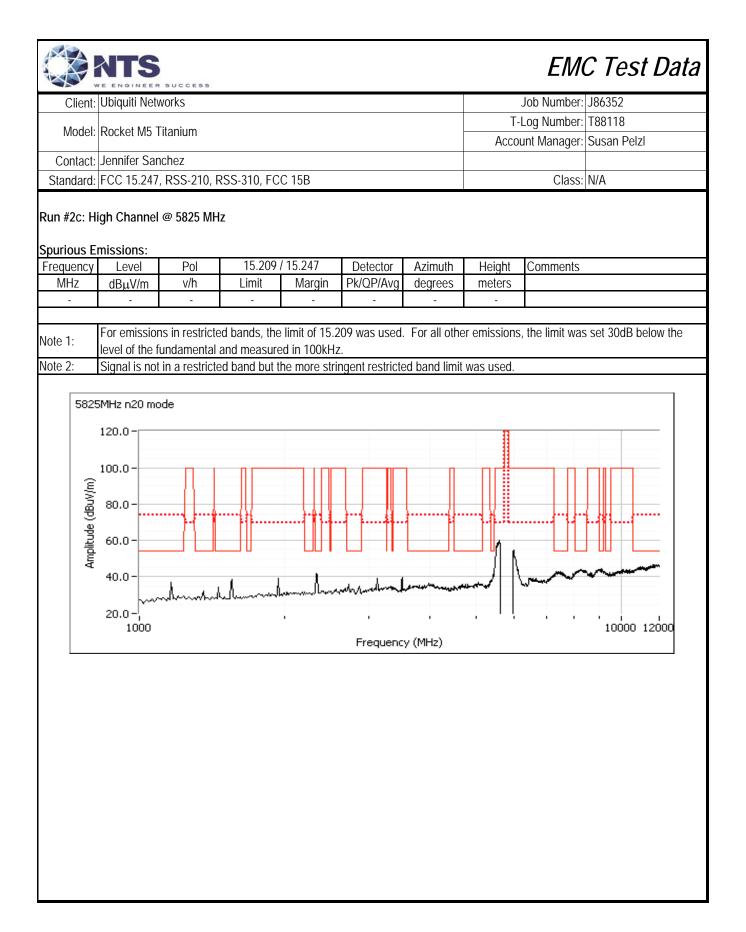
No deviations were made from the requirements of the standard.

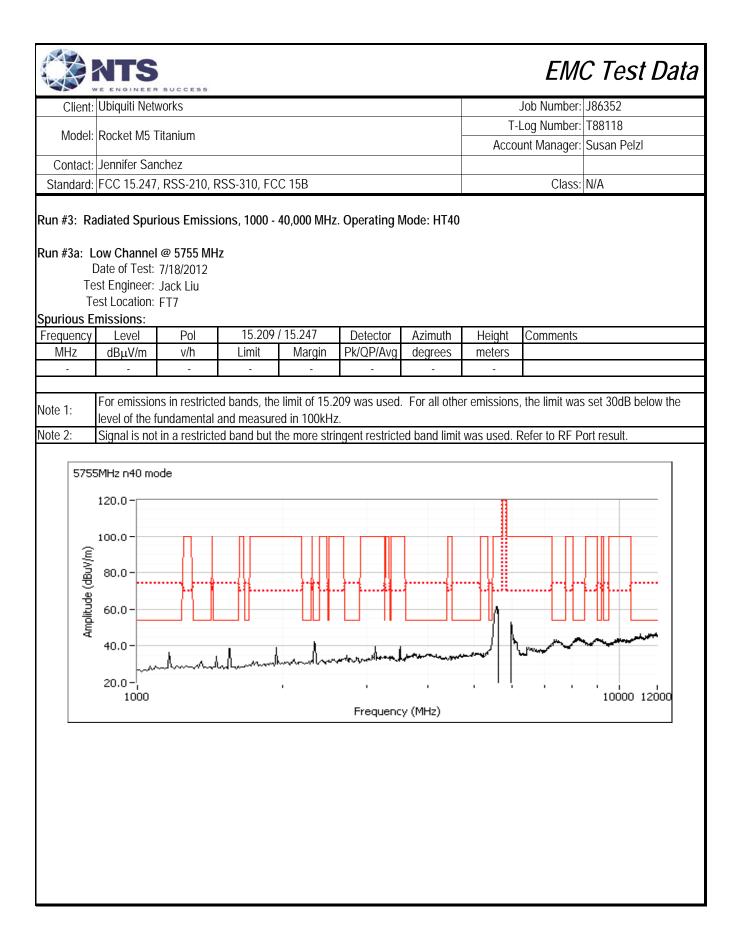

Notes

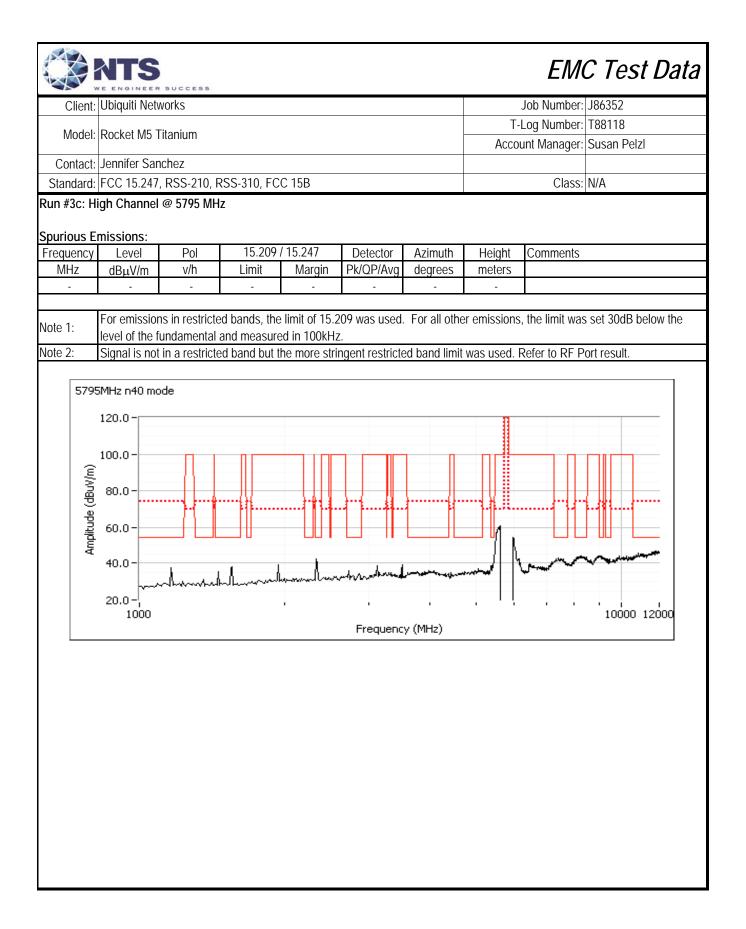

Testing performed using the 21dBi sector antenna (antenna configured to the 60deg positions) Emissions in the 4500-5500 MHz range were evaluated using the ESIB (pre-amp on) with band reject filter located at the antenna. No

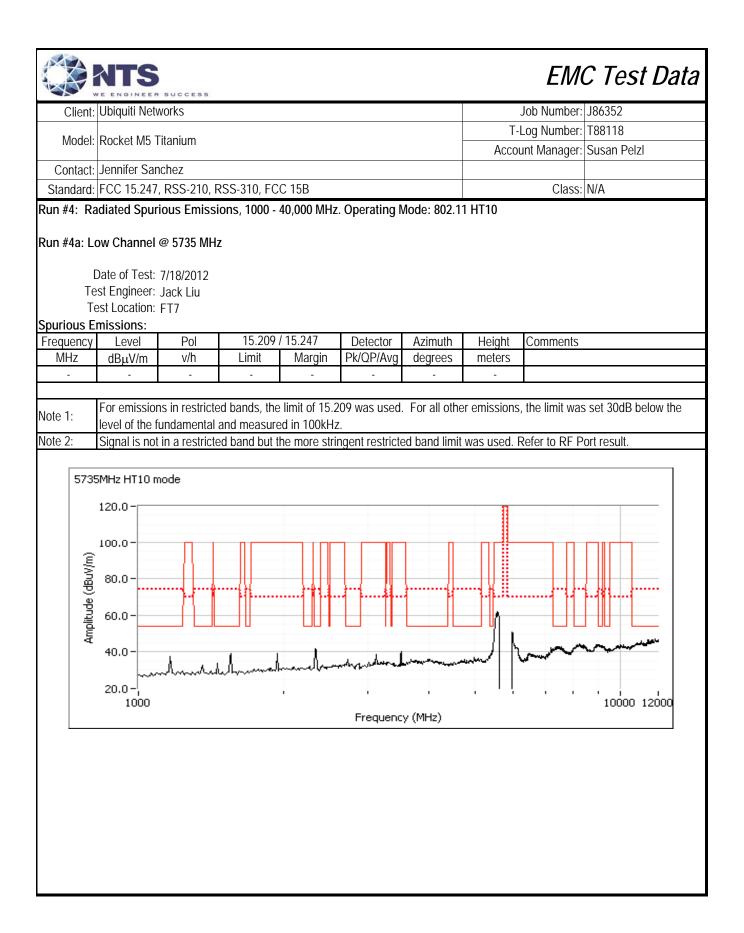

significant emissions observed.

