

EMC Test Report

Application for Grant of Equipment Authorization

Industry Canada RSS-Gen Issue 3 / RSS 210 Issue 8 FCC Part 15, Subpart E

Model: NanoBridgeM5

IC CERTIFICATION #: 6545A-M5D

> FCC ID: SWX-NBM5D

APPLICANT: Ubiquiti Networks

> 91 E. Tasman Drive San Jose, CA 95134

TEST SITE(S): Elliott Laboratories

41039 Boyce Road.

Fremont, CA. 94538-2435

IC SITE REGISTRATION #: 2845B-3; 2845B-4, 2845B-5, 2845B-7

> REPORT DATE: February 7, 2012

FINAL TEST DATES: December 20, 2011 to January 20, 2012

TOTAL NUMBER OF PAGES: 158

PROGRAM MGR /

TECHNICAL REVIEWER

Mark E. Hill

Staff Engineer

QUALITY ASSURANCE DELEGATE / FINAL REPORT PREPARER:

David Guidotti

Senior Technical Writer

Elliott Laboratories is accredited by the A2LA, certificate number 0214.26, to perform the test(s) listed in this report, except where noted otherwise. This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except

Test Report Report Date: February 7, 2012

REVISION HISTORY

Rev#	Date	Comments	Modified
			By
-	2-7-2012	First release	

TABLE OF CONTENTS

REVISION HISTORY	2
TABLE OF CONTENTS	3
SCOPE	4
OBJECTIVE	4
STATEMENT OF COMPLIANCE	
DEVIATIONS FROM THE STANDARDS	
TEST RESULTS SUMMARY	
UNII / LELAN DEVICES	
GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS	8
MEASUREMENT UNCERTAINTIES	
EQUIPMENT UNDER TEST (EUT) DETAILS	
GENERAL	
OTHER EUT DETAILS	
ANTENNA SYSTEMENCLOSURE	
MODIFICATIONS	
SUPPORT EQUIPMENT	
EUT INTERFACE PORTS	
EUT OPERATION	
TEST SITE	
GENERAL INFORMATION	12
RADIATED EMISSIONS CONSIDERATIONS	
MEASUREMENT INSTRUMENTATION	
RECEIVER SYSTEM	
INSTRUMENT CONTROL COMPUTER FILTERS/ATTENUATORS	
ANTENNAS	
ANTENNA MAST AND EQUIPMENT TURNTABLE	14
INSTRUMENT CALIBRATION	14
TEST PROCEDURES	
EUT AND CABLE PLACEMENT	
RADIATED EMISSIONS	15
CONDUCTED EMISSIONS FROM ANTENNA PORTBANDWIDTH MEASUREMENTS	
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	
GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS	
RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS	20
FCC 15.407 (A) OUTPUT POWER LIMITS	
OUTPUT POWER LIMITS –LELAN DEVICES	
SPURIOUS EMISSIONS LIMITS –UNII AND LELAN DEVICES	
SAMPLE CALCULATIONS - CONDUCTED EMISSIONSSAMPLE CALCULATIONS - RADIATED EMISSIONS	
SAMPLE CALCULATIONS - RADIATED EMISSIONS	23
APPENDIX A TEST EQUIPMENT CALIBRATION DATA	
APPENDIX B TEST DATA	
END OF REPORT	

SCOPE

An electromagnetic emissions test has been performed on the Ubiquiti Networks model NanoBridgeM5, pursuant to the following rules:

Industry Canada RSS-Gen Issue 3

RSS 210 Issue 8 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment"

FCC Part 15, Subpart E requirements for UNII Devices (using FCC DA 02-2138, August 30, 2002)

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in Elliott Laboratories test procedures:

ANSI C63.4:2003 FCC UNII test procedure 2002-08 DA-02-2138, August 2002

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Industry Canada performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA, all unlicensed transmitters and transceivers require certification. Receive-only devices operating between 30 MHz and 960 MHz are subject to either certification or a manufacturer's declaration of conformity, with all other receive-only devices exempt from the technical requirements.

Prior to marketing in Canada, Class I transmitters, receivers and transceivers require certification. Class II devices are required to meet the appropriate technical requirements but are exempt from certification requirements.

Test Report

Report Date: February 7, 2012

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

STATEMENT OF COMPLIANCE

The tested sample of Ubiquiti Networks model NanoBridgeM5 complied with the requirements of the following regulations:

RSS 210 Issue 8 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" FCC Part 15, Subpart E requirements for UNII Devices

Maintenance of compliance is the responsibility of the manufacturer. Any modifications to the product should be assessed to determine their potential impact on the compliance status of the device with respect to the standards detailed in this test report.

The test results recorded herein are based on a single type test of Ubiquiti Networks model NanoBridgeM5 and therefore apply only to the tested sample. The sample was selected and prepared by Jennifer Sanchez of Ubiquiti Networks.

DEVIATIONS FROM THE STANDARDS

The following deviations were made from the published requirements listed in the scope of this report:

Per FCC KDB 194449, the non-restricted band emissions were measured using an averaging technique.

TEST RESULTS SUMMARY

UNII/LELAN DEVICES

Operation in the 5.25 - 5.35 GHz Band

Note: The device is intended for outdoor operation only, therefore the spectral density of spurious emissions in the 5.15 - 5.25 GHz band were limited to the -27dBm/MHz limit.

FCC	RSS	Description	Measured Value /	Limit / Requirement	Result
Rule Part	Rule Part	Description	Comments	Limit / Requirement	(margin)
15.407(a) (2)		26dB Bandwidth	HT5: 8.6MHz HT20: 26.6MHz HT40: 50.3MHz	N/A – limits output power if < 20MHz	N/A
15.407(a) (2)	A9.2(2)	Output Power	HT5: 0.4mW (-4.5dBm) HT20: 1.4mW (1.4dBm) HT40: 1.5mW (1.7dBm) (Max eirp: 0.942W)	17dBm (50mW)	Complies
15.407(a) (2)	-	Power Spectral Density	HT5:-11.7dBm/MHz HT20:-11.6dBm/MHz	-11.0dBm/MHz	Complies
-	A9.2(2) / A9.5 (2)	Power Spectral Density		11.0dBm/MHz	Complies

Operation in the 5.47 – 5.725 GHz Band

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)
15.407(a) (2)	1000 1 000	26dB Bandwidth	HT5: 8.8MHz HT20: 27.5MHz HT40:	N/A – limits output power if < 20MHz	N/A
15.407(a) (2)	A9.2(2)	Output Power	HT5: 0.3mW (-5.2dBm) HT20: 1.6mW (2.0dBm) HT40: 1.6mW (1.9dBm((Max eirp: 0.995W)	24 dBm / 250mW (eirp < 30dBm)	Complies
15.407(a) (2))		Power Spectral Density	HT5: -11.8dBm/MHz HT20:-11.1dBm/MHz	-11.0dBm/MHz	Complies
	A9.2(2) / A9.5 (2)	Power Spectral Density		11.0dBm/MHz	Complies
KDB 443999	A9	Non-operation in 5600 – 5650 MHz sub band	Device cannot operate in the 5600 – 5650 MHz band –refer to Operational Description		Complies

Requirements for all U-NII/LELAN bands

Requirements t	RSS	Description	Measured Value /	Limit / Requirement	Result
Rule Part	Rule Part	Description	Comments	-	Result
15.407	A9.5a	Modulation	Digital Modulation is used	Digital modulation is required	Complies
15.407(b) (5) / 15.209	A9.3	Spurious Emissions	53.9dBμV/m @ 5456.0MHz (-0.1dB)	Refer to page 21	Complies
15.407(a)(6)	-	Peak Excursion Ratio	HT5: 12.95dB HT20:1.89dB HT40:11.09dB	< 13dB	Complies
	A9.5 (3)	- Channel Selection	Spurious emissions tested at outermost channels in each band	Device was tested on the top, bottom	N/A
15		Chainer Sciection	Measurements on three channels in each band	and center channels in each band	Complies
15.407 (c)	A9.5(4)	Operation in the absence of information to transmit	Operation is discontinued in the absence of information	Device shall automatically discontinue operation in the absence of information to transmit	Complies
15.407 (g)	A9.5 (5)	Frequency Stability	Frequency stability is better than 10ppm	Signal shall remain within the allocated band	Complies
15.407 (h1)	A9.4	Transmit Power Control	TCP mechanism is discussed in the Operational Description	The U-NII device shall have the capability to operate with a mean EIRP value lower than 24dBm (250mW)	Complies
15.407 (h2)	A9.4	Dynamic frequency Selection (device with radar detection)	Refer to separate test report, reference R86019	Threshold -62dBm (-64dBm if eirp > 200mW) Channel Availability Check > 60s Channel closing transmission time < 260ms Channel move time < 10s Non occupancy period > 30minutes	Complies
	A9.9g	User Manual information	Refer to Exhibit 6 for details	Warning regarding interference from Satellite Systems	Complie

GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS

FCC Rule Part	RSS Rule part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)
15.203	-	RF Connector	Uses an integral antenna with a passive reflector	Unique or integral antenna required	Complies
15.207	RSS GEN Table 2	AC Conducted Emissions	Results not include	ded in this report	Complies
15.109	RSS GEN 7.2.3 Table 1	Receiver spurious emissions	53.3 dBμV/m @ 3120.1 MHz (-0.7 dB)	Refer to page 20	Complies
15.247 (b) (5) 15.407 (f)	RSS 102	RF Exposure Requirements	Refer to MPE calculations in Exhibit 11, RSS 102 declaration and User Manual statements.	Refer to OET 65, FCC Part 1 and RSS 102	Complies
-	RSP 100 RSS GEN 7.1.5	User Manual	Refer to Manual	Statement required regarding non-interference	Complies
-	RSP 100 RSS GEN 7.1.5	User Manual	Refer to Manual	Statement for products with detachable antenna	Complies
-	RSP 100 RSS GEN 4.4.1	99% Bandwidth	HT5: 5.4MHz HT20: 18.2MHz HT40: 36.5MHz	Information only	N/A

MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with UKAS document LAB 34.

Measurement Type	Measurement Unit	Frequency Range	Expanded Uncertainty
RF power, conducted (power meter)	dBm	25 to 7000 MHz	± 0.52 dB
RF power, conducted (Spectrum analyzer)	dBm	25 to 7000 MHz	± 0.7 dB
Conducted emission of transmitter	dBm	25 to 26500 MHz	± 0.7 dB
Conducted emission of receiver	dBm	25 to 26500 MHz	± 0.7 dB
Radiated emission (substitution method)	dBm	25 to 26500 MHz	± 2.5 dB
Radiated emission (field strength)	dBμV/m	25 to 1000 MHz 1000 to 40000 MHz	± 3.6 dB ± 6.0 dB
Conducted Emissions (AC Power)	dBμV	0.15 to 30 MHz	± 2.4 dB

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Ubiquiti Networks model NanoBridgeM5 is an outdoor, 2x2 wireless access point, operating in the 5 GHz band, powered by PoE. Since the EUT would be mounted on a pole or a wall during operation, the EUT was treated as floor standing equipment during testing to simulate the end-user environment. The electrical rating of the EUT is 24 VDC, 1 Amp.

The sample was received on December 20, 2011 and tested on December 20, 2011 to January 20, 2012. The EUT consisted of the following component(s):

Company	Model	Description	Serial Number	FCC ID
Ubiquiti	NanoBridgeM5	Wireless AP	Prototype	SWX-NBM5D
Networks	_			

OTHER EUT DETAILS

The EUT does not support single chain transmissions. Testing in HT20 was considered representative of legacy data rates.

ANTENNA SYSTEM

The antennas are internal and integral to the NanoBridgeM5 enclosure. The enclosure is mounted into a passive dish antenna, gain 25dBi.

ENCLOSURE

The EUT enclosure measures approximately 22 by 8.5 by 4.5 centimeters. It is primarily constructed of uncoated coated plastic.

MODIFICATIONS

No modifications were made to the EUT during the time the product was at Elliott.

SUPPORT EQUIPMENT

No local support equipment was used during testing.

The following equipment was used as remote support equipment for testing:

Company	Model	Description	Serial Number	FCC ID
Dell	Vostro	Laptop	-	-

EUT INTERFACE PORTS

The I/O cabling configuration during testing was as follows:

			Cable(s)	
Port	Connected To		Shielded	
		Description	or Unshielded	Length(m)
Ethernet	PoE injector (PoE)	Cat 5	Shielded	10.0
Ethernet (laptop)	PoE injector (LAN)	Cat 5	Unshielded	1.0
Power (injector)	AC mains	3 wire	Unshielded	2.0

EUT OPERATION

During testing, the EUT configured to transmit continuously on the noted channel at the lowest data rate, as this resulted in the highest output power.

TEST SITE

GENERAL INFORMATION

Final test measurements were taken at the test sites listed below. Pursuant to section 2.948 of the FCC's Rules and section 3.3 of RSP-100, construction, calibration, and equipment data has been filed with the Commission and with industry Canada.

Site	Registratio	Location	
Site	FCC	Canada	Location
Chamber 3	769238	2845B-3	41020 Daysa Dand
Chamber 4	211948	2845B-4	41039 Boyce Road Fremont,
Chamber 7	A2LA accreditation	2845B-7	CA 94538-2435

ANSI C63.4:2003 recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement. The test site(s) contain separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements of ANSI C63.4:2003.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment or in a semi-anechoic chamber. The test sites are maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4:2003 guidelines and meet the Normalized Site Attenuation (NSA) requirements of ANSI C63.4:2003.

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements. If the repetition frequency of the signal being measured is below 20Hz, peak measurements are made in lieu of Ouasi-Peak measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz, unless the signal is pulsed in which case the average (or video) bandwidth of the measuring instrument is reduced to onset of pulse desensitization and then increased.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde & Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A loop antenna is used below 30 MHz. For the measurement range 30 MHz to 1000 MHz either a combination of a biconical antenna and a log periodic or a bi-log antenna is used. Above 1000 MHz, horn antennas are used. The antenna calibration factors to convert the received voltage to an electric field strength are included with appropriate cable loss and amplifier gain factors to determine an overall site factor, which is then programmed into the test receivers or incorporated into the test software.

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a non-conductive antenna mast equipped with a motor-drive to vary the antenna height. Measurements below 30 MHz are made with the loop antenna at a fixed height of 1m above the ground plane.

ANSI C63.4:2003 specifies that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

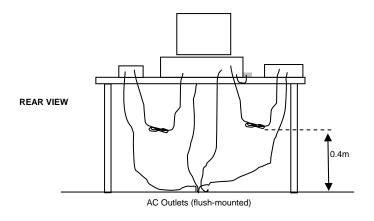
INSTRUMENT CALIBRATION

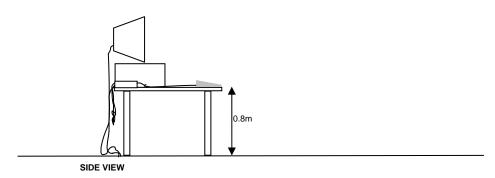
All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

TEST PROCEDURES

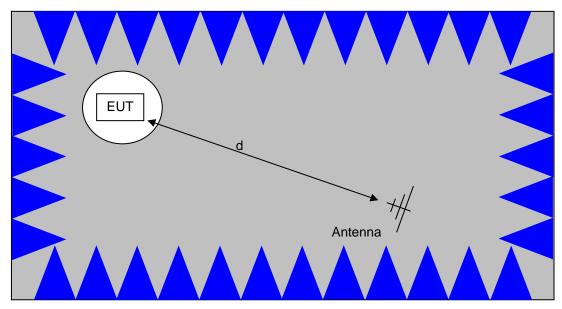
EUT AND CABLE PLACEMENT

The regulations require that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4:2003, and the worst-case orientation is used for final measurements.

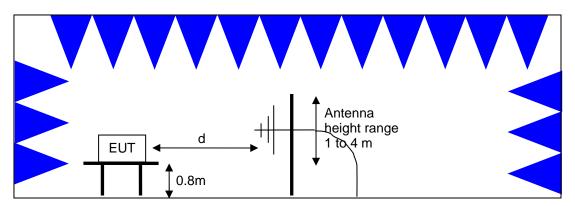

RADIATED EMISSIONS


A preliminary scan of the radiated emissions is performed in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed, one scan for each antenna polarization (horizontal and vertical; loop parallel and perpendicular to the EUT). During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied (for measurements above 30 MHz) and cable positions are varied to determine the highest emission relative to the limit. Preliminary scans may be performed in a fully anechoic chamber for the purposes of identifying the frequencies of the highest emissions from the EUT.

A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

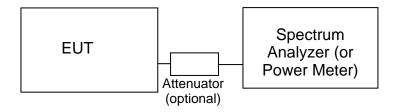

Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth, which results in the highest emission is then maintained while varying the antenna height from one to four meters (for measurements above 30 MHz, measurements below 30 MHz are made with the loop antenna at a fixed height of 1m). The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain.

When testing above 18 GHz, the receive antenna is located at 1meter from the EUT and the antenna height is restricted to a maximum of 2.5 meters.



Typical Test Configuration for Radiated Field Strength Measurements

The anechoic materials on the walls and ceiling ensure compliance with the normalized site attenuation requirements of CISPR 16 / CISPR 22 / ANSI C63.4 for an alternate test site at the measurement distances used.


Floor-standing equipment is placed on the floor with insulating supports between the unit and the ground plane.

<u>Test Configuration for Radiated Field Strength Measurements</u> Semi-Anechoic Chamber, Plan and Side Views

CONDUCTED EMISSIONS FROM ANTENNA PORT

Direct measurements of power, bandwidth and power spectral density are performed, where possible, with the antenna port of the EUT connected to either the power meter or spectrum analyzer via a suitable attenuator and/or filter. These are used to ensure that the front end of the measurement instrument is not overloaded by the fundamental transmission.

Test Configuration for Antenna Port Measurements

Measurement bandwidths (video and resolution) are set in accordance with the relevant standards and Elliott's test procedures for the type of radio being tested. When power measurements are made using a resolution bandwidth less than the signal bandwidth the power is calculated by summing the power across the signal bandwidth using either the analyzer channel power function or by capturing the trace data and calculating the power using software. In both cases the summed power is corrected to account for the equivalent noise bandwidth (ENBW) of the resolution bandwidth used.

If power averaging is used (typically for certain digital modulation techniques), the EUT is configured to transmit continuously. Power averaging is performed using either the built-in function of the analyzer or, if the analyzer does not feature power averaging, using external software. In both cases the average power is calculated over a number of sweeps (typically 100). When the EUT cannot be configured to continuously transmit then either the analyzer is configured to perform a gated sweep to ensure that the power is averaged over periods that the device is transmitting or power averaging is disabled and a max-hold feature is used.

If a power meter is used to make output power measurements the sensor head type (peak or average) is stated in the test data table.

BANDWIDTH MEASUREMENTS

The 6dB, 20dB and/or 26dB signal bandwidth is measured in using the bandwidths recommended by ANSI C63.4. When required, the 99% bandwidth is measured using the methods detailed in RSS GEN.

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions are given in units of microvolts, and the limits for radiated emissions are given in units of microvolts per meter at a specified test distance. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

For reference, converting the specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. These limits in both linear and logarithmic form are as follows:

GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from transmitters that fall in restricted bands¹ (with the exception of transmitters operating under FCC Part 15 Subpart D and RSS 210 Annex 9), the limits for all emissions from a low power device operating under the general rules of RSS 310 (tables 3 and 4), RSS 210 (table 2) and FCC Part 15 Subpart C section 15.209.

Frequency Range (MHz)	Limit (uV/m)	Limit (dBuV/m @ 3m)
0.009-0.490	2400/F _{KHz} @ 300m	67.6-20*log ₁₀ (F _{KHz}) @ 300m
0.490-1.705	24000/F _{KHz} @ 30m	87.6-20*log ₁₀ (F _{KHz}) @ 30m
1.705 to 30	30 @ 30m	29.5 @ 30m
30 to 88	100 @ 3m	40 @ 3m
88 to 216	150 @ 3m	43.5 @ 3m
216 to 960	200 @ 3m	46.0 @ 3m
Above 960	500 @ 3m	54.0 @ 3m

¹ The restricted bands are detailed in FCC 15.203, RSS 210 Table 1 and RSS 310 Table 2

RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from receivers as detailed in FCC Part 15.109, RSS 210 Table 2, RSS GEN Table 1 and RSS 310 Table 3. Note that receivers operating outside of the frequency range 30 MHz – 960 MHz are exempt from the requirements of 15.109.

Frequency Range (MHz)	Limit (uV/m @ 3m)	Limit (dBuV/m @ 3m)
30 to 88	100	40
88 to 216	150	43.5
216 to 960	200	46.0
Above 960	500	54.0

FCC 15.407 (a) OUTPUT POWER LIMITS

The table below shows the limits for output power and output power density. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency (MHz)	Output Power	Power Spectral Density
5150 - 5250	50mW (17 dBm)	4 dBm/MHz
5250 - 5350	250 mW (24 dBm)	11 dBm/MHz
5725 – 5825	1 Watts (30 dBm)	17 dBm/MHz

For system using antennas with gains exceeding 6dBi, the output power and power spectral density limits are reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 – 5825 MHz band may use antennas with gains of up to 23dBi without this limitation. If the gain exceeds 23dBi then the output power limit of 1 Watt is reduced by 1dB for every dB the gain exceeds 23dBi.

The peak excursion envelope is limited to 13dB.

OUTPUT POWER LIMITS -LELAN DEVICES

The table below shows the limits for output power and output power density defined by RSS 210. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency	Output Power	Power Spectral
(MHz)		Density
5150 - 5250	200mW (23 dBm) eirp	10 dBm/MHz eirp
5250 - 5350	250 mW (24 dBm) ² 1W (30dBm) eirp	11 dBm/MHz
5470 – 5725	250 mW (24 dBm) ³ 1W (30dBm) eirp	11 dBm/MHz
5725 – 5825	1 Watts (30 dBm) 4W eirp	17 dBm/MHz

In addition, the power spectral density limit shall be reduced by 1dB for every dB the highest power spectral density exceeds the "average" power spectral density) by more than 3dB. The "average" power spectral density is determined by dividing the output power by $10\log(EBW)$ where EBW is the 99% power bandwidth.

Fixed point-to-point applications using the 5725 – 5825 MHz band may use antennas with gains of up to 23dBi without this limitation. If the gain exceeds 23dBi then the output power limit of 1 Watt is reduced by 1dB for every dB the gain exceeds 23dBi.

SPURIOUS EMISSIONS LIMITS -UNII and LELAN DEVICES

The spurious emissions limits for signals below 1GHz are the FCC/RSS-GEN general limits. For emissions above 1GHz, signals in restricted bands are subject to the FCC/RSS GEN general limits. All other signals have a limit of –27dBm/MHz, which is a field strength of 68.3dBuV/m/MHz at a distance of 3m. This is an average limit so the peak value of the emission may not exceed –7dBm/MHz (88.3dBuV/m/MHz at a distance of 3m). For devices operating in the 5725-5850Mhz bands under the LELAN/UNII rules, the limit within 10Mhz of the allocated band is increased to –17dBm/MHz.

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$R_r - S = M$$

where:

 R_r = Receiver Reading in dBuV

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

² If EIRP exceeds 500mW the device must employ TPC

³ If EIRP exceeds 500mW the device must employ TPC

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor, when used for electric field measurements above 30MHz, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB

 D_m = Measurement Distance in meters

 D_S = Specification Distance in meters

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

$$F_d = 40*LOG_{10} (D_m/D_s)$$

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

$$M = R_c - L_s$$

where:

 R_r = Receiver Reading in dBuV/m

 F_d = Distance Factor in dB

 R_C = Corrected Reading in dBuV/m

 L_S = Specification Limit in dBuV/m

M = Margin in dB Relative to Spec

SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION

Where the radiated electric field strength is expressed in terms of the equivalent isotropic radiated power (eirp), or where a field strength measurement of output power is made in lieu of a direct measurement, the following formula is used to convert between eirp and field strength at a distance of d (meters) from the equipment under test:

E =
$$\frac{1000000 \sqrt{30 P}}{d}$$
 microvolts per meter
d
where P is the eirp (Watts)

For a measurement at 3m the conversion from a logarithmic value for field strength (dBuV/m) to an eirp power (dBm) is -95.3dB.

