FCC Test Report (Class II Permissive Change)

Product Name	Wireless AP
Model No	NanoBridgeM5
FCC ID	SWX-NBM5D

Applicant	Ubiquiti Networks, Inc.	
Address	12F, No. 105, Song Ren Rd., Sin Yi District,	
	Taipei 110, Taiwan	

Date of Receipt	June 10, 2014
Issued Date	July 03, 2014
Report No.	1460314R-RFUSP42V00
Report Version	V1.0

The test results relate only to the samples tested.

The test results shown in the test report are traceable to the national/international standard through the calibration report of the equipment and evaluated measurement uncertainty herein.

This report must not be used to claim product endorsement by TAF or any agency of the government.

The test report shall not be reproduced without the written approval of QuieTek Corporation.

Test Report

Issued Date: July 03, 2014 Report No.: 1460314R-RFUSP42V00

Product Name	Wireless AP		
Applicant	Ubiquiti Networks, Inc.		
Address	12F, No. 105, Song Ren Rd., Sin Yi District, Taipei 110, Taiwan		
Manufacturer	Ubiquiti Networks, Inc.		
Model No.	NanoBridgeM5		
FCC ID.	SWX-NBM5D		
EUT Rated Voltage	DC 24V		
EUT Test Voltage	AC 120V/60Hz		
Trade Name	UBIQUITI		
Applicable Standard	FCC CFR Title 47 Part 15 Subpart E: 2014		
	ANSI C63.10: 2009		
	KDB 789033 D02 General UNII Test Procedures New Rules v01		
Test Result	Complied		
Documented By	Rita Huang		
	(Senior Adm. Specialist / Rita Huang)		
Tested By	Andy Lin		
	(Engineer / Andy Lin)		
Approved By	Hand		
	(Director / Vincent Lin)		

TABLE OF CONTENTS

De	scription	Page
1.	GENERAL INFORMATION	5
1.1.	EUT Description	
1.2.	Operational Description	
1.3.	Tested System Datails	
1.4.	Configuration of tested System	
1.5.	EUT Exercise Software	
1.6.	Test Facility	
2.	Conducted Emission	10
2.1.	Test Equipment	
2.2.	Test Setup	
2.3.	Limits	
2.4.	Test Procedure	
2.5.	Uncertainty	
2.6.	Test Result of Conducted Emission	
3.	Maximun conducted output power	14
3.1.	Test Equipment	
3.2.	Test Setup	
3.3.	Limits	
3.4.	Test Procedur	
3.5.	Uncertainty	
3.6.	Test Result of Maximum conducted output power	
4.	Peak Power Spectral Density	20
4.1.	Test Equipment	
4.2.	Test Setup	
4.3.	Limits	
4.4.	Test Procedure	
4.5.	Uncertainty	
4.6.	Test Result of Peak Power Spectral Density	
5.	Radiated Emission	
5.1.	Test Equipment	
5.2.	Test Setup	
5.3.	Limits	
5.4.	Test Procedure	
5.5.	Uncertainty	
5.6.	Test Result of Radiated Emission	
6.	Band Edge	45
6.1.	Test Equipment	45
6.2.	Test Setup	
6.3.	Limits	
6.4.	Test Procedure	
6.5.	Uncertainty	
6.6.	Test Result of Band Edge	
7.	Frequency Stability	

8.	EMI Reduction Method During Compliance Testing	
7.6.	Test Result of Frequency Stability	54
7.5.	Uncertainty	53
7.4.	Test Procedure	53
7.3.	Limits	
7.2.	Test Setup	
7.1.	Test Equipment	53

- Attachment 1: EUT Test Photographs
- Attachment 2: EUT Detailed Photographs

1. GENERAL INFORMATION

1.1. EUT Description

Product Name	Wireless AP	
Trade Name	UBIQUITI	
FCC ID.	SWX-NBM5D	
Model No.	NanoBridgeM5	
Frequency Range	802.11a/n-20MHz: 5180-5240MHz	
	802.11n-40MHz: 5190-5230MHz	
Number of Channels	802.11a/n-20MHz: 4, n-40MHz: 2	
Data Rate	802.11a/n: 6-54Mbps, 802.11n: up to 300Mbps	
Channel Control	Auto	
Type of Modulation	802.11a/n:OFDM, BPSK, QPSK, 16QAM, 64QAM	
Antenna type	Dish Antenna	
Antenna Gain	Refer to the table "Antenna List"	
Power Adapter (POE)	MFR: UBIQUITI, M/N: GP-A240-050	
	Input: 100-240V ~ 50/60Hz, MAX 0.3A	
	Output: DC24V, 0.5A	

Antenna List

No.	Manufacturer	Part No.	Gain 1	Gain 2	Peak Gain
1.	UBIQUITI	NB-5G25	25dBi	25dBi	28dBi for 5.15~5.25GHz

Note: 1. The antenna of EUT is conform to FCC 15.203

2. MIMO antenna gain $=25 + 10 \log 2 = 28$ dBi

802.11a/n-20MHz Center Working Frequency of Each Channel:

ChannelFrequencyChannelFrequencyChannelFrequencyChannelChannel 36:5180 MHzChannel 40:5200 MHzChannel 44:5220 MHzChannel 48:5240 MHz

802.11n-40MHz Center Working Frequency of Each Channel:

ChannelFrequencyChannelFrequencyChannel 38:5190 MHzChannel 46:5230 MHz

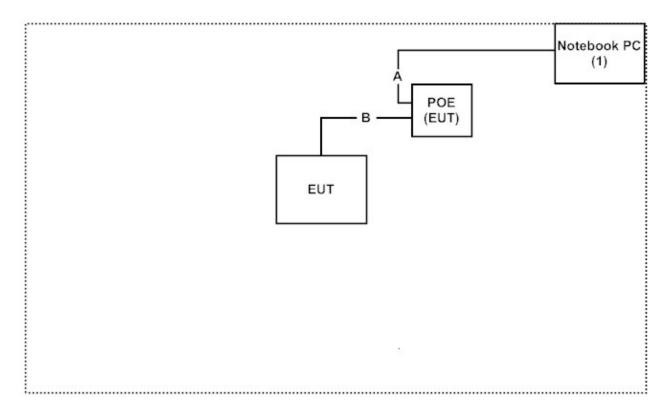
Note:

- 1. This device is a Fixed Point-to-point Wireless AP with a built-in IEEE 802.11a/n transceiver.
- 2. Regarding to the operation frequency, the lowest, middle and highest frequency are selected to perform the test.
- Lowest and highest data rates are tested in each mode. Only worst case is shown in the report. (802.11a is 6Mbps, 802.11n-20BW is 14.4Mbps and 802.11n-40BW are 30Mbps)
- 4. At result of pretests, module supports dual-channel transmission, only the worst case is shown in the report. (802.11a/n is chain B)
- 5. These tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with Part 15 Subpart E for Unlicensed National Information Infrastructure devices.
- 6. This is requesting a Class II permissive change for FCC ID: SWX-NBM5D. Originally granted on 03/23/2012.

The differences are listed as below:

- Add the frequency band from 5180-5240MHz and 5190 5230MHz by software.
- > All other hardware is identical with original granted.

Test Mode	Mode 1: Transmit (802.11a-6Mbps)
	Mode 2: Transmit (802.11n-20BW 14.4Mbps)
	Mode 3: Transmit (802.11n-40BW 30Mbps)


1.3. Tested System Datails

The types for all equipment, plus descriptions of all cables used in the tested system (including inserted cards) are:

Proc	duct	Manufacturer	Model No.	Serial No.	Power Cord
(1)	Notebook PC	DELL	РРТ	N/A	Non-Shielded, 0.8m

	Signal Cable Type	Signal cable Description
Α	LAN Cable	Non-Shielded, 1.3m
В	LAN Cable	Non-Shielded, 1.5m

1.4. Configuration of tested System

1.5. EUT Exercise Software

- (1) Setup the EUT and peripherals as shown in section 1.4.
- (2) Execute "Art V0.9" program on the Notebook PC.
- (3) Configure the test mode, the test channel, and the data rate.
- (4) Start the continuous transmission.
- (5) Verify that the EUT works properly.