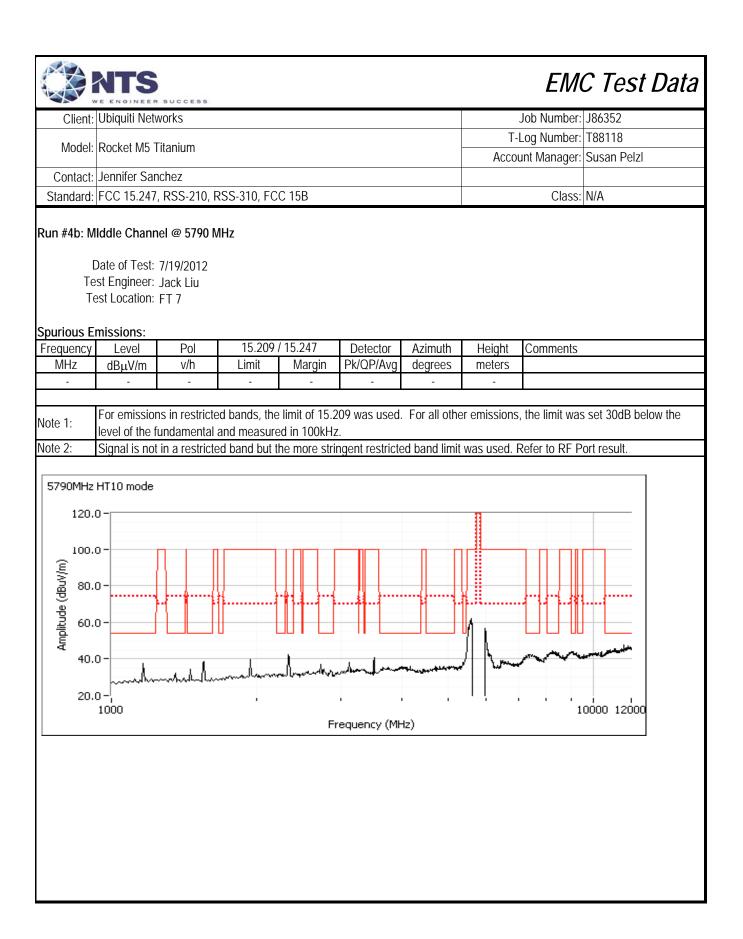

Preliminary testing showed no emissions below 1GHz and above 12GHz related to the radio

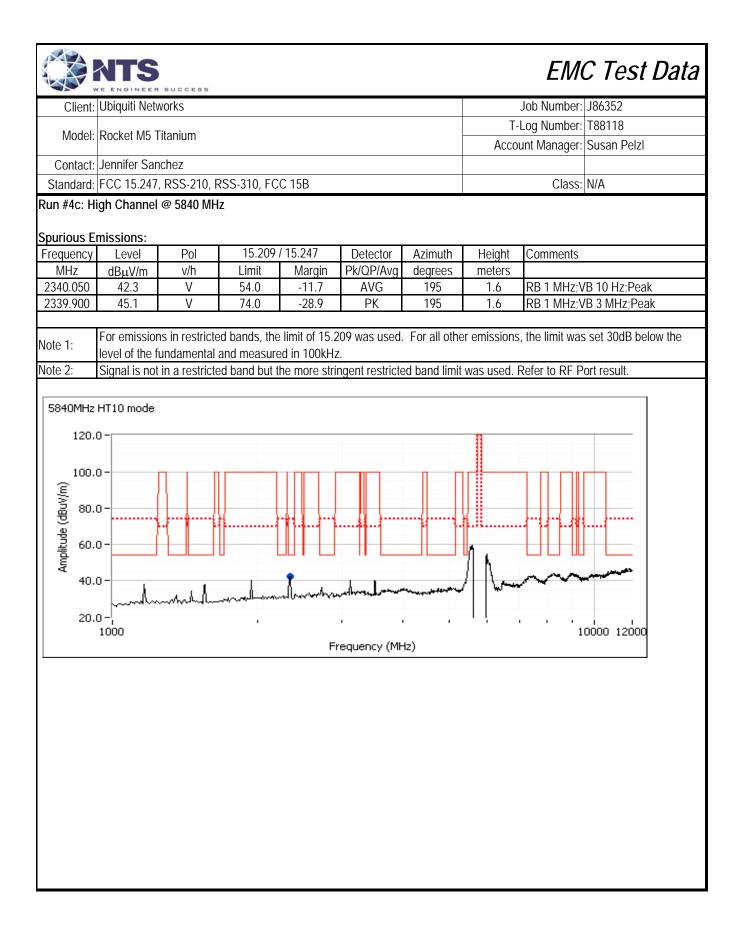

	NTS					EMO	C Test Data
Client	Ubiquiti Networks			Job Number: J8		J86352	
Model	Rocket M5 Titanium				T-Log Number:		T88118
				Account Manager: Susan Pela		Susan Pelzl	
	Jennifer Sanchez						
	FCC 15.247, RSS-210, F adiated Spurious Emiss		Onenations	Anda 000 1:	1-	Class:	N/A
Te T	Date of Test: 7/18/2012 est Engineer: Jack Liu est Location: FT7 Low Channel @ 5745 MH				-		
Spurious E	missions:						
Frequency		15.209 / 15.247	Detector	Azimuth	Height	Comments	
MHz 2340.010	dBμV/m v/h 42.6 V	Limit Margin 54.0 -11.4	Pk/QP/Avg AVG	degrees 196	meters 1.7		B 10 Hz;Peak
2340.010	42.6 V 45.4 V	74.0 -28.6	PK	196	1.7		B 3 MHz;Peak
Note 2: 574 (W/Angp)	5MHz a mode 120.0 - 100.0 -	ed band but the more strin	Frequence				10000 12000











EMC Test Data

Client:	Ubiquiti Networks	Job Number:	J86352				
Madal	Rocket M5 Titanium	T-Log Number:	T88118				
wouer.		Account Manager:	Susan Pelzl				
Contact:	Jennifer Sanchez						
Standard:	FCC 15.247, RSS-210, RSS-310, FCC 15B	Class:	N/A				

RSS 210 and FCC 15.247 (DTS) Radiated Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

TS

SUCCESS

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. All remote support equipment was located approximately 30 meters from the EUT.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions:

Temperature:	20.6 °C
Rel. Humidity:	33 %

Summary of Results - Device Operating in the 5725 - 5850 MHz Band

Junnun	of Result			<u>g</u>	25 5050 Militz Dullo			
Run #	Mode	Channel	Power Setting	Measured Power	Test Performed Limit		Result / Margin	
1.0	802.11a				Radiated Emissions,	FCC Part 15.209 /	52.2 dBµV/m @	
1a	802.118	low	19	-	1 - 40GHz	15.247(c)	11490.0 MHz (-1.8 dB)	
1b	802.11a	contor	19		Radiated Emissions,	FCC Part 15.209 /	47.0 dBµV/m @	
a	002.11d	center	19	-	1 - 40GHz	15.247(c)	11568.6 MHz (-7.0 dB)	
1c	802.11a	high	19		Radiated Emissions,	FCC Part 15.209 /	53.8 dBµV/m @	
ΤC	002.11d	Tilgit	19	-	1 - 40GHz	15.247(c)	11648.7 MHz (-0.2 dB)	
2a	n20	low	17		Radiated Emissions,	FCC Part 15.209 /	53.1 dBµV/m @	
Zđ	TIZU	IOW	17	-	1 - 40GHz	15.247(c)	11488.3 MHz (-0.9 dB)	
2b	n20	contor	19	-	Radiated Emissions,	FCC Part 15.209 /	51.7 dBµV/m @	
20	TIZU	center	19		1 - 40GHz	15.247(c)	11564.9 MHz (-2.3 dB)	
2c	2c n20		19		Radiated Emissions,	FCC Part 15.209 /	53.6 dBµV/m @	
ZU	TIZU	20 high 19 - 1 - 40GHz		1 - 40GHz	15.247(c)	11645.6 MHz (-0.4 dB)		
3a	3a n40		19		Radiated Emissions,	FCC Part 15.209 /	48.8 dBµV/m @	
Ja	1140	low	17	-	1 - 40GHz	15.247(c)	11508.7 MHz (-5.2 dB)	
3b	n40	n40 biab	n40 high	19	_	Radiated Emissions,	FCC Part 15.209 /	49.0 dBµV/m @
30	1140	nign	17	-	1 - 40GHz	15.247(c)	11584.1 MHz (-5.0 dB)	
4a	HT10 low	UT10 low	16.5	_	Radiated Emissions,	FCC Part 15.209 /	53.7 dBµV/m @	
40	11110	10 W	10.5	-	1 - 40GHz	15.247(c)	11469.9 MHz (-0.3 dB)	
4b	HT10	HT10 center	18.0	_	Radiated Emissions,	FCC Part 15.209 /	53.9 dBµV/m @	
40	11110		10.0	-	1 - 40GHz	15.247(c)	11577.8 MHz (-0.1 dB)	
4c	HT10	HT10 high	12.5	_	Radiated Emissions,	FCC Part 15.209 /	53.8 dBµV/m @	
46	11110			-	1 - 40GHz	15.247(c)	11678.6 MHz (-0.2 dB)	

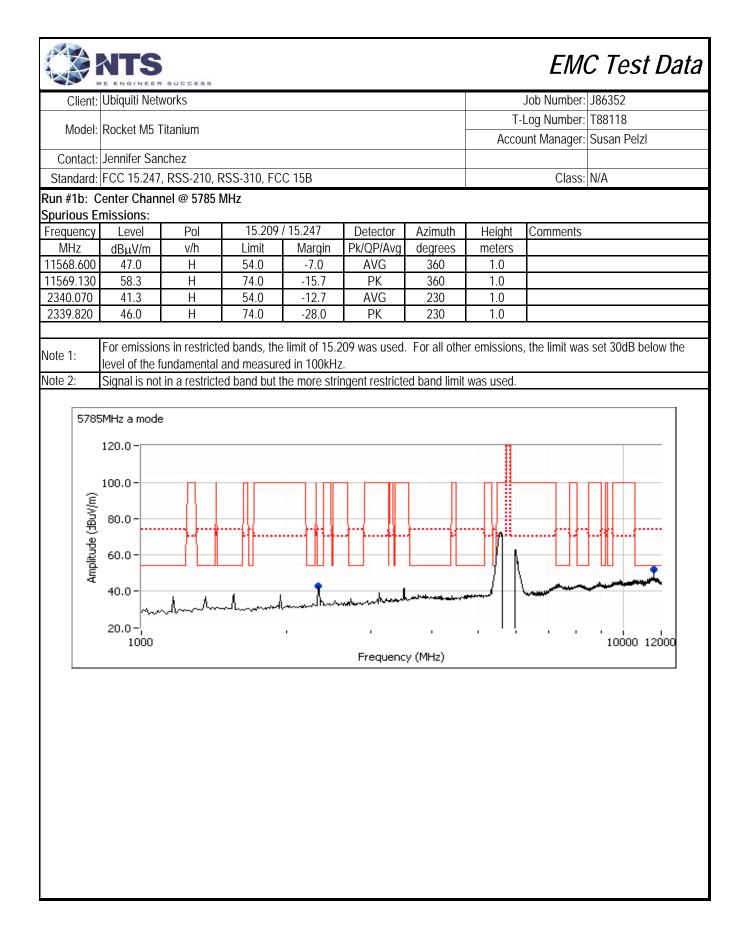
	NTS	EM	C Test Data
Client:	Ubiquiti Networks	Job Number:	J86352
Madal	Rocket M5 Titanium	T-Log Number:	T88118
wouer.		Account Manager:	Susan Pelzl
Contact:	Jennifer Sanchez		
Standard:	FCC 15.247, RSS-210, RSS-310, FCC 15B	Class:	N/A