Appendix A Test Equipment Calibration Data

Radio Antenna Port (F	Power and Spurious Emissions), 2	21-Dec-11		
<u>Manufacturer</u>	<u>Description</u>	<u>Model</u>	Asset #	Cal Due
Hewlett Packard	SpecAn 30 Hz -40 GHz, SV	8564E (84125C)	1148	8/15/2012
	(SA40) Red			
Padio Antonna Port (Power and Spurious Emissions), 2	27-Dec-11		
Manufacturer	Description	Model	Asset #	Cal Due
Hewlett Packard	SpecAn 9 kHz - 40 GHz, FT	8564E (84125C)	1393	8/9/2012
	(SA40) Blue	()		
Dadia Antana Bant/E		00 D - 44		
Manufacturer	Power and Spurious Emissions), 2 Description	28-Dec-11 Model	Asset #	Cal Due
Hewlett Packard	SpecAn 9 kHz - 40 GHz, FT	8564E (84125C)	1393	8/9/2012
riewiett i ackard	(SA40) Blue	0304L (04123C)	1333	0/3/2012
	(3/1/3) 2/43			
	1000 - 10,000 MHz, 28-Dec-11			
<u>Manufacturer</u>	<u>Description</u>	<u>Model</u>	Asset #	Cal Due
EMCO	Antenna, Horn, 1-18 GHz	3115	1386	9/21/2012
Howlett Dookord	(SA40-Blu)	0.4.40D	2400	2/22/2012
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	2199	2/23/2012
Micro-Tronics	Band Reject Filter, 5470-5725	BRC50704-02	2240	10/4/2012
	MHz		-	
Hewlett Packard	SpecAn 9 kHz - 40 GHz, (SA40)	8564E (84125C)	2415	7/28/2012
	Purple			
Dadiated Emissions	1000 40000 MU= 20 Dec 44			
RADIATED EMISSIONS	UUUU			
	1000 - 40000 MHz, 30-Dec-11 Description	Model	Asset #	Cal Due
<u>Manufacturer</u>	<u>Description</u>	<u>Model</u> 3115	Asset #	<u>Cal Due</u> 9/21/2012
Manufacturer EMCO Hewlett Packard	Description Antenna, Horn, 1-18 GHz (SA40-Blu) 9kHz-40GHz Analyzer	3115 8564E	1386 2190	9/21/2012 8/26/2012
Manufacturer EMCO	Description Antenna, Horn, 1-18 GHz (SA40-Blu) 9kHz-40GHz Analyzer Microwave Preamplifier, 1-	3115	1386	9/21/2012
Manufacturer EMCO Hewlett Packard Hewlett Packard	Description Antenna, Horn, 1-18 GHz (SA40-Blu) 9kHz-40GHz Analyzer Microwave Preamplifier, 1- 26.5GHz	3115 8564E 8449B	1386 2190 2199	9/21/2012 8/26/2012 2/23/2012
Manufacturer EMCO Hewlett Packard	Description Antenna, Horn, 1-18 GHz (SA40-Blu) 9kHz-40GHz Analyzer Microwave Preamplifier, 1- 26.5GHz Band Reject Filter, 5150-5350	3115 8564E	1386 2190	9/21/2012 8/26/2012
Manufacturer EMCO Hewlett Packard Hewlett Packard	Description Antenna, Horn, 1-18 GHz (SA40-Blu) 9kHz-40GHz Analyzer Microwave Preamplifier, 1- 26.5GHz	3115 8564E 8449B	1386 2190 2199	9/21/2012 8/26/2012 2/23/2012
Manufacturer EMCO Hewlett Packard Hewlett Packard Micro-Tronics	Description Antenna, Horn, 1-18 GHz (SA40-Blu) 9kHz-40GHz Analyzer Microwave Preamplifier, 1- 26.5GHz Band Reject Filter, 5150-5350	3115 8564E 8449B	1386 2190 2199	9/21/2012 8/26/2012 2/23/2012
Manufacturer EMCO Hewlett Packard Hewlett Packard Micro-Tronics	Description Antenna, Horn, 1-18 GHz (SA40-Blu) 9kHz-40GHz Analyzer Microwave Preamplifier, 1- 26.5GHz Band Reject Filter, 5150-5350 MHz 1000 - 40,000 MHz, 30-Dec-11 Description	3115 8564E 8449B	1386 2190 2199	9/21/2012 8/26/2012 2/23/2012
Manufacturer EMCO Hewlett Packard Hewlett Packard Micro-Tronics Radiated Emissions, 2	Description Antenna, Horn, 1-18 GHz (SA40-Blu) 9kHz-40GHz Analyzer Microwave Preamplifier, 1- 26.5GHz Band Reject Filter, 5150-5350 MHz 1000 - 40,000 MHz, 30-Dec-11 Description Microwave Preamplifier, 1-	3115 8564E 8449B BRC50703-02	1386 2190 2199 2251	9/21/2012 8/26/2012 2/23/2012 10/11/2012
Manufacturer EMCO Hewlett Packard Hewlett Packard Micro-Tronics Radiated Emissions, a Manufacturer Hewlett Packard	Description Antenna, Horn, 1-18 GHz (SA40-Blu) 9kHz-40GHz Analyzer Microwave Preamplifier, 1- 26.5GHz Band Reject Filter, 5150-5350 MHz 1000 - 40,000 MHz, 30-Dec-11 Description Microwave Preamplifier, 1- 26.5GHz	3115 8564E 8449B BRC50703-02 Model 8449B	1386 2190 2199 2251 Asset # 263	9/21/2012 8/26/2012 2/23/2012 10/11/2012 <u>Cal Due</u> 12/9/2012
Manufacturer EMCO Hewlett Packard Hewlett Packard Micro-Tronics Radiated Emissions, Manufacturer	Description Antenna, Horn, 1-18 GHz (SA40-Blu) 9kHz-40GHz Analyzer Microwave Preamplifier, 1- 26.5GHz Band Reject Filter, 5150-5350 MHz 1000 - 40,000 MHz, 30-Dec-11 Description Microwave Preamplifier, 1- 26.5GHz Head (Inc flex cable, 1143,	3115 8564E 8449B BRC50703-02	1386 2190 2199 2251 Asset #	9/21/2012 8/26/2012 2/23/2012 10/11/2012 Cal Due
Manufacturer EMCO Hewlett Packard Hewlett Packard Micro-Tronics Radiated Emissions, Manufacturer Hewlett Packard Hewlett Packard	Description Antenna, Horn, 1-18 GHz (SA40-Blu) 9kHz-40GHz Analyzer Microwave Preamplifier, 1- 26.5GHz Band Reject Filter, 5150-5350 MHz 1000 - 40,000 MHz, 30-Dec-11 Description Microwave Preamplifier, 1- 26.5GHz Head (Inc flex cable, 1143, 2198) Red	3115 8564E 8449B BRC50703-02 Model 8449B 84125C	1386 2190 2199 2251 Asset # 263 1145	9/21/2012 8/26/2012 2/23/2012 10/11/2012 Cal Due 12/9/2012 2/17/2012
Manufacturer EMCO Hewlett Packard Hewlett Packard Micro-Tronics Radiated Emissions, a Manufacturer Hewlett Packard	Description Antenna, Horn, 1-18 GHz (SA40-Blu) 9kHz-40GHz Analyzer Microwave Preamplifier, 1- 26.5GHz Band Reject Filter, 5150-5350 MHz 1000 - 40,000 MHz, 30-Dec-11 Description Microwave Preamplifier, 1- 26.5GHz Head (Inc flex cable, 1143, 2198) Red SpecAn 30 Hz -40 GHz, SV	3115 8564E 8449B BRC50703-02 Model 8449B	1386 2190 2199 2251 Asset # 263	9/21/2012 8/26/2012 2/23/2012 10/11/2012 <u>Cal Due</u> 12/9/2012
Manufacturer EMCO Hewlett Packard Hewlett Packard Micro-Tronics Radiated Emissions, Manufacturer Hewlett Packard Hewlett Packard	Description Antenna, Horn, 1-18 GHz (SA40-Blu) 9kHz-40GHz Analyzer Microwave Preamplifier, 1- 26.5GHz Band Reject Filter, 5150-5350 MHz 1000 - 40,000 MHz, 30-Dec-11 Description Microwave Preamplifier, 1- 26.5GHz Head (Inc flex cable, 1143, 2198) Red	3115 8564E 8449B BRC50703-02 Model 8449B 84125C	1386 2190 2199 2251 Asset # 263 1145	9/21/2012 8/26/2012 2/23/2012 10/11/2012 Cal Due 12/9/2012 2/17/2012
Manufacturer EMCO Hewlett Packard Hewlett Packard Micro-Tronics Radiated Emissions, Manufacturer Hewlett Packard Hewlett Packard Hewlett Packard Hewlett Packard Hewlett Packard	Description Antenna, Horn, 1-18 GHz (SA40-Blu) 9kHz-40GHz Analyzer Microwave Preamplifier, 1- 26.5GHz Band Reject Filter, 5150-5350 MHz 1000 - 40,000 MHz, 30-Dec-11 Description Microwave Preamplifier, 1- 26.5GHz Head (Inc flex cable, 1143, 2198) Red SpecAn 30 Hz -40 GHz, SV (SA40) Red High Pass filter, 8.2 GHz (Red System)	3115 8564E 8449B BRC50703-02 Model 8449B 84125C 8564E (84125C) P/N 84300-80039 (84125C)	1386 2190 2199 2251 2251 Asset # 263 1145 1148 1152	9/21/2012 8/26/2012 2/23/2012 10/11/2012 Cal Due 12/9/2012 2/17/2012 8/15/2012 8/5/2012
Manufacturer EMCO Hewlett Packard Hewlett Packard Micro-Tronics Radiated Emissions, Manufacturer Hewlett Packard Hewlett Packard Hewlett Packard Hewlett Packard Hewlett Packard Hewlett Packard EMCO	Description Antenna, Horn, 1-18 GHz (SA40-Blu) 9kHz-40GHz Analyzer Microwave Preamplifier, 1- 26.5GHz Band Reject Filter, 5150-5350 MHz 1000 - 40,000 MHz, 30-Dec-11 Description Microwave Preamplifier, 1- 26.5GHz Head (Inc flex cable, 1143, 2198) Red SpecAn 30 Hz -40 GHz, SV (SA40) Red High Pass filter, 8.2 GHz (Red System) Antenna, Horn, 1-18 GHz	3115 8564E 8449B BRC50703-02 Model 8449B 84125C 8564E (84125C) P/N 84300-80039 (84125C) 3115	1386 2190 2199 2251 Asset # 263 1145 1148 1152 1561	9/21/2012 8/26/2012 2/23/2012 10/11/2012 Cal Due 12/9/2012 2/17/2012 8/15/2012 8/5/2012 6/22/2012
Manufacturer EMCO Hewlett Packard Hewlett Packard Micro-Tronics Radiated Emissions, Manufacturer Hewlett Packard Hewlett Packard Hewlett Packard Hewlett Packard Hewlett Packard	Description Antenna, Horn, 1-18 GHz (SA40-Blu) 9kHz-40GHz Analyzer Microwave Preamplifier, 1- 26.5GHz Band Reject Filter, 5150-5350 MHz 1000 - 40,000 MHz, 30-Dec-11 Description Microwave Preamplifier, 1- 26.5GHz Head (Inc flex cable, 1143, 2198) Red SpecAn 30 Hz -40 GHz, SV (SA40) Red High Pass filter, 8.2 GHz (Red System) Antenna, Horn, 1-18 GHz Band Reject Filter, 5470-5725	3115 8564E 8449B BRC50703-02 Model 8449B 84125C 8564E (84125C) P/N 84300-80039 (84125C)	1386 2190 2199 2251 2251 Asset # 263 1145 1148 1152	9/21/2012 8/26/2012 2/23/2012 10/11/2012 Cal Due 12/9/2012 2/17/2012 8/15/2012 8/5/2012
Manufacturer EMCO Hewlett Packard Hewlett Packard Micro-Tronics Radiated Emissions, Manufacturer Hewlett Packard Hewlett Packard Hewlett Packard Hewlett Packard Hewlett Packard Hewlett Packard EMCO	Description Antenna, Horn, 1-18 GHz (SA40-Blu) 9kHz-40GHz Analyzer Microwave Preamplifier, 1- 26.5GHz Band Reject Filter, 5150-5350 MHz 1000 - 40,000 MHz, 30-Dec-11 Description Microwave Preamplifier, 1- 26.5GHz Head (Inc flex cable, 1143, 2198) Red SpecAn 30 Hz -40 GHz, SV (SA40) Red High Pass filter, 8.2 GHz (Red System) Antenna, Horn, 1-18 GHz	3115 8564E 8449B BRC50703-02 Model 8449B 84125C 8564E (84125C) P/N 84300-80039 (84125C) 3115	1386 2190 2199 2251 Asset # 263 1145 1148 1152 1561	9/21/2012 8/26/2012 2/23/2012 10/11/2012 Cal Due 12/9/2012 2/17/2012 8/15/2012 8/5/2012 6/22/2012

Test Report Report Date: February 7, 2012

Radio Antenna Port (F	Power and Spurious Emissions), ()5-Jan-12		
Manufacturer Agilent	Description PSA, Spectrum Analyzer, (installed options, 111, 115, 123,	Model E4446A	Asset # 2139	<u>Cal Due</u> 1/26/2012
	1DS, B7J, HYX,			
Radiated Emissions,	1,000 - 6,500 MHz, 20-Jan-12			
<u>Manufacturer</u>	<u>Description</u>	<u>Model</u>	Asset #	Cal Due
EMCO	Antenna, Horn, 1-18 GHz (SA40-Blu)	3115	1386	9/21/2012
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	2199	2/23/2012
Hewlett Packard	SpecAn 9 kHz - 40 GHz, (SA40) Purple	8564E (84125C)	2415	7/28/2012
	i dipio			
UNII Radiated Spuriou	ıs Emissions, 24-Jan-12			
<u>Manufacturer</u>	<u>Description</u>	<u>Model</u>	Asset #	Cal Due
Hewlett Packard	High Pass filter, 8.2 GHz	P/N 84300-80039	1156	6/24/2012
EMCO	Antenna, Horn, 1-18 GHz (SA40-Blu)	3115	1386	9/21/2012
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	2199	2/23/2012
Micro-Tronics	Band Reject Filter, 5150-5350 MHz	BRC50703-02	2251	10/11/2012
Hewlett Packard	SpecAn 9 kHz - 40 GHz, (SA40) Purple	8564E (84125C)	2415	7/28/2012

Appendix B Test Data

T85882 Pages 27 - 157

Ellio	tt Frompany	Ei	MC Test Data
Client:	Ubiquiti Networks	Job Number:	J85880
Model:	NanoBridge M5	T-Log Number:	T85882
		Account Manager:	Susan Pelzl
Contact:	Jennifer Sanchez		-
Emissions Standard(s):	FCC 15.407, RSS-210 Issue 8	Class:	-
Immunity Standard(s):	-	Environment:	-

EMC Test Data

For The

Ubiquiti Networks

Model

NanoBridge M5

Date of Last Test: 2/3/2012

	Elliott An 公孙 company	EMC Test Date		
Client:	Ubiquiti Networks	Job Number: J85880		
Model	NanoBridge M5	T-Log Number: T85882		
Model.	Nahobilage MS	Account Manager: Susan Pelzl		
Contact:	Jennifer Sanchez			
Standard:	FCC 15.407, RSS-210 Issue 8	Class: N/A		

RSS-210 (LELAN) and FCC 15.407(UNII) Antenna Port Measurements

Power, PSD, Peak Excursion, Bandwidth and Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 12/20/2011 22:12 Config. Used: 1
Test Engineer: Rafael Varelas Config Change: None
Test Location: Fremont Chamber #3 EUT Voltage: POE

Summary of Results

Run #	Test Performed	Limit	Pass / Fail	Result / Margin
1	Power, 5250 - 5350MHz	15.407(a) (1), (2)	Pass	HT5: -4.5dBm
1	PSD, 5250 - 5350MHz	15.407(a) (1), (2)	Pass	HT5: -11.7dBm/MHz
1	Max EIRP 5250 - 5350MHz	TPC required if EIRP≥ 500mW (27dBm). EIRP≥ 200mW (23dBm) DFS threshold = -64dBm.	Pass	EIRP = 23.5dBm (225mW)
1	Power, 5470 - 5725MHz	15.407(a) (1), (2)	Pass	HT5: -5.2dBm
1	PSD, 5470 - 5725MHz	15.407(a) (1), (2)	Pass	HT5: -11.8dBm/MHz
1	Max EIRP 5470 - 5725MHz	TPC required if EIRP≥ 500mW (27dBm). EIRP ≥ 200mW (23dBm) DFS threshold = -64dBm.	Pass	EIRP = 22.8dBm (192mW)
1	26dB Bandwidth	15.407 (Information only)	-	8.6MHz
1	99% Bandwidth	RSS 210 (Information only)	N/A	HT5: 5.4 MHz
2	Peak Excursion Envelope	15.407(a) (6) 13dB	Pass	12.95dB
3	Antenna Conducted - Out of Band Spurious	15.407(b) -27dBm/MHz	Pass	All emissions below the -27dBm/MHz limit

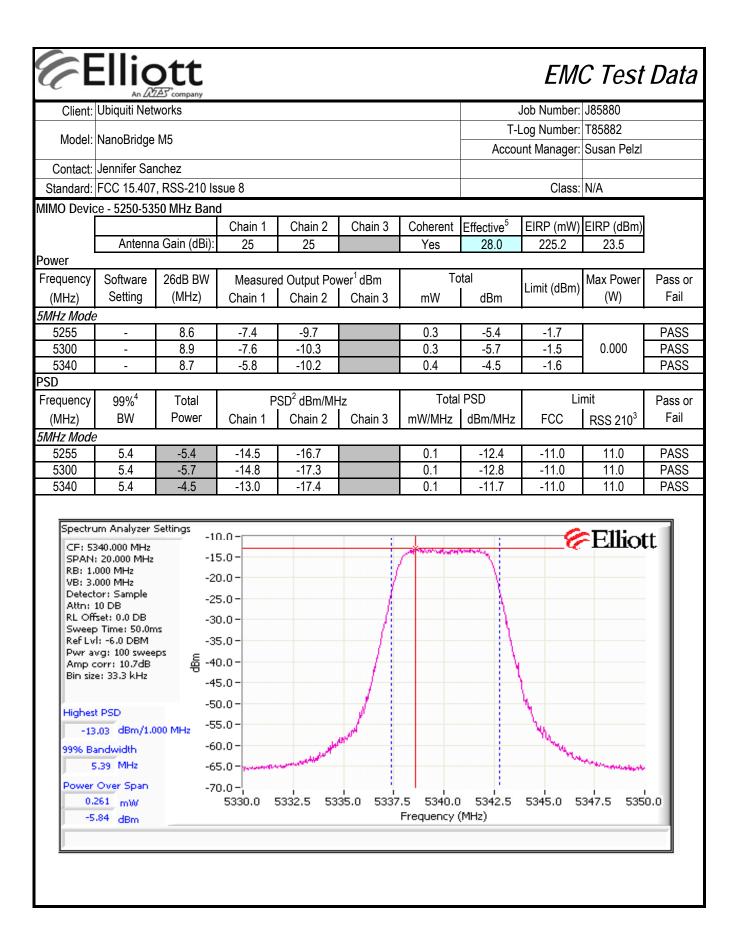
	Iliott EMC Test D		
Client:	Ubiquiti Networks	Job Number:	J85880
Madal	NanoBridge M5	T-Log Number:	T85882
Model.	Indition to the control of the con	Account Manager:	Susan Pelzl
Contact:	Jennifer Sanchez		
Standard:	FCC 15.407, RSS-210 Issue 8	Class:	N/A

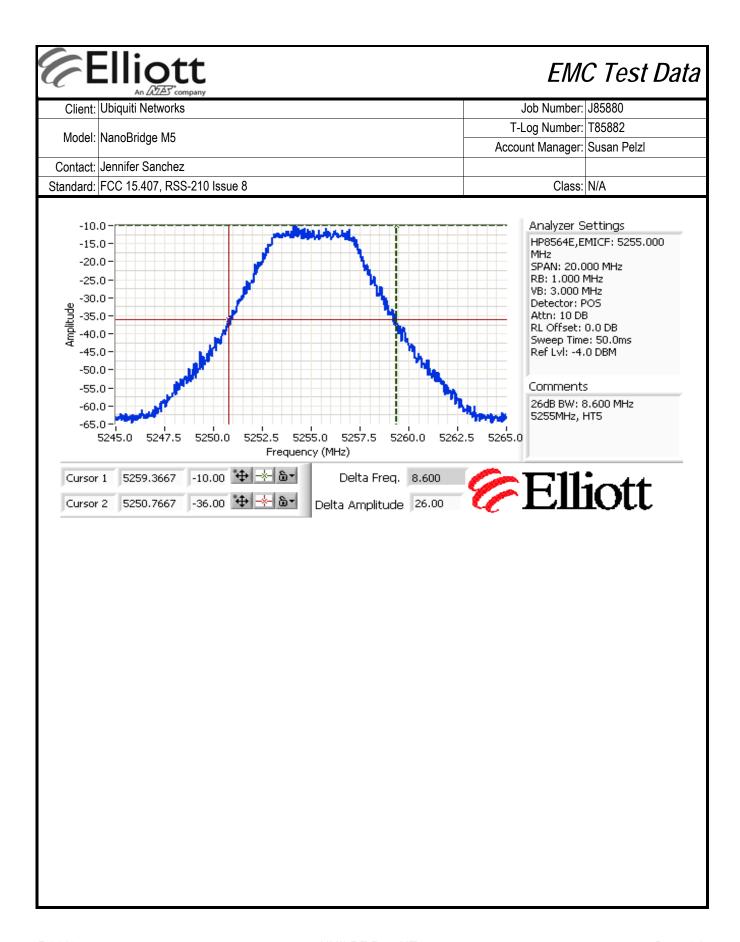
General Test Configuration

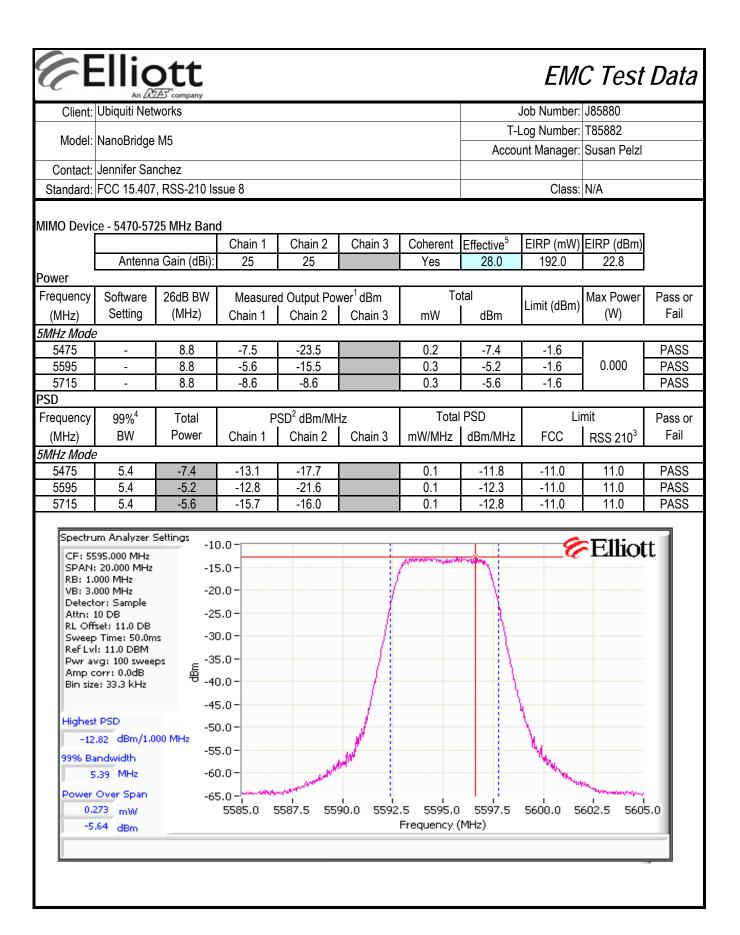
When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to the spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators and cables used.

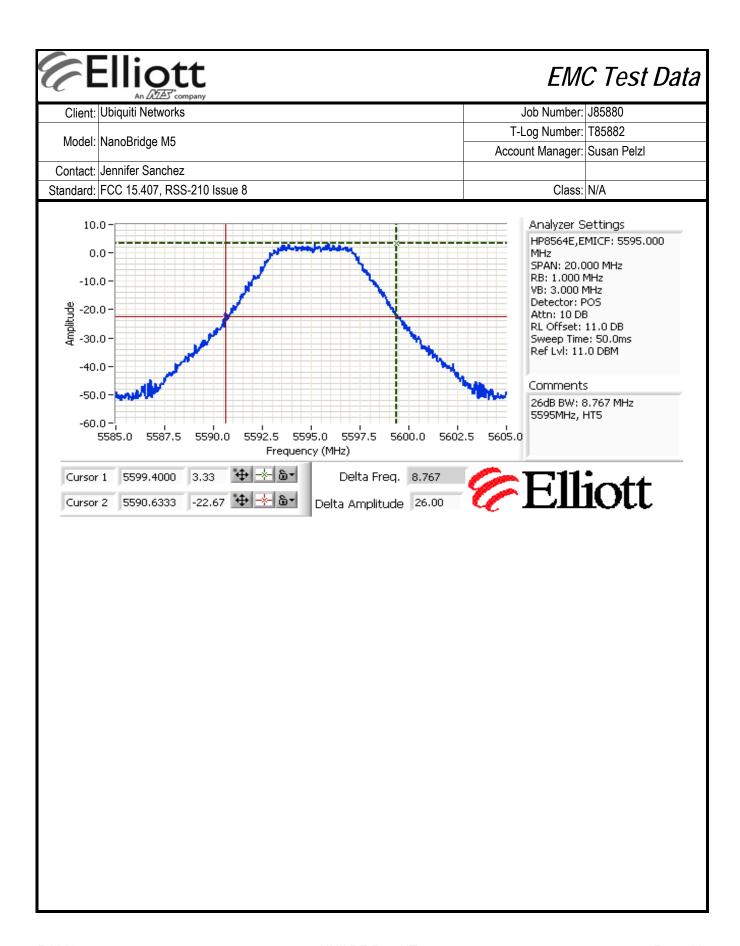
Ambient Conditions:

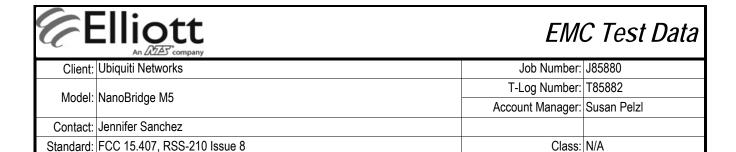
Temperature: 22.1 °C Rel. Humidity: 35 %

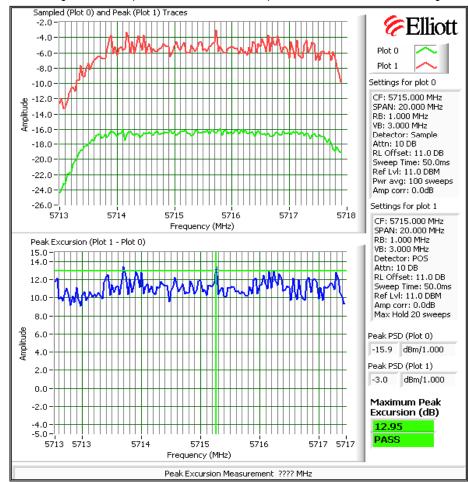

Modifications Made During Testing


No modifications were made to the EUT during testing


Deviations From The Standard


No deviations were made from the requirements of the standard.