1.6. Test Facility

Ambient conditions	in the laboratory:
--------------------	--------------------

Items	Required (IEC 68-1)	Actual
Temperature (°C)	15-35	20-35
Humidity (%RH)	25-75	50-65
Barometric pressure (mbar)	860-1060	950-1000

The related certificate for our laboratories about the test site and management system can be downloaded from QuieTek Corporation's Web Site : <u>http://tw.quietek.com/modules/myalbum/</u>

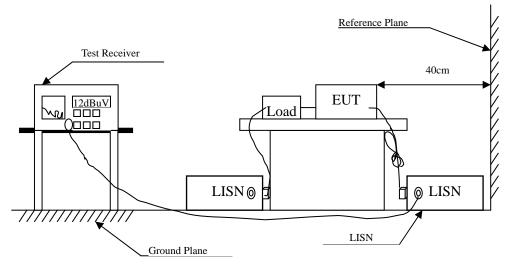
The address and introduction of QuieTek Corporation's laboratories can be founded in our Web site : <u>http://www.quietek.com/</u>

Site Description: File on Federal Communications Commission FCC Engineering Laboratory 7435 Oakland Mills Road Columbia, MD 21046 Registration Number: 92195

Site Name:	Quietek Corporation
Site Address:	No.5-22, Ruishukeng Linkou Dist., New Taipei City
	24451, Taiwan, R.O.C.
	TEL: 886-2-8601-3788 / FAX : 886-2-8601-3789
	E-Mail : <u>service@quietek.com</u>

FCC Accreditation Number: TW1014

2. Conducted Emission


2.1. Test Equipment

	Equipment	Manufacturer	Model No. / Serial No.	Last Cal.	Remark
Х	Test Receiver	R & S	ESCS 30 / 825442/018	Sep., 2013	
Х	Artificial Mains Network	R & S	ENV4200 / 848411/10	Feb., 2014	Peripherals
Х	LISN	R & S	ESH3-Z5 / 825562/002	Feb., 2014	EUT
	DC LISN	Schwarzbeck	8226 / 176	Mar, 2014	EUT
Х	Pulse Limiter	R & S	ESH3-Z2 / 357.8810.52	Feb., 2014	
	No.1 Shielded Room				

Note:

- 1. All equipments are calibrated every one year.
- 2. The test instruments marked by "X" are used to measure the final test results.

2.2. Test Setup

2.3. Limits

FCC Part 15 Subpart C Paragraph 15.207 (dBuV) Limit							
Frequency	Limits						
MHz	QP	AV					
0.15 - 0.50	66-56	56-46					
0.50-5.0	56	46					
5.0 - 30	60	50					

Remarks : In the above table, the tighter limit applies at the band edges.

2.4. Test Procedure

The EUT and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50 ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm /50uH coupling impedance with 50ohm termination. (Please refers to the block diagram of the test setup and photographs.)

Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2009 on conducted measurement.

Conducted emissions were invested over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9kHz.

The EUT was setup to ANSI C63.10, 2009; tested to NII test procedure of FCC KDB-789033 for compliance to FCC 47CFR Subpart E requirements.

2.5. Uncertainty

± 2.26 dB

2.6. Test Result of Conducted Emission

Product	:	Wireless AP
Test Item	:	Conducted Emission Test
Power Line	:	Line 1
Test Mode	:	Mode 3: Transmit (802.11n-40BW 30Mbps) (5190MHz)

Frequency	Correct	Reading	Reading Measurement		Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV	dB	dBuV
LINE 1					
Quasi-Peak					
0.181	9.724	40.960	50.684	-14.430	65.114
0.240	9.680	35.010	44.690	-18.739	63.429
0.302	9.650	28.510	38.160	-23.497	61.657
0.361	9.650	22.000	31.650	-28.321	59.971
1.880	9.680	19.230	28.910	-27.090	56.000
3.888	9.700	22.940	32.640	-23.360	56.000
Average					
0.181	9.724	31.760	41.484	-13.630	55.114
0.240	9.680	27.740	37.420	-16.009	53.429
0.302	9.650	10.270	19.920	-31.737	51.657
0.361	9.650	15.190	24.840	-25.131	49.971
1.880	9.680	16.240	25.920	-20.080	46.000
3.888	9.700	17.180	26.880	-19.120	46.000

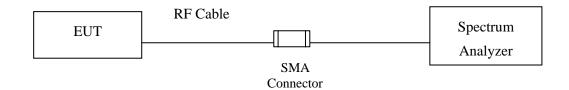
- 1. All Reading Levels are Quasi-Peak and average value.
- 2. "means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product Test Item Power Line Test Mode	 Wireless AP Conducted E Line 2 Mode 3: Trans 	Emission Test nsmit (802.11n-40E	3W 30Mbps) (5190)MHz)	
Frequency	Correct	Reading M	leasurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV	dB	dBuV
LINE 2					
Quasi-Peak					
0.181	9.732	40.920	50.652	-14.462	65.114
0.244	9.689	35.340	45.029	-18.285	63.314
0.298	9.660	24.020	33.680	-28.091	61.771
0.353	9.655	10.950	20.605	-39.595	60.200
3.822	9.700	26.010	35.710	-20.290	56.000
15.466	10.000	8.840	18.840	-41.160	60.000
Average					
0.181	9.732	32.030	41.762	-13.352	55.114
0.244	9.689	26.810	36.499	-16.815	53.314
0.298	9.660	19.500	29.160	-22.611	51.771
0.353	9.655	3.310	12.965	-37.235	50.200
3.822	9.700	19.630	29.330	-16.670	46.000
15.466	10.000	3.060	13.060	-36.940	50.000

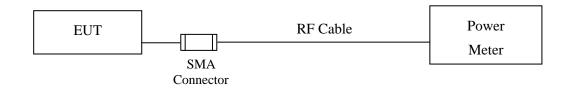
- 1. All Reading Levels are Quasi-Peak and average value.
- 2. "means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

3. Maximun conducted output power

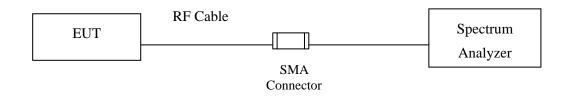
3.1. Test Equipment


	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
Х	Power Meter	Anritsu	ML2495A/6K00003357	May, 2014
Х	Power Sensor	Anritsu	MA2411B/0738448	Jun, 2014
Х	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr., 2014
Note	e:			

1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.


2. The test instruments marked with "X" are used to measure the final test results.

3.2. Test Setup


26dBc Occupied Bandwidth

Conduction Power Measurement (for 802.11an)

Conduction Power Measurement (for 802.11ac)

3.3. Limits

(1) For the band 5.15-5.25 GHz,

(i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

(ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. Fixed point-topoint U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

(iv) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

- (2) For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm 10 log B, where B is the 26 dB emission bandwidth in megahertz. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (3) For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point UNII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any

corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

3.4. Test Procedur

As an alternative to FCC KDB-789033, the EUT maximum conducted output power was measured with an average power meter employing a video bandwidth greater than 6dB BW of the emission under test. Maximum conducted output power was read directly from the meter across all data rates, and across three channels within each sub-band. Special care was used to make sure that the EUT was transmitting in continuous mode. This method exceeds the limitations of FCC KDB-789033, and provides more accurate measurements.

802.11an (BW \leq 40MHz) Maximum conducted output power using KDB 789033 section E)3)b) Method PM-G (Measurement using a gated RF average power meter) <u>Note: the power meter have a video bandwidth that is greater than or equal to the measurement</u> <u>bandwidth, (Anritsu/MA2411B video bandwidth: 65MHz)</u>

802.11ac (BW=80MHz) Maximum conducted output power using KDB 789033 section E)2)b) Method SA-1 (trace averaging with the EUT transmitting at full power throughout each sweep).

When transmitted signals consist of two or more non-contiguous spectrum segments (e.g., 80+80 MHz mode) or when a single spectrum segment of a transmission crosses the boundary between two adjacent U-NII bands, KDB 644545 D01 section F) procedure is used for measurements.

3.5. Uncertainty

± 1.27 dB

3.6. Test Result of Maximum conducted output power

Product	:	Wireless AP
Test Item	:	Maximum conducted output power
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11a-6Mbps)

CHAIN A

Cable	e loss=1dB	Maximum conducted output power								
				Γ	Data Rat	e (Mbps	s)			
Channel No.	Frequency (MHz)	6	9	12	18	24	36	48	54	Required Limit
		Measurement Level (dBm)								
36	5180	12.59								<25dBm
44	5220	12.88	12.74	12.65	12.51	12.44	12.32	12.28	12.21	<25dBm
48	5240	12.58								<25dBm

Note: Maximum conducted output power Value =Reading value on average power meter + cable loss

CHAIN B

Cable	loss=1dB	Maximum conducted output power								
			Data Rate (Mbps)							
Channel No.	Frequency (MHz)	6	9	12	18	24	36	48	54	Required Limit
		Measurement Level (dBm)								
36	5180	12.88								<25dBm
44	5220	13.17	13.08	12.85	12.74	12.66	12.57	12.46	12.34	<25dBm
48	5240	12.98								<25dBm

Note: Maximum conducted output power Value =Reading value on average power meter + cable loss

Maximum conducted output power Measurement:

(CHAIN B)

Channel Number	Frequency	Output Power	Output Power Limit	Result
	(MHz)	(dBm)	(dBm)	
36	5180	12.88	25	Pass
44	5220	13.17	25	Pass
48	5240	12.98	25	Pass

Note:

Power Output Value = Reading value on average power meter + cable loss. 1.