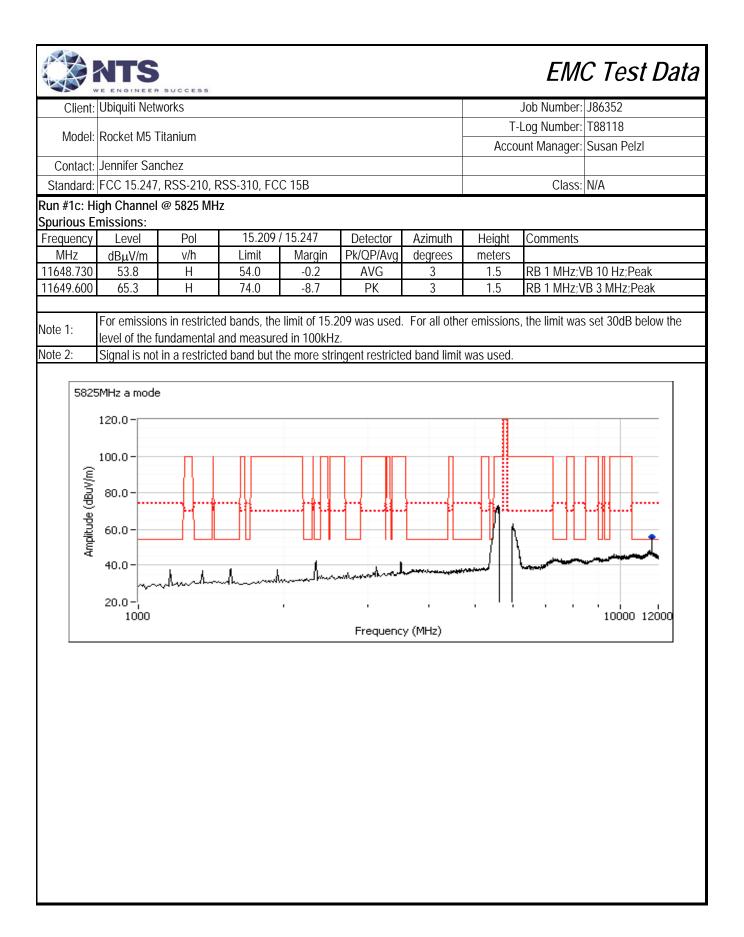
Modifications Made During Testing

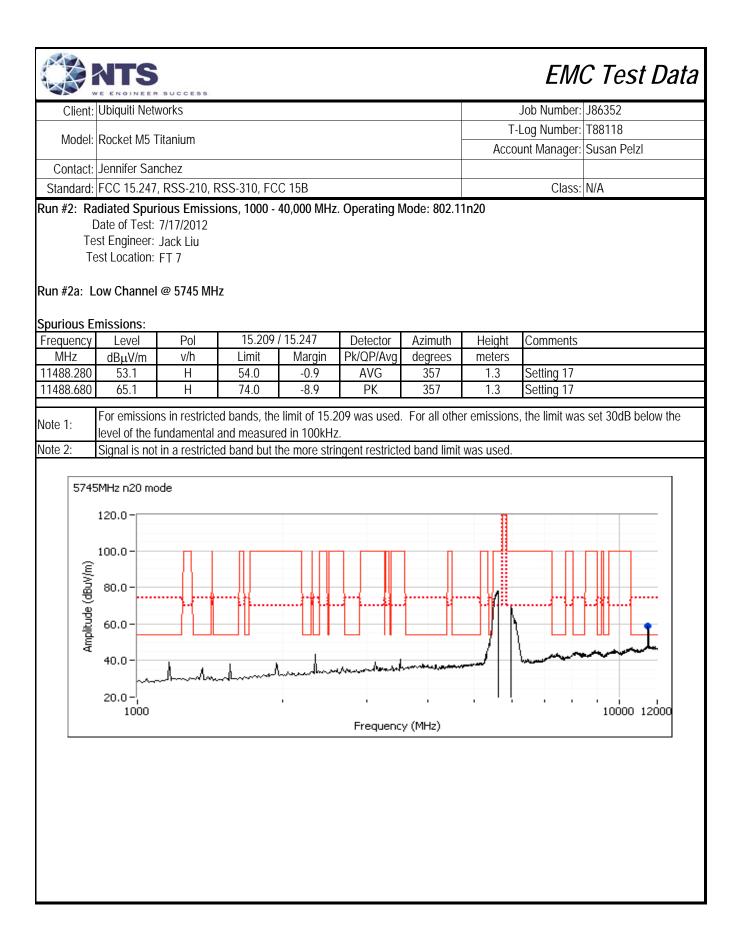
No modifications were made to the EUT during testing

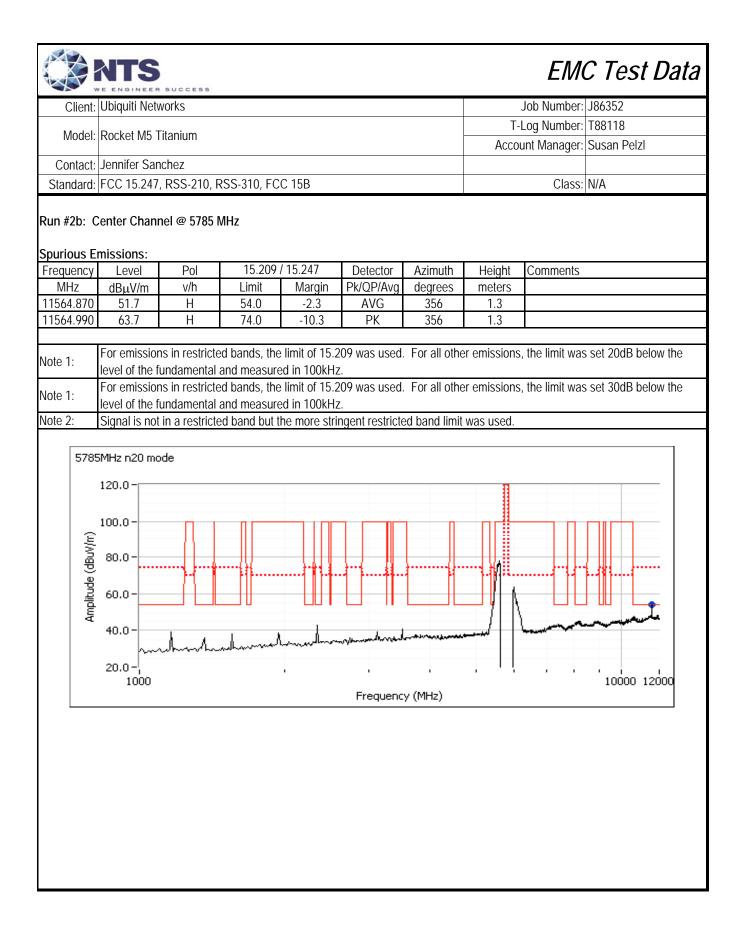
Deviations From The Standard

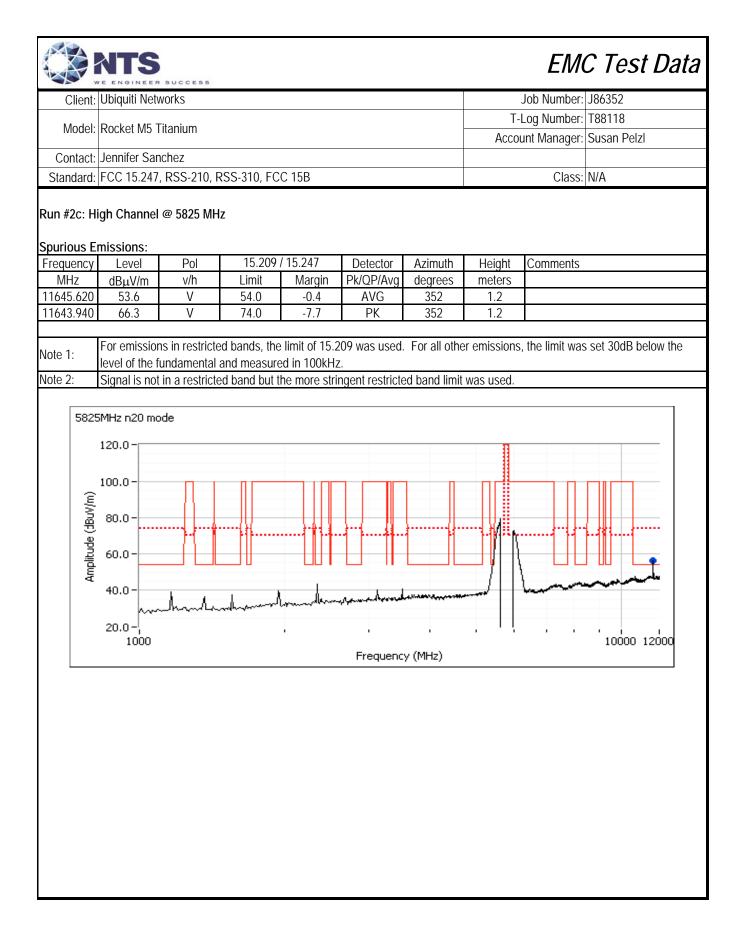
No deviations were made from the requirements of the standard.