Run #1: Ba	ndwidth, Output Power and Power Spectral Density - MIMO Systems
	Output power measured using a spectrum analyzer (see plots below). RBW=1MHz, VB=3 MHz, # of points in sweep ≥
Note 1:	2*span/RBW, sample detector, power averaging on (transmitted signal was continuous) and power integration over 50 MHz
	(method SA-1 of KDB 789033).
Note 2:	Measured using the same analyzer settings used for output power.
	For RSS-210 the limit for the 5150 - 5250 MHz band accounts for the antenna gain as the maximum eirp allowed is
Note 3:	10dBm/MHz. The limits are also corrected for instances where the highest measured value of the PSD exceeds the average
NOIG 3.	PSD (calculated from the measured power divided by the measured 99% bandwidth) by more than 3dB by the amount that
	the measured value exceeds the average by more than 3dB.
	99% Bandwidth measured in accordance with RSS GEN - RB > 1% of span and VB >=3xRB
	For MIMO systems the total output power and total PSD are calculated form the sum of the powers of the individual chains
	(in linear terms). The antenna gain used to determine the EIRP and limits for PSD/Output power depends on the operating
Note 5	mode of the MIMO device. If the signals on the non-coherent between the transmit chains then the gain used to determine
Note 5.	the limits is the highest gain of the individual chains and the EIRP is the sum of the products of gain and power on each
	chain. If the signals are coherent then the effective antenna gain is the sum (in linear terms) of the gains for each chain and
	the EIRP is the product of the effective gain and total power.


Run #2: Peak Excursion Measurement

Freq	Peak Excursion(dB)		Freq	Peak Excursion(dB)		Freq	Peak Excu	ursion(dB)
(MHz)	Value	Limit	(MHz)	Value Limit		(MHz)	Value	Limit
5180		13.0	5255	12.73/12.50	13.0	5475	10/10.21	13.0
5200		13.0	5300	11.87/11.81	13.0	5595	11.49/10.58	13.0
5240		13.0	5340	12.94/12.56	13.0	5715	12.69/12.95	13.0

Plots Showing Peak Excursion

Trace A: RBW = 1MHz, VBW = 3MHz, Peak hold

Trace B: Same settings as used for power/PSD measurements (RBW = 1 MHz, VBW = 3MHz, Integrated average power)

6	E	li (tt	

EMC Test Data

	All ZAZZS company		
Client:	Ubiquiti Networks	Job Number:	J85880
Model:	NanaBridge ME	T-Log Number:	T85882
	NanoBridge M5	Account Manager:	Susan Pelzl
Contact:	Jennifer Sanchez		
Standard:	FCC 15.407, RSS-210 Issue 8	Class:	N/A

Run #3: Out Of Band Spurious Emissions - Antenna Conducted

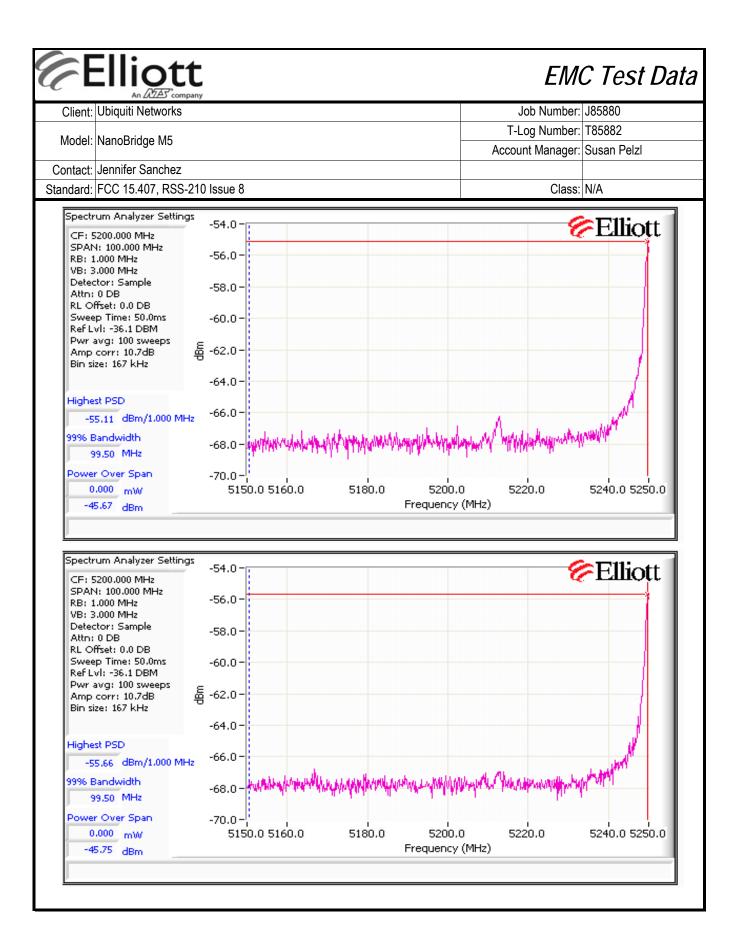
MIMO Devices: Antenna gain used is the effective gain calculated in the power section of this data sheet. The plots were obtained for each chain individually and the limit was adjusted to account for all chains transmitting simultaneously

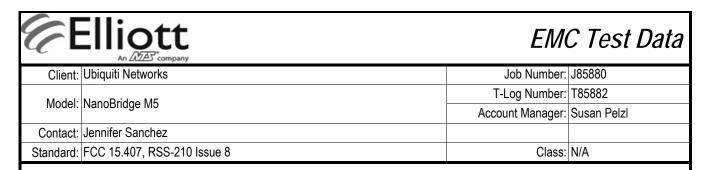
Number of transmit chains:

Maximum Antenna Gain: 25.0 dBi

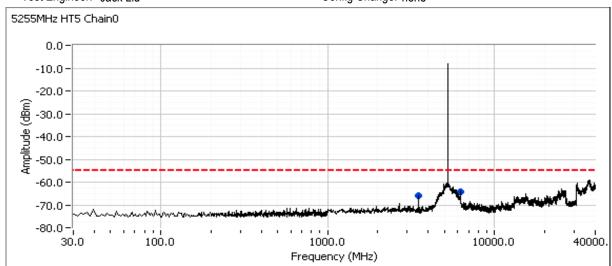
Spurious Limit: -27.0 dBm/MHz eirp
Adjustment for 2 chains: -3.0 dB adjustment for multiple chains.
Limit Used On Plots Note 1: -55.0 dBm/MHz Peak Limit (RB=VB=1MHz)

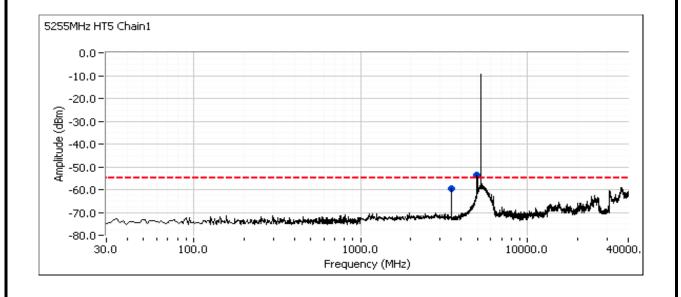
Note 1:	The -27dBm/MHz limit is an eirp limit. The limit for antenna port conducted measurements is adjusted to take into consideration the maximum antenna gain (limit = -27dBm - antenna gain). Radiated field strength measurements for signals more than 50MHz from the bands and that are close to the limit are made to determine compliance as the antenna gain is not known at these frequencies.
Note 2:	All spurious signals below 1GHz are measured during digital device radiated emissions test.
Note 3:	Signals within 10MHz of the 5.725 or 5.825 Band edge are subject to a limit of -17dBm EIRP
Note 4:	If the device is for outdoor use then the -27dBm eirp limit also applies in the 5150 - 5250 MHz band.
Note 5:	Signals that fall in the restricted bands of 15.205 are subject to the limit of 15.209.


Plots Showing Out-Of-Band Emissions (RBW=VBW=1MHz)


Low channel, 5250 - 5350 MHz Band - 5MHz

Plots for each chain showing compliance with the -27dBm/MHz limit in the 5150 - 5250 MHz band. Start and stop frequencies set to 5150-5250 MHz, RB=1MHz, VB=3MHz, power averaging enabled (100 traces):

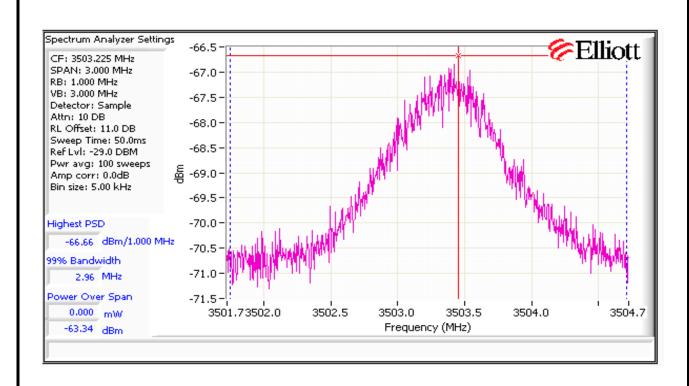

Channel frequency: 5255 MHz - 25dBi antenna

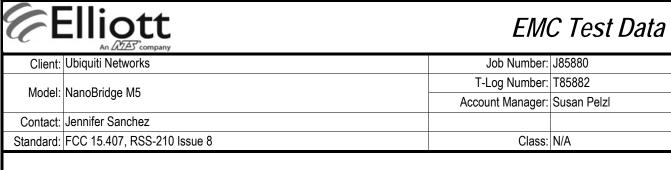

	Power	Band edge Level		Antenna	EIRP		Total EIRP	Limit	Result
	Setting	dBm/MHz	mW/MHz	Gain (dBi)	mW/MHz	dBm/MHz	dBm/MHz	dBm/MHz	L/G9011
Chain 1	-	-55.1	0.00000	25.0	0.0009772	-30.1	-27.4	-27	PASS
Chain 2		-55.7	0.00000	25.0	0.000859	-30.7			

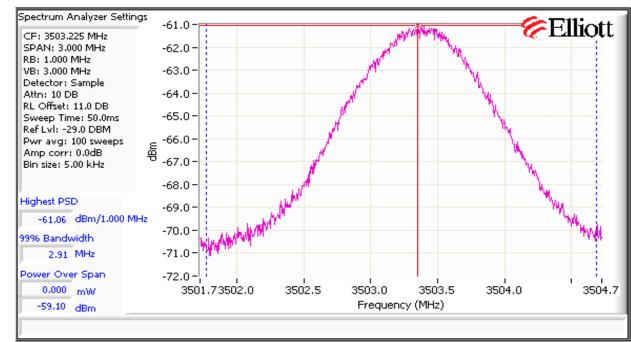
Date of Test: 12/21/2011 Test Location: FT Chamber#4
Test Engineer: Jack Liu Config Change: none

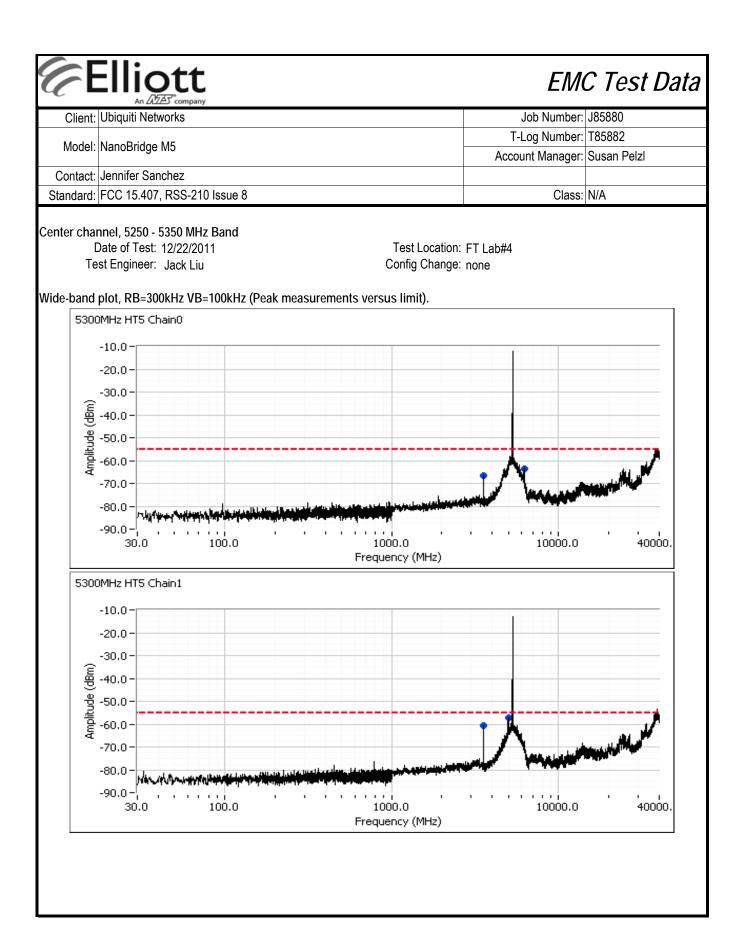
Client:	Ubiquiti Networks	Job Number:	J85880
Model:	NanaPridge ME	T-Log Number:	T85882
	NanoBridge M5	Account Manager:	Susan Pelzl
Contact:	Jennifer Sanchez		
Standard:	FCC 15.407, RSS-210 Issue 8	Class:	N/A

Wide-band result RB=1MHz VB=3MHz (Peak measurements versus limit).


	, , , , , , , , , , , , , , , , , , , ,												
Frequency	Level	Port	FCC 15 E / RSS 210		Detector	Comment							
MHz	dBm		Limit	Margin	Pk/QP/Avg	channel	mode/Chain	Ant. gain	Setting	Note			
3502.800	-57.8	RF Port	-55.0	-2.8	PK	5255MHz	HT5/0	25	0.0	Note 1			
6242.300	-58.2	RF Port	-55.0	-3.2	PK	5255MHz	HT5/0	25	0.0	Note 1			
4983.500	-46.0	RF Port	-	-	PK	5255MHz	HT5/1	25	0.0	Note 2			
3503.380	•	RF Port	-	-	PK	5255MHz	HT5/1	25	0.0	Note 3			


Note 1	Un-restricted signal.
Note 2	Restricted band signal. Refer to the radiated spurious emissions results.
Note 3	Final measurements performed using 100sweep sample detector method. See below for final results.


5255MHz HT5

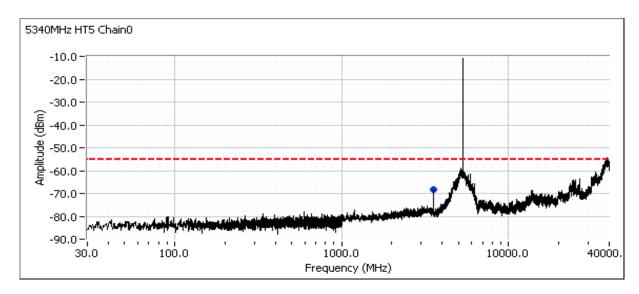

Eval 3503MHz using 100Sweep tech

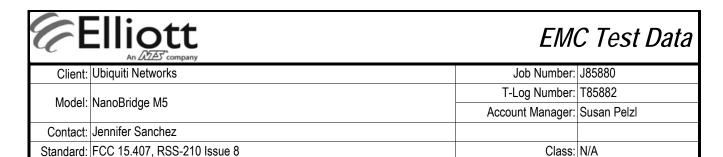
	Power	Band edge Level		Antenna	EIRP		Total EIRP Limit		Result
	Setting	dBm/MHz	mW/MHz	Gain (dBi)	mW/MHz	dBm/MHz	dBm/MHz	dBm/MHz	IV690II
Chain 1		-66.7	0.00000	25.0	0.000068	-41.7	-35.0	27	PASS
Chain 2	_	-61.1	0.00000	25.0	0.0002477	-36.1	-55.0	-21	FASS

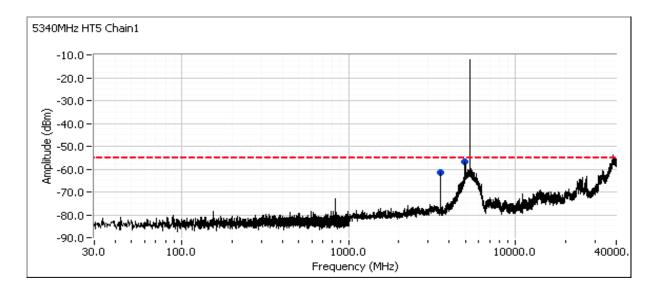
Client:	Ubiquiti Networks	Job Number:	J85880
Model:	NanaPridge ME	T-Log Number:	T85882
	NanoBridge M5	Account Manager:	Susan Pelzl
Contact:	Jennifer Sanchez		
Standard:	FCC 15.407, RSS-210 Issue 8	Class:	N/A

Wide-band result RB=1MHz VB=3MHz (Peak measurements versus limit).

Frequency	Level	Port	FCC 15 E / RSS 210		Detector	Comment							
MHz	dBm		Limit	Margin	Pk/QP/Avg	channel	mode/Chain	Ant. gain	Setting	Note			
3533.230	-64.9	RF Port	-55.0	-9.9	PK	5300MHz	HT5/0	25	0.0	Note 1			
6231.880	-59.2	RF Port	-55.0	-4.2	PK	5300MHz	HT5/0	25	0.0	Note 1			
3533.470	-59.1	RF Port	-54.0	-5.1	PK	5300MHz	HT5/1	25	0.0	Note 1			
4991.460	-49.2	RF Port	-	-	PK	5300MHz	HT5/1	25	0.0	Note 2			


Note 1	Un-restricted signal
Note 2	Restricted band signal. Refer to the radiated spurious emissions results.


High channel, 5250 - 5350 MHz Band


Note - compliance with the radiated limits for the restricted band immediately above 5350MHz is demonstrated through the radiated emissions tests.

Wide-band plot, RB=300kHz VB=100kHz (Peak measurements versus limit).

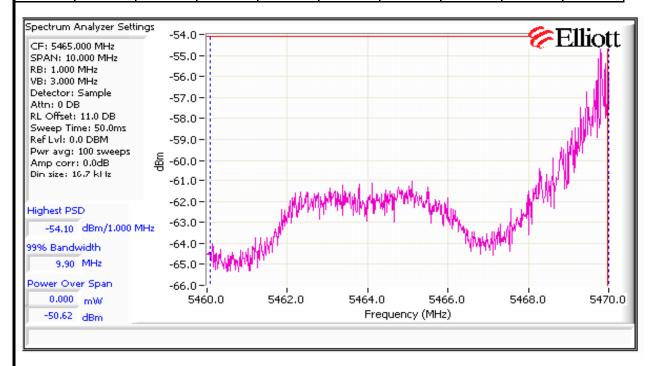
Date of Test: 12/22/2011 Test Location: FT Lab#4
Test Engineer: Jack Liu Config Change: none

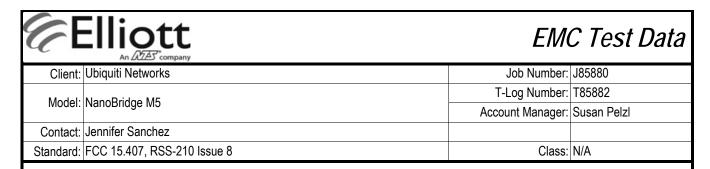
Wide-band result RB=1MHz VB=3MHz (Peak measurements versus limit).

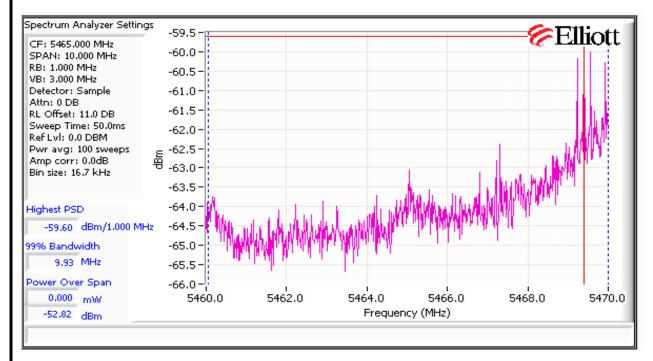
Frequency	Level	Port	FCC 15 E / RSS 210		Detector	Comment				
MHz	dBm		Limit	Margin	Pk/QP/Avg	channel	mode/Chain	Ant. gain	Setting	Note
3560.060	-64.4	RF Port	-55.0	-9.4	PK	5340MHz	HT5/0	25	0.0	Note 1
3560.120	-59.5	RF Port	-55.0	-4.5	PK	5340MHz	HT5/1	25	0.0	Note 1
4975.100	-50.1	RF Port	-	-	PK	5340MHz	HT5/1	25	0.0	Note 2

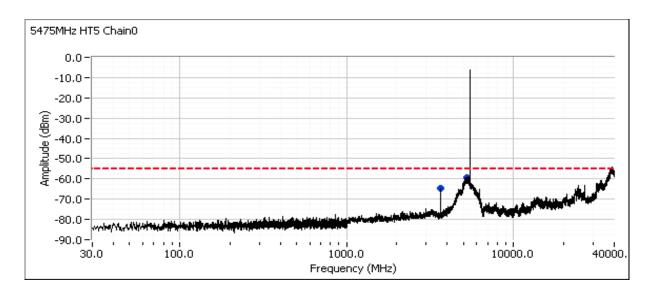
Note 1 Un-restricted signal

Note 2 Restricted band signal. Refer to the radiated spurious emissions results.

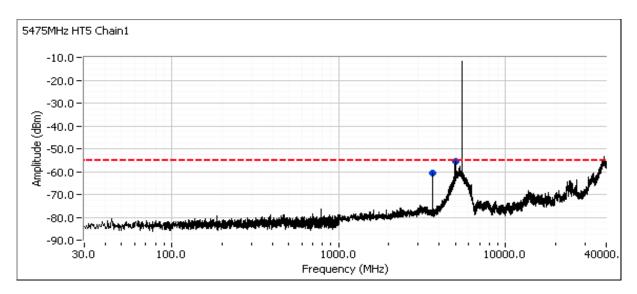



	All ZAZZS company		
Client:	Ubiquiti Networks	Job Number:	J85880
	NanaBridge ME	T-Log Number:	T85882
	NanoBridge M5	Account Manager:	Susan Pelzl
Contact:	Jennifer Sanchez		
Standard:	FCC 15.407, RSS-210 Issue 8	Class:	N/A


Low channel, 5470 - 5725 MHz Band

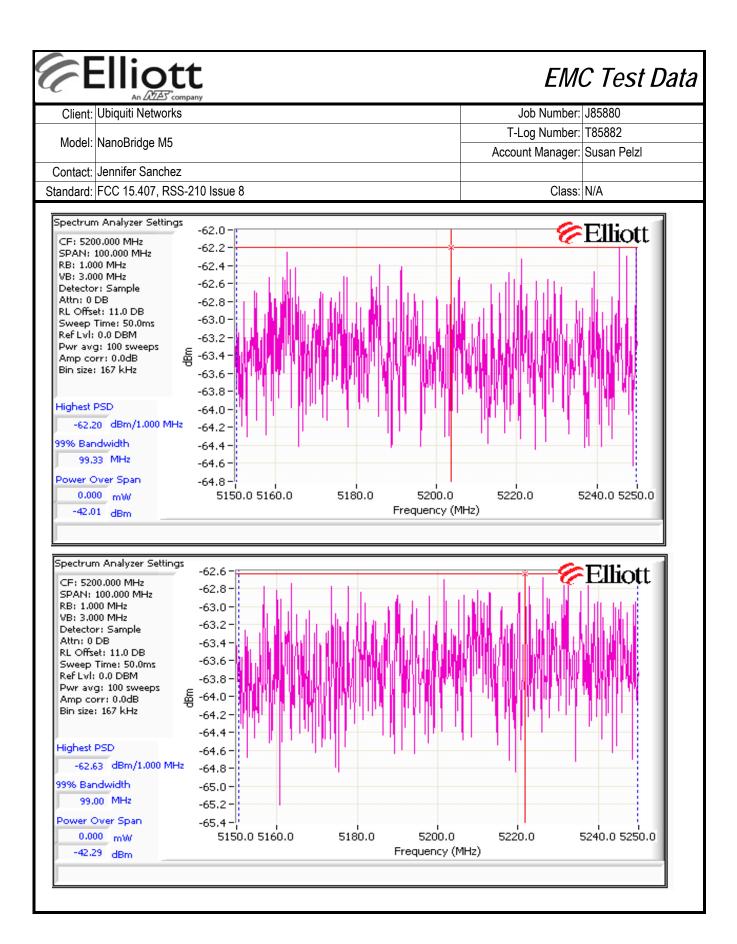

Compliance with the -27dBm/MHz limit in the 5460 - 5470 MHz band immediately below the allocated band. Start and stop frequencies set to 5460-5470 MHz, RB=1MHz, VB=3MHz, power averaging enabled (100 traces).