For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 2. dB reduction in maximum conducted output power is required for each 1 dB of antenna gain in excess of 23 dBi.

QuieTer

1.

Product	:	Wireless AP
Test Item	:	Maximum conducted output power
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11n-20BW 14.4Mbps)

CHAIN A

Cable	loss=1dB		Measurement Level (dBm)				ower			
		Data Rate (Mbps)								
Channel No.	Frequency (MHz)	14.4	28.9	43.3	57.8	86.7	115.6	130	144.4	Required Limit
				Measu	ırement	Level ((dBm)			
36	5180	12.79								<28dBm
44	5220	12.82	12.71	12.66	12.58	12.51	12.41	12.33	12.25	<28dBm
48	5240	12.55								<28dBm

Note: Maximum conducted output power Value =Reading value on average power meter + cable loss

CHAIN B

Cable	e loss=1dB		Measurement Level (dBm)			ower				
		Data Rate (Mbps)								
Channel No.	Frequency (MHz)	14.4	28.9	43.3	57.8	86.7	115.6	130	144.4	Required Limit
				Measu	urement	Level (dBm)			
36	5180	12.98								<25dBm
44	5220	13.12	13.05	12.95	12.82	12.73	12.69	12.58	12.4	<25dBm
48	5240	12.94								<25dBm

Note: Maximum conducted output power Value =Reading value on average power meter + cable loss

Maximum conducted output power Measurement:

(CHAIN A+ B)

Channel	Frequency	Chain A	Chain B	Output	Output Power		
Number		Power	Power	Power	Limit	Result	
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)		
36	5180	12.79	12.98	15.90	25	Pass	
44	5220	12.82	13.12	15.98	25	Pass	
48	5240	12.55	12.94	15.76	25	Pass	

Note:

1. Power Output Value =Reading value on average power meter + cable loss

2. Output Power (dBm) = 10LOG (Chain A Power (mW)+ Chain B Power (mW))

3. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power is required for each 1 dB of antenna gain in excess of 23 dBi.

Product	:	Wireless AP
Test Item	:	Maximum conducted output power
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n-40BW 30Mbps)

CHAIN A

Cable	e loss=1dB				Maximı	ım cond	lucted o	utput po	ower	
		Data Rate (Mbps)								
Channel No.	Frequency (MHz)	30	60	90	120	180	240	270	300	Required Limit
		Measurement Level (dBm)								
38	5190	9.79								<25dBm
46	5230	9.83	9.71	9.66	9.58	9.47	9.42	9.37	9.28	<25dBm

Note: Maximum conducted output power Value =Reading value on average power meter + cable loss

CHAIN B

loss=1dB				Maximu	um cond	lucted o	utput po	ower	
	Data Rate (Mbps)								
Frequency (MHz)	30	60	90	120	180	240	270	300	Required Limit
	Measurement Level (dBm)								
5190	10.12		-						<25dBm
5230	10.03	9.98	9.85	9.73	9.67	9.61	9.5	9.33	<25dBm
	Frequency (MHz) 5190	Frequency (MHz) 30 5190 10.12	Frequency (MHz) 30 60 5190 10.12	Frequency (MHz) 30 60 90 5190 10.12	Frequency (MHz) 30 60 90 120 5190 10.12	Frequency (MHz) 30 60 90 120 180 Measurement Level (5190 10.12	Berequency (MHz) 30 60 90 120 180 240 Measurement Level (dBm) 5190 10.12	Data Rate (Mbps) Frequency (MHz) 30 60 90 120 180 240 270 Measurement Level (dBm) 5190 10.12	Frequency (MHz) 30 60 90 120 180 240 270 300 Measurement Level (dBm) 5190 10.12

Note: Maximum conducted output power Value =Reading value on average power meter + cable loss

Maximum conducted output power Measurement:

(CHAIN A+ B)

Channel Number	Frequency	Chain A Power	Chain B Power	Output Power	Output Power Limit	Result	
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)		
38	5190	9.79	10.12	12.97	25	Pass	
46	5230	9.83	10.03	12.94	25	Pass	

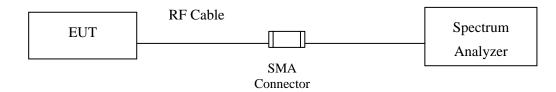
Note:

1. Power Output Value = Reading value on average power meter + cable loss

2. Output Power (dBm) = 10LOG (Chain A Power (mW)+ Chain B Power (mW))

3. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power is required for each 1 dB of antenna gain in excess of 23 dBi.

4. Peak Power Spectral Density


4.1. Test Equipment

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun, 2014
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun, 2014
Х	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr, 2014

Note:

- 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.
- 2. The test instruments marked with "X" are used to measure the final test results.

4.2. Test Setup

4.3. Limits

(1) For the band 5.15-5.25 GHz,

(i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. Fixed point-topoint U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the

equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations. (**iv**) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.+

- (2) For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (3) For the band 5.725-5.85 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point UNII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

4.4. Test Procedure

The EUT was setup to ANSI C63.10, 2009; tested to NII test procedure of FCC KDB-789033 for compliance to FCC 47CFR Subpart E requirements.

The Peak Power Spectral Density using KDB 789033 section F) procedure, Create an average power spectrum for the EUT operating mode being tested by following the instructions in section E)2) for measuring maximum conducted output power using a spectrum analyzer. SA-1 method is selected to run the test.

4.5. Uncertainty

± 1.27 dB

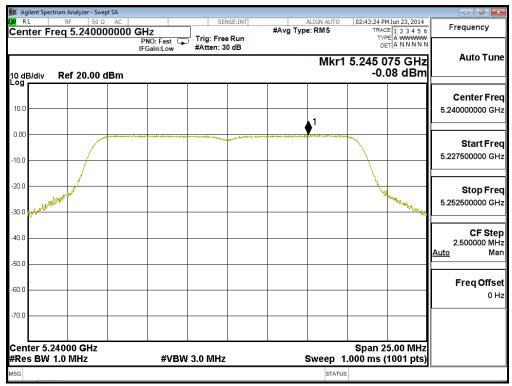
4.6. Test Result of Peak Power Spectral Density

Product	:	Wireless AP
Test Item	:	Peak Power Spectral Density
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11a-6Mbps)

Channel Number	Frequency (MHz)	Data Rata (Mbps)	Measurement Level (dBm)	Required Limit (dBm)	Result
36	5180	6	-0.040	<12	Pass
44	5220	6	-0.080	<12	Pass
48	5240	6	-0.080	<12	Pass

Note

1. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi.


Channel 36: Agilent Spectrum enwy... D RL RF 50 Ω AC Center Freq 5.180000000 GHz IFGain:Low Agilent Spectrum Analyzer - Swept SA 02:28:28 PM Jun 23, 2014 TRACE 1 2 3 4 5 6 TYPE A WWWW DET A N N N N SENSE:INT #Avg Type: RMS Frequency Trig: Free Run #Atten: 30 dB Auto Tune Mkr1 5.172 500 GHz -0.04 dBm 10 dB/div Log Ref 20.00 dBm **Center Freq** 10.0 5.18000000 GHz 1 0.00 Start Freq 5.167500000 GHz -10.0 -20.0 Stop Freq 5.192500000 GHz -30.0 CF Step 2.500000 MHz -40.0 Auto Man -50.0 Freq Offset -60.0 0 Hz -70.0 Center 5.18000 GHz Span 25.00 MHz #Res BW 1.0 MHz #VBW 3.0 MHz Sweep 1.000 ms (1001 pts) STATUS

						rum Analyzer - Swept SA	
Frequency	:31:25 PM Jun 23, 2014	TO 0	ALIGN AUT	SENSE:INT		RF 50 Ω AC	U RL
Auto Tune	TRACE 1 2 3 4 5 6 TYPE A WWWW DET A NNNNN		#Avg Type: RMS	Trig: Free Run #Atten: 30 dB	GHz PNO: Fast IFGain:Low	eq 5.220000000	Center
	226 700 GHz -0.08 dBm	(r1 5.	Mk			Ref 20.00 dBm	0 dB/div
Center Fre 5.220000000 GH		▲1					10.0
Start Fre 5.207500000 G⊦			an and a spinite way and a set of the set of the	deerploopen and a second or a second or a			0.00
Stop Fre 5.232500000 GH	And the second sec					and the second	20.0
CF Ste 2.500000 MH Auto Ma							40.0
Freq Offso 0 ⊦							60.0
	pan 25.00 MHz					2000 GHz	70.0
) ms (1001 pts)	1.00		3.0 MHz	#VBW	.0 MHz	#Res BV