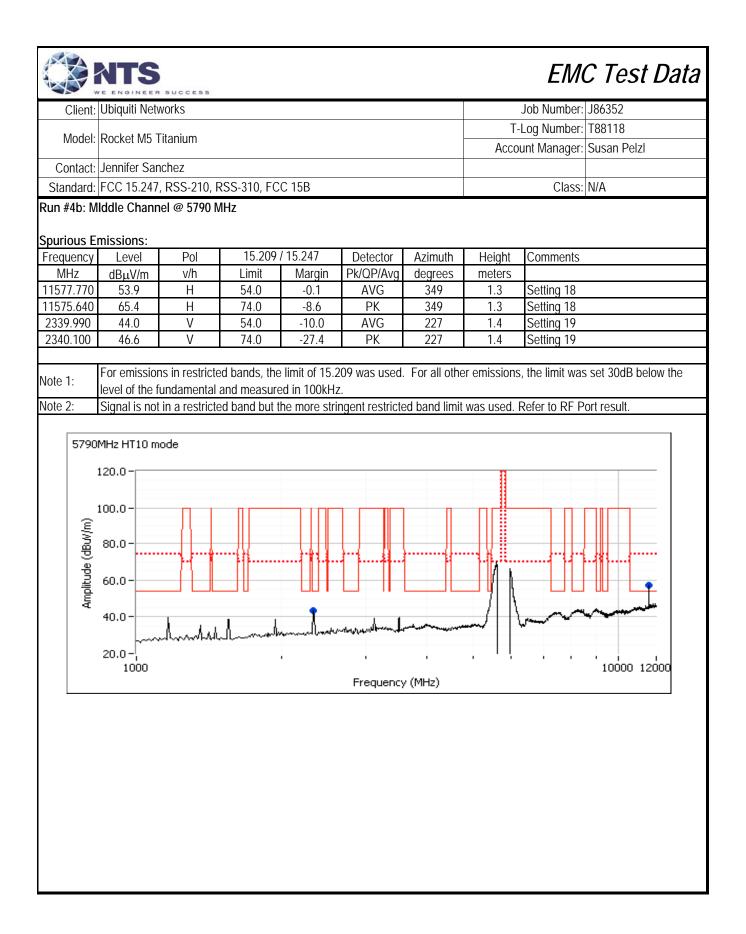

Notes

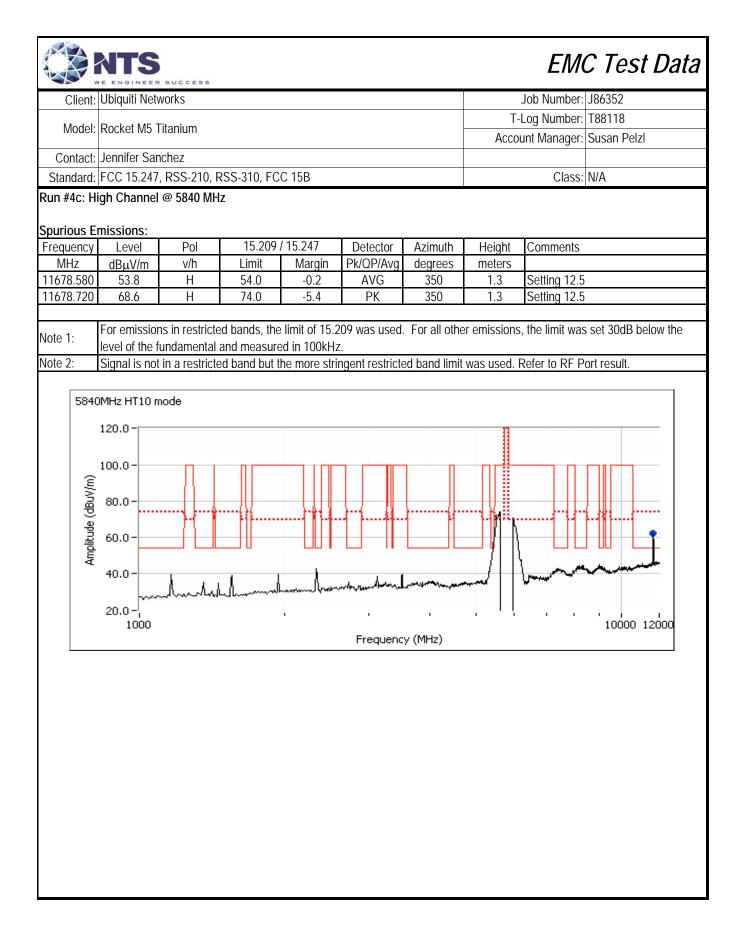

Testing performed using the 30dBi dish antenna


Preliminary testing showed no emissions below 1GHz and above 12GHz related to the radio

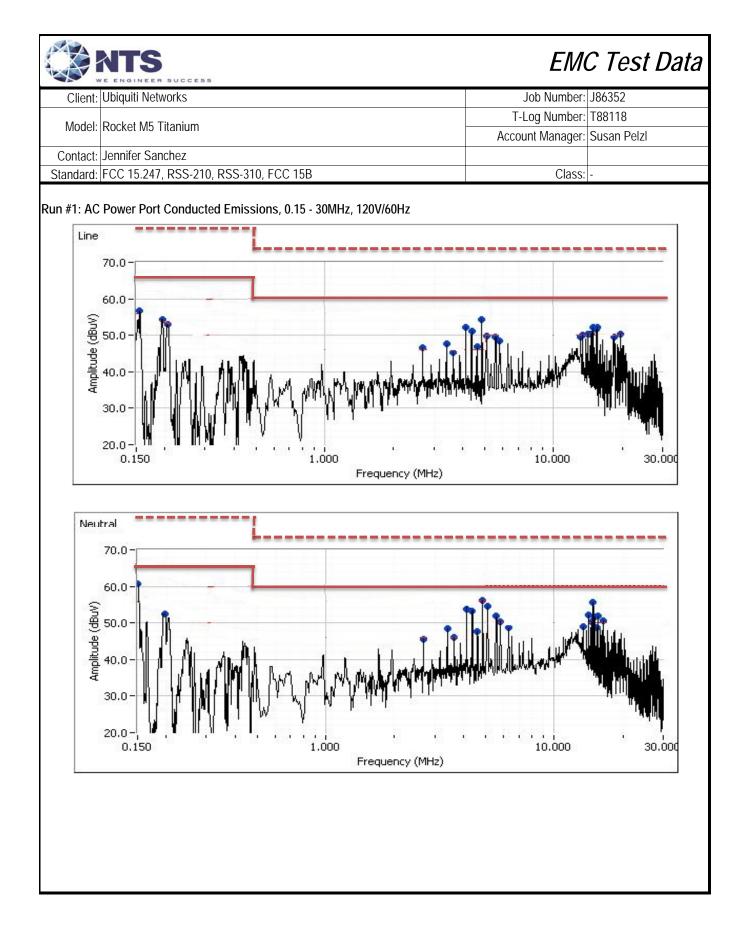

Emissions in the 4500-5500 MHz range were evaluated using the ESIB (pre-amp on) with band reject filter located at the antenna. No significant emissions observed.


Date of Test: 7/12/2012 Test Engineer: Jack Liu Test Location: FT 5 Run #1a: Low Channel @ 5745 MHz Spurious Emissions: Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 11490.000 52.2 H 54.0 -1.8 AVG 360 1.5 11489.540 63.6 H 74.0 -10.4 PK 360 1.5 2340.140 42.2 H 54.0 -11.8 AVG 225 1.0 2340.340 46.1 H 74.0 -27.9 PK 225 1.0			SUCCESS						EMO	C Test Data
Model: Rocket MS Intanum Account Manager: Susan Pelzl Contact: Jennifer Sanchez Standard: FCC 15.247, RSS-210, RSS-310, FCC 15B Class: N/A Run #1: Radiated Spurious Emissions, 1000 - 40,000 MHz. Operating Mode: 802.11a Class: N/A Run #1: Radiated Spurious Emissions, 1000 - 40,000 MHz. Operating Mode: 802.11a Class: N/A Run #1: Ruo frast: 7/12/2012 Test Engineer: Jack Liu Test Location: FT 5 Run #1a: Low Channel @ 5745 MHz Spurious Emissions: Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHZ dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 11490.000 52.2 H 54.0 -1.8 AVG 360 1.5 2340.140 42.2 H 54.0 -11.8 AVG 225 1.0 2340.340 46.1 H 74.0 -27.9 PK 225 1.0 2340.340 46.1 H 74.0 -27.9 PK 225 1.0 240	Client	: Ubiquiti Netv	vorks						Job Number:	J86352
Contact: Jennifer Sanchez Account Manager: Susan Pelzl Contact: Jennifer Sanchez Class: IV/A Standard: FCC 15.247, RSS-210, RSS-310, FCC 15B Class: IV/A Run #1: Radiated Spurious Emissions, 1000 - 40,000 MHz. Operating Mode: 802.11a Date of Test: 7/12/2012 Test Engineer: Jack Liu Test Location: FT 5 Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz BuzVm V/h Limit Margin Pk/OP/Avg degrees meters 11490.000 52.2 H 54.0 -1.8 AVG 360 1.5 11489.540 63.6 H 74.0 -10.4 PK 360 1.5 2340.140 42.2 H 54.0 -11.8 AVG 225 1.0 Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below the level of the fundamental and measured in 100kHz. Note 2: Signal is not in a restricted band but the more stringent restricted band limit was used. 5745MHz a mode <td< td=""><td>Madal</td><td></td><td>-14 a. a. 1</td><td></td><td></td><td></td><td></td><td>Т</td><td>-Log Number:</td><td>T88118</td></td<>	Madal		-14 a. a. 1					Т	-Log Number:	T88118
Standard: FCC 15.247, RSS-210, RSS-310, FCC 15B Class: N/A Run #1: Radiated Spurious Emissions, 1000 - 40,000 MHz. Operating Mode: 802.11a Date of Test: 7/12/2012 Test Engineer: Jack Liu Test Location: FT 5 Run #1a: Low Channel @ 5745 MHz Spurious Emissions: Frequency Evel Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 11490.000 52.2 H 54.0 -1.8 AVG 360 1.5 11489.540 63.6 H 74.0 -10.4 PK 360 1.5 2340.340 46.1 H 74.0 -27.9 PK 225 1.0 Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was used. Standard: Standard: Note 1: For emissions in restricted band but the more stringent restricted band limit was used. Staffatt a mode 120.0 120.0 100	Model		Itanium					Acco	ount Manager:	Susan Pelzl
Run #1: Radiated Spurious Emissions, 1000 - 40,000 MHz. Operating Mode: 802.11a Date of Test: 7/12/2012 Test Engineer: Jack Liu Test Engineer: Jack Liu Test Location: FT 5 Run #1a: Low Channel @ 5745 MHz Spurious Emissions: Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/h Limit Margin Pk/QP/Avg degrees meters 11490.000 52.2 H 54.0 -1.8 AVG 360 1.5 2340.140 42.2 H 54.0 -11.8 AVG 225 1.0 2340.140 42.2 H 54.0 -27.9 PK 225 1.0 Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below the level of the fundamental and measured in 100KHz. Note 2: Signal is not in a restricted band but the more stringent restricted band limit was used. 5745MHz a mode 120.0 <td>Contact</td> <td>: Jennifer Sar</td> <td>ichez</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td>	Contact	: Jennifer Sar	ichez						-	
Date of Test: 7/12/2012 Test Engineer: Jack Liu Test Location: FT 5 Run #1a: Low Channel @ 5745 MHz Spurious Emissions: Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 11490.000 52.2 H 54.0 -1.8 AVG 360 1.5 11489.540 63.6 H 74.0 -10.4 PK 360 1.5 2340.140 42.2 H 54.0 -11.8 AVG 225 1.0 2340.340 46.1 H 74.0 -27.9 PK 225 1.0 For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below the level of the fundamental and measured in 100kHz. Note 1: For emissions in a restricted band but the more stringent restricted band limit was used. 5745MHz a mode 120.0	Standard	FCC 15.247	, RSS-210, F	RSS-310, FC	C 15B				Class:	N/A
Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 11490.000 52.2 H 54.0 -1.8 AVG 360 1.5 11489.540 63.6 H 74.0 -10.4 PK 360 1.5 11489.540 63.6 H 74.0 -11.8 AVG 225 1.0 1.0 2340.140 42.2 H 54.0 -11.8 AVG 225 1.0 1.0 2340.340 46.1 H 74.0 -27.9 PK 225 1.0 1.0 Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below the level of the fundamental and measured in 100kHz. Signal is not in a restricted band but the more stringent restricted band limit was used. 5745MHz a mode 120.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1	Te T	Date of Test: est Engineer: est Location:	7/12/2012 Jack Liu FT 5		40,000 MHz	. Operating N	Mode: 802.1	1a		
MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 11490.000 52.2 H 54.0 -1.8 AVG 360 1.5 11489.540 63.6 H 74.0 -10.4 PK 360 1.5 2340.140 42.2 H 54.0 -11.8 AVG 225 1.0 2340.340 46.1 H 74.0 -27.9 PK 225 1.0 Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below the level of the fundamental and measured in 100kHz. Note 2: Signal is not in a restricted band but the more stringent restricted band limit was used. 5745MHz a mode 120.0										
11490.000 52.2 H 54.0 -1.8 AVG 360 1.5 11489.540 63.6 H 74.0 -10.4 PK 360 1.5 2340.140 42.2 H 54.0 -11.8 AVG 225 1.0 2340.140 42.2 H 54.0 -11.8 AVG 225 1.0 2340.340 46.1 H 74.0 -27.9 PK 225 1.0 Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below the level of the fundamental and measured in 100kHz. Note 2: Signal is not in a restricted band but the more stringent restricted band limit was used. 5745MHz a mode 120.0	Frequency	1 1	Pol	15.209	/ 15.247		Azimuth	Height	Comments	
11489.540 63.6 H 74.0 -10.4 PK 360 1.5 2340.140 42.2 H 54.0 -11.8 AVG 225 1.0 2340.340 46.1 H 74.0 -27.9 PK 225 1.0 Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below the level of the fundamental and measured in 100kHz. Note 2: Signal is not in a restricted band but the more stringent restricted band limit was used. 5745MHz a mode 120.0					<u> </u>	3				
2340.140 42.2 H 54.0 -11.8 AVG 225 1.0 2340.340 46.1 H 74.0 -27.9 PK 225 1.0 Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below the level of the fundamental and measured in 100kHz. Note 2: Signal is not in a restricted band but the more stringent restricted band limit was used. 5745MHz a mode 120.0									1	
2340.340 46.1 H 74.0 -27.9 PK 225 1.0 Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below the level of the fundamental and measured in 100kHz. Note 2: Signal is not in a restricted band but the more stringent restricted band limit was used. 5745MHz a mode 120.0										
Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below the level of the fundamental and measured in 100kHz. Note 2: Signal is not in a restricted band but the more stringent restricted band limit was used. 5745MHz a mode 120.0 - 100.0 - 1										
Note 1: level of the fundamental and measured in 100kHz. Note 2: Signal is not in a restricted band but the more stringent restricted band limit was used. 5745MHz a mode 120.0 - 100.0 - 100.0 -	2340.340	46.1	H	/4.0	-27.9	PK	225	1.0		
40.0- malmultum land and and and and and and and and and		120.0 - 100.0 - 80.0 - 60.0 - 40.0 -	,							
20.0 -						, Frequenc	y (MHz)			10000 12000