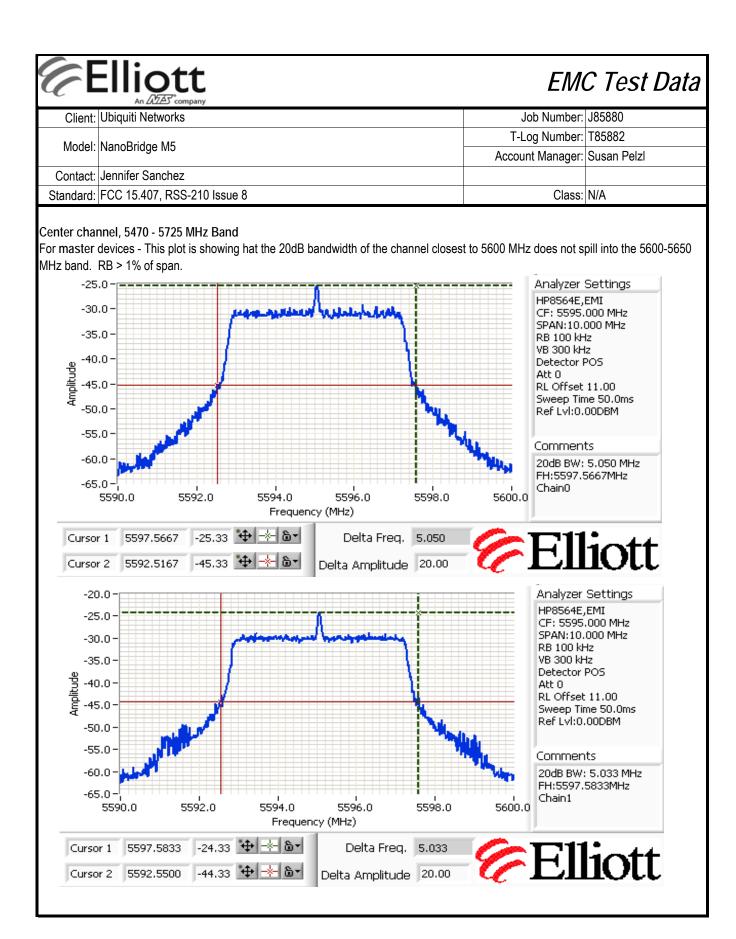
	Power	Band edge Level		Antenna	EIRP		Total EIRP Limit		D II
	Setting	dBm/MHz	mW/MHz	Gain (dBi)	mW/MHz	mW/MHz dBm/MHz		dBm/MHz	Result
Chain 1		-54.1	0.00000	25.0	0.0012303	-29.1	-28.0	27	PASS
Chain 2	_	-59.6	0.00000	25.0	0.0003467	-34.6	-20.0	-21	FASS

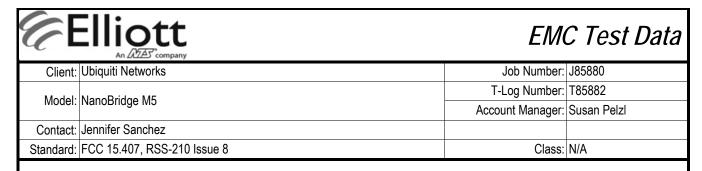


Client:	Ubiquiti Networks	Job Number:	J85880
Model:	NanaPridge ME	T-Log Number:	T85882
	NanoBridge M5	Account Manager:	Susan Pelzl
Contact:	Jennifer Sanchez		
Standard:	FCC 15.407, RSS-210 Issue 8	Class:	N/A

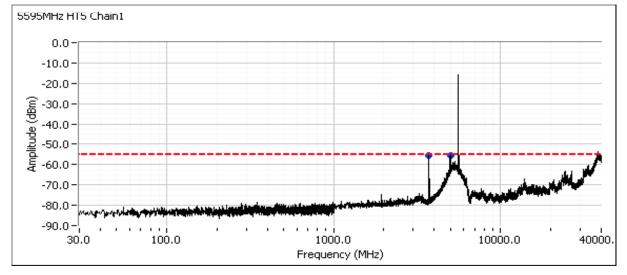
Wide-band result RB=1MHz VB=3MHz (Peak measurements versus limit).


Frequency	Level	Port	FCC 15 E / RSS 210		Detector	Comment				
MHz	dBm		Limit	Margin	Pk/QP/Avg	channel	mode/Chain	Ant. gain	Setting	Note
3650.000	-62.9	RF Port	-	-	PK	5475	HT5/0	25	-1.5	Note2
5242.480	-54.8	RF Port	-55.0	0.2	PK	5475	HT5/0	25	-1.5	Note3
4987.800	-50.2	RF Port	-	-	PK	5475	HT5/1	25	-1.5	Note2
3650.070	-59.5	RF Port	-	-	PK	5475	HT5/1	25	-1.5	Note2


Note 1	Un-restricted signal
Note 2	Restricted band signal. Refer to the radiated spurious emissions results.
Note 3	Final measurements performed using 100sweep sample detector method. See below for final results.

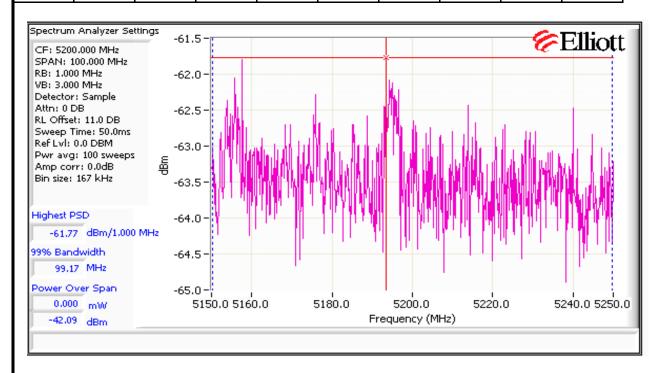

5475MHz HT5

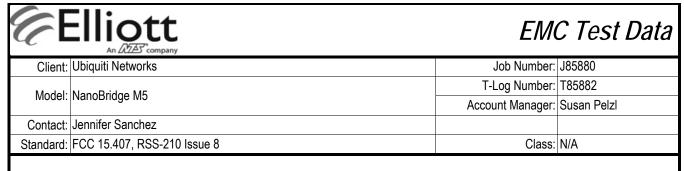

Eval 5242MHz using 100Sweep tech

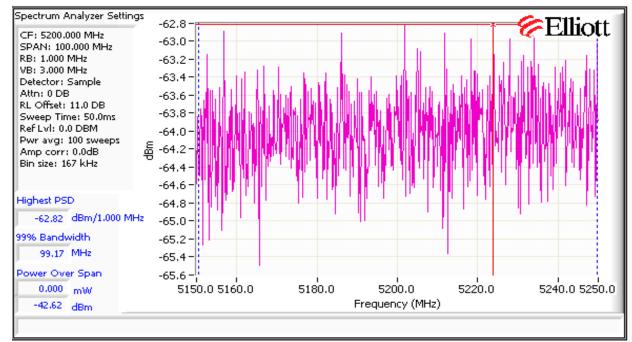

	Power	Band edge Level		Antenna	EIRP		Total EIRP	Limit	Result
	Setting	dBm/MHz	mW/MHz	Gain (dBi)	mW/MHz	dBm/MHz	dBm/MHz	dBm/MHz	Nesuit
Chain 1		-62.2	0.00000	25.0	0.0001905	-37.2	-34.4	-27	PASS
Chain 2	_	-62.6	0.00000	25.0	0.0001726	-37.6	-34.4	-21	FASS

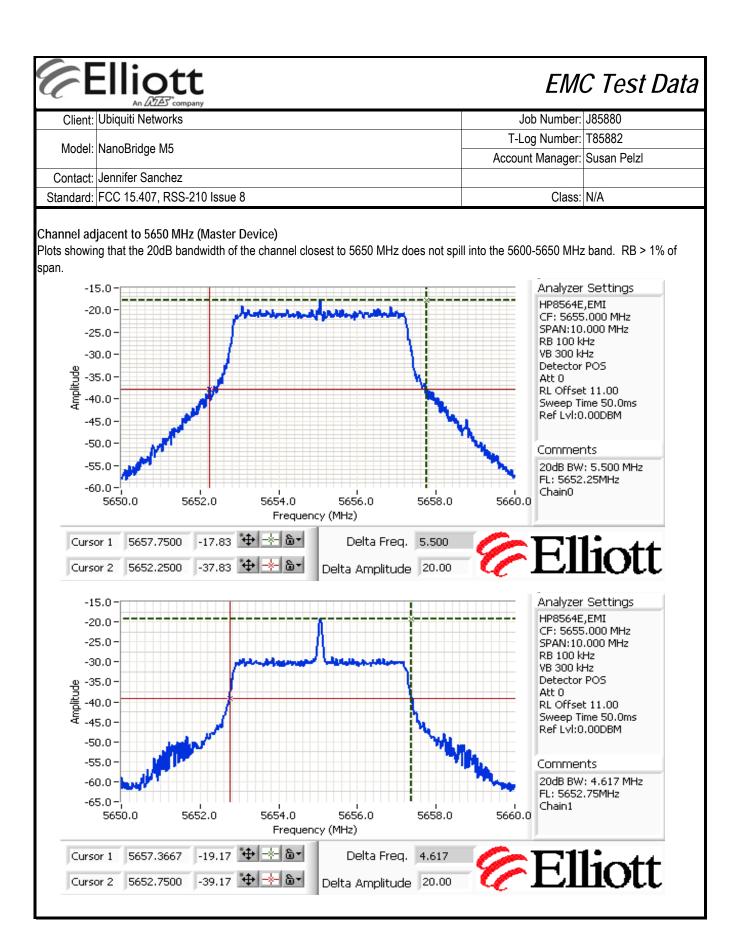
	All Dates Company		
Client	Ubiquiti Networks	Job Number:	J85880
Model	NanoBridge M5	T-Log Number:	T85882
Model	Inditioninge MS	Account Manager:	Susan Pelzl
Contact	Jennifer Sanchez		
Standard	FCC 15.407, RSS-210 Issue 8	Class:	N/A

Wide-band result RB=1MHz VB=3MHz (Peak measurements versus limit).


	the transfer of the second of									
Frequency	Level	Port	FCC 15 E / RSS 210		Detector	Comment				
MHz	dBm		Limit	Margin	Pk/QP/Avg	channel	mode/Chain	Ant. gain	Setting	Note
3730.040	-60.5	RF Port	-	-	PK	5595	HT5/0	25	-1.5	Note2
5227.130	-53.2	RF Port	-55.0	1.8	PK	5595	HT5/0	25	-1.5	Note3
3730.040	-54.7	RF Port	-	-	PK	5595	HT5/1	25	-1.5	Note2
4997.330	-49.0	RF Port	-	-	PK	5595	HT5/1	25	-1.5	Note2

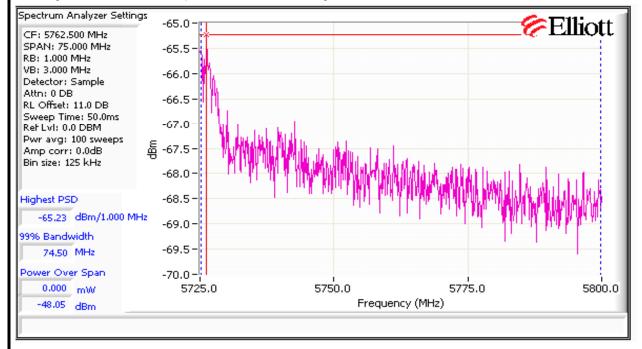

Note 1	Un-restricted signal
Note 2	Restricted band signal. Refer to the radiated spurious emissions results.
Note 3	Final measurements performed using 100sweep sample detector method. See below for final results.

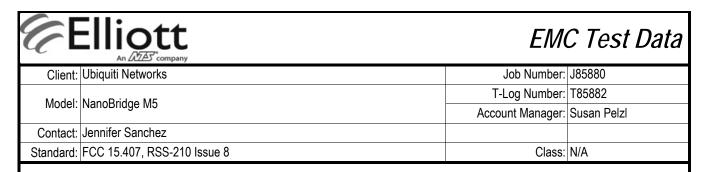

5595MHz HT5

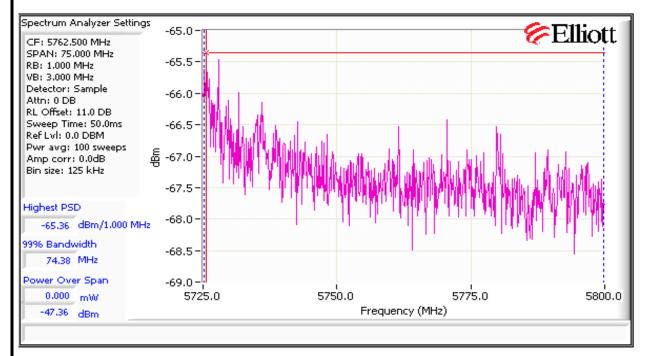

Eval 5227MHz using 100Sweep tech

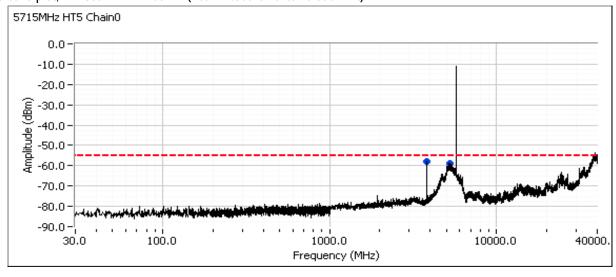
	Power	Band edge Level		Antenna	EIRP		Total EIRP	Limit	Result
	Setting	dBm/MHz	mW/MHz	Gain (dBi)	mW/MHz	dBm/MHz	dBm/MHz	dBm/MHz	Nesuit
Chain 1		-61.8	0.00000	25.0	0.0002104	-36.8	-34.3	-27	PASS
Chain 2	_	-62.8	0.00000	25.0	0.0001652	-37.8	-34.3	-21	FASS

	An DLES company							
Client:	Ubiquiti Networks	Job Number:	J85880					
Model	NanaBridge ME	T-Log Number:	T85882					
Model.	NanoBridge M5	Account Manager:	Susan Pelzl					
Contact:	Jennifer Sanchez							
Standard:	FCC 15.407, RSS-210 Issue 8	Class:	N/A					

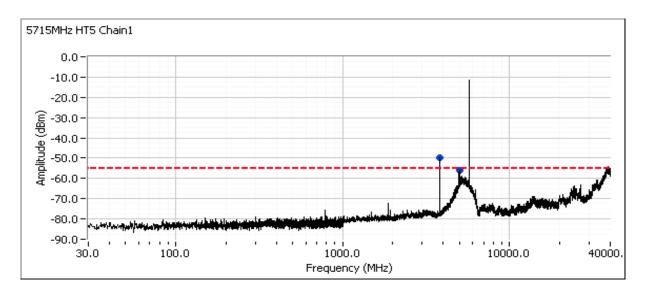

High channel, 5470 - 5725 MHz Band


Plots for each chain showing compliance with the -27dBm/MHz limit above the 5725MHz band edge. Start and stop frequencies set to 5725-5800 MHz, RB=1MHz, VB=3MHz, power averaging enabled (100 traces):


Compliance with the -27dBm/MHz limit immediately above the band. Start and stop frequencies set to 5725-5775 MHz, RB=1MHz, VB=3MHz, power averaging enabled (100 traces) [OR use power plot if it clearly shows level at/above 5725 MHz and that the level is dropping]. Plot for worst-case channel is provided below.


	Power	Band edge Level		Antenna EIRI		RP	Total EIRP	Limit	Result
	Setting	dBm/MHz	mW/MHz	Gain (dBi)	mW/MHz	dBm/MHz	dBm/MHz	dBm/MHz	Nesuit
Chain 1		-65.2	0.00000	2.0	4.753E-07	-63.2	-60.3	-27	PASS
Chain 2	-	-65.4	0.00000	2.0	4.613E-07	-63.4	-00.3	-21	FASS

Antenna gains are not added - the spurious noise at the band edges is not considered coherent between chains.

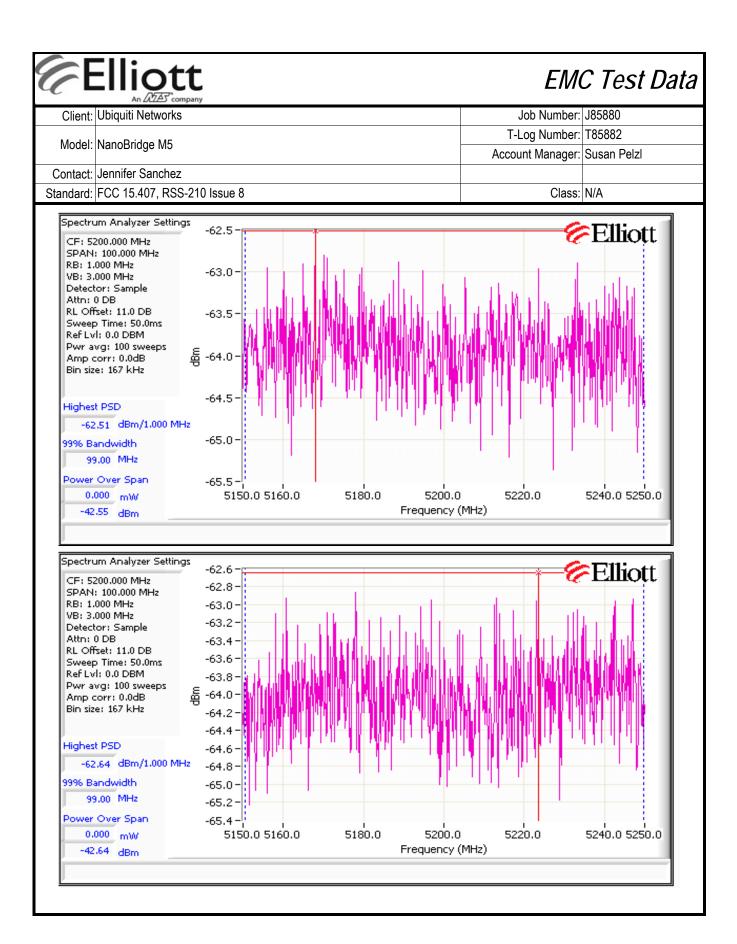


Client:	Ubiquiti Networks	Job Number:	J85880
Madal	NanaPridge ME	T-Log Number:	T85882
woder.	NanoBridge M5	Account Manager:	Susan Pelzl
Contact:	Jennifer Sanchez		
Standard:	FCC 15.407, RSS-210 Issue 8	Class:	N/A

Wide-band result RB=1MHz VB=3MHz (Peak measurements versus limit).

· · · · · · · · · · · · · · · · · · ·										
Frequency	Level	Port	FCC 15 E / RSS 210		Detector		Comment			
MHz	dBm		Limit	Margin	Pk/QP/Avg	channel	mode/Chain	Ant. gain	Setting	Note
3810.050	-57.0	RF Port	-	-	PK	5715	HT5/0	25	-2.5	Note2
5250.000	-54.9	RF Port	-55.0	0.1	PK	5715	HT5/0	25	-2.5	Note3
3810.140	-49.4	RF Port	-	-	PK	5715	Ht5/1	25	-2.5	Note2
4991.580	-49.3	RF Port	-	-	PK	5715	Ht5/1	25	-2.5	Note2

Note 1 Un-restricted signal


Note 2 Restricted band signal. Refer to the radiated spurious emissions results.

Note 3 Final measurements performed using 100sweep sample detector method. See below for final results.

5715MHz HT5

Eval 5250MHz using 100Sweep tech

	Power	Band edge Level		Antenna	EIRP		Total EIRP	Limit	Result
	Setting	dBm/MHz	mW/MHz	Gain (dBi)	mW/MHz	dBm/MHz	dBm/MHz	dBm/MHz	Result
Chain 1		-62.5	0.00000	25.0	0.0001774	-37.5	-34.5	-27	PASS
Chain 2	<u> </u>	-62.6	0.00000	25.0	0.0001738	-37.6	-34.5	-21	FASS

	Elliott An 公子子 company	EMC Test Data				
Client:	Ubiquiti Networks	Job Number: J85880				
Madal	NanaDridge ME	T-Log Number: T85882				
Model.	NanoBridge M5	Account Manager: Susan Pelzl				
Contact:	Jennifer Sanchez					
Standard:	FCC 15.407, RSS-210 Issue 8	Class: N/A				

RSS-210 (LELAN) and FCC 15.407(UNII) Antenna Port Measurements

Power, PSD, Peak Excursion, Bandwidth and Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 12/20/2011 22:12 Config. Used: 1
Test Engineer: Rafael Varelas Config Change: None
Test Location: Fremont Chamber #3 EUT Voltage: POE

Summary of Results

Run#	Test Performed	Limit	Pass / Fail	Result / Margin
1	Power, 5250 - 5350MHz	15.407(a) (1), (2)	Pass	HT20: 1.4dBm
1	PSD, 5250 - 5350MHz	15.407(a) (1), (2)	Pass	HT20: -11.6dBm/MHz
1	Max EIRP 5250 - 5350MHz	TPC required if EIRP≥ 500mW (27dBm). EIRP ≥ 200mW (23dBm) DFS threshold = -64dBm	Pass	EIRP = 29.4dBm (869 mW)
1	Power, 5470 - 5725MHz	15.407(a) (1), (2)	Pass	HT20: 2dBm
1	PSD, 5470 - 5725MHz	15.407(a) (1), (2)	Pass	HT20: -11.4dBm/MHz
1	Max EIRP 5470 - 5725MHz	TPC required if EIRP≥ 500mW (27dBm). EIRP≥ 200mW (23dBm) DFS threshold = -64dBm.	Pass	EIRP = 30dBm 994.7mW)
1	26dB Bandwidth	15.407 (Information only)	-	> 20MHz for all modes
1	99% Bandwidth	RSS 210 (Information only)	-	HT20: 18.2MHz
2	Peak Excursion Envelope	15.407(a) (6) 13dB	Pass	10.89dB
3	Antenna Conducted - Out of Band Spurious	15.407(b) -27dBm/MHz	Pass	All emissions below the -27dBm/MHz limit

	Elliott An 心态 company	EMO	EMC Test Data				
Client:	Ubiquiti Networks	Job Number:	J85880				
Model:	NanoBridge M5	T-Log Number:	T85882				
Model.	Nanobilage MS	Account Manager:	Susan Pelzl				
Contact:	Jennifer Sanchez						
Standard:	FCC 15.407, RSS-210 Issue 8	Class:	N/A				

General Test Configuration

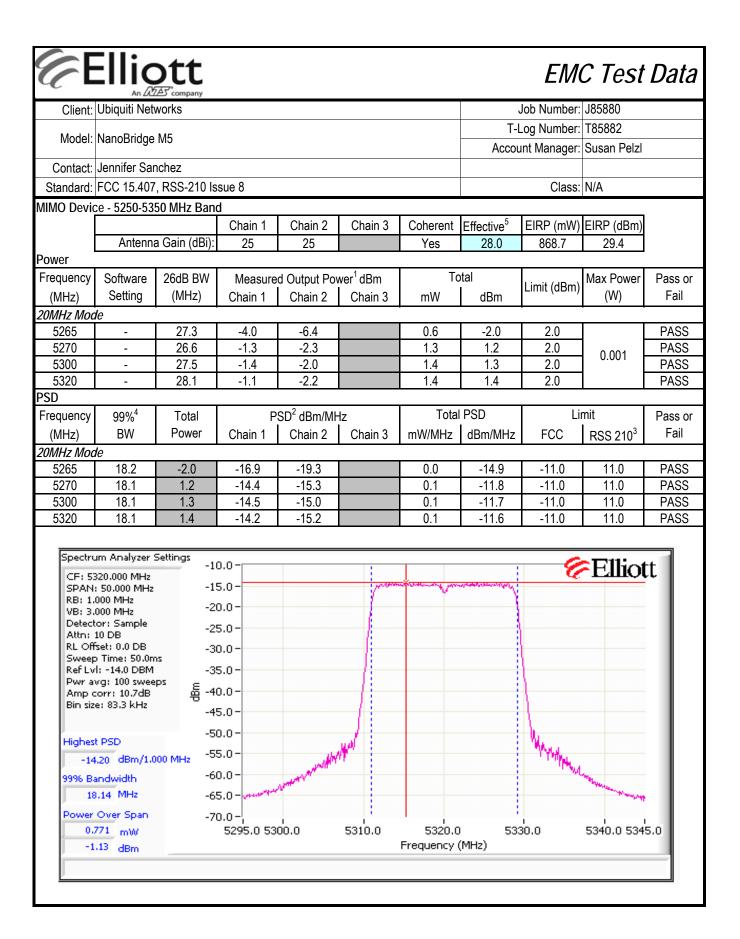
When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to the spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators and cables used.