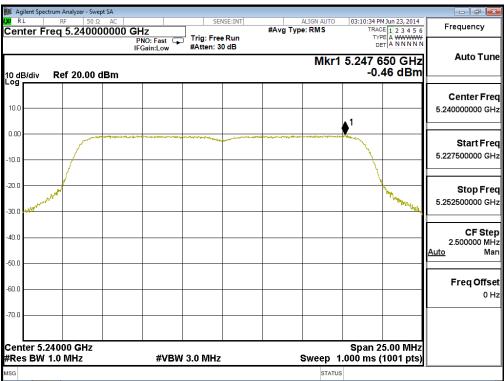
Channel 44:

Channel 48:

Product	:	Wireless AP
Test Item	:	Peak Power Spectral Density
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11n-20BW 14.4Mbps)

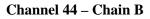
Channel Number	Frequency (MHz)	Chain	PPSD/MHz (dBm)	Total PPSD/MHz (dBm)1	Required Limit (dBm)	Result
26 51	5100	А	-0.370	2.640	<12	Pass
36	5180	В	-0.240	2.770	<12	Pass
4.4	5220	А	-0.480	2.530	<12	Pass
44	5220	В	-0.080	2.930	<12	Pass
40	5240	А	-0.460	2.550	<12	Pass
48	5240	В	-0.290	2.720	<12	Pass

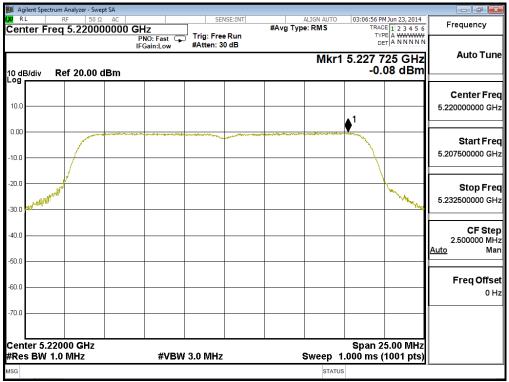
Note


- 1. The quantity 10*log 2 (two antennas) is added to the spectrum peak value according to document 662911 D01.
- 2. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi.

					Cinam		- Chai				
		n Analyzer - Swe									
KØ R Cer		RF 50 Ω	00000 GI	-Iz	1	SE:INT	#Avg Typ	ALIGN AUTO e: RMS	TRAC	HJun 23, 2014	Frequency
			P	NO: Fast 🖵 Gain:Low	#Atten: 3						Auto Tune
10 d	B/div F	Ref 20.00 (dBm					MKL	1 5.173 6 -0.	37 dBm	
Log											Center Freq
10.0			.1								5.180000000 GHz
0.00		-	1		Contraction of the second	and a start of the			man		Otart Franci
-10.0									N N		Start Freq 5.167500000 GHz
-20.0										With and a grant and a start a	Stop Freq 5.192500000 GHz
-30.0	<u>(lajer '</u>									- Martin	
-40.0											CF Step 2.500000 MHz
-50.0											<u>Auto</u> Man
-60.0											Freq Offset
											0 Hz
-70.0											
		000 GHz			0.0.141.				Span 2	5.00 MHz	
#Re	s BW 1.0	UIVIHZ		#VBW	3.0 MHz			Sweep	1.000 ms (1001 pts)	

									Analyzer - Swe		
Frequency	PM Jun 23, 2014 ACE 1 2 3 4 5 6 TYPE A WWWW DET A N N N N N	TRA TY	ALIGN AUTO g Type: RMS	#A		Trig: Fre	PNO: Fast 🗔	0000 G	RF 50 Ω 5.22000		
Auto Tur	Mkr1 5.226 575 GHz 0 dB/div Ref 20.00 dBm -0.48 dBm										
Center Fre 5.220000000 GH			1								og 0.0
Start Fre 5.207500000 GH		and the second s		presta Presa			*********	p			.00).0
Stop Fre 5.232500000 GH	W WINT WAR									and more and a	0.0 0.0
CF Ste 2.500000 MH Auto Ma).O).O
Freq Offs 0 ⊦).0
	25.00 MHz 5 (1001 pts)	Span 2 .000 ms	Sweep 1			/ 3.0 MHz	#VBM			er 5.2200 BW 1.0	
			STATUS								G


Channel 44 – Chain A


Channel 48 – Chain A

L Anilant Car	sterme Archieren - Counst CA		Channel 30				
RL RL	ctrum Analyzer - Swept SA RF 50 Ω A		SENSE:INT	ALIGN AUTO	02:54:36 PM Jun 23, 2014		
	req 5.1800000		7	#Avg Type: RMS	TRACE 1 2 3 4 5 TYPE A WWWW DET A N N N N	Frequency	
0 dB/div	Ref 20.00 dBr		#Atten: 00 dB	Mkr1	Mkr1 5.186 000 GHz -0.24 dBm		
	Rei 20.00 UBI				0.24 0.25		
0.0						Center Fr 5.180000000 G	
.00		viter==_====thetan prigrav(prav/hiteragle)		and he was not an		Start Fro 5.167500000 G	
0.0							
0.0 p-10-10	AN AN A				Jerger and March	Stop Fr 5.192500000 G	
0.0						CF Ste 2.500000 M Auto M	
0.0							
0.0						Freq Offs 0	
D.O						-	
	18000 GHz 1.0 MHz	#VBV	/ 3.0 MHz	Sweep 1	Span 25.00 MHz .000 ms (1001 pts		
G				STATUS	6		

Channel 36 – Chain B

			Chaimer			
	ectrum Analyzer - Swept SA					
enter I	RF 50 Ω A Freq 5.2400000	PNO: Fast	SENSE:INT Trig: Free Run #Atten: 30 dB	ALIGN AUTO #Avg Type: RMS	03:30:13 PM Jun 23, 20 TRACE 1 2 3 4 TYPE A WWW DET A N N N	5 6 Frequency
		IFGain:Low	#Atten: 30 dB	Mk	r1 5.243 800 GH	Iz Auto Tune
0 dB/div	Ref 20.00 dBr	n			-0.29 dB	m
10.0						Center Fre 5.240000000 GH
0.00			meaning and the second s	↓ ¹		Start Fre
10.0						5.227500000 GH
20.0	Langel and the second s				North Market Mark	Stop Fre
30.0 Marin	n				לעניי	
40.0 50.0						CF Ste 2.500000 MH <u>Auto</u> Ma
60.0						Freq Offse
70.0						-
	.24000 GHz / 1.0 MHz	#VBW	3.0 MHz	Sweep	Span 25.00 Mł 1.000 ms (1001 pt	lz s)
MSG				STA	TUS	

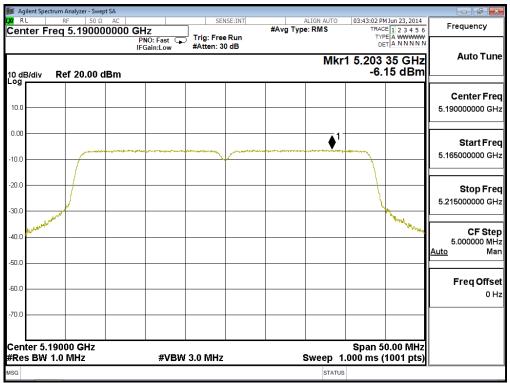
Channel 48 – Chain B

Product	:	Wireless AP
Test Item	:	Peak Power Spectral Density
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n-40BW 30Mbps)

Channel Number	Frequency (MHz)	Chain	PPSD/MHz (dBm)	Total PPSD/MHz (dBm)1	Required Limit (dBm)	Result
20		А	-6.490	-3.480	<12	Pass
38	5190	В	-6.150	-3.140	<12	Pass
10	16 5000		-6.570	-3.560	<12	Pass
46	5230	В	-6.050	-3.040	<12	Pass

Note

- 1. The quantity 10*log 2 (two antennas) is added to the spectrum peak value according to document 662911 D01.
- 2. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi.