		SUCCESS						EMO	C Test Data
Client:	Ubiquiti Net	works						Job Number:	J86352
Madal	Dealest ME	Titonium					T-I	Log Number:	T88118
wodel:	Rocket M5	litanium					Αссоι	unt Manager:	Susan Pelzl
Contact:	Jennifer Sar	nchez							
Standard:	FCC 15.247	, RSS-210, F	RSS-310, FC	C 15B				Class:	N/A
				40,000 MHz	. Operating N	/lode: 802.1	1n40		
	Low Channel Date of Test: est Engineer:	7/17/2012	Z		Te	est Location:	FT7		
Spurious E			15 200			A 1 11			
Frequency MHz		Pol	15.209 / Limit		Detector Pk/QP/Avg	Azimuth	Height	Comments	
11508.720	dBµV/m 48.8	v/h H	54.0	Margin -5.2	AVG	degrees 354	meters 1.3	RB 1 MHz·\/	/B 10 Hz;Peak
11506.290		H	74.0	-13.2	PK	354	1.3		/B 3 MHz;Peak
					11			,	
Note 1: Note 2:	level of the f	fundamental	and measure	d in 100kHz					s set 30dB below the ort result.
575	5MHz n40 ma	ode							
Amplitude (dBuV/m)									
P P	40.0-	Inde	human	unlin	whendered	, and a set the second second	~~/ \`	w~~~~~	mante
	20.0- 1000						ļļļ		10000 12000
					Frequenc	y (MHz)			


Client: Ubiquiti Networks Job Number: J86352 Model: Rocket M5 Titanium T-Log Number: T88118 Account Manager: Susan Pelzl Contact: Jennifer Sanchez Standard: Standard: FCC 15.247, RSS-210, RSS-310, FCC 15B Class: N/A Run #3c: High Channel @ 5795 MHz Class: N/A Date of Test: 7/18/2012 Test Location: FT7 Test Engineer: Jack Liu Spurious Emissions: Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 11584.100 49.0 H 54.0 -5.0 AVG 35.3 1.3 RB 1 MHz;VB 10 Hz;Peak Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below t Iovel of the fundamental and measured in 100kHz. Note 2: Signal is not in a restricted band but the more stringent restricted band limit was used. Refer to RF Port result. 5795MHz n40 mode 120.0 100.0		NTS	SUCCESS						EM	C Test Data
Model: Rocket M5 Intanium Account Manager: Susan Pelzl Contact: Jennifer Sanchez Standard: FCC 15.247, RSS-210, RSS-310, FCC 15B Class: N/A Run #3c: High Channel @ 5795 MHz Date of Test: 7/18/2012 Test Location: FT7 Test Engineer: Jack Liu Test Location: FT7 Spurious Emissions: Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµu//m v/h Limit Margin Pk/QP/Avg degrees meters 11584.100 49.0 H 54.0 -5.0 AVG 353 1.3 RB 1 MHz; VB 10 Hz; Peak 11586.470 61.1 H 74.0 -12.9 PK 353 1.3 RB 1 MHz; VB 3 MHz; Peak Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below t level of the fundamental and measured in 100kHz. Note 2: Signal is not in a restricted band but the more stringent restricted band limit was used. Refer to RF Port result. F795MHz n40 mode 120.0 9 90.0 9 <td>Client:</td> <td>Ubiquiti Netv</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Job Number:</td> <td>J86352</td>	Client:	Ubiquiti Netv							Job Number:	J86352
Account Manager: Susan Pelzl Contact: Jennifer Sanchez Standard: FCC 15.247, RSS-210, RSS-310, FCC 15B Class: Run #3c: High Channel @ 5795 MHz Date of Test: 7/18/2012 Test Location: Frequency Level Pol 15.209 / 15.247 Detector MHz dBµU/m v/h Limit Margin Pk/QP/Avg degrees 11584.100 49.0 H 54.0 -5.0 AVG 353 1.3 RB 1 MHz:/VB 10 Hz:Peak 11584.100 49.0 H 74.0 -12.9 PK 353 1.3 RB 1 MHz:/VB 3 MHz:Peak Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below t level of the fundamental and measured in 100kHz. Note 2: Signal is not in a restricted band but the more stringent restricted band limit was used. Refer to RF Port result. 5795MHz n40 mode 120.0 120.0 120.0 120.0 120.0 120.0 120.0 120.0 120.0 120.0 120.0 120.0 120.0 120.0 120.0 120.0 120.0 120.0	Madal	Dealest ME T						T-	Log Number:	T88118
Standard: FCC 15.247, RSS-210, RSS-310, FCC 15B Class: N/A Run #3c: High Channel @ 5795 MHz Date of Test: 7/18/2012 Test Location: FT7 Test Engineer: Jack Liu Spurious Emissions: Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dB _{IL} V/m v/h Limit Margin Pk/QP/Avg degrees meters Intervention 11586.100 49.0 H 54.0 -5.0 AVG 353 1.3 RB 1 MHz; VB 10 Hz; Peak 11586.470 61.1 H 74.0 -12.9 PK 3533 1.3 RB 1 MHz; VB 3 MHz; Peak Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below t level of the fundamental and measured in 100KHz. Note 2: Signal is not in a restricted band but the more stringent restricted band limit was used. Refer to RF Port result. S795MHz n40 mode 120.0 0 0 0 0 0 0 0 0 0 0 0 0 0	wodel:	ROCKELIND I	llanium					Αссοι	unt Manager:	Susan Pelzl
Run #3c: High Channel @ 5795 MHz Date of Test: 7/18/2012 Test Location: FT7 Test Engineer: Jack Liu Spurious Emissions: Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 11584.100 49.0 H 54.0 -5.0 AVG 353 1.3 RB 1 MHz;VB 10 Hz;Peak 11586.470 61.1 H 74.0 -12.9 PK 353 1.3 RB 1 MHz;VB 3 MHz;Peak Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below t Ievel of the fundamental and measured in 100KHz. Note 2: Signal is not in a restricted band but the more stringent restricted band limit was used. Refer to RF Port result. 5795MHz n40 mode 120.0	Contact:	Jennifer Sar	nchez							
Test Location: FT7 Test Location: FT7 Spurious Emissions: Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµt/lm v/h Limit Margin Pk/QP/Avg degrees meters 11584.100 49.0 H 54.0 -5.0 AVG 353 1.3 RB 1 MHz;VB 10 Hz;Peak 11586.470 61.1 H 74.0 -12.9 PK 353 1.3 RB 1 MHz;VB 3 MHz;Peak Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below t level of the fundamental and measured in 100KHz. Note 2: Signal is not in a restricted band but the more stringent restricted band limit was used. Refer to RF Port result. 5795MHz n40 mode 120.0 0 <td></td> <td></td> <td></td> <td></td> <td>C 15B</td> <td></td> <td></td> <td></td> <td>Class:</td> <td>N/A</td>					C 15B				Class:	N/A
Test Engineer: Jack Liu Spurious Emissions: Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters	Run #3c: H	ligh Channel	@ 5795 MH	Z						
Test Engineer: Jack Liu Spurious Emissions: Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters		Date of Test:	7/18/2012			Те	st Location:	FT7		
Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 11584.100 49.0 H 54.0 -5.0 AVG 353 1.3 RB 1 MHz;VB 10 Hz;Peak 11586.470 61.1 H 74.0 -12.9 PK 353 1.3 RB 1 MHz;VB 3 MHz;Peak Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below the level of the fundamental and measured in 100kHz. Note 2: Signal is not in a restricted band but the more stringent restricted band limit was used. Refer to RF Port result. S795MHz n40 mode 120.0								,		
Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 11584.100 49.0 H 54.0 -5.0 AVG 353 1.3 RB 1 MHz;VB 10 Hz;Peak 11586.470 61.1 H 74.0 -12.9 PK 353 1.3 RB 1 MHz;VB 3 MHz;Peak Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below the level of the fundamental and measured in 100kHz. Note 2: Signal is not in a restricted band but the more stringent restricted band limit was used. Refer to RF Port result. S795MHz n40 mode 120.0										
MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 11584.100 49.0 H 54.0 -5.0 AVG 353 1.3 RB 1 MHz; VB 10 Hz; Peak 11586.470 61.1 H 74.0 -12.9 PK 353 1.3 RB 1 MHz; VB 3 MHz; Peak Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below t level of the fundamental and measured in 100kHz. Note 2: Signal is not in a restricted band but the more stringent restricted band limit was used. Refer to RF Port result. 5795MHz n40 mode 120.0 60.0 <td< td=""><td></td><td>1 1</td><td>Dol</td><td>15 200</td><td>/ 15 2/7</td><td>Dotoctor</td><td>Azimuth</td><td>Hoight</td><td>Commonte</td><td></td></td<>		1 1	Dol	15 200	/ 15 2/7	Dotoctor	Azimuth	Hoight	Commonte	
11584.100 49.0 H 54.0 -5.0 AVG 353 1.3 RB 1 MHz;VB 10 Hz;Peak 11586.470 61.1 H 74.0 -12.9 PK 353 1.3 RB 1 MHz;VB 3 MHz;Peak Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below t Ievel of the fundamental and measured in 100kHz. Note 2: Signal is not in a restricted band but the more stringent restricted band limit was used. Refer to RF Port result. 5795MHz n40 mode 120.0									COMMENTS	
Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below the level of the fundamental and measured in 100kHz. Note 2: Signal is not in a restricted band but the more stringent restricted band limit was used. Refer to RF Port result. Stress Stress Stress Stress Stress Stress Stress Stress Stress Stress Stress Stress Stress Stress Stress Stress Stress Stress Stress Stress Stress Stress Stres St			Н						RB 1 MHz;V	'B 10 Hz;Peak
Note 1: level of the fundamental and measured in 100kHz. Note 2: Signal is not in a restricted band but the more stringent restricted band limit was used. Refer to RF Port result. 5795MHz n40 mode 120.0 100.0 0 100.0 0 99, 99, 99, 60.0 0	11586.470	61.1	Η	74.0	-12.9	PK	353	1.3	RB 1 MHz;V	'B 3 MHz;Peak
	579		ode							
	de (dBuV/m)									
	Amplitu							_ ∥		
- marth and have a share a sha			hunter	ulum	mundhar	Mary and	باليويريانية، ^{عامو} ريطيدو	Same 1	U~~~~	
20.0-								ļļļ		
1000 1000 12000 Frequency (MHz)		1000				Frequency	о (MH9)			10000 12000
in equaricy (mile)						rioquone	/ \[~~~/			