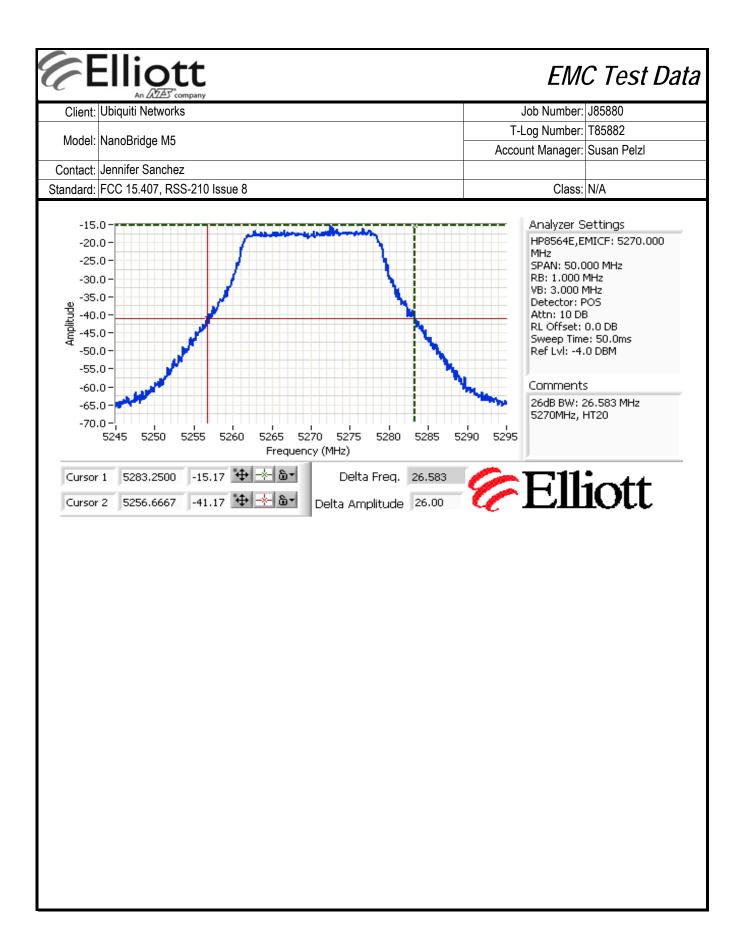
Ambient Conditions:

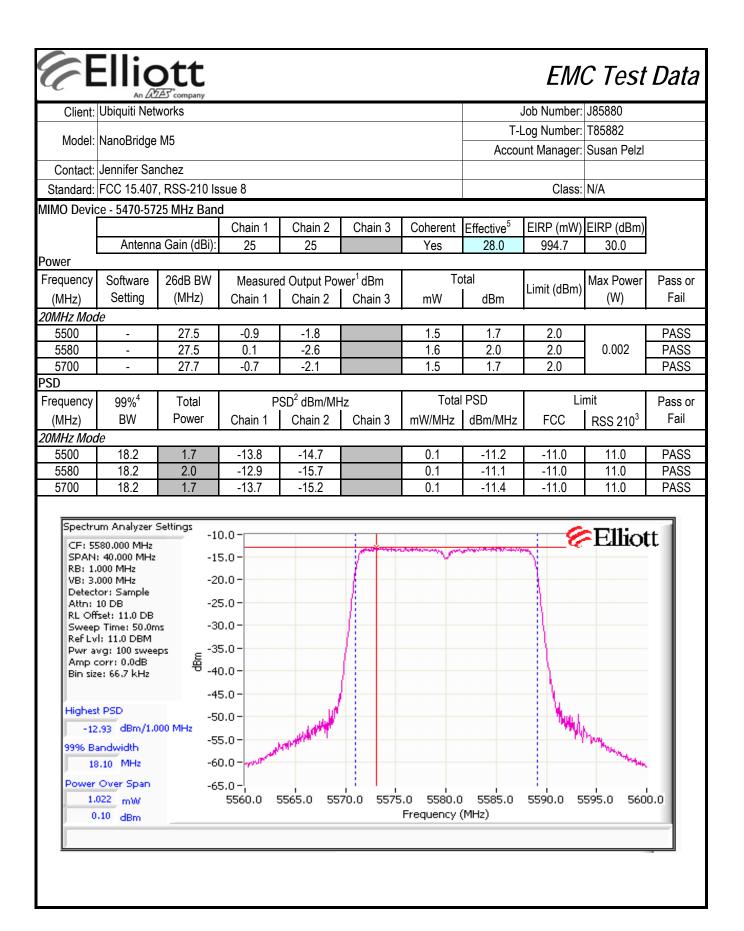
Temperature: 22.1 °C Rel. Humidity: 35 %

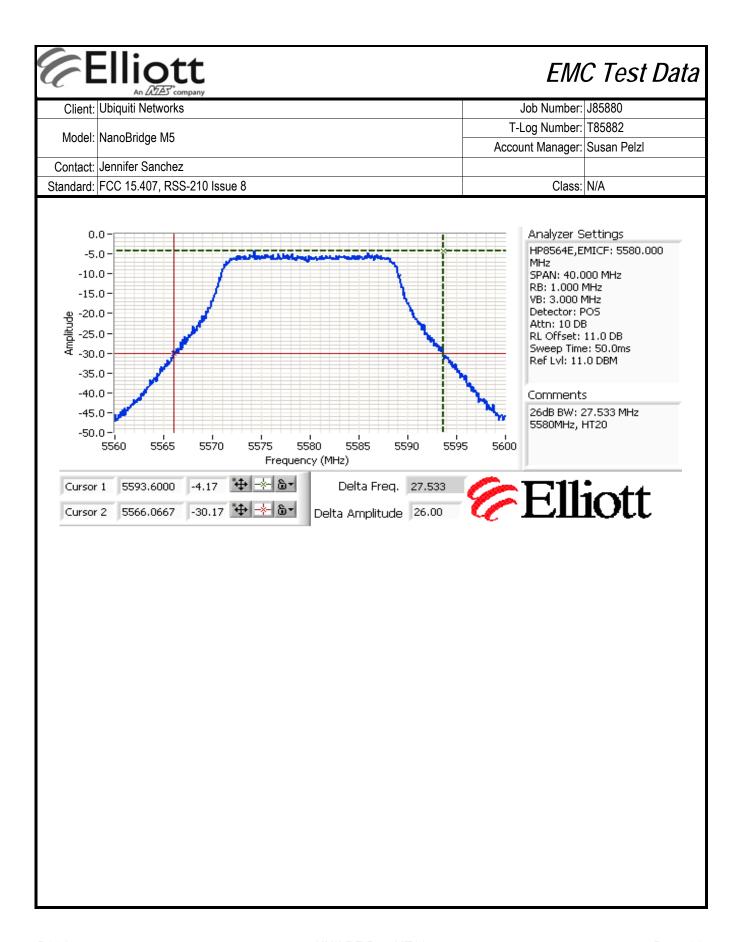
Modifications Made During Testing

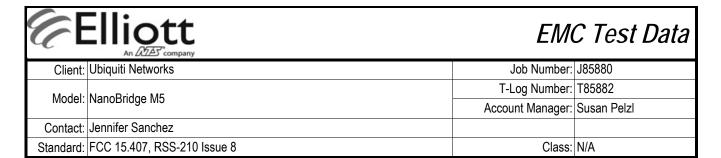
No modifications were made to the EUT during testing

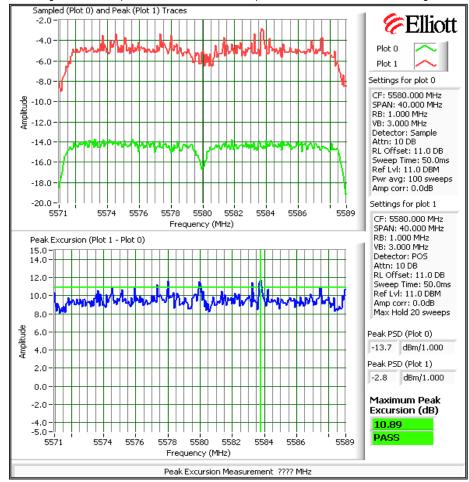

Deviations From The Standard


No deviations were made from the requirements of the standard.


- Output power measured using a spectrum analyzer (see plots below). RBW=1MHz, VB=3 MHz, # of points in sweep ≥


 Note 1: 2*span/RBW, sample detector, power averaging on (transmitted signal was continuous) and power integration over 50 MHz (method SA-1 of KDB 789033).
- Note 2: Measured using the same analyzer settings used for output power.
- For RSS-210 the limit for the 5150 5250 MHz band accounts for the antenna gain as the maximum eirp allowed is 10dBm/MHz. The limits are also corrected for instances where the highest measured value of the PSD exceeds the average PSD (calculated from the measured power divided by the measured 99% bandwidth) by more than 3dB by the amount that the measured value exceeds the average by more than 3dB.
- Note 4: 99% Bandwidth measured in accordance with RSS GEN RB > 1% of span and VB >=3xRB


For MIMO systems the total output power and total PSD are calculated form the sum of the powers of the individual chains (in linear terms). The antenna gain used to determine the EIRP and limits for PSD/Output power depends on the operating mode of the MIMO device. If the signals on the non-coherent between the transmit chains then the gain used to determine the limits is the highest gain of the individual chains and the EIRP is the sum of the products of gain and power on each chain. If the signals are coherent then the effective antenna gain is the sum (in linear terms) of the gains for each chain and the EIRP is the product of the effective gain and total power.


Run #2: Peak Excursion Measurement

Freq	Peak Exc	ursion(dB)	Freq Peak Excursion(dB)		ursion(dB)	Freq	eq Peak Excursion	
(MHz)	Value	Limit	(MHz)	Value	Limit	(MHz)	Value	Limit
5180		13.0	5265		13.0	5500	10.14/10.05	13.0
5200		13.0	5300	10.03/10.30	13.0	5580	10.89/10.18	13.0
5240		13.0	5320	10.03/9.72	13.0	5700	10.56/9.84	13.0

Plots Showing Peak Excursion

Trace A: RBW = 1MHz, VBW = 3MHz, Peak hold

Trace B: Same settings as used for power/PSD measurements (RBW = 1 MHz, VBW = 3MHz, Integrated average power)

	Eliott An AZAS company	
Client:	Ubiquiti Networks	

EMC	7	<i>Test</i>	D	ata
------------	---	--------------------	---	-----

	All Della Company		
Client:	Ubiquiti Networks	Job Number:	J85880
Model:	NanaBridge ME	T-Log Number:	T85882
	NanoBridge M5	Account Manager:	Susan Pelzl
Contact:	Jennifer Sanchez		
Standard:	FCC 15.407, RSS-210 Issue 8	Class:	N/A

Run #3: Out Of Band Spurious Emissions - Antenna Conducted

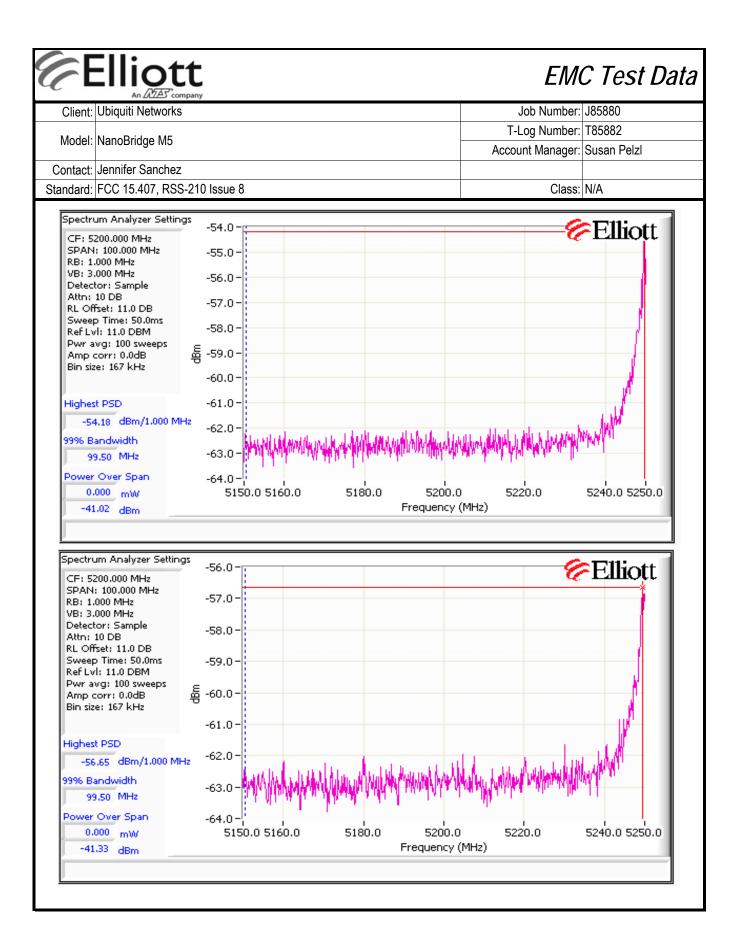
MIMO Devices: Antenna gain used is the effective gain calculated in the power section of this data sheet. The plots were obtained for each chain individually and the limit was adjusted to account for all chains transmitting simultaneously

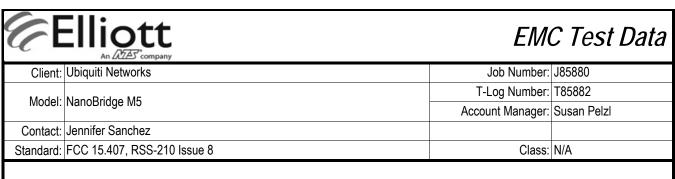
Number of transmit chains:

Maximum Antenna Gain: 25.0 dBi

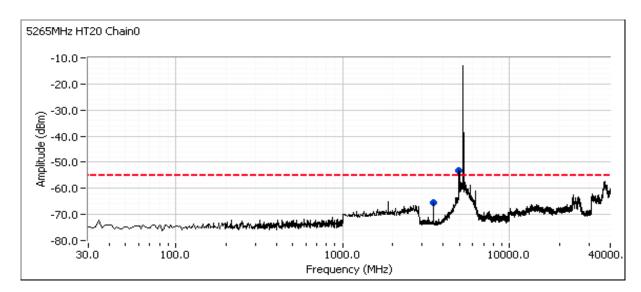
Spurious Limit: -27.0 dBm/MHz eirp
Adjustment for 2 chains: -3.0 dB adjustment for multiple chains.
Limit Used On Plots Note 1: -55.0 dBm/MHz Peak Limit (RB=VB=1MHz)

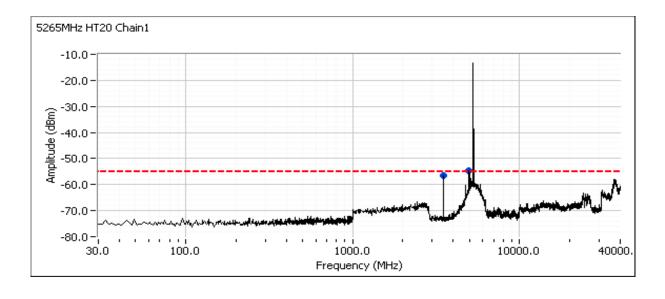
Note 1:	The -27dBm/MHz limit is an eirp limit. The limit for antenna port conducted measurements is adjusted to take into consideration the maximum antenna gain (limit = -27dBm - antenna gain). Radiated field strength measurements for signals more than 50MHz from the bands and that are close to the limit are made to determine compliance as the antenna gain is not known at these frequencies.
Note 2:	All spurious signals below 1GHz are measured during digital device radiated emissions test.
Note 3:	Signals within 10MHz of the 5.725 or 5.825 Band edge are subject to a limit of -17dBm EIRP
Note 4:	If the device is for outdoor use then the -27dBm eirp limit also applies in the 5150 - 5250 MHz band.
Note 5:	Signals that fall in the restricted bands of 15.205 are subject to the limit of 15.209.


Plots Showing Out-Of-Band Emissions (RBW=VBW=1MHz)


Low channel, 5250 - 5350 MHz Band - 20MHz

Plots for each chain showing compliance with the -27dBm/MHz limit in the 5150 - 5250 MHz band. Start and stop frequencies set to 5150-5250 MHz, RB=1MHz, VB=3MHz, power averaging enabled (100 traces):


Channel frequency: 5270 MHz - 25dBi antenna

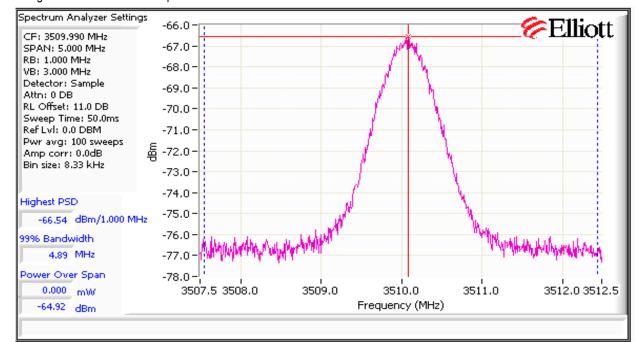

	Power	Power Band edge Level		Antenna	EIRP		Total EIRP Limit		Result
	Setting	dBm/MHz	mW/MHz	Gain (dBi)	mW/MHz	dBm/MHz	dBm/MHz	dBm/MHz	Nesuit
Chain 1		-54.2	0.00000	25.0	0.0012078	-29.2	-27.2	-27	PASS
Chain 2	_	-56.7	0.00000	25.0	0.0006839	-31.7	-21.2	-21	7

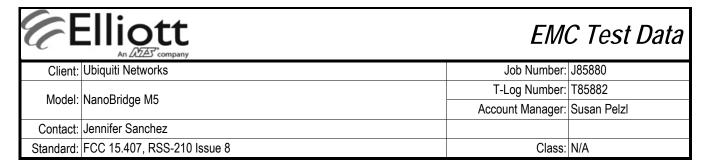
Date of Test: 1/9/2012 Test Location: FT Chamber#3
Test Engineer: Jack Liu Config Change: none

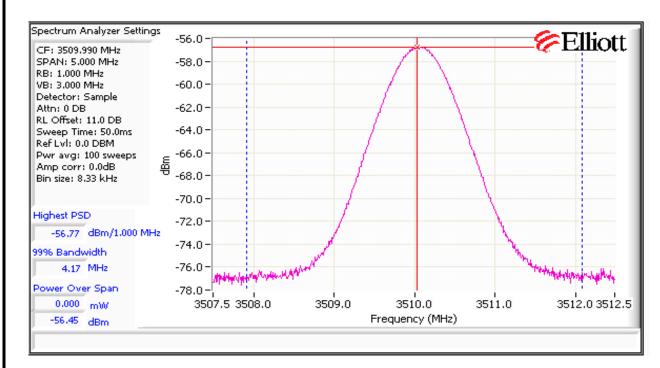
Client:	Ubiquiti Networks	Job Number:	J85880
Model:	NanaPridge ME	T-Log Number:	T85882
	NanoBridge M5	Account Manager:	Susan Pelzl
Contact:	Jennifer Sanchez		
Standard:	FCC 15.407, RSS-210 Issue 8	Class:	N/A

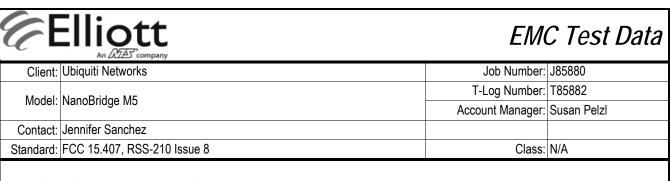
Wide-band result RB=1MHz VB=3MHz (Peak measurements versus limit).

Frequency	Level	Port	FCC 15 E	/ RSS 210	Detector			Comment		
MHz	dBm		Limit	Margin	Pk/QP/Avg	channel	mode/Chain	Ant. gain	Setting	Note
3510.120	-63.3	RF Port	-55.0	-8.3	PK	5265MHz	HT/0	25	0.0	Note1
4988.260	-45.7	RF Port	-	-	PK	5265MHz	HT/0	25	0.0	Note2
3509.990	-52.6	RF Port	-55.0	2.4	PK	5265MHz	HT20/1	25	0.0	Note3
4974.460	-46.5	RF Port	-	-	PK	5265MHz	HT20/1	25	0.0	Note2

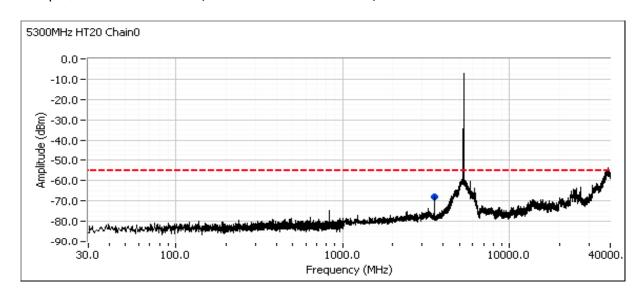

Note 1	Un-restricted signal
Note 2	Restricted band signal. Refer to the radiated spurious emissions results.
Note 3	Final measurements performed using 100sweep sample detector method. See below for final results.

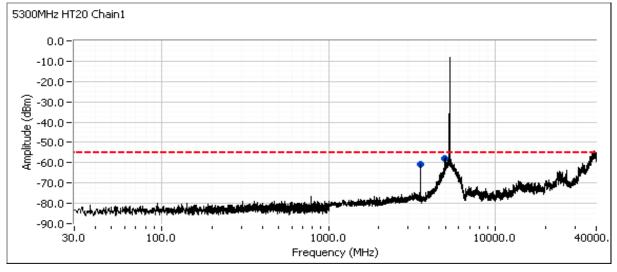

5265MHz HT20


Eval 3509MHz using 100Sweep tech


	Power	Band edge Level		Antenna	Antenna EIRP		Total EIRP Limit		Result
	Setting	dBm/MHz	mW/MHz	Gain (dBi)	mW/MHz	dBm/MHz	dBm/MHz	dBm/MHz	Nesuit
Chain 1		-66.5	0.00000	25.0	7.015E-05	-41.5	-31.3	-27	PASS
Chain 2	_	-56.8	0.00000	25.0	0.0006653	-31.8	-01.0	-21	F 700

Antenna gains are not added - the spurious noise is not considered coherent between chains.



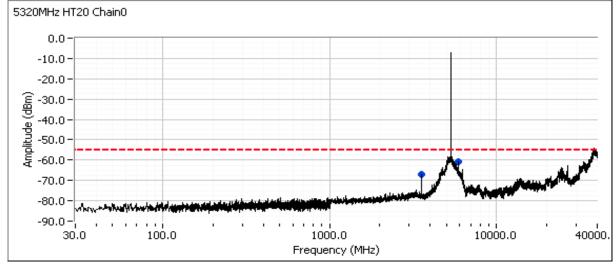


Center channel, 5250 - 5350 MHz Band

Date of Test: 12/22/2011 Test Location: FT Lab#4
Test Engineer: Jack Liu Config Change: none

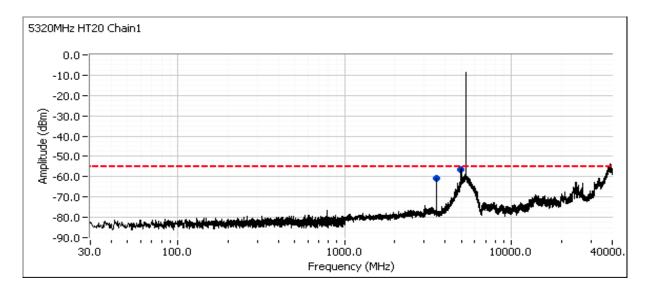
	All Della Company		
Client:	Ubiquiti Networks	Job Number:	J85880
Madalı	NanaBridge ME	T-Log Number:	T85882
woder.	NanoBridge M5	Account Manager:	Susan Pelzl
Contact:	Jennifer Sanchez		
Standard:	FCC 15.407, RSS-210 Issue 8	Class:	N/A

Wide-band result RB=1MHz VB=3MHz (Peak measurements versus limit).

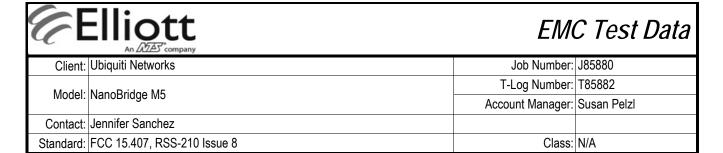

	The same to the sa										
Frequency	Level	Port	FCC 15 E	/ RSS 210	Detector	Comment					
MHz	dBm		Limit	Margin	Pk/QP/Avg	channel	mode/Chain	Ant. gain	Setting	Note	
3533.590	-65.2	RF Port	-55.0	-10.2	PK	5300	HT20/1	25	2.0	Note 1	
3533.460	-59.6	RF Port	-55.0	-4.6	PK	5300	HT20/1	25	2.0	Note 1	
4987.150	-48.5	RF Port	-	-	PK	5300	HT20/1	25	2.0	Note 2	

Note 1	Un-restricted signal
Noto 2	Postricted hand signal Defer to the radiated sourious emissions results

High channel, 5250 - 5350 MHz Band

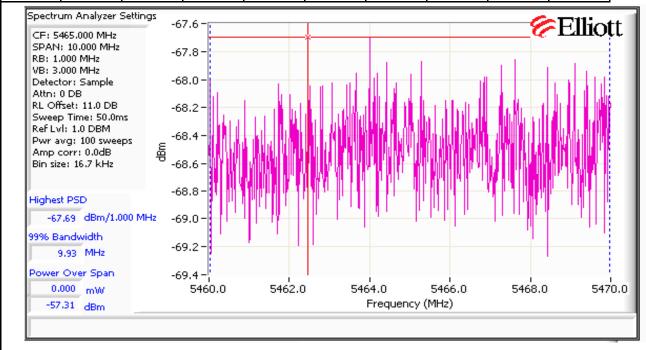

Note - compliance with the radiated limits for the restricted band immediately above 5350MHz is demonstrated through the radiated emissions tests.