	ilent Spectrum									,	
Cen	ter Freq		00000 G	Hz		ISE:INT	#Avg Type	ERMS	TRAC	I Jun 23, 2014 E 1 2 3 4 5 6 E A WWWWW	Frequency
10 dE	3/div R e	f 20.00 c	I	PNO: Fast 🕞	Trig: Free #Atten: 3			Mk	^{□∎} r1 5.187	TANNNN	Auto Tune
Log 10.0											Center Fred 5.190000000 GHz
0.00 -10.0					•1			yad Bastalja da bastan aya	anna terra		Start Free 5.165000000 GH
-20.0 -30.0											Stop Free 5.215000000 GH:
-40.0 -50.0	March Mar									Mart Part of Sol Decard	CF Ste 5.000000 MH <u>Auto</u> Ma
90.0 60.0											Freq Offse 0 H
-70.0											
	ter 5.1900 s BW 1.0			#VBW	3.0 MHz		9	Sweep	Span 5 1.000 ms (0.00 MHz 1001 pts)	
MSG								STATU	IS		

Channel 38 – Chain A

	,									lent Spectrum /	
Frequency	4 Jun 23, 2014 E 1 2 3 4 5 6 PE A WWWWW	TRAC	ALIGN AUTO	#Av		Trig: Fre	HZ NO: Fast ⊆			ter Freq	ent
Auto Tun	05 GHz 57 dBm	5.244	Mkr		30 dB	#Atten: \$	Gain:Low	IF	f 20.00 d	div Re	0 dE
Center Fre 5.230000000 GH											. og 10.0
Start Fre 5.205000000 GH		anna dianga	1					haler a far half a sea far fa far h			0.00 0.0
Stop Fre 5.255000000 GH											0.0 0.0
CF Ste 5.000000 MH <u>Auto</u> Ma	ALANIC AND AND A									- Low Marker Marker	0.0 0.0
Freq Offso 0 ⊦											0.0
	0.00 MHz	Span 5								er 5.2300	
	1001 pts)	000 ms (Sweep 1.			/ 3.0 MHz	#vBV		IVINIZ	8W 1.0	sg

Channel 46 – Chain A

Channel 38 – Chain B

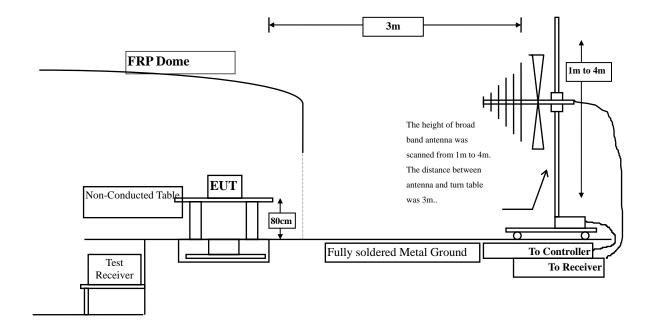
	Channel	46 – Chain B								
🍯 Agilent Spectrum Analyzer - Swept SA										
RL RF 50Ω AC Center Freq 5.230000000	PNO: Fast 😱 Trig: Free Run	ALIGN AUTO #Avg Type: RMS	04:24:26 PM Jun 23, 2014 TRACE 1 2 3 4 5 6 TYPE A WWWW DET A N N N N N	Frequency						
Mkr1 5.241 30 GHz 0 dB/div Ref 20.00 dBm -6.05 dBm										
-og 10.0				Center Free 5.230000000 GH						
0.00		1		Start Fre 5.205000000 GH						
20.0				Stop Fre 5.255000000 GH						
40.0 Walter and Walter a			Maran Control Mara	CF Ste 5.000000 MH <u>Auto</u> Ma						
50.0				Freq Offse 0 ⊦						
70.0										
Center 5.23000 GHz Res BW 1.0 MHz	#VBW 3.0 MHz	Sweep	Span 50.00 MHz 1.000 ms (1001 pts)							
ISG		STATU	IS							

Channel 46 – Chain B

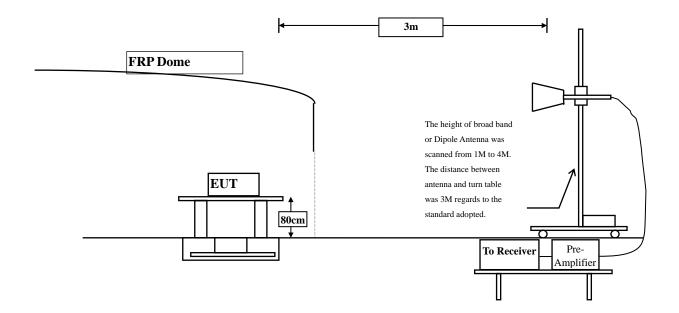
5. Radiated Emission

5.1. Test Equipment

The following test equipments are used during the radiated emission test:


Test Site		Equipment	Manufacturer	Model No./Serial No.	Last Cal.
Site # 3	Х	Loop Antenna	Teseq	HLA6120 / 26739	Jul., 2014
	Х	Bilog Antenna	Schaffner Chase	CBL6112B/2673	Sep., 2013
	Х	Horn Antenna	Schwarzbeck	BBHA9120D/D305	Sep., 2013
	Х	Horn Antenna	Schwarzbeck	BBHA9170/208	Jul., 2014
	Х	Pre-Amplifier	QTK	QTK-AMP-03 / 0003	May, 2014
	Х	Pre-Amplifier	QTK	AP-180C / CHM_0906076	Sep., 2013
	Х	Pre-Amplifier	MITEQ	AMF-4D-180400-45-6P/ 925975	Mar, 2014
	Х	Spectrum Analyzer	Agilent	E4407B / US39440758	May, 2014
	Х	Test Receiver	R & S	ESCS 30/ 825442/018	Sep., 2013
	Х	Coaxial Cable	QuieTek	QTK-CABLE/ CAB5	Feb., 2014
	Х	Controller	QuieTek	QTK-CONTROLLER/ CTRL3	N/A
	Х	Coaxial Switch	Anritsu	MP59B/6200265729	N/A

Note: 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.


2. The test instruments marked with "X" are used to measure the final test results.

5.2. Test Setup

Radiated Emission Below 1GHz

Radiated Emission Above 1GHz

5.3. Limits

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 20dB below the level of the fundamental or to the general radiated emission limits in paragraph 15.209, whichever is the lesser attenuation.

FCC Part 15 Subpart C Paragraph 15.209(a) Limits						
Frequency MHz	Field strength	Measurement distance				
	(microvolts/meter)	(meter)				
0.009-0.490	2400/F(kHz)	300				
0.490-1.705	24000/F(kHz)	30				
1.705-30	30	30				
30-88	100	3				
88-216	150	3				
216-960	200	3				
Above 960	500	3				

Remarks: E field strength $(dBuV/m) = 20 \log E$ field strength (uV/m)

5.4. Test Procedure

The EUT was setup according to ANSI C63.10, 2009 and tested according to FCC KDB-789033 test procedure for compliance to FCC 47CFR 15. 407 requirements.

The EUT is placed on a turn table which is 0.8 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10, 2009 on radiated measurement.

The resolution bandwidth below 30MHz setting on the field strength meter is 9kHz and 30MHz~1GHz is 120kHz and above 1GHz is 1MHz.

Radiated emission measurements below 30MHz are made using Loop Antenna and 30MHz~1GHz are made using broadband Bilog antenna and above 1GHz are made using Horn Antennas. The measurement is divided into the Preliminary Measurement and the Final Measurement. The suspected frequencies are searched for in Preliminary Measurement with the measurement antenna kept pointed at the source of the emission both in azimuth and elevation, with the polarization of the antenna oriented for maximum response. The antenna is pointed at an angle towards the source of the emission, and the EUT is rotated in both height and polarization to maximize the measured emission. The emission is kept within the illumination area of the 3 dB bandwidth of the antenna. The worst radiated emission is measured in the Open Area Test Site on the Final Measurement.