	AITS							FM	C Test Data
	WE ENGINEER	SUCCESS							
Client:	Ubiquiti Net	works						Job Number:	
Model:	Rocket M5	Titanium						Log Number:	
							Αссоι	unt Manager:	Susan Pelzl
	Jennifer Sar								
Standard:	FCC 15.247	, RSS-210, F	RSS-310, FC	C 15B				Class:	N/A
Run #4: Ra	adiated Spur	rious Emissi	ons, 1000 - 4	10,000 MHz	. Operating N	/lode: 802.1	1 HT10		
Run #4a: L	ow Channel	@ 5735 MHz	2						
	Date of Test: est Engineer:				Te	est Location:	FT7		
Spurious E	missions:								
Frequency	1	Pol	15.209/	15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
11469.860		Н	54.0	-0.3	AVG	352	1.3	Setting 16.5	
11469.700	64.9	Н	74.0	-9.1	PK	352	1.3	Setting 16.5	
Note 1: Note 2:	level of the f	fundamental	and measure	d in 100kHz					s set 30dB below the ort result.
57 57 57 (W/Anglitude (dBu/m)	5MH2 HT10 n 120.0 - 100.0 - 80.0 - 60.0 - 40.0 - 20.0 - 1000				Frequenc	y (MHz)			10000 12000

() NT	S			EM	C Test Data
Client: Ubiquiti	Networks			Job Number:	J86352
			T	-Log Number:	
Model: Rocket N	ns filanium		Acco	ount Manager:	Susan Pelzl
Contact: Jennifer					
Standard: FCC 15.	247, RSS-210, RSS-310, FCC 15B			Class:	-
Date of To Test Engine	(Elliott Laboratories Fremor	erform final qualifica Config. Usi Config Chan	echoic Cham tion testing of ed: 2	the EUT with r	respect to the
General Test Co	nfiguration Int, the EUT was located on a wooden table	inside the semi-ane	choic chambe	r, 40 cm from	a vertical coupling plane
General Test Co For tabletop equipme and 80cm from the L support equipment w Ambient Conditi	ent, the EUT was located on a wooden table SN. Remote support equipment was located here routed through metal conduit and when ons: Temperature: Rel. Humidity:	ed outside of the sen	ni-anechoic ch	amber. Any c	ables running to remote
General Test Co For tabletop equipme and 80cm from the L support equipment w Ambient Conditi	ent, the EUT was located on a wooden table SN. Remote support equipment was located here routed through metal conduit and when ons: Temperature: Rel. Humidity:	ed outside of the sen n possible passed th 19 °C	ni-anechoic ch	amber. Any c	ables running to remote
General Test Co For tabletop equipme and 80cm from the L support equipment w Ambient Conditi	ent, the EUT was located on a wooden table SN. Remote support equipment was located here routed through metal conduit and when ons: Temperature: Rel. Humidity:	ed outside of the sen n possible passed th 19 °C	ni-anechoic ch	amber. Any c	ables running to remote
General Test Co For tabletop equipme and 80cm from the L	ent, the EUT was located on a wooden table SN. Remote support equipment was located here routed through metal conduit and when ons: Temperature: Rel. Humidity:	ed outside of the sen n possible passed th 19 °C	ni-anechoic ch	amber. Any c	ables running to re

		RSUCCESS					EM	C Test l
Client:	Ubiquiti Net						Job Number:	J86352
							T-Log Number:	T88118
Model:	Rocket M5	Titanium					Account Manager:	
Contact:	Jennifer Sa	nchez					-	
Standard:	FCC 15.247	, RSS-210, F	RSS-310, FC	C 15B			Class:	-
	/ peak readi					s. average limit)	
requency	Level	AC		ss A	Detector	Comments		
MHz	dBµV	Line	Limit	Margin	QP/Ave			
4.864	56.1	Neutral	60.0	-3.9	Peak			
14.835	55.6	Neutral	60.0	-4.4	Peak			
0.151	60.7	Neutral	66.0	-5.3	Peak			
5.108	54.7	Neutral	60.0	-5.3	Peak			
4.866	54.3	Line 1	60.0	-5.7	Peak			
4.134	53.8	Neutral	60.0	-6.2	Peak			
4.378	53.3	Neutral	60.0	-6.7	Peak	l		
14.839	52.3	Line 1	60.0	-7.7	Peak			
14.107	52.3	Neutral	60.0	-7.7	Peak			
4.137	52.2	Line 1	60.0	-7.8	Peak			
15.569	52.1	Line 1	60.0	-7.9	Peak			
5.594	52.0	Neutral	60.0	-8.0	Peak			
15.565	51.8	Neutral	60.0	-8.2	Peak			
15.329 15.080	51.6 51.6	Line 1	60.0 60.0	-8.4 -8.4	Peak	1		
4.378	51.0	Neutral	60.0	-8.4	Peak	1		
4.376 0.155	56.6	Line 1 Line 1	66.0	-0.9 -9.4	Peak Peak			
16.296	50.0	Neutral	60.0	-9.4	Peak			
5.837	50.0	Neutral	60.0	-9.4	Peak			
14.109	50.4	Line 1	60.0	-9.0	Peak			
14.598	50.3	Line 1	60.0	-9.7	Peak	1		
19.710	50.3	Line 1	60.0	-9.7	Peak			
14.593	50.2	Neutral	60.0	-9.8	Peak	1		
13.380	50.2	Line 1	60.0	-9.9	Peak			
5.109	49.7	Line 1	60.0	-10.3	Peak			
5.596	49.6	Line 1	60.0	-10.4	Peak			
13.138	49.6	Line 1	60.0	-10.4	Peak			
18.489	49.6	Line 1	60.0	-10.4	Peak	1		
13.378	49.1	Neutral	60.0	-10.9	Peak	1		
6.323	48.8	Neutral	60.0	-11.2	Peak	1		
15.323	48.7	Neutral	60.0	-11.3	Peak			
5.839	48.4	Line 1	60.0	-11.6	Peak			
3.405	48.4	Neutral	60.0	-11.6	Peak			
0.195	54.2	Line 1	66.0	-11.8	Peak			
3.406	47.7	Line 1	60.0	-12.3	Peak			
3.400								