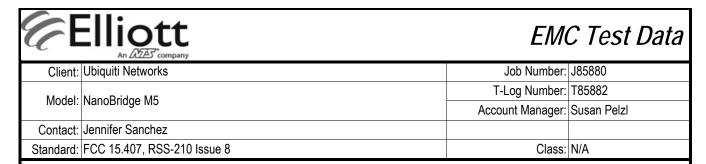
Date of Test: 12/22/2011 Test Location: FT Lab#4
Test Engineer: Jack Liu Config Change: none

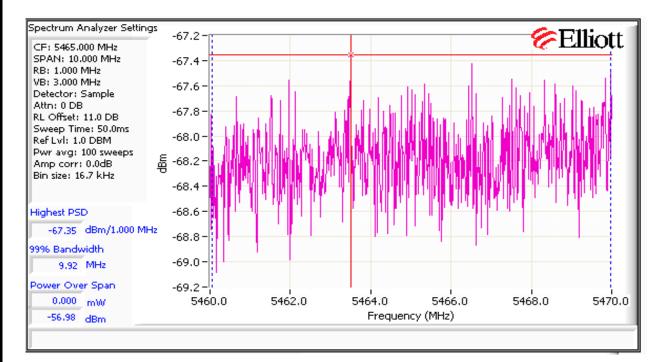

Client:	Ubiquiti Networks	Job Number:	J85880
Madalı	NanaPridge ME	T-Log Number:	T85882
woder.	NanoBridge M5	Account Manager:	Susan Pelzl
Contact:	Jennifer Sanchez		
Standard:	FCC 15.407, RSS-210 Issue 8	Class:	N/A

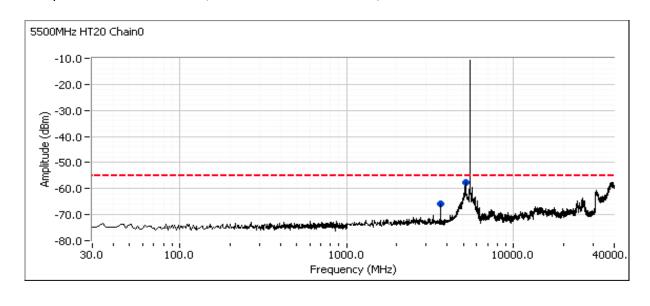
Wide-band result RB=1MHz VB=3MHz (Peak measurements versus limit).

Frequency	Level	Port	FCC 15 F	/ RSS 210	Detector	Comment				
- 1 7		FOIL		FCC 15 E / RSS 210						
MHz	dBm		Limit	Margin	Pk/QP/Avg	channel	mode/Chain	Ant. gain	Setting	Note
3546.560	-64.5	RF Port	-55.0	-9.5	PK	5320	HT20/0	25	2.0	Note 1
5861.410	-56.1	RF Port	-55.0	-1.1	PK	5320	HT20/0	25	2.0	Note 1
3546.690	-59.6	RF Port	-55.0	-4.6	PK	5320	HT20/1	25	2.0	Note 1
4989.440	-49.2	RF Port	-	-	PK	5320	HT20/1	25	2.0	Note 2

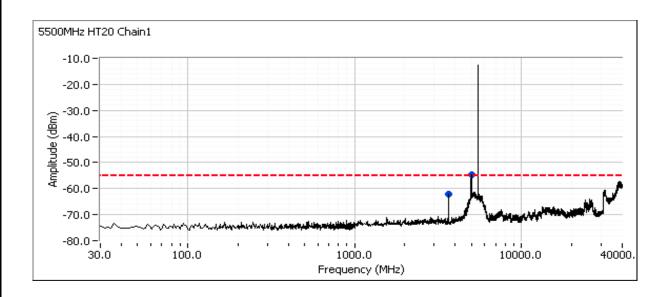

Note 1	Un-restricted signal
Note 2	Restricted band signal. Refer to the radiated spurious emissions results.




Low channel, 5470 - 5725 MHz Band


Compliance with the -27dBm/MHz limit in the 5460 - 5470 MHz band immediately below the allocated band. Start and stop frequencies set to 5460-5470 MHz, RB=1MHz, VB=3MHz, power averaging enabled (100 traces).

	Power	Band edge Level		Antenna	enna EIRP		Total EIRP Limit		Dogult	
	Setting	dBm/MHz	mW/MHz	Gain (dBi)	mW/MHz	dBm/MHz	dBm/MHz	dBm/MHz	Result	
Chain 1		-67.7	0.00000	25.0	5.383E-05	-42.7	-39.5	-27	PASS	
Chain 2	-	-67.4	0.00000	25.0	5.821E-05	-42.4	-39.5	-21	FAGG	

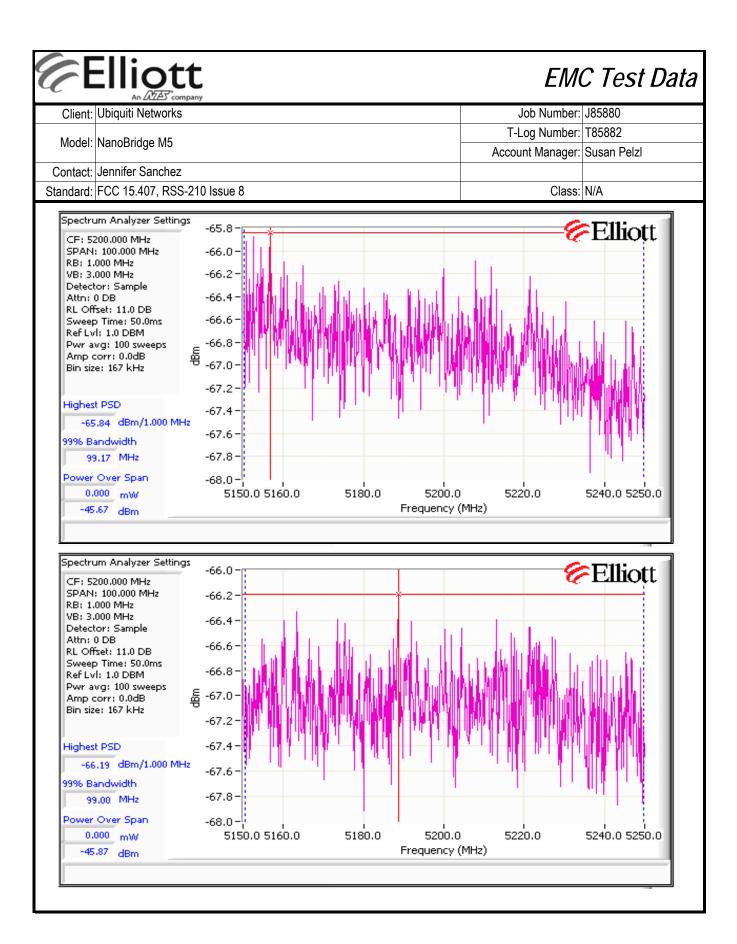


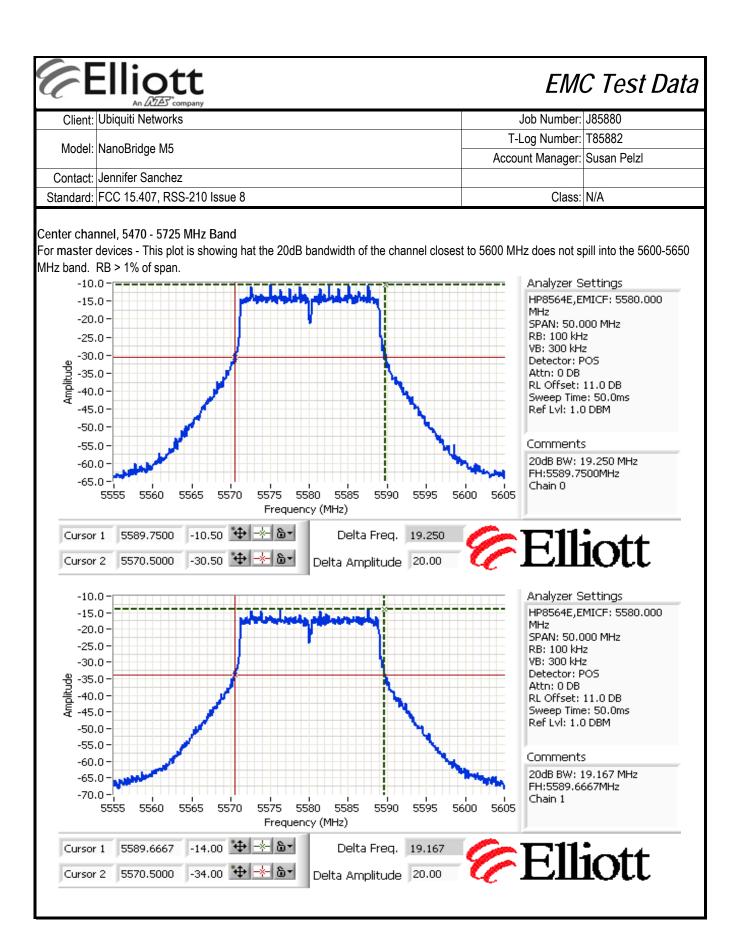
Client:	Ubiquiti Networks	Job Number:	J85880
Model:	NanaPridge ME	T-Log Number:	T85882
	NanoBridge M5	Account Manager:	Susan Pelzl
Contact:	Jennifer Sanchez		
Standard:	FCC 15.407, RSS-210 Issue 8	Class:	N/A

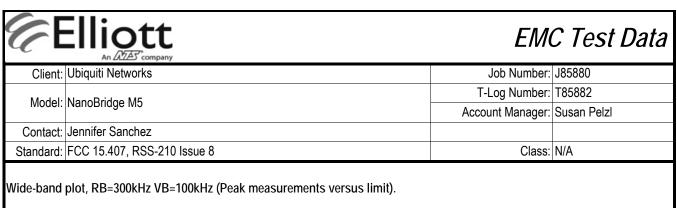
Wide-band result RB=1MHz VB=3MHz (Peak measurements versus limit).

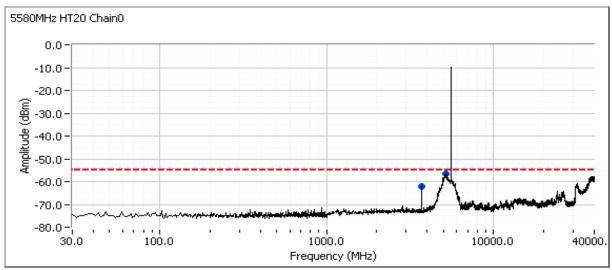
Frequency	Level	Port	FCC 15 E	/ RSS 210	Detector	Comment				
MHz	dBm		Limit	Margin	Pk/QP/Avg	channel	mode/Chain	Ant. gain	Setting	Note
5173.200	-51.2	RF Port	-55.0	3.8	PK	5500MHz	HT20/0	25	0.5	Note 3
3666.850	-63.4	RF Port	-	-	PK	5500MHz	HT20/0	25	0.5	Note 2
4987.600	-48.6	RF Port	-	-	PK	5500MHz	HT20/1	25	0.5	Note 2
3666.710	-60.5	RF Port	-	-	PK	5500MHz	HT20/1	25	0.5	Note 2

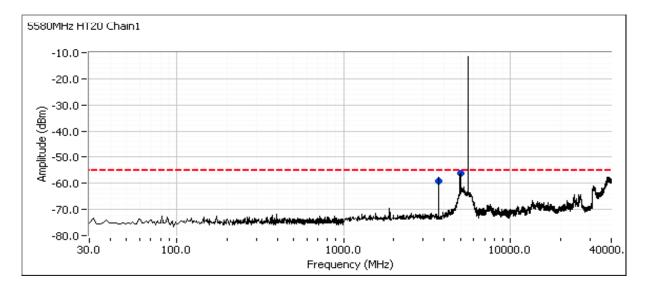
Note 1 Un-restricted signal


Note 2 Restricted band signal. Refer to the radiated spurious emissions results.


Note 3 Final measurements performed using 100sweep sample detector method. See below for final results.

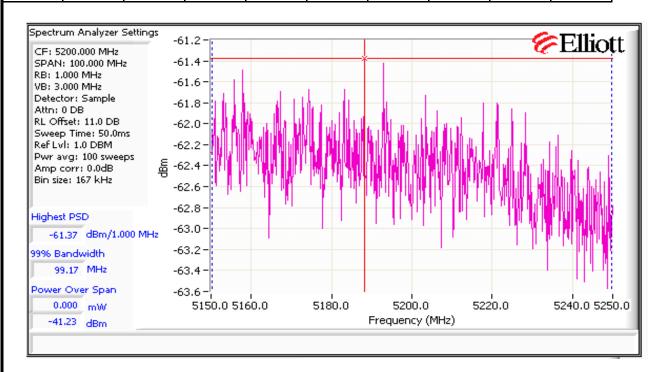

5500MHz HT20

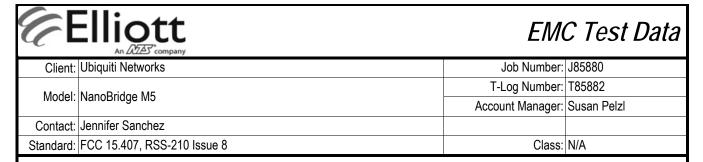

Eval 5173MHz using 100Sweep tech

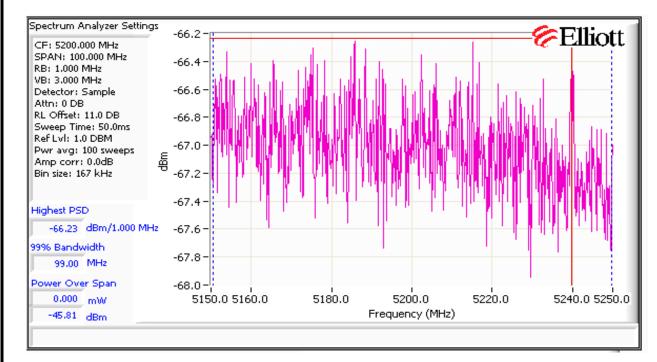

	Power	Band edge Level		Antenna	EIRP		Total EIRP Limit		Result	
	Setting	dBm/MHz	mW/MHz	Gain (dBi)	mW/MHz	dBm/MHz	dBm/MHz	dBm/MHz	Nesult	
Chain 1		-65.8	0.00000	25.0	8.241E-05	-40.8	-38.0	-27	PASS	
Chain 2	-	-66.2	0.00000	25.0	7.603E-05	-41.2	-30.0	-21	FASS	

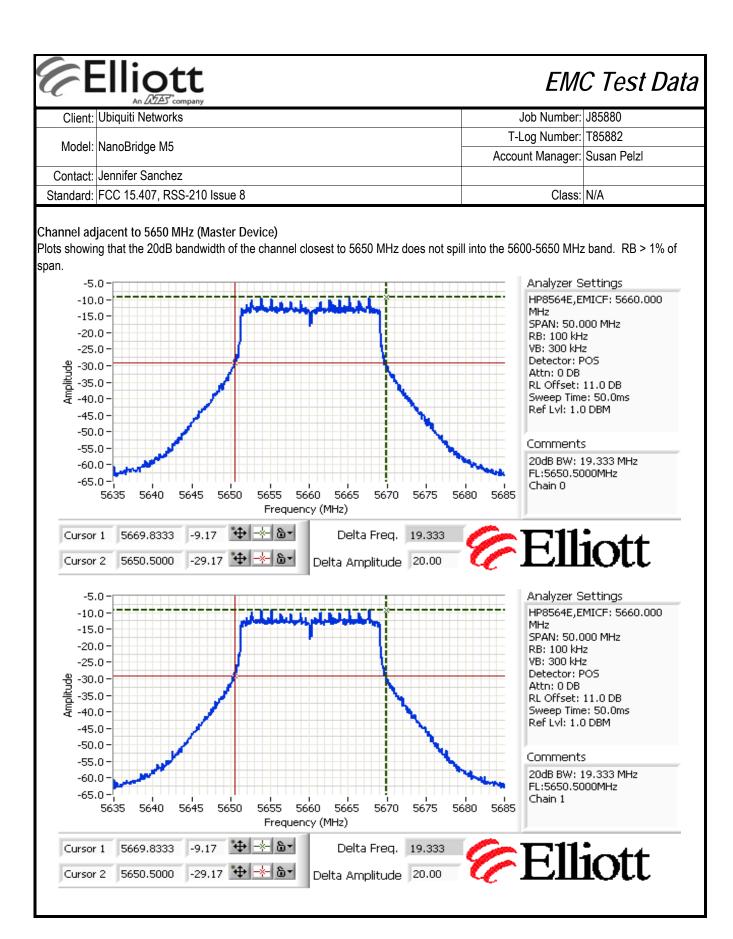
Client:	Ubiquiti Networks	Job Number:	J85880
Model:	NanaPridge ME	T-Log Number:	T85882
	NanoBridge M5	Account Manager:	Susan Pelzl
Contact:	Jennifer Sanchez		
Standard:	FCC 15.407, RSS-210 Issue 8	Class:	N/A

Wide-band result RB=1MHz VB=3MHz (Peak measurements versus limit).

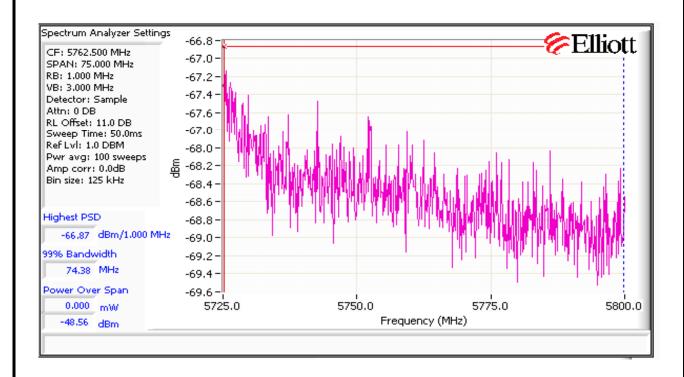

The state of the s										
Frequency	Level	Port	FCC 15 E	/ RSS 210	Detector	Comment				
MHz	dBm		Limit	Margin	Pk/QP/Avg	channel	mode/Chain	Ant. gain	Setting	Note
3719.960	-61.5	RF Port	-	-	PK	5580MHz	HT20/0	25	1.0	Note 2
5179.500	-49.7	RF Port	-55.0	5.3	PK	5580MHz	HT20/0	25	1.0	Note 3
3720.070	-57.2	RF Port	-	-	PK	5580MHz	HT20/1	25	1.0	Note 2
4987.470	-48.7	RF Port	-	-	PK	5580MHz	HT20/1	25	1.0	Note 2

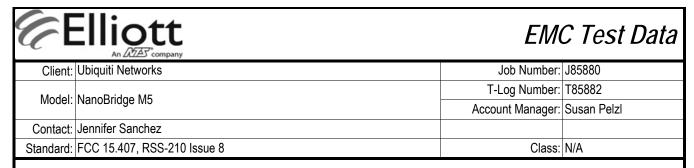

Note 1	Un-restricted signal
Note 2	Restricted band signal. Refer to the radiated spurious emissions results.
Note 3	Final measurements performed using 100sweep sample detector method. See below for final results.

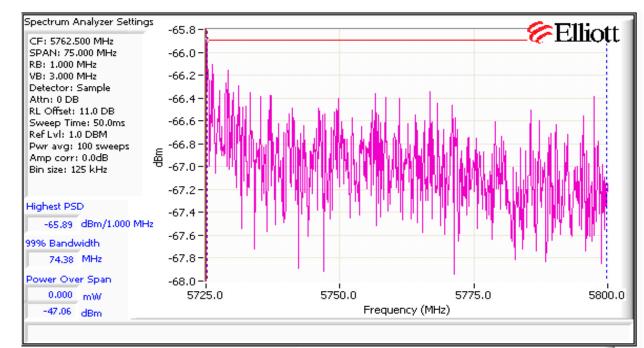

5580MHz HT20


Eval 5179MHz using 100Sweep tech

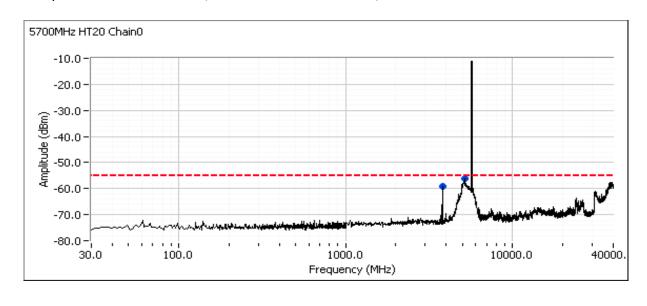
	Power	Band edge Level		Antenna	EIRP		Total EIRP Limit		Result
	Setting	dBm/MHz	mW/MHz	Gain (dBi)	mW/MHz	dBm/MHz	dBm/MHz	dBm/MHz	Result
Chain 1		-61.4	0.00000	25.0	0.0002307	-36.4	-35.1	-27	PASS
Chain 2	_	-66.2	0.00000	25.0	7.534E-05	-41.2	-33.1	-21	1 700

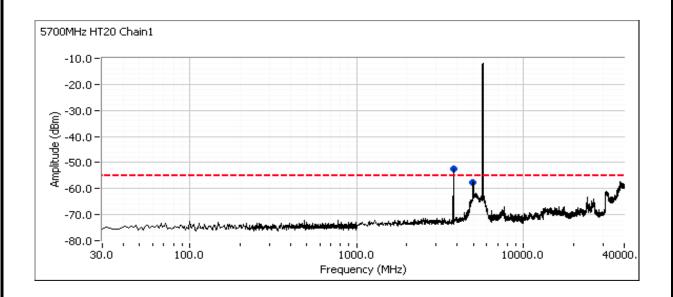

	All ZAZZS company		
Client:	Ubiquiti Networks	Job Number:	J85880
Model:	NanaBridge ME	T-Log Number:	T85882
	NanoBridge M5	Account Manager:	Susan Pelzl
Contact:	Jennifer Sanchez		
Standard:	FCC 15.407, RSS-210 Issue 8	Class:	N/A


High channel, 5470 - 5725 MHz Band


Plots for each chain showing compliance with the -27dBm/MHz limit above the 5725MHz band edge. Start and stop frequencies set to 5725-5800 MHz, RB=1MHz, VB=3MHz, power averaging enabled (100 traces):

Compliance with the -27dBm/MHz limit immediately above the band. Start and stop frequencies set to 5725-5775 MHz, RB=1MHz, VB=3MHz, power averaging enabled (100 traces) [OR use power plot if it clearly shows level at/above 5725 MHz and that the level is dropping]. Plot for worst-case channel is provided below.


	Dawar	Pand adda Layal		A	LIDD		Tatal CIDD	1 ::1	
	Power	Band edge Level		Antenna	Antenna EIRP T		Total EIRP	Limit	Result
	Setting	dBm/MHz	mW/MHz	Gain (dBi)	mW/MHz	dBm/MHz	dBm/MHz	dBm/MHz	rvosuit
Chain 1		-66.9	0.00000	25.0	6.501E-05	-41.9	-38.3	-27	PASS
Chain 2	_	-65.9	0.00000	25.0	8.147E-05	-40.9	-30.3	-21	FASS



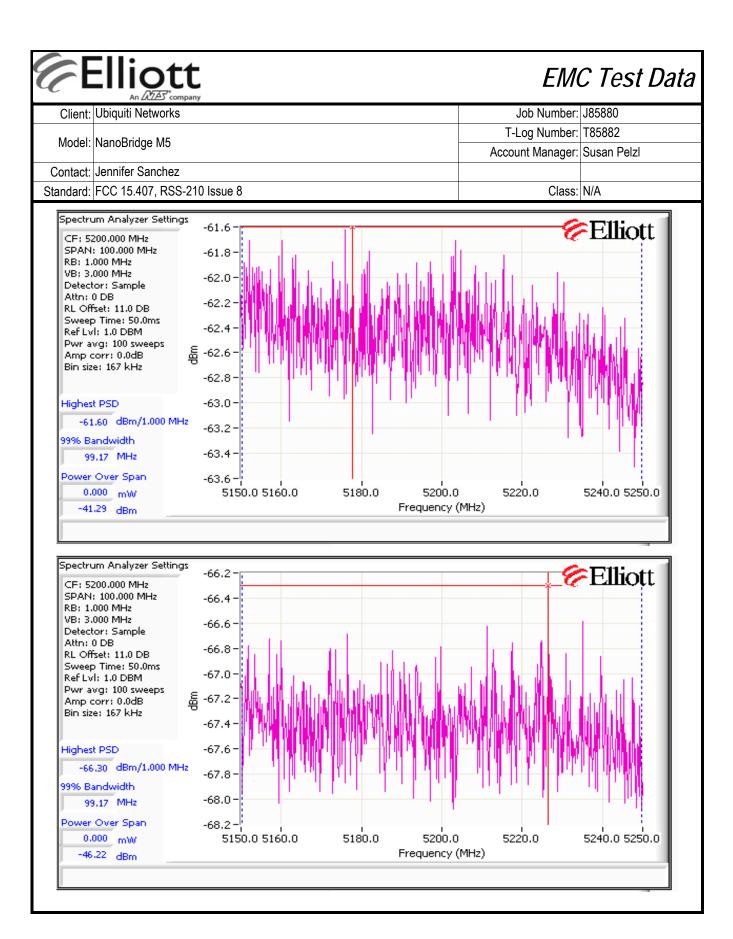
Wide-band plot, RB=300kHz VB=100kHz (Peak measurements versus limit).

Client:	Ubiquiti Networks	Job Number:	J85880
Model:	NanaPridge ME	T-Log Number:	T85882
	NanoBridge M5	Account Manager:	Susan Pelzl
Contact:	Jennifer Sanchez		
Standard:	FCC 15.407, RSS-210 Issue 8	Class:	N/A

Wide-band result RB=1MHz VB=3MHz (Peak measurements versus limit).

Frequency	Level	Port	FCC 15 E	/ RSS 210	Detector	Comment				
MHz	dBm		Limit	Margin	Pk/QP/Avg	channel	mode/Chain	Ant. gain	Setting	Note
3800.100	-52.2	RF Port	-	-	PK	5700MHZ	HT20/1	25	-0.5	Note 2
4994.770	-48.7	RF Port	-	-	PK	5700MHz	HT20/1	25	-0.5	Note 2
5165.500	-49.2	RF Port	-55.0	5.8	PK	5700MHz	HT20/0	25	-0.5	Note 3
3800.080	-58.1	RF Port	-	-	PK	5700MHz	HT20/0	25	-0.5	Note 2

Note 1	Un-restricted signal


Note 2 Restricted band signal. Refer to the radiated spurious emissions results.

Note 3 Final measurements performed using 100sweep sample detector method. See below for final results.