5.5. Uncertainty

- ± 3.8 dB below 1GHz
- ± 3.9 dB above 1GHz

5.6. Test Result of Radiated Emission

Product	:	Wireless AP
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11a-6Mbps) (5180MHz)

Frequency	Correct Factor	Reading Level	Measurement Level	Margin	Limit
				15	
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector:					
10360.000	12.930	38.150	51.080	-22.920	74.000
15540.000	*	*	*	*	74.000
20720.000	*	*	*	*	74.000
25900.000	*	*	*	*	74.000
31080.000	*	*	*	*	74.000
36260.000	*	*	*	*	74.000
Average					
Detector:					
Vertical					
Peak Detector:					
10360.000	13.724	37.150	50.874	-23.126	74.000
20720.000	*	*	*	*	74.000
25900.000	*	*	*	*	74.000
31080.000	*	*	*	*	74.000
36260.000	*	*	*	*	74.000
Average					

Detector:

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	 Wireless AP Harmonic Radiated Emission Data No.3 OATS Mode 1: Transmit (802.11a-6Mbps) (5220MHz) 					
Frequency	Correct Factor	Reading Level	Measurement Level	Margin	Limit	
MHz	dB	dBuV	dBuV/m	dB	dBuV/m	
Horizontal						
Peak Detector:						
10440.000	13.322	39.630	52.952	-21.048	74.000	
15600.000	*	*	*	*	74.000	
20800.000	*	*	*	*	74.000	
26000.000	*	*	*	*	74.000	
31200.000	*	*	*	*	74.000	
36400.000	*	*	*	*	74.000	
Average						
Detector:						
Vertical						
Peak Detector:						
10440.000	14.245	38.590	52.835	-21.165	74.000	
20800.000	*	*	*	*	74.000	
26000.000	*	*	*	*	74.000	
31200.000	*	*	*	*	74.000	
36400.000	*	*	*	*	74.000	
Average						

Detector:

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	 Wireless AP Harmonic Radiated Emission Data No.3 OATS Mode 1: Transmit (802.11a-6Mbps) (5240MHz) 					
Frequency	Correct	Reading	Measurement	Margin	Limit	
	Factor	Level	Level			
MHz	dB	dBuV	dBuV/m	dB	dBuV/m	
Horizontal						
Peak Detector:						
10480.000	13.693	39.260	52.954	-21.046	74.000	
15720.000	*	*	*	*	74.000	
20960.000	*	*	*	*	74.000	
26200.000	*	*	*	*	74.000	
31440000	*	*	*	*	74.000	
36680.000	*	*	*	*	74.000	
Average						
Detector:						
Vertical						
Peak Detector:						
10480.000	14.620	38.110	52.731	-21.269	74.000	
20960.000	*	*	*	*	74.000	
26200.000	*	*	*	*	74.000	
31440000	*	*	*	*	74.000	
36680.000	*	*	*	*	74.000	
Average						

Detector:

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	 Wireless AP Harmonic Radiated Emission Data No.3 OATS Mode 2: Transmit (802.11n-20BW 14.4Mbps) (5180MHz) 					
Frequency	Correct	Reading	Measurement	Margin	Limit	
	Factor	Level	Level			
MHz	dB	dBuV	dBuV/m	dB	dBuV/m	
Horizontal						
Peak Detector:						
10360.000	12.930	38.150	51.080	-22.920	74.000	
15540.000	*	*	*	*	74.000	
20720.000	*	*	*	*	74.000	
25900.000	*	*	*	*	74.000	
31080.000	*	*	*	*	74.000	
36260.000	*	*	*	*	74.000	
Average						
Detector:						
Vertical						
Peak Detector:						
10360.000	13.724	37.150	50.874	-23.126	74.000	
20720.000	*	*	*	*	74.000	
25900.000	*	*	*	*	74.000	
31080.000	*	*	*	*	74.000	
36260.000	*	*	*	*	74.000	
Avorago						

Average

Detector:

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

_

Product Test Item Test Site Test Mode	 Wireless AP Harmonic Radiated Emission Data No.3 OATS Mode 2: Transmit (802.11n-20BW 14.4Mbps) (5220MHz) 				
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector:					
10440.000	13.322	37.590	50.912	-23.088	74.000
15660.000	*	*	*	*	74.000
20880.000	*	*	*	*	74.000
26100.000	*	*	*	*	74.000
31320.000	*	*	*	*	74.000
36540.000	*	*	*	*	74.000
Average					
Detector:					
Vertical					
Peak Detector:					
10440.000	14.245	37.150	51.395	-22.605	74.000
20880.000	*	*	*	*	74.000
26100.000	*	*	*	*	74.000
31320.000	*	*	*	*	74.000
36540.000	*	*	*	*	74.000
Average					
Detector:					

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	 Wireless AP Harmonic Radiated Emission Data No.3 OATS Mode 2: Transmit (802.11n-20BW 14.4Mbps) (5240MHz) 				
Test Mode	: Mode 2:	Transmit (802.11	111-20 D (v 14.4100ps)	(32401/112)	
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector:					
10480.000	13.693	38.150	51.844	-22.156	74.000
15720.000	*	*	*	*	74.000
20960.000	*	*	*	*	74.000
26200.000	*	*	*	*	74.000
31440.000	*	*	*	*	74.000
36680.000	*	*	*	*	74.000
Average					
Detector:					
Vertical					
Peak Detector:					
10480.000	14.620	38.260	52.881	-21.119	74.000
20960.000	*	*	*	*	74.000
26200.000	*	*	*	*	74.000
31440.000	*	*	*	*	74.000
36680.000	*	*	*	*	74.000
Average					

Detector:

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	 Wireless AP Harmonic Radiated Emission Data No.3 OATS Mode 3: Transmit (802.11n-40BW 30Mbps) (5190MHz) 				
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector:					
10380.000	12.939	37.590	50.529	-23.471	74.000
15570.000	*	*	*	*	74.000
20760.000	*	*	*	*	74.000
25950.000	*	*	*	*	74.000
31140.000	*	*	*	*	74.000
36330.000	*	*	*	*	74.000
Average					
Detector:					
Vertical					
Peak Detector:					
10380.000	13.796	39.260	53.056	-20.944	74.000
20760.000	*	*	*	*	74.000
25950.000	*	*	*	*	74.000
31140.000	*	*	*	*	74.000
36330.000	*	*	*	*	74.000
Average					
Detector					

Detector:

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	 Wireless AP Harmonic Radiated Emission Data No.3 OATS Mode 3: Transmit (802.11n-40BW 30Mbps) (5230MHz) 				
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level	C	
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector:					
10640.000	14.690	38.260	52.950	-21.050	74.000
15690.000	*	*	*	*	74.000
20920.000	*	*	*	*	74.000
26150.000	*	*	*	*	74.000
31380.000	*	*	*	*	74.000
36610.000	*	*	*	*	74.000
Average					
Detector:					
Vertical					
Peak Detector:					
10460.000	14.433	38.260	52.693	-21.307	74.000
20920.000	*	*	*	*	74.000
26150.000	*	*	*	*	74.000
31380.000	*	*	*	*	74.000
36610.000	*	*	*	*	74.000
Average					
Detector:					

Detector:

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	 Wireless AP General Radiated Emission No.3 OATS Mode 1: Transmit (802.11a-6Mbps) (5220MHz) 				
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector					
161.920	-11.626	47.213	35.588	-7.912	43.500
392.780	-2.096	36.327	34.231	-11.769	46.000
483.960	-0.688	36.919	36.232	-9.768	46.000
600.360	3.977	33.950	37.927	-8.073	46.000
712.880	3.569	27.806	31.375	-14.625	46.000
961.200	6.450	43.499	49.949	-4.051	54.000
Vertical Peak Detector					
111.480	-0.954	35.740	34.786	-8.714	43.500
181.320	-9.512	44.271	34.759	-8.741	43.500
222.060	-8.789	43.212	34.423	-11.577	46.000
286.080	-8.097	45.106	37.009	-8.991	46.000
365.620	-2.179	34.574	32.395	-13.605	46.000
747.800	2.166	30.672	32.838	-13.162	46.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

46.000

54.000

Product Test Item Test Site Test Mode	 Wireless AP General Radiated Emission No.3 OATS Mode 2: Transmit (802.11n-20BW 14.4Mbps) (5220MHz) 					
Frequency	Correct	Reading	Measurement	Margin	Limit	
	Factor	Level	Level			
MHz	dB	dBuV	dBuV/m	dB	dBuV/m	
Horizontal						
Peak Detector						
222.060	-10.439	45.017	34.578	-11.422	46.000	
505.300	0.308	31.268	31.576	-14.424	46.000	
664.380	2.062	29.952	32.014	-13.986	46.000	
747.800	3.296	29.620	32.916 -1	-13.084	46.000	
858.380	5.972	31.844	37.816	-8.184	46.000	
961.200	6.450	43.202	49.652	-4.348	54.000	
Vertical						
Peak Detector						
101.780	-0.021	34.656	34.634	-8.866	43.500	
171.620	-8.752	41.884	33.132	-10.368	43.500	
229.820	-8.512	44.640	36.128	-9.872	46.000	
363.680	-2.393	37.978	35.585	-10.415	46.000	

Note:

480.080

961.200

1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.

28.282

40.743

-17.718

-13.257

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.