	NTS	R SUCCESS					EM	C Test D
Client:	Ubiquiti Net	A					Job Number:	J86352
	1						T-Log Number:	
Model:	Rocket M5	Titanium					Account Manager:	
Contact:	Jennifer Sa	nchez						
Standard:	FCC 15.247	, RSS-210, R	SS-310, FC	C 15B			Class:	-
ın #1: (co	ontinued)							
requency	Level	AC	Clas	ss A	Detector	Comments		
MHz	dBµV	Line	Limit	Margin	QP/Ave			
0.206	52.9	Line 1	66.0	-13.1	Peak			
4.622	46.8	Line 1	60.0	-13.2	Peak			
2.677	46.5	Line 1	60.0	-13.5	Peak			
0.199	52.4	Neutral	66.0	-13.6	Peak			
3.648	46.0	Neutral	60.0	-14.0	Peak			
2.675	45.6	Neutral	60.0	-14.4	Peak			
3.649	45.2	Line 1	60.0	-14.8	Peak			
				N A a secolar				
MHz	dBµV	Line	Limit	Margin	QP/Ave	$\Lambda \setminus (C_{10})$		
4.864	53.7	Neutral	60.0	-6.3	AVG	AVG (0.10s)		
4.864 4.866	53.7 53.6	Neutral Line 1	60.0 60.0	-6.3 -6.4	AVG AVG	AVG (0.10s)		
4.864 4.866 14.835	53.7 53.6 53.0	Neutral Line 1 Neutral	60.0 60.0 60.0	-6.3 -6.4 -7.0	AVG AVG AVG	AVG (0.10s) AVG (0.10s)		
4.864 4.866 14.835 14.839	53.7 53.6 53.0 52.2	Neutral Line 1 Neutral Line 1	60.0 60.0 60.0 60.0	-6.3 -6.4 -7.0 -7.8	AVG AVG AVG AVG	AVG (0.10s) AVG (0.10s) AVG (0.10s)		
4.864 4.866 14.835 14.839 4.134	53.7 53.6 53.0 52.2 51.5	Neutral Line 1 Neutral Line 1 Neutral	60.0 60.0 60.0 60.0 60.0	-6.3 -6.4 -7.0 -7.8 -8.5	AVG AVG AVG AVG AVG	AVG (0.10s) AVG (0.10s) AVG (0.10s) AVG (0.10s)		
4.864 4.866 14.835 14.839 4.134 5.108	53.7 53.6 53.0 52.2 51.5 51.3	Neutral Line 1 Neutral Line 1 Neutral Neutral	60.0 60.0 60.0 60.0 60.0 60.0	-6.3 -6.4 -7.0 -7.8 -8.5 -8.7	AVG AVG AVG AVG AVG AVG	AVG (0.10s) AVG (0.10s) AVG (0.10s) AVG (0.10s) AVG (0.10s)		
4.864 4.866 14.835 14.839 4.134 5.108	53.7 53.6 53.0 52.2 51.5	Neutral Line 1 Neutral Line 1 Neutral	60.0 60.0 60.0 60.0 60.0	-6.3 -6.4 -7.0 -7.8 -8.5	AVG AVG AVG AVG AVG	AVG (0.10s) AVG (0.10s) AVG (0.10s) AVG (0.10s)		
4.864 4.866 14.835 14.839 4.134 5.108 15.565 5.109	53.7 53.6 53.0 52.2 51.5 51.3 51.3	Neutral Line 1 Neutral Line 1 Neutral Neutral Neutral	60.0 60.0 60.0 60.0 60.0 60.0 60.0	-6.3 -6.4 -7.0 -7.8 -8.5 -8.7 -8.7	AVG AVG AVG AVG AVG AVG AVG	AVG (0.10s) AVG (0.10s) AVG (0.10s) AVG (0.10s) AVG (0.10s) AVG (0.10s)		
4.864 4.866 14.835 14.839 4.134 5.108 15.565 5.109 15.569	53.7 53.6 53.0 52.2 51.5 51.3 51.3 50.8	Neutral Line 1 Line 1 Neutral Neutral Neutral Line 1	60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0	-6.3 -6.4 -7.0 -7.8 -8.5 -8.7 -8.7 -9.2	AVG AVG AVG AVG AVG AVG AVG AVG	AVG (0.10s) AVG (0.10s) AVG (0.10s) AVG (0.10s) AVG (0.10s) AVG (0.10s) AVG (0.10s)		
4.864 4.866 14.835 14.839 4.134 5.108 15.565 5.109 15.569 4.137 4.378	53.7 53.6 53.0 52.2 51.5 51.3 51.3 50.8 50.5	Neutral Line 1 Line 1 Line 1 Neutral Neutral Neutral Line 1 Line 1	60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0	-6.3 -6.4 -7.0 -7.8 -8.5 -8.7 -8.7 -8.7 -9.2 -9.5	AVG AVG AVG AVG AVG AVG AVG AVG	AVG (0.10s) AVG (0.10s) AVG (0.10s) AVG (0.10s) AVG (0.10s) AVG (0.10s) AVG (0.10s) AVG (0.10s)		
4.864 4.866 14.835 14.839 4.134 5.108 15.565 5.109 15.569 4.137 4.378 14.107	53.7 53.6 53.0 52.2 51.5 51.3 51.3 50.8 50.5 50.3	Neutral Line 1 Neutral Neutral Neutral Neutral Line 1 Line 1 Line 1 Line 1 Neutral	60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0	-6.3 -6.4 -7.0 -7.8 -8.5 -8.7 -8.7 -9.2 -9.5 -9.7 -9.7 -9.8	AVG AVG AVG AVG AVG AVG AVG AVG AVG AVG	AVG (0.10s) AVG (0.10s)		
4.864 4.866 14.835 14.839 4.134 5.108 15.565 5.109 15.569 4.137 4.378	53.7 53.6 53.0 52.2 51.5 51.3 50.8 50.5 50.3 50.3	Neutral Line 1 Neutral Neutral Neutral Neutral Line 1 Line 1 Line 1 Line 1	60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0	-6.3 -6.4 -7.0 -7.8 -8.5 -8.7 -8.7 -9.2 -9.5 -9.7 -9.7	AVG AVG AVG AVG AVG AVG AVG AVG AVG AVG	AVG (0.10s) AVG (0.10s)		
4.864 4.866 14.835 14.839 4.134 5.108 15.565 5.109 15.569 4.137 4.378 14.107 4.378 14.109	53.7 53.6 53.0 52.2 51.5 51.3 51.3 50.8 50.5 50.3 50.2 50.1 49.9	Neutral Line 1 Neutral Neutral Neutral Neutral Line 1 Line 1 Line 1 Line 1 Neutral	60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0	-6.3 -6.4 -7.0 -7.8 -8.5 -8.7 -8.7 -9.2 -9.5 -9.7 -9.7 -9.8	AVG AVG AVG AVG AVG AVG AVG AVG AVG AVG	AVG (0.10s) AVG (0.10s)		
4.864 4.866 14.835 14.839 4.134 5.108 15.565 5.109 15.569 4.137 4.378 14.107 4.378 14.109 5.594	53.7 53.6 53.0 52.2 51.5 51.3 50.8 50.5 50.3 50.3 50.2 50.1 49.9 49.2	Neutral Line 1 Neutral Neutral Neutral Line 1 Line 1 Line 1 Line 1 Neutral Neutral Neutral	60.0 60.0	-6.3 -6.4 -7.0 -7.8 -8.5 -8.7 -8.7 -9.2 -9.5 -9.7 -9.7 -9.7 -9.8 -9.9 -9.9 -10.1 -10.8	AVG AVG AVG AVG AVG AVG AVG AVG AVG AVG	AVG (0.10s) AVG (0.10s)		
4.864 4.866 14.835 14.839 4.134 5.108 15.565 5.109 15.569 4.137 4.378 14.107 4.378 14.109 5.594 15.080	53.7 53.6 53.0 52.2 51.5 51.3 50.8 50.5 50.3 50.2 50.1 49.9 49.2 48.4	Neutral Line 1 Neutral Neutral Neutral Neutral Line 1 Line 1 Line 1 Line 1 Neutral Neutral Line 1 Neutral Neutral Neutral Neutral Neutral	60.0 60.0	-6.3 -6.4 -7.0 -7.8 -8.5 -8.7 -9.2 -9.5 -9.7 -9.7 -9.8 -9.9 -10.1 -10.8 -11.6	AVG AVG AVG AVG AVG AVG AVG AVG AVG AVG	AVG (0.10s) AVG (0.10s)		
4.864 4.866 14.835 14.839 4.134 5.108 15.565 5.109 15.569 4.137 4.378 14.107 4.378 14.109 5.594 15.080 5.596	53.7 53.6 53.0 52.2 51.5 51.3 50.8 50.5 50.3 50.3 50.2 50.1 49.9 48.4 48.3	Neutral Line 1 Neutral Neutral Neutral Neutral Line 1 Line 1 Line 1 Line 1 Neutral Neutral Line 1 Neutral Neutral Line 1 Neutral Line 1	60.0 60.0	-6.3 -6.4 -7.0 -7.8 -8.5 -8.7 -9.2 -9.5 -9.7 -9.7 -9.7 -9.8 -9.9 -10.1 -10.8 -11.6 -11.7	AVG AVG AVG AVG AVG AVG AVG AVG AVG AVG	AVG (0.10s) AVG (0.10s)		
4.864 4.866 14.835 14.839 4.134 5.108 15.565 5.109 15.569 4.137 4.378 14.107 4.378 14.109 5.594 15.080 5.596 16.296	53.7 53.6 53.0 52.2 51.5 51.3 50.8 50.5 50.3 50.2 50.1 49.9 49.2 48.4 48.3 48.3	Neutral Line 1 Neutral Neutral Neutral Line 1 Line 1 Line 1 Line 1 Line 1 Neutral Neutral Neutral Neutral Neutral Line 1 Neutral Neutral Neutral	60.0 60.0	-6.3 -6.4 -7.0 -7.8 -8.5 -8.7 -9.2 -9.5 -9.7 -9.7 -9.7 -9.8 -9.9 -10.1 -10.8 -11.6 -11.7 -11.7	AVG AVG AVG AVG AVG AVG AVG AVG AVG AVG	AVG (0.10s) AVG (0.10s)		
4.864 4.866 14.835 14.839 4.134 5.108 15.565 5.109 15.569 4.137 4.378 14.107 4.378 14.109 5.594 15.080 5.596 16.296 14.593	53.7 53.6 53.0 52.2 51.5 51.3 51.3 50.8 50.5 50.3 50.2 50.1 49.9 49.2 48.4 48.3 48.3 47.4	Neutral Line 1 Neutral Neutral Neutral Line 1 Line 1 Line 1 Line 1 Line 1 Neutral Neutral Line 1 Neutral Line 1 Neutral Neutral Line 1 Neutral Neutral Neutral Neutral Neutral Neutral Neutral Neutral Neutral	60.0 60.0	-6.3 -6.4 -7.0 -7.8 -8.5 -8.7 -9.2 -9.5 -9.7 -9.7 -9.7 -9.8 -9.9 -10.1 -10.8 -11.6 -11.7 -11.7 -12.6	AVG AVG AVG AVG AVG AVG AVG AVG AVG AVG	AVG (0.10s) AVG (0.10s)		
4.864 4.866 14.835 14.839 4.134 5.108 15.565 5.109 15.569 4.137 4.378 14.107 4.378 14.107 5.594 15.080 5.596 16.296 14.593 5.837	53.7 53.6 53.0 52.2 51.5 51.3 50.8 50.5 50.3 50.2 50.1 49.9 49.2 48.4 48.3 47.4 47.2	Neutral Line 1 Neutral Neutral Neutral Line 1 Line 1 Line 1 Line 1 Line 1 Neutral Neutral Neutral Neutral Line 1 Neutral Neutral Line 1 Neutral Neutral Neutral Neutral Neutral Neutral Neutral Neutral Neutral Neutral Neutral	60.0 60.0	-6.3 -6.4 -7.0 -7.8 -8.5 -8.7 -9.2 -9.5 -9.7 -9.7 -9.8 -9.9 -10.1 -10.8 -11.6 -11.7 -11.7 -12.6 -12.8	AVG AVG AVG AVG AVG AVG AVG AVG AVG AVG	AVG (0.10s) AVG (0.10s)		
4.864 4.866 14.835 14.839 4.134 5.108 15.565 5.109 15.569 4.137 4.378 14.107 4.378 14.109 5.594 15.080 5.596 16.296 14.593 5.837 15.323	53.7 53.6 53.0 52.2 51.5 51.3 50.8 50.5 50.3 50.3 50.1 49.9 49.2 48.4 48.3 47.4 47.1	Neutral Line 1 Neutral Neutral Neutral Neutral Line 1 Line 1 Line 1 Line 1 Neutral Neutral Neutral Line 1 Neutral Line 1 Neutral Neutral Neutral Neutral Neutral Neutral Neutral Neutral Neutral Neutral Neutral Neutral	60.0 60.0	-6.3 -6.4 -7.0 -7.8 -8.5 -8.7 -9.2 -9.5 -9.7 -9.7 -9.8 -9.9 -10.1 -10.8 -11.6 -11.7 -11.7 -12.6 -12.8 -12.9	AVG AVG AVG AVG AVG AVG AVG AVG AVG AVG	AVG (0.10s) AVG (0.10s)		
4.864 4.866 14.835 14.839 4.134 5.108 15.565 5.109 15.569 4.137 4.378 14.107 4.378 14.107 5.594 15.080 5.596 16.296 14.593 5.837 15.323 3.405	$\begin{array}{r} 53.7\\ 53.6\\ 53.0\\ 52.2\\ 51.5\\ 51.3\\ 51.3\\ 50.8\\ 50.5\\ 50.3\\ 50.3\\ 50.3\\ 50.2\\ 50.3\\ 50.2\\ 50.1\\ 49.9\\ 49.2\\ 48.4\\ 48.3\\ 48.3\\ 48.3\\ 48.3\\ 47.4\\ 47.2\\ 47.1\\ 46.5\\ \end{array}$	Neutral Line 1 Neutral Neutral Neutral Line 1 Line 1 Line 1 Line 1 Line 1 Neutral Neutral Neutral Line 1 Neutral Neutral Neutral Neutral Neutral Neutral Neutral Neutral Neutral Neutral Neutral Neutral Neutral Neutral Neutral Neutral Neutral	60.0 60.0	-6.3 -6.4 -7.0 -7.8 -8.5 -8.7 -9.2 -9.5 -9.7 -9.7 -9.7 -9.8 -9.9 -10.1 -10.8 -11.6 -11.7 -11.7 -12.6 -12.8 -12.9 -13.5	AVG AVG AVG AVG AVG AVG AVG AVG AVG AVG	AVG (0.10s) AVG (0.10s)		
4.864 4.866 14.835 14.839 4.134 5.108 15.565 5.109 15.569 4.137 4.378 14.107 4.378 14.107 5.594 15.080 5.596 16.296 14.593 5.837 15.323 3.405	$\begin{array}{r} 53.7\\ 53.6\\ 53.0\\ 52.2\\ 51.5\\ 51.3\\ 51.3\\ 50.8\\ 50.5\\ 50.3\\ 50.3\\ 50.2\\ 50.3\\ 50.2\\ 50.1\\ 49.9\\ 49.2\\ 48.4\\ 48.3\\ 48.3\\ 48.3\\ 48.3\\ 48.3\\ 47.4\\ 47.2\\ 47.1\\ 46.5\\ 46.4\\ \end{array}$	Neutral Line 1 Neutral Neutral Neutral Line 1 Line 1 Line 1 Line 1 Line 1 Neutral Neutral Line 1 Neutral Neutral Neutral Neutral Neutral Neutral Neutral Neutral Neutral Neutral Neutral Neutral Neutral Neutral Neutral Neutral Neutral Neutral	60.0 60.0	-6.3 -6.4 -7.0 -7.8 -8.5 -8.7 -9.2 -9.5 -9.7 -9.7 -9.7 -9.7 -9.8 -9.9 -10.1 -10.8 -11.6 -11.7 -11.7 -12.6 -12.8 -12.9 -13.5 -13.6	AVG AVG AVG AVG AVG AVG AVG AVG AVG AVG	AVG (0.10s) AVG (0.10s)		
4.864 4.866 14.835 14.839 4.134 5.108 15.565 5.109 15.569 4.137 4.378 14.107 4.378 14.107 5.594 15.080 5.596 16.296 14.593 5.837 15.323 3.405	$\begin{array}{r} 53.7\\ 53.6\\ 53.0\\ 52.2\\ 51.5\\ 51.3\\ 51.3\\ 50.8\\ 50.5\\ 50.3\\ 50.3\\ 50.3\\ 50.2\\ 50.3\\ 50.2\\ 50.1\\ 49.9\\ 49.2\\ 48.4\\ 48.3\\ 48.3\\ 48.3\\ 48.3\\ 47.4\\ 47.2\\ 47.1\\ 46.5\\ \end{array}$	Neutral Line 1 Neutral Neutral Neutral Line 1 Line 1 Line 1 Line 1 Line 1 Neutral Neutral Neutral Line 1 Neutral Neutral Neutral Neutral Neutral Neutral Neutral Neutral Neutral Neutral Neutral Neutral Neutral Neutral Neutral Neutral Neutral	60.0 60.0	-6.3 -6.4 -7.0 -7.8 -8.5 -8.7 -9.2 -9.5 -9.7 -9.7 -9.7 -9.8 -9.9 -10.1 -10.8 -11.6 -11.7 -11.7 -12.6 -12.8 -12.9 -13.5	AVG AVG AVG AVG AVG AVG AVG AVG AVG AVG	AVG (0.10s) AVG (0.10s)		