5700MHz HT20

Eval 5165MHz using 100Sweep tech

	Power	Band ed	and edge Level		EIRP		Total EIRP	Limit	Result
	Setting	dBm/MHz	mW/MHz	Gain (dBi)	mW/MHz	dBm/MHz	dBm/MHz	dBm/MHz	Nesuit
Chain 1		-61.6	0.00000	25.0	0.0002188	-36.6	-35.3	-27	PASS
Chain 2	-	-66.3	0.00000	25.0	7.413E-05	-41.3	-33.3	-21	FASS

Elliott EMC Test					
Client:	Ubiquiti Networks	Job Number:	J85880		
Madal	NanoBridge M5	T-Log Number:	T85882		
Model.	Nanobiluge wo	Account Manager:	Susan Pelzl		
Contact:	Jennifer Sanchez				
Standard:	FCC 15.407, RSS-210 Issue 8	Class:	N/A		

RSS-210 (LELAN) and FCC 15.407(UNII) Antenna Port Measurements

Power, PSD, Peak Excursion, Bandwidth and Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 12/20/2011 22:12 Config. Used: 1
Test Engineer: Rafael Varelas Config Change: None
Test Location: Fremont Chamber #3 EUT Voltage: POE

Summary of Results

Run#	Test Performed	Limit	Pass / Fail	Result / Margin
1	Power, 5250 - 5350MHz	15.407(a) (1), (2)	Pass	HT40: 1.7dBm
1	PSD, 5250 - 5350MHz	15.407(a) (1), (2)	Pass	HT40: -14.2dBm/MHz
1	Max EIRP 5250 - 5350MHz	TPC required if EIRP≥ 500mW (27dBm). EIRP ≥ 200mW (23dBm) DFS threshold = -64dBm.	Pass	EIRP = 29.7dBm (942mW)
1	Power, 5470 - 5725MHz	15.407(a) (1), (2)	Pass	HT40: 1.9dBm
1	PSD, 5470 - 5725MHz	15.407(a) (1), (2)	Pass	HT40: -14.3dBm/MHz
1	Max EIRP 5470 - 5725MHz	TPC required if EIRP≥ 500mW (27dBm). EIRP ≥ 200mW (23dBm) DFS threshold = -64dBm.	Pass	EIRP = 29.9dBm (986mW)
1	26dB Bandwidth	15.407 (Information only)	-	> 20MHz for all modes
1	99% Bandwidth	RSS 210 (Information only)	-	HT40: 36.5MHz
2	Peak Excursion Envelope	15.407(a) (6) 13dB	Pass	11.09dB
3	Antenna Conducted - Out of Band Spurious	15.407(b) -27dBm/MHz	Pass	All emissions below the -27dBm/MHz limit

	Elliott An AZAS company	EMC Test			
Client:	Ubiquiti Networks	Job Number:	J85880		
Madal	NanoPridgo ME	T-Log Number:	T85882		
Model.	NanoBridge M5	Account Manager:	Susan Pelzl		
Contact:	Jennifer Sanchez				
Standard:	FCC 15.407, RSS-210 Issue 8	Class:	N/A		

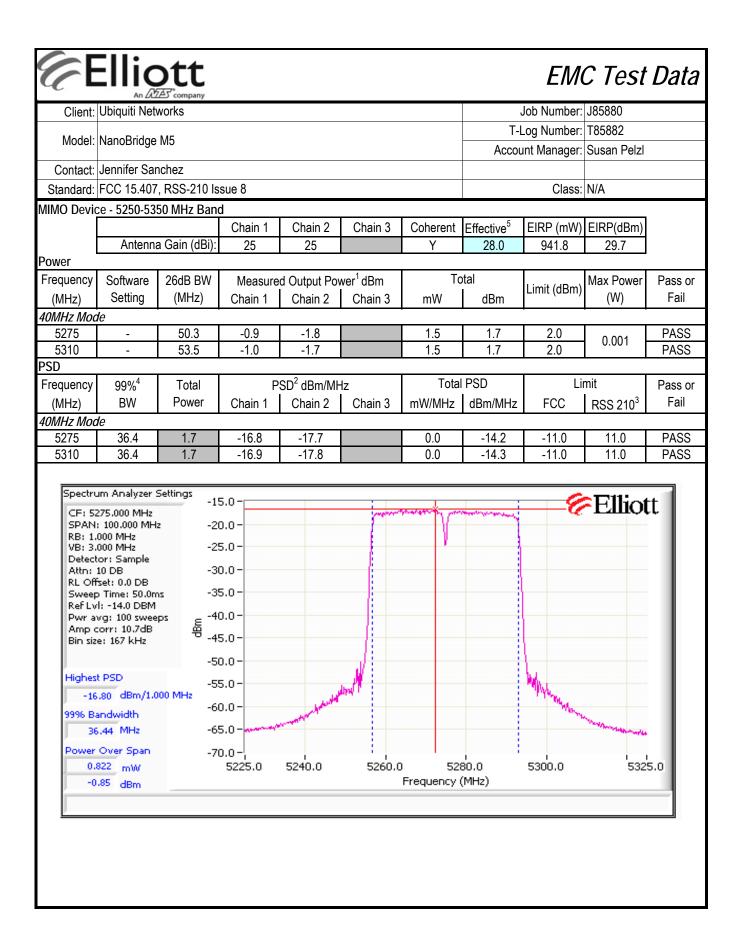
General Test Configuration

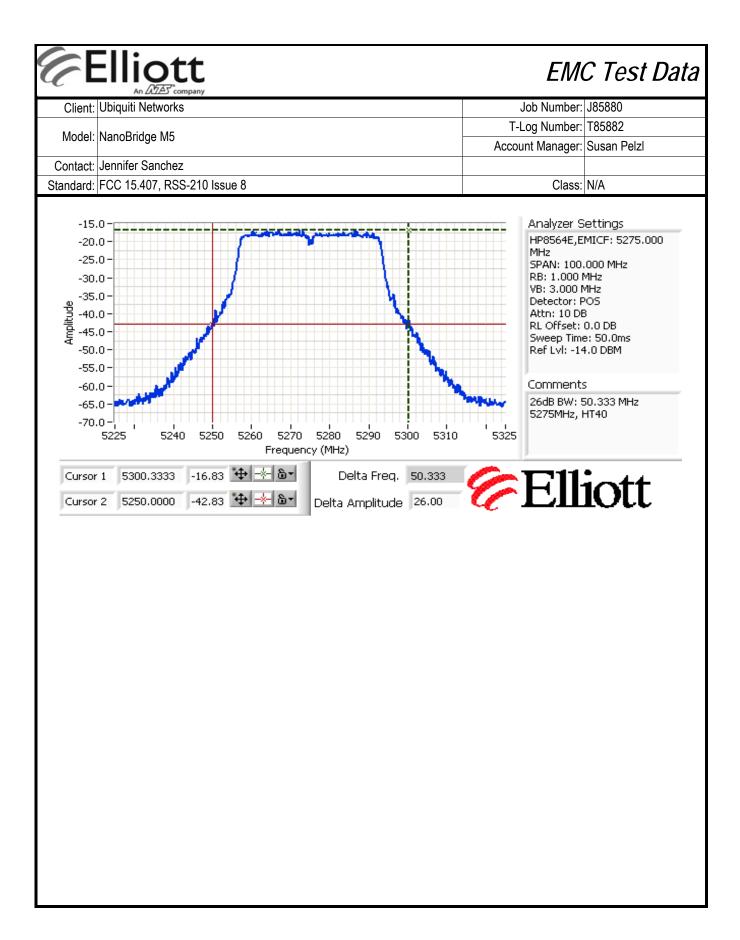
When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to the spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators and cables used.

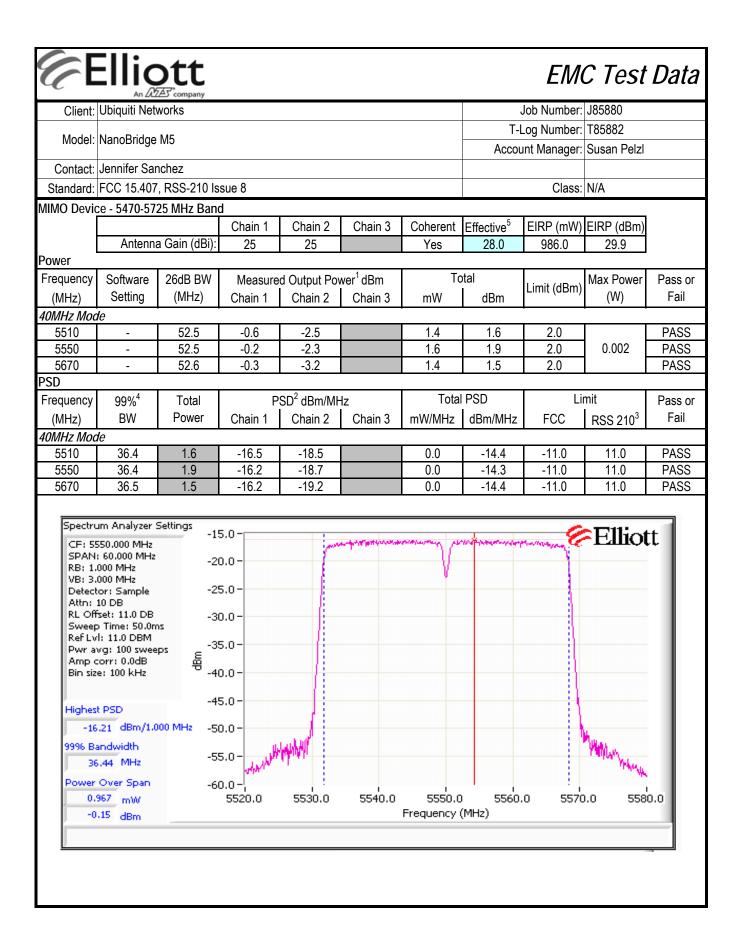
Ambient Conditions:

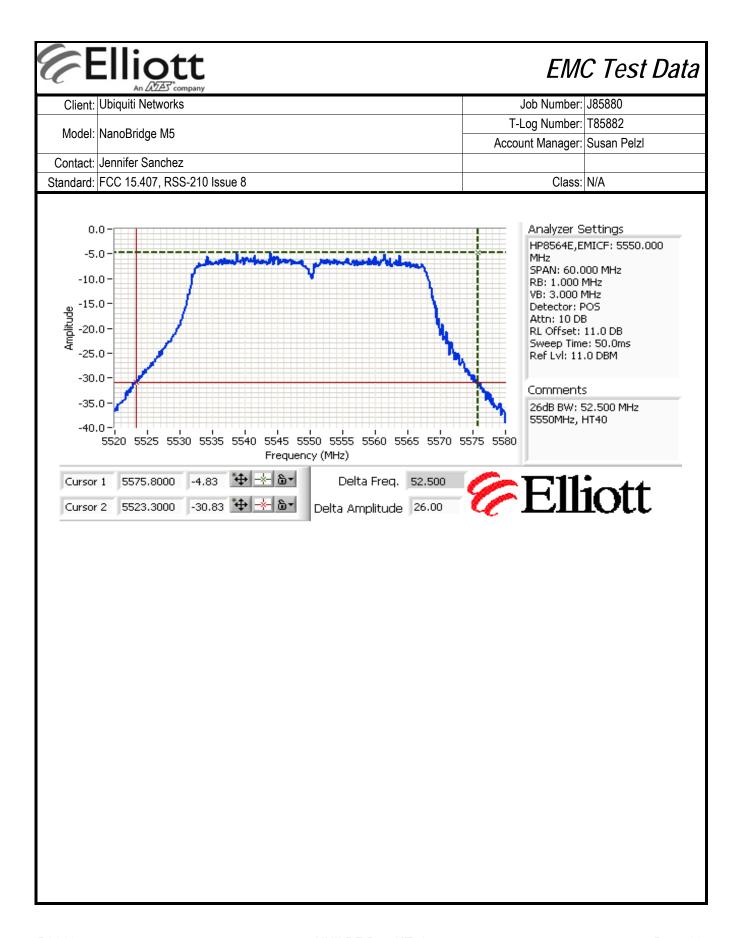
Temperature: 22.1 °C Rel. Humidity: 35 %

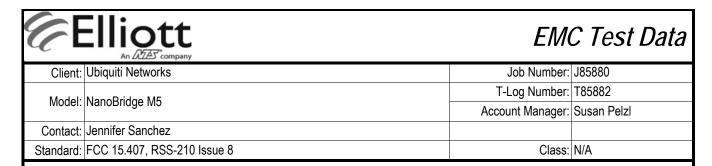
Modifications Made During Testing

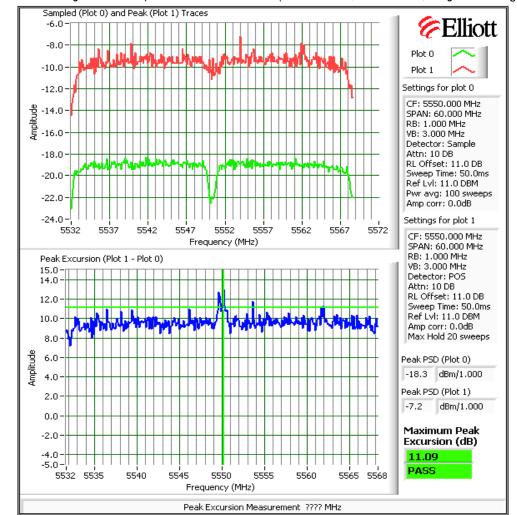

No modifications were made to the EUT during testing


Deviations From The Standard


No deviations were made from the requirements of the standard.


- Output power measured using a spectrum analyzer (see plots below). RBW=1MHz, VB=3 MHz, # of points in sweep ≥ Note 1: 2*span/RBW, sample detector, power averaging on (transmitted signal was continuous) and power integration over 50 MHz (method SA-1 of KDB 789033). Note 2: Measured using the same analyzer settings used for output power.
- For RSS-210 the limit for the 5150 5250 MHz band accounts for the antenna gain as the maximum eirp allowed is 10dBm/MHz. The limits are also corrected for instances where the highest measured value of the PSD exceeds the average Note 3: PSD (calculated from the measured power divided by the measured 99% bandwidth) by more than 3dB by the amount that the measured value exceeds the average by more than 3dB.
- Note 4: 99% Bandwidth measured in accordance with RSS GEN RB > 1% of span and VB >=3xRB


For MIMO systems the total output power and total PSD are calculated form the sum of the powers of the individual chains (in linear terms). The antenna gain used to determine the EIRP and limits for PSD/Output power depends on the operating mode of the MIMO device. If the signals on the non-coherent between the transmit chains then the gain used to determine Note 5: the limits is the highest gain of the individual chains and the EIRP is the sum of the products of gain and power on each chain. If the signals are coherent then the effective antenna gain is the sum (in linear terms) of the gains for each chain and the EIRP is the product of the effective gain and total power.


Run #2: Peak Excursion Measurement

Freq	Peak Exc	ursion(dB)	Freq	Peak Excursion(dB)		Freq	Peak Excu	ırsion(dB)
(MHz)	Value	Limit	(MHz)	Value	Limit	(MHz)	Value	Limit
5190		13.0	5275	10.37/10.28	13.0	5510	10.00/10.30	13.0
5230		13.0	5310	10.8/10.43	13.0	5550	10.87/11.09	13.0
						5670	10.19/11.03	13.0

Plots Showing Peak Excursion

Trace A: RBW = 1MHz, VBW = 3MHz, Peak hold

Trace B: Same settings as used for power/PSD measurements (RBW = 1 MHz, VBW = 3MHz, Integrated average power)

EII	iott An 还否*company
-----	-----------------------

	All DEED Company		
Client:	Ubiquiti Networks	Job Number:	J85880
Model:	NanaBridge ME	T-Log Number:	T85882
	NanoBridge M5	Account Manager:	Susan Pelzl
Contact:	Jennifer Sanchez		
Standard:	FCC 15.407, RSS-210 Issue 8	Class:	N/A

Run #3: Out Of Band Spurious Emissions - Antenna Conducted

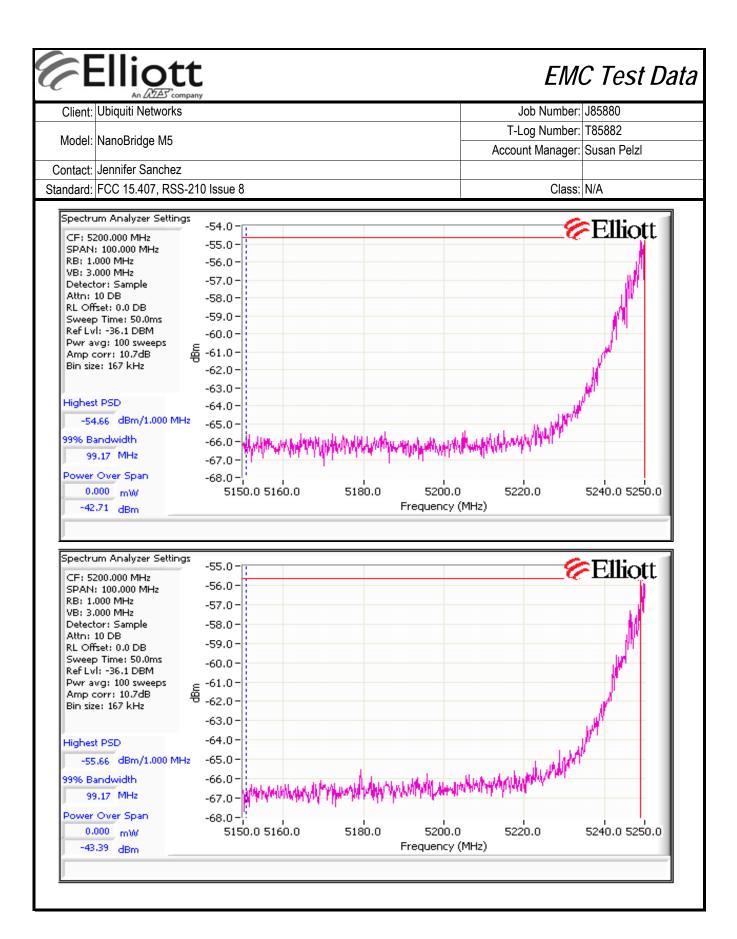
MIMO Devices: Antenna gain used is the effective gain calculated in the power section of this data sheet. The plots were obtained for each chain individually and the limit was adjusted to account for all chains transmitting simultaneously

Number of transmit chains:

Maximum Antenna Gain: 25.0 dBi

Spurious Limit: -27.0 dBm/MHz eirp
Adjustment for 2 chains: -3.0 dB adjustment for multiple chains.
Limit Used On Plots Note 1: -55.0 dBm/MHz Peak Limit (RB=VB=1MHz)

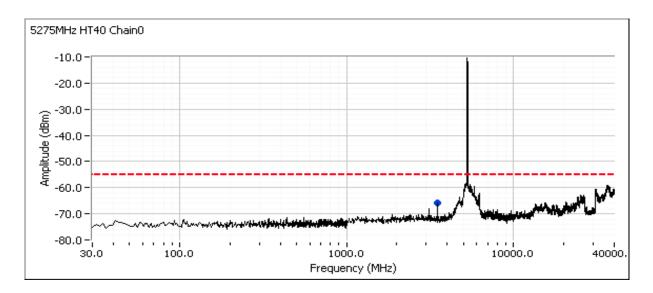
Note 1:	The -27dBm/MHz limit is an eirp limit. The limit for antenna port conducted measurements is adjusted to take into consideration the maximum antenna gain (limit = -27dBm - antenna gain). Radiated field strength measurements for signals more than 50MHz from the bands and that are close to the limit are made to determine compliance as the antenna gain is not known at these frequencies.
Note 2:	All spurious signals below 1GHz are measured during digital device radiated emissions test.
Note 3:	Signals within 10MHz of the 5.725 or 5.825 Band edge are subject to a limit of -17dBm EIRP
Note 4:	If the device is for outdoor use then the -27dBm eirp limit also applies in the 5150 - 5250 MHz band.
Note 5:	Signals that fall in the restricted bands of 15.205 are subject to the limit of 15.209.

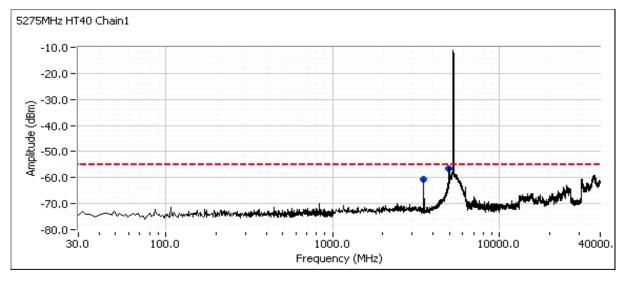

Plots Showing Out-Of-Band Emissions

Low channel, 5250 - 5350 MHz Band - 40MHz

Plots for each chain showing compliance with the -27dBm/MHz limit in the 5150 - 5250 MHz band. Start and stop frequencies set to 5150-5250 MHz, RB=1MHz, VB=3MHz, power averaging enabled (100 traces):

Channel frequency: 5275 MHz - 25dBi antenna


	Power	Band ed	ge Level	Antenna	Ell	RP	Total EIRP	Limit	Result
	Setting	dBm/MHz	mW/MHz	Gain (dBi)	mW/MHz	dBm/MHz	dBm/MHz	dBm/MHz	Nesult
Chain 1		-54.7	0.00000	25.0	0.0010814	-29.7	-27.1	-27	PASS
Chain 2	-	-55.7	0.00000	25.0	0.000859	-30.7	-21.1	-21	1 700



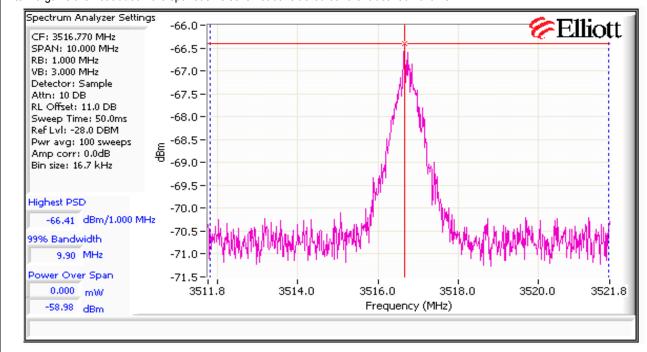
Wide-band plot, RB=300kHz VB=100kHz (Peak measurements versus limit).

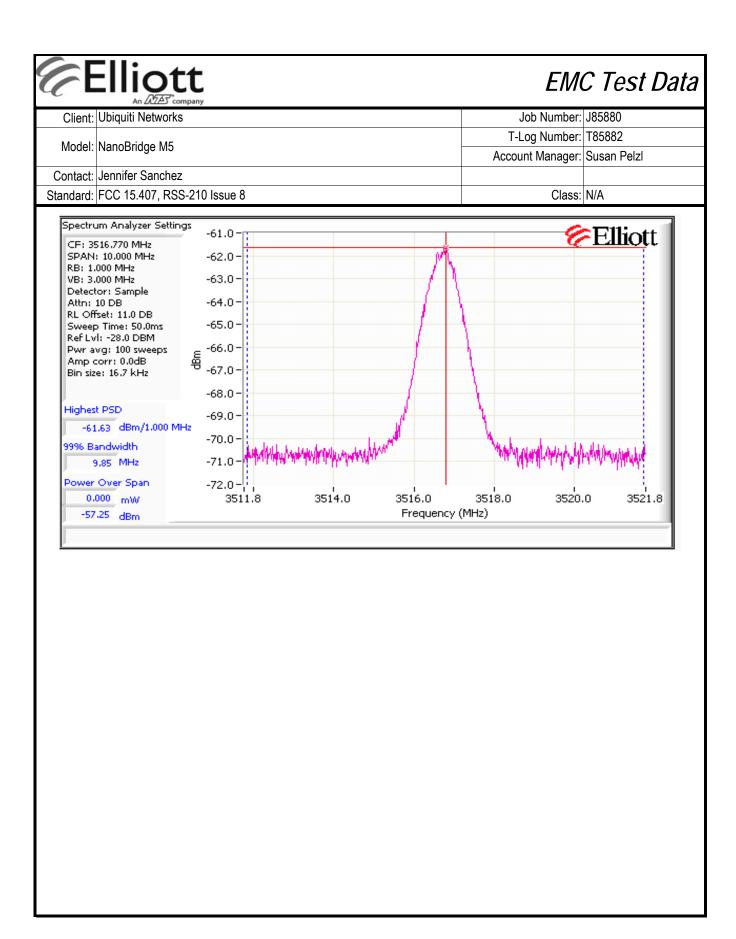
Date of Test: 12/21/2011 Test Location: FT Chamber#4
Test Engineer: Jack Liu Config Change: none

Client:	Ubiquiti Networks	Job Number:	J85880
Model:	NanaPridge ME	T-Log Number:	T85882
	NanoBridge M5	Account Manager:	Susan Pelzl
Contact:	Jennifer Sanchez		
Standard:	FCC 15.407, RSS-210 Issue 8	Class:	N/A

Wide-band result RB=1MHz VB=3MHz (Peak measurements versus limit).

Frequency	Level	Port	FCC 15 E	/ RSS 210	Detector			Comment		
MHz	dBm		Limit	Margin	Pk/QP/Avg	channel	mode/Chain	Ant. gain	Setting	Note
3517.090	-55.0	RF Port	-	-	PK	5275MHz	HT40/0	25	1.0	Note 3
3516.700	-53.0	RF Port	-	-	PK	5275MHz	HT40/1	25	1.0	Note 3
4995.260	-45.6	RF Port	-	-	PK	5275MHz	HT40/1	25	1.0	Note 2

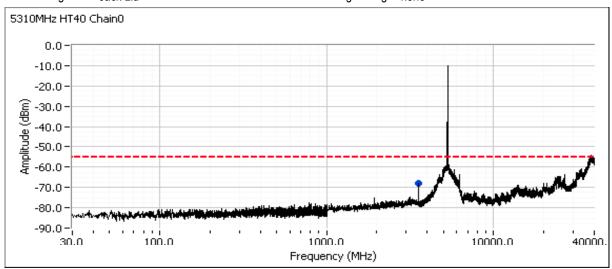

Note 1	Un-restricted signal
Note 2	Restricted band signal. Refer to the radiated spurious emissions results.
Note 3	Final measurements performed using 100sweep sample detector method. See below for final results.