32.641

33.483

4. Measurement Level = Reading Level + Correct Factor.

-4.359

7.260

- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product	: Wireless AP						
Test Item	: General Radiated Emission						
Test Site	: No.3 OATS						
Test Mode	: Mode 3	: Transmit (802.11	n-40BW 30Mbps) (5	230MHz)			
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector							
152.220	-10.135	41.859	31.724	-11.776	43.500		
402.480	-2.263	33.788	31.525	-14.475	46.000		
513.060	1.550	30.172	31.722	-14.278	46.000		
625.580	1.770	28.788	30.558	-15.442	46.000		
697.360	3.171	27.379	30.550	-15.450	46.000		
961.200	6.450 43.013	43.013	49.463	-4.537	54.000		
Vertical							
Peak Detector							
134.760	-4.648	37.232	32.584	-10.916	43.500		
355.920	-3.488	38.783	35.295	-10.705	46.000		
480.080	-4.359	36.246	31.887	-14.113	46.000		
600.360	-2.833	29.121	26.288	-19.712	46.000		
747.800	2.166	29.746	31.912	-14.088	46.000		
961.200	7.260	36.865	44.125	-9.875	54.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

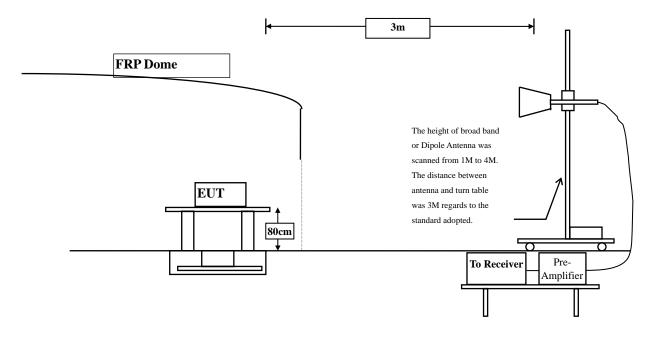
6. Band Edge

6.1. Test Equipment

RF Radiated Measurement:

The following test equipments are used during the band edge tests:

Test Site	Equipment		Manufacturer	Model No./Serial No.	Last Cal.
Site # 3		Bilog Antenna	Schaffner Chase	CBL6112B/2673	Sep., 2013
	Х	Horn Antenna	Schwarzbeck	BBHA9120D/D305	Sep., 2013
		Horn Antenna	Schwarzbeck	BBHA9170/208	Jul., 2013
		Pre-Amplifier	QTK	QTK-AMP-03 / 0003	May, 2014
	Х	Pre-Amplifier	QTK	AP-180C / CHM_0906076	Sep., 2013
		Pre-Amplifier	MITEQ	AMF-4D-180400-45-6P/ 925975	Mar, 2014
	Х	Spectrum Analyzer	Agilent	E4407B / US39440758	May, 2014
		Test Receiver	R & S	ESCS 30/ 825442/018	Sep., 2013
	Х	Coaxial Cable	QuieTek	QTK-CABLE/ CAB5	Feb., 2014
	Х	Controller	QuieTek	QTK-CONTROLLER/ CTRL3	N/A
	Х	Coaxial Switch	Anritsu	MP59B/6200265729	N/A


Note:

e: 1. All instruments are calibrated every one year.

2. The test instruments marked by "X" are used to measure the final test results.

6.2. Test Setup

RF Radiated Measurement:

6.3. Limits

The provisions of Section 15.205 of this part apply to intentional radiators operating under this section.

Radiated emissions which fall in the restricted bands, as defined in Section 15.205, must also comply with the radiated emission limits specified in Section 15.209:

FCC Part 15 Subpart C Paragraph 15.209 Limits					
Frequency MHz	uV/m @3m	dBuV/m@3m			
30-88	100	40			
88-216	150	43.5			
216-960	200	46			
Above 960	500	54			

Remarks : 1. RF Voltage $(dBuV) = 20 \log RF$ Voltage (uV)

2. In the Above Table, the tighter limit applies at the band edges.

3. Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.

6.4. Test Procedure

The EUT and its simulators are placed on a turn table which is 0.8 meter above ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna can move up and down between 1 meter and 4 meters to find out the maximum emission level.

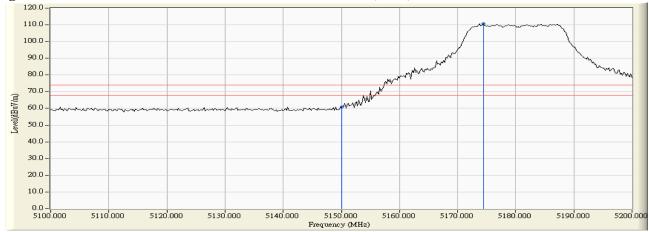
Both horizontal and vertical polarization of the antenna are set on measurement. In order to find the maximum emission, all of the interface cables must be manipulated according to ANSI C63.10:2009 on radiated measurement.

The bandwidth below 1GHz setting on the field strength meter is 120 kHz, above 1GHz are 1 MHz. The EUT was setup to ANSI C63.10, 2009; tested to NII test procedure of FCC KDB-789033 for compliance to FCC 47CFR Subpart E requirements.

6.5. Uncertainty

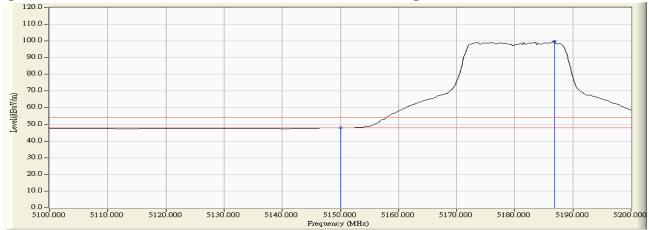
- \pm 3.8 dB below 1GHz
- \pm 3.9 dB above 1GHz

6.6. Test Result of Band Edge


Product	:	Wireless AP
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11a-6Mbps)-Channel 36

RF Radiated Measurement (Horizontal):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
Channel No.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
36 (Peak)	5150.000	3.340	57.410	60.750	74.00	54.00	Pass
36 (Peak)	5174.400	3.254	107.552	110.806			
36 (Average)	5150.000	3.340	44.568	47.908	74.00	54.00	Pass
36 (Average)	5186.800	3.210	96.604	99.814			


Figure Channel 36:

Horizontal (Peak)

Figure Channel 36:

Horizontal (Average)

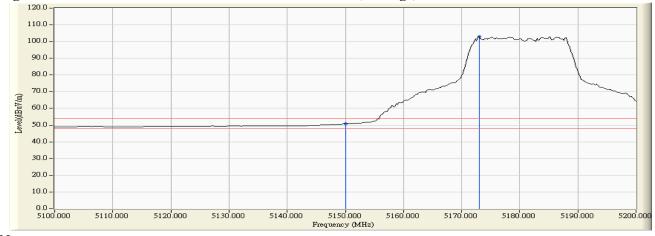
Note:1. All readings above 1GHz are performed with peak and/or average measurements as necessary.

- 2. Peak measurements: RBW = 1MHz, VBW = 3MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Wireless AP
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11a-6Mbps)-Channel 36

RF Radiated Measurement (Vertical):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Kesuit
36 (Peak)	5149.200	5.258	65.466	70.724	74.00	54.00	Pass
36 (Peak)	5150.000	5.260	64.745	70.005	74.00	54.00	Pass
36 (Peak)	5178.200	5.336	109.239	114.576			
36 (Average)	5150.000	5.260	45.427	50.687	74.00	54.00	Pass
36 (Average)	5173.000	5.323	97.593	102.916			

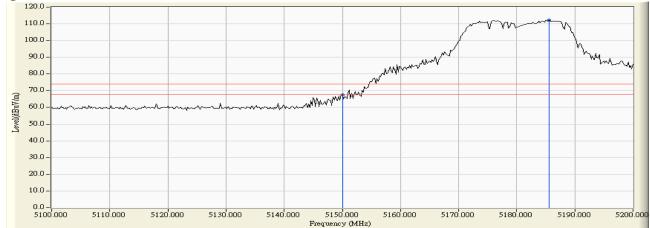

Figure Channel 36:

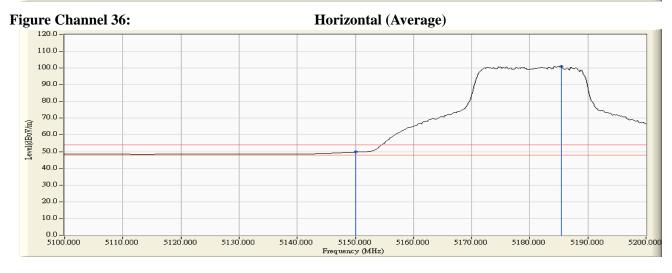
Vertical (Peak)