w	E ENGINEER	R SUCCESS				1		C Test
Client:	Ubiquiti Net	works					Job Number:	
Model	Rocket M5	Titanium					T-Log Number:	
							Account Manager:	Susan Pelz
Contact:	Jennifer Sa	nchez						
Standard:	FCC 15.247	⁷ , RSS-210, R	SS-310, FC	C 15B			Class:	-
n #1: (co	ntinued)							
requency	Level	AC	Clas	ss A	Detector	Comments		
MHz	dBµV	Line	Limit	Margin	QP/Ave			
19.710	45.8	Line 1	60.0	-14.2	AVG	AVG (0.10s)		
14.598	45.4	Line 1	60.0	-14.6	AVG	AVG (0.10s)		
13.380	45.3	Line 1	60.0	-14.7	AVG	AVG (0.10s)		
6.323	44.5	Neutral	60.0	-15.5	AVG	AVG (0.10s)		
2.675	43.5	Neutral	60.0	-16.5	AVG	AVG (0.10s)		
3.648	43.5	Neutral	60.0	-16.5	AVG	AVG (0.10s)		
3.649	43.1	Line 1	60.0	-16.9	AVG	AVG (0.10s)		
2.677	42.9	Line 1	60.0	-17.1	AVG	AVG (0.10s)		
4.864	55.9	Neutral	73.0	-17.1	QP	QP (1.00s)		
4.866	55.7	Line 1	73.0	-17.3	QP	QP (1.00s)		
4.622	42.4	Line 1	60.0	-17.6	AVG	AVG (0.10s)		
14.835	55.3	Neutral	73.0	-17.7	QP	QP (1.00s)		
14.839	54.9	Line 1	73.0	-18.1	QP	QP (1.00s)		
18.489	41.0	Line 1	60.0	-19.0	AVG	AVG (0.10s)		
4.134	54.0	Neutral	73.0	-19.0	QP	QP (1.00s)		
4.621	40.9	Neutral	60.0	-19.1	AVG	AVG (0.10s)		
15.329	40.9	Line 1	60.0	-19.1	AVG	AVG (0.10s)		
5.109	53.5	Line 1	73.0	-19.5	QP	QP (1.00s)		
13.138	40.4	Line 1	60.0	-19.6	AVG	AVG (0.10s)		
5.108	53.4	Neutral	73.0	-19.6	QP	QP (1.00s)		
15.565	53.4	Neutral	73.0	-19.6	QP	QP (1.00s)		
0.151	59.3	Neutral	79.0	-19.7	QP	QP (1.00s)		
15.569	53.3	Line 1	73.0	-19.7	QP	QP (1.00s)		
4.378	53.2	Line 1	73.0	-19.8	QP	QP (1.00s)		
4.378	53.2	Neutral	73.0	-19.8	QP	QP (1.00s)		
4.137	52.9	Line 1	73.0	-20.1	QP OD	QP (1.00s)		
0.155	58.5 52.5	Line 1	79.0	-20.5	QP OD	QP (1.00s)		
14.109	52.5	Line 1	73.0	-20.5	QP OD	QP (1.00s)		
14.107 E E 04	52.4	Neutral	73.0	-20.6	QP OD	QP (1.00s)		
5.594	51.9	Neutral	73.0	-21.1	QP OD	QP (1.00s)		
15.080	51.2	Neutral	73.0	-21.8	QP OD	QP (1.00s)		
5.596	51.1	Line 1	73.0	-21.9	QP OP	QP (1.00s)		
16.296	50.2	Neutral	73.0	-22.8	QP	QP(1.00s)		
0.151	43.0 50.0	Neutral	66.0	-23.0	AVG	AVG (0.10s)		
1/ 500	200	Neutral	73.0	-23.0	QP	QP (1.00s)		
14.593 5.837	49.9	Neutral	73.0	-23.1	QP	QP (1.00s)		

Client:	Ubiquiti Net	works					Job Number:	
Model:	Rocket M5	Titanium					T-Log Number: Account Manager:	
Contact:	Jennifer Sa	nchez						
Standard:	FCC 15.247	, RSS-210, R	SS-310, FC	C 15B			Class:	-
un #1: (co	ntinued)							
_	-	4.0	01-		Datastas	0		
Frequency		AC		ss A Margin	Detector	Comments		
MHz 15.323	dBμV 49.4	Line Neutral	Limit 73.0	Margin -23.6	QP/Ave QP	QP (1.00s)		
14.598	49.4	Line 1	73.0	-23.0	QP QP	QP (1.00s) QP (1.00s)		
5.839	49.1	Line 1	73.0	-23.7	QP	QP (1.003) QP (1.00s)		
13.380	49.0	Line 1	73.0	-24.0	QP	QP (1.003)		
3.405	48.6	Neutral	73.0	-24.4	QP	QP (1.00s)		
3.406	48.4	Line 1	73.0	-24.6	QP	QP (1.00s)		
19.710	48.2	Line 1	73.0	-24.8	QP	QP (1.00s)		
18.489	47.1	Line 1	73.0	-25.9	QP	QP (1.00s)		
6.323	47.1	Neutral	73.0	-25.9	QP	QP (1.00s)		
15.329	46.7	Line 1	73.0	-26.3	QP	QP (1.00s)		
0.195	52.3	Line 1	79.0	-26.7	QP	QP (1.00s)		
3.648	46.1	Neutral	73.0	-26.9	QP	QP (1.00s)		
4.622	46.0	Line 1	73.0	-27.0	QP	QP (1.00s)		
3.649	45.7	Line 1	73.0	-27.3	QP	QP (1.00s)		
2.675	45.7	Neutral	73.0	-27.3	QP	QP (1.00s)		
0.195	38.5	Line 1	66.0	-27.5	AVG	AVG (0.10s)		
13.138	45.3	Line 1	73.0	-27.7	QP	QP (1.00s)		
2.677	45.2	Line 1	73.0	-27.8	QP	QP (1.00s)		
0.155	38.1	Line 1	66.0	-27.9	AVG	AVG (0.10s)		
4.621	44.8	Neutral	73.0	-28.2	QP	QP (1.00s)		
0.199	50.8	Neutral	79.0	-28.2	QP	QP (1.00s)		
0.199	37.2	Neutral	66.0	-28.8	AVG	AVG (0.10s)		
0.206	49.9 31.5	Line 1 Line 1	79.0 66.0	-29.1 -34.5	QP AVG	QP (1.00s) AVG (0.10s)		

End of Report

This page is intentionally blank and marks the last page of this test report.