Figure Channel 36:

Vertical (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Product	:	Wireless AP
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11n-20BW 14.4Mbps) -Channel 36

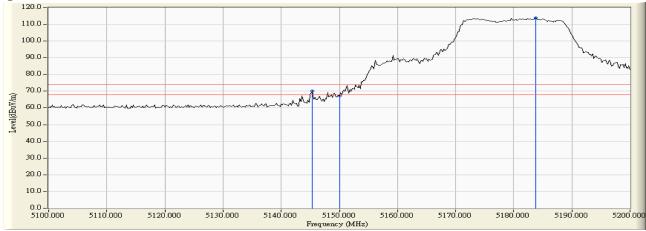

RF Radiated Measurement (Horizontal):

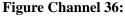
Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
36 (Peak)	5150.000	3.340	64.120	67.460	74.00	54.00	Pass
36 (Peak)	5185.600	3.215	108.945	112.159			
36 (Average)	5150.000	3.340	46.399	49.739	74.00	54.00	Pass
36 (Average)	5185.400	3.215	97.866	101.081			

Figure Channel 36:

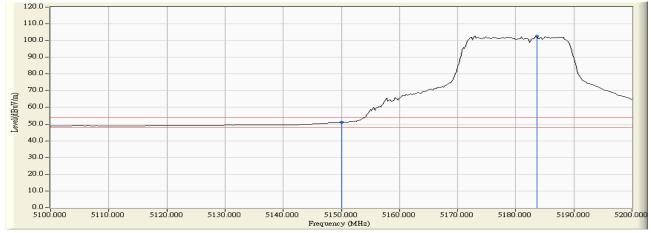
Horizontal (Peak)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Product	:	Wireless AP
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11n-20BW 14.4Mbps) -Channel 36


RF Radiated Measurement (Vertical):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
36 (Peak)	5145.400	5.247	64.990	70.237	74.00	54.00	Pass
36 (Peak)	5150.000	5.260	61.976	67.236	74.00	54.00	Pass
36 (Peak)	5183.800	5.352	108.381	113.733			
36 (Average)	5150.000	5.260	45.793	51.053	74.00	54.00	Pass
36 (Average)	5183.600	5.351	97.315	102.666			

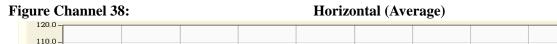

Figure Channel 36:

Vertical (Peak)

Vertical (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Wireless AP
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n-40BW 30Mbps) -Channel 38


RF Radiated Measurement (Horizontal):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
38 (Peak)	5149.600	3.342	68.629	71.971	74.00	54.00	Pass
38 (Peak)	5150.000	3.340	67.421	70.761	74.00	54.00	Pass
38 (Peak)	5187.200	3.208	103.009	106.218			
38 (Average)	5150.000	3.340	48.141	51.481	74.00	54.00	Pass
38 (Average)	5187.200	3.208	90.992	94.201			

Figure Channel 38:

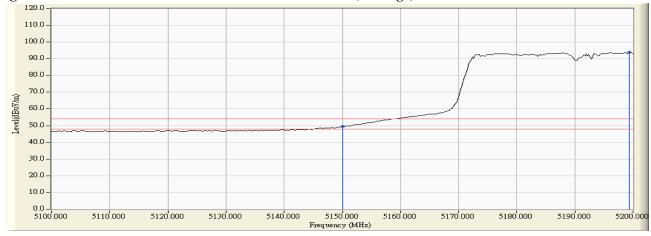
Horizontal (Peak)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Wireless AP
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n-40BW 30Mbps) -Channel 38

RF Radiated Measurement (Vertical):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
38 (Peak)	5150.000	5.260	64.965	70.225	74.00	54.00	Pass
38 (Peak)	5181.000	5.344	100.934	106.278			
38 (Average)	5150.000	5.260	44.141	49.401	74.00	54.00	Pass
38 (Average)	5199.400	5.386	88.612	93.997			

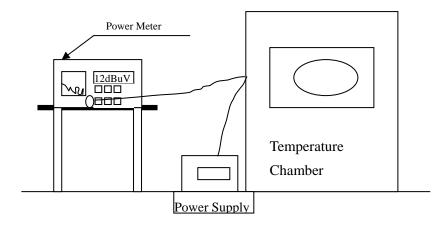

Figure Channel 38:

Vertical (Peak)

Vertical (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

7. Frequency Stability


7.1. Test Equipment

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun, 2014
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun, 2014
Х	Spectrum Analyzer	Agilent	N9010A/MY48030495	Apr., 2014

Note:

- 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.
- 2. The test instruments marked with "X" are used to measure the final test results.

7.2. Test Setup

7.3. Limits

Manufactures of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified

7.4. Test Procedure

The EUT was setup to ANSI C63.10, 2009; tested to NII test procedure of FCC KDB-789033 for compliance to FCC 47CFR Subpart E requirements.

7.5. Uncertainty

± 150 Hz

7.6. Test Result of Frequency Stability

Product	:	Wireless AP
Test Item	:	Frequency Stability
Test Site	:	Temperature Chamber
Test Mode	:	Carrier Wave

Chain A

Test Conditions		Channel	Frequency (MHz)	Frequency (MHz)	∆F (MHz)
		36	5180.0000	5180.0068	-0.0068
		38	5190.0000	5190.0043	-0.0043
Tnom (20) °C	Vnom (120)V	44	5220.0000	5220.0082	-0.0082
		46	5230.0000	5230.0069	-0.0069
		48	5240.0000	5240.0077	-0.0077
		36	5180.0000	5180.0070	-0.0070
		38	5190.0000	5190.0040	-0.0040
Tmax (50) °C	Vmax (138)V	44	5220.0000	5220.0080	-0.0080
		46	5230.0000	5230.0070	-0.0070
		48	5240.0000	5240.0071	-0.0071
	Vmin (102)V	36	5180.0000	5180.0069	-0.0069
		38	5190.0000	5190.0077	-0.0077
Tmax (50) °C		44	5220.0000	5220.0088	-0.0088
		46	5230.0000	5230.0074	-0.0074
		48	5240.0000	5240.0066	-0.0066
		36	5180.0000	5180.0064	-0.0064
		38	5190.0000	5190.0078	-0.0078
Tmin (0) °C	Vmax (138)V	44	5220.0000	5220.0094	-0.0094
		46	5230.0000	5230.0077	-0.0077
		48	5240.0000	5240.0082	-0.0082
		36	5180.0000	5180.0064	-0.0064
		38	5190.0000	5190.0078	-0.0078
Tmin (0) °C	Vmin (102)V	44	5220.0000	5220.0094	-0.0094
		46	5230.0000	5230.0077	-0.0077
		48	5240.0000	5240.0082	-0.0082

JIIAIII D					
Test Conditions		Channel	Frequency (MHz)	Frequency (MHz)	△F (MHz)
		36	5180.0000	5180.0065	-0.0065
		38	5190.0000	5190.0040	-0.0040
Tnom (20) °C	Vnom (120)V	44	5220.0000	5220.0077	-0.0077
		46	5230.0000	5230.0067	-0.0067
		48	5240.0000	5240.0074	-0.0074
Tmax (50) °C	Vmax (138)V	36	5180.0000	5180.0069	-0.0069
		38	5190.0000	5190.0041	-0.0041
		44	5220.0000	5220.0077	-0.0077
		46	5230.0000	5230.0069	-0.0069
		48	5240.0000	5240.0064	-0.0064
Tmax (50) °C	Vmin (102)V	36	5180.0000	5180.0063	-0.0063
		38	5190.0000	5190.0074	-0.0074
		44	5220.0000	5220.0087	-0.0087
		46	5230.0000	5230.0070	-0.0070
		48	5240.0000	5240.0063	-0.0063
Tmin (0) °C	Vmax (138)V	36	5180.0000	5180.0061	-0.0061
		38	5190.0000	5190.0077	-0.0077
		44	5220.0000	5220.0091	-0.0091
		46	5230.0000	5230.0077	-0.0077
		48	5240.0000	5240.0080	-0.0080
Tmin (0) °C	Vmin (102)V	36	5180.0000	5180.6300	-0.6300
		38	5190.0000	5190.0075	-0.0075
		44	5220.0000	5220.0084	-0.0084
		46	5230.0000	5230.0080	-0.0080
		48	5240.0000	5240.0087	-0.0087

8. EMI Reduction Method During Compliance Testing

No modification was made during testing.

Attachment 1: EUT Test Photographs

Attachment 2: EUT Detailed Photographs