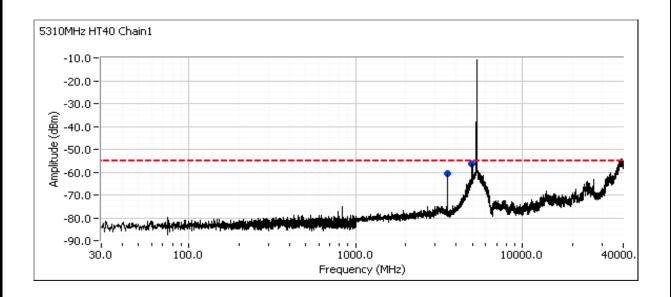

5275MHz HT40

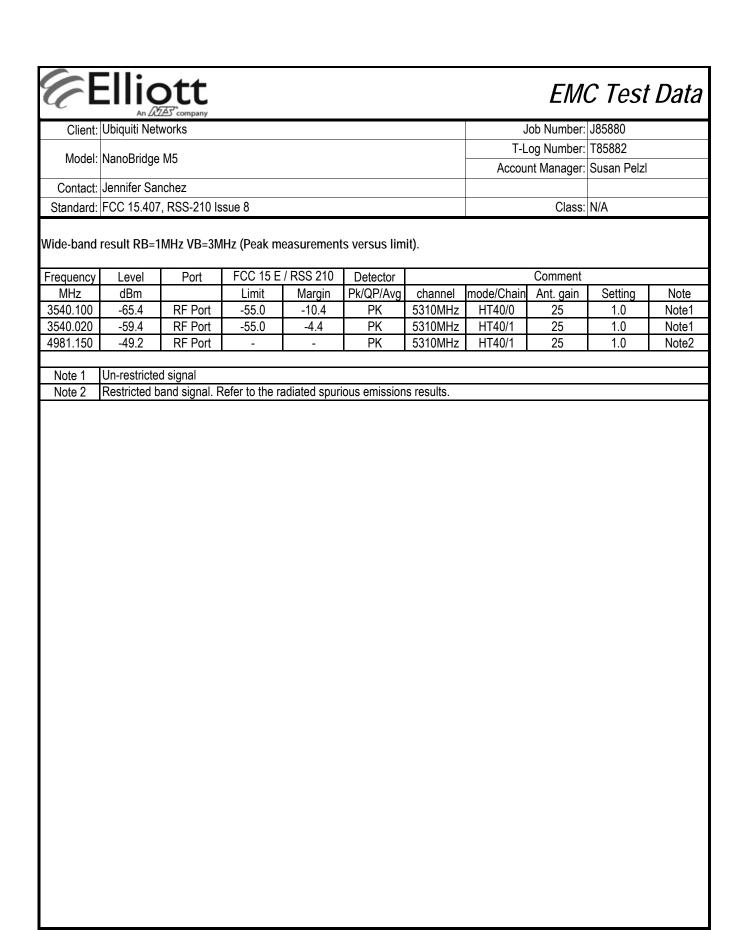
Eval 3516 MHz using 100Sweep tech

	Power	Band edge Level		Antenna	EIRP		Total EIRP Limit		Result
	Setting	dBm/MHz	mW/MHz	Gain (dBi)	mW/MHz	dBm/MHz	dBm/MHz	dBm/MHz	Nesuit
Chain 1		-66.4	0.00000	25.0	7.228E-05	-41.4	-35.4	-27	PASS
Chain 2	_	-61.6	0.00000	25.0	0.0002173	-36.6	-33.4	-21	FASS

Antenna gains are not added - the spurious noise is not considered coherent between chains.

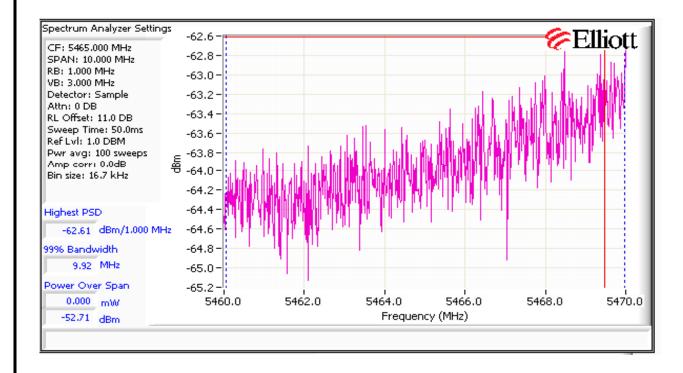

	An Z(ZE) company		
Client:	Ubiquiti Networks	Job Number:	J85880
Madal	NanaBridge ME	T-Log Number:	T85882
Model.	NanoBridge M5	Account Manager:	Susan Pelzl
Contact:	Jennifer Sanchez		
Standard:	FCC 15.407, RSS-210 Issue 8	Class:	N/A

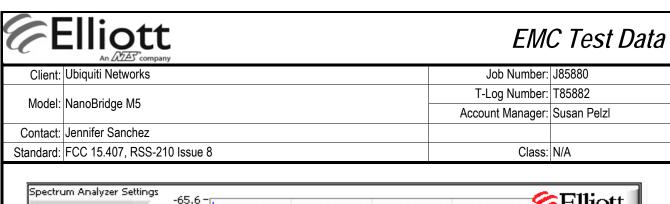

High channel, 5250 - 5350 MHz Band

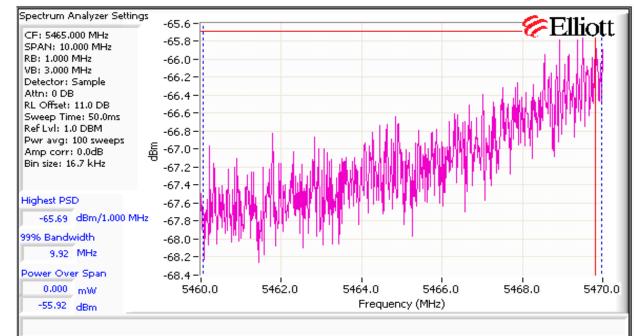

Note - compliance with the radiated limits for the restricted band immediately above 5350MHz is demonstrated through the radiated emissions tests.

Wide-band plot, RB=300kHz VB=100kHz (Peak measurements versus limit).

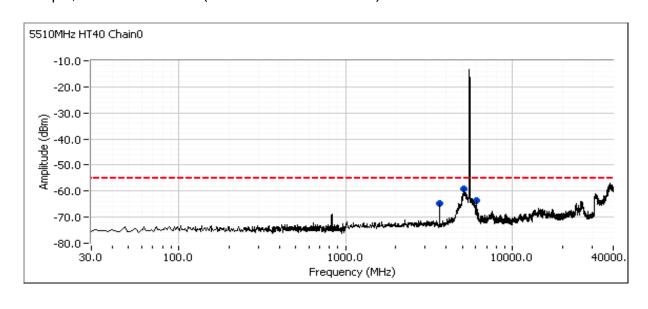
Date of Test: 12/22/2011 Test Location: FT Lab#4
Test Engineer: Jack Liu Config Change: none

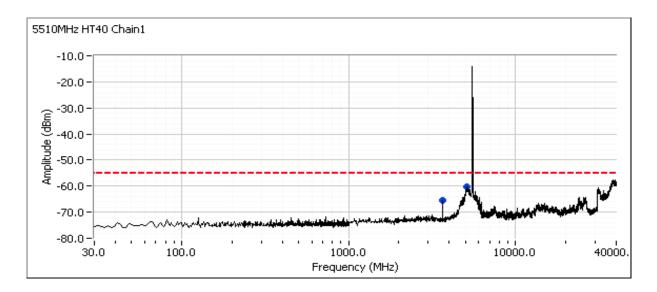



	All ZAZZS company		
Client:	Ubiquiti Networks	Job Number:	J85880
Model	NanaBridge ME	T-Log Number:	T85882
woder.	NanoBridge M5	Account Manager:	Susan Pelzl
Contact:	Jennifer Sanchez		
Standard:	FCC 15.407, RSS-210 Issue 8	Class:	N/A

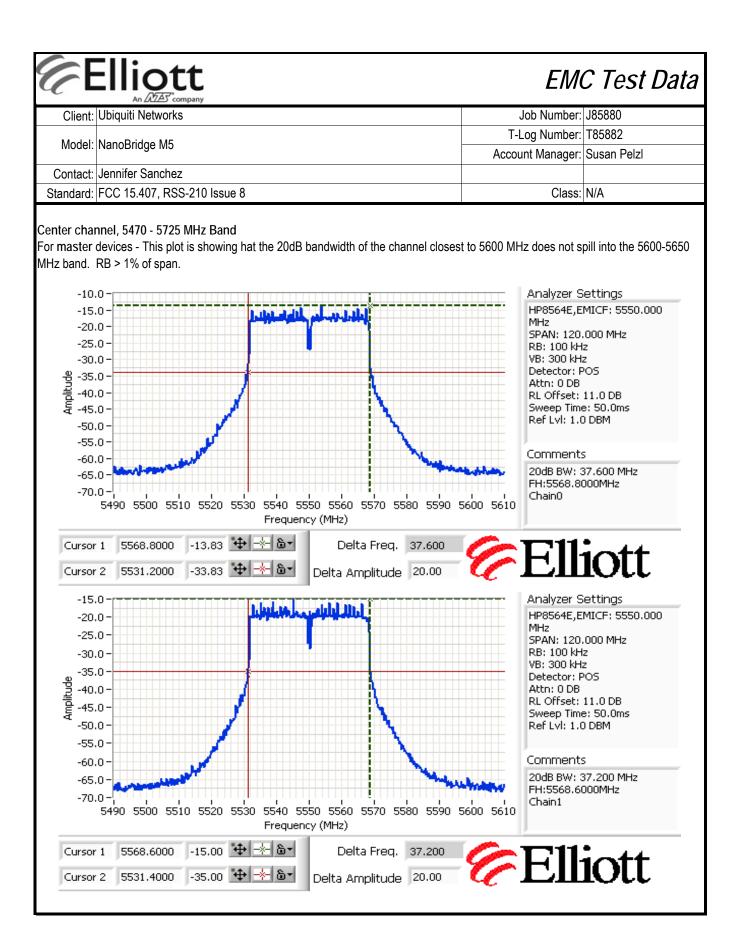

Low channel, 5470 - 5725 MHz Band

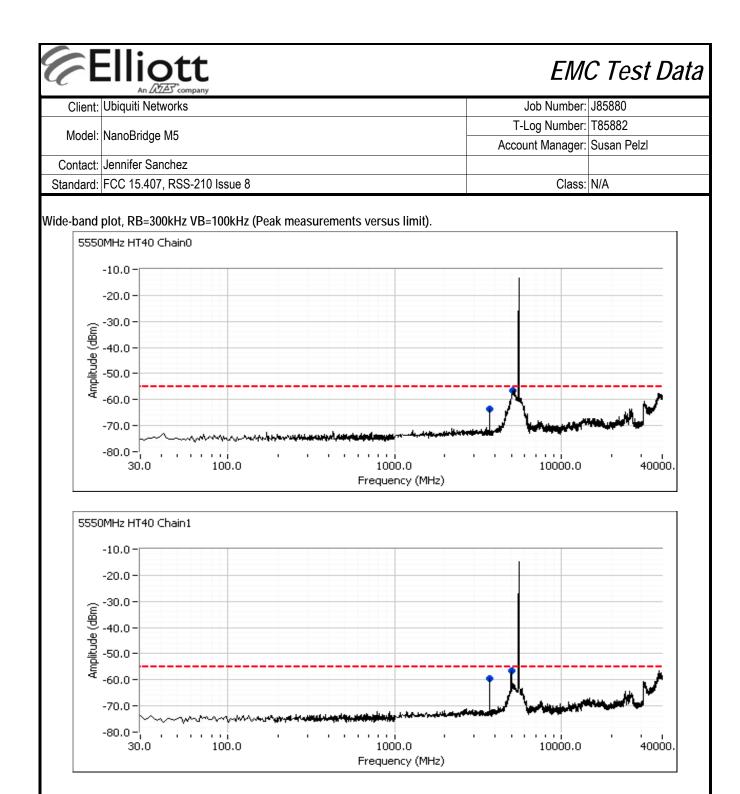
Compliance with the -27dBm/MHz limit in the 5460 - 5470 MHz band immediately below the allocated band. Start and stop frequencies set to 5460-5470 MHz, RB=1MHz, VB=3MHz, power averaging enabled (100 traces)


	Power	Band edge Level		Antenna	EIRP		EIRP Total EIRP Limit		Dogult
	Setting	dBm/MHz	mW/MHz	Gain (dBi)	mW/MHz	dBm/MHz	dBm/MHz	dBm/MHz	Result
Chain 1		-62.6	0.00000	25.0	0.0001734	-37.6	-35.9	-27	PASS
Chain 2	_	-65.7	0.00000	25.0	8.531E-05	-40.7	-33.9	-21	FASS



Wide-band plot, RB=300kHz VB=100kHz (Peak measurements versus limit).


	741 Dell's Company		
Client:	Ubiquiti Networks	Job Number:	J85880
Model	NanoPridgo M6	T-Log Number:	T85882
woder.	NanoBridge M5	Account Manager:	Susan Pelzl
Contact:	Jennifer Sanchez		
Standard:	FCC 15.407, RSS-210 Issue 8	Class:	N/A



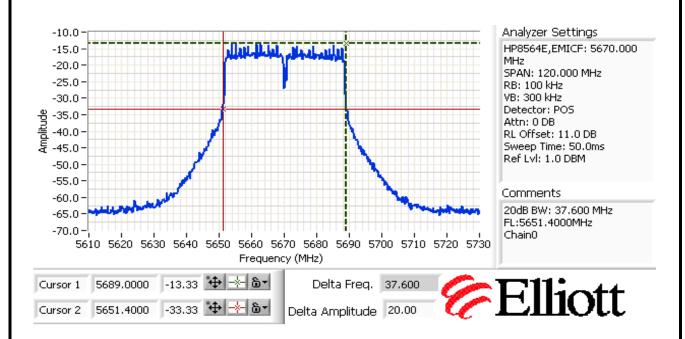
Wide-band result RB=1MHz VB=3MHz (Peak measurements versus limit).

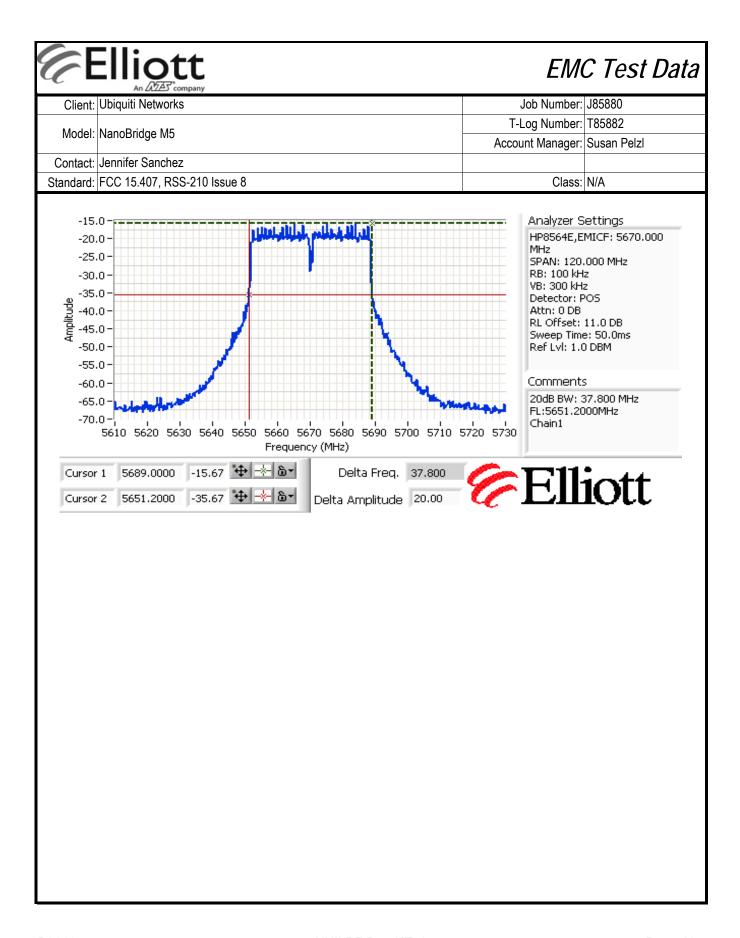
Frequency	Level	Port	FCC 15 E	/ RSS 210	Detector			Comment		
MHz	dBm		Limit	Margin	Pk/QP/Avg	channel	mode/Chain	Ant. gain	Setting	Note
3673.700	-62.7	RF Port	-	-	PK	5510MHz	HT40/1	25	-0.5	Note2
5130.700	-50.1	RF Port	-	-	PK	5510MHz	HT40/1	25	-0.5	Note2
3673.910	-64.8	RF Port	-	-	PK	5510MHz	HT40/0	25	-0.5	Note2
5122.820	-59.3	RF Port	-	-	PK	5510MHz	HT40/0	25	-0.5	Note2
6114.530	-58.5	RF Port	-55.0	-3.5	PK	5510MHz	HT40/0	25	-0.5	Note1

Note 2 Restricted band signal. Refer to the radiated spurious emissions results.

Client:	Ubiquiti Networks	Job Number:	J85880
Model	NanaPridge ME	T-Log Number:	T85882
woder.	NanoBridge M5	Account Manager:	Susan Pelzl
Contact:	Jennifer Sanchez		
Standard:	FCC 15.407, RSS-210 Issue 8	Class:	N/A

Wide-band result RB=1MHz VB=3MHz (Peak measurements versus limit).


Frequency	Level	Port	FCC 15 E	/ RSS 210	Detector			Comment		
MHz	dBm		Limit	Margin	Pk/QP/Avg	channel	mode/Chain	Ant. gain	Setting	Note
3700.050	-58.7	RF Port	-	-	PK	5550MHz	HT40/1	25	-0.5	Note2
4976.370	-48.8	RF Port	-	-	PK	5550MHz	HT40/1	25	-0.5	Note2
3700.100	-62.3	RF Port	-	-	PK	5550MHz	HT40/0	25	-0.5	Note2
5115.930	-49.8	RF Port	-	-	PK	5550MHz	HT40/0	25	-0.5	Note2

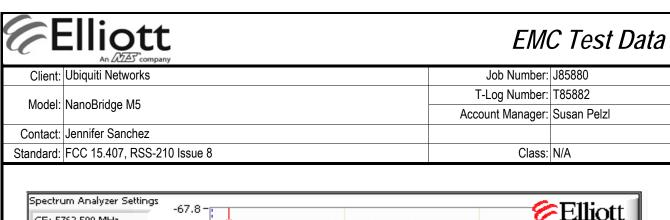

Note 1 Un-restricted signal

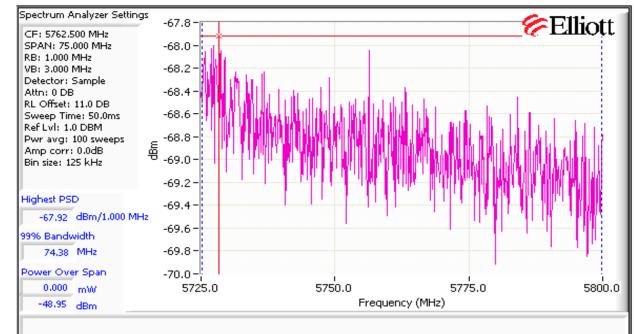
Note 2 Restricted band signal. Refer to the radiated spurious emissions results.

Channel adjacent to 5650 MHz (Master Device)

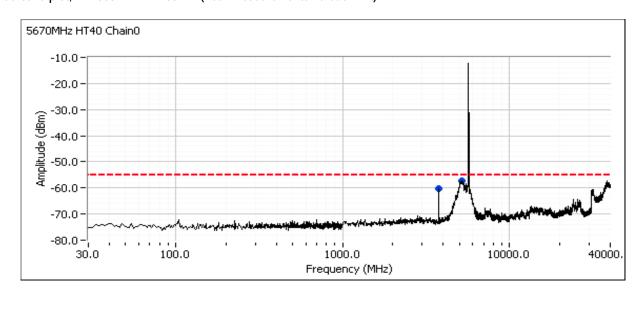
Plots showing that the 20dB bandwidth of the channel closest to 5650 MHz does not spill into the 5600-5650 MHz band. RB > 1% of span.

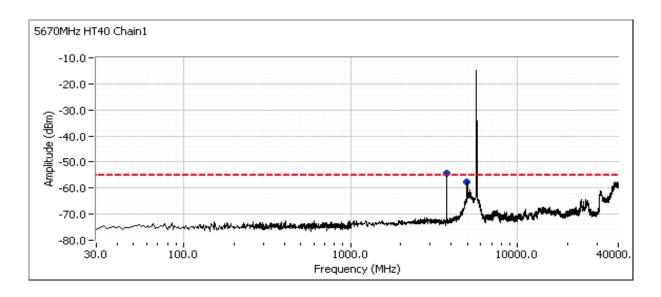

	An ZAZES company		
Client:	Ubiquiti Networks	Job Number:	J85880
Madal	NanaPridge ME	T-Log Number:	T85882
woder.	NanoBridge M5	Account Manager:	Susan Pelzl
Contact:	Jennifer Sanchez		
Standard:	FCC 15.407, RSS-210 Issue 8	Class:	N/A


High channel, 5470 - 5725 MHz Band


Plots for each chain showing compliance with the -27dBm/MHz limit above the 5725MHz band edge. Start and stop frequencies set to 5725-5800 MHz, RB=1MHz, VB=3MHz, power averaging enabled (100 traces):

Compliance with the -27dBm/MHz limit immediately above the band. Start and stop frequencies set to 5725-5775 MHz, RB=1MHz, VB=3MHz, power averaging enabled (100 traces)

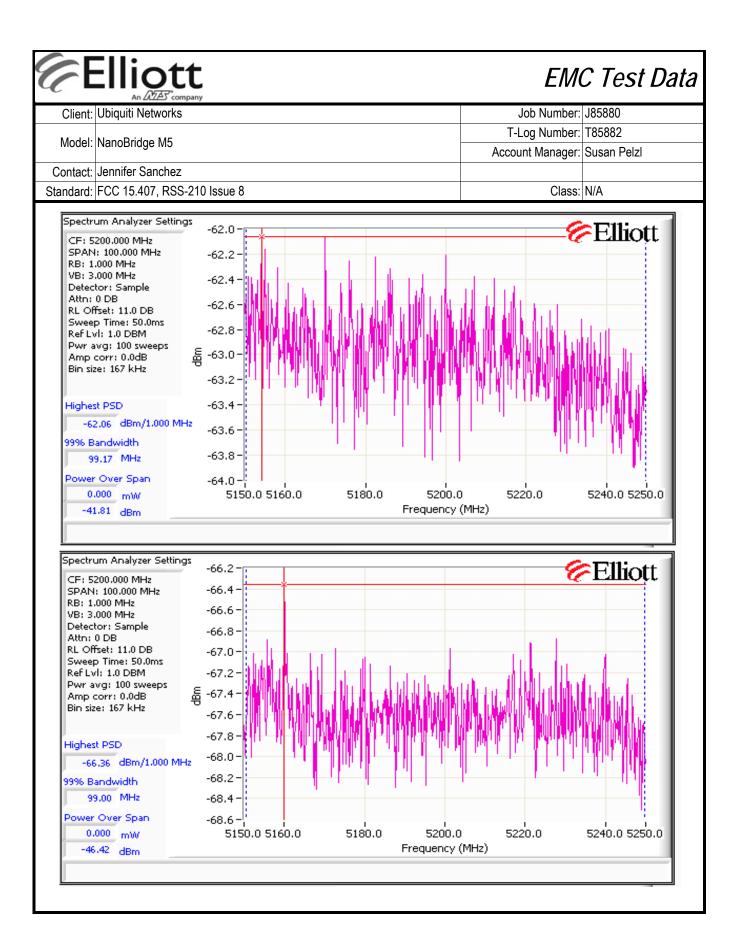

	Power	Band edge Level		Antenna	EIRP		Total EIRP	Limit	Result	
	Setting	dBm/MHz	mW/MHz	Gain (dBi)	mW/MHz	dBm/MHz	dBm/MHz	dBm/MHz	INGSUIL	
Chain 1		-64.8	0.00000	25.0	0.0001052	-39.8	-38.1	-27	PASS	
Chain 2] -	-67.9	0.00000	25.0	5.105E-05	-42.9	-30.1	-21	FASS	



Wide-band plot, RB=300kHz VB=100kHz (Peak measurements versus limit).

	All Dell's Company		
Client:	Ubiquiti Networks	Job Number:	J85880
Model:	NanaBridge ME	T-Log Number:	T85882
	NanoBridge M5	Account Manager:	Susan Pelzl
Contact:	Jennifer Sanchez		
Standard:	FCC 15.407, RSS-210 Issue 8	Class:	N/A

Wide-band result RB=1MHz VB=3MHz (Peak measurements versus limit).


Frequency	Level	Port	FCC 15 E / RSS 210		Detector	Comment				
MHz	dBm		Limit	Margin	Pk/QP/Avg	channel	mode/Chain	Ant. gain	Setting	Note
4991.490	-49.6	RF Port	-	-	PK	5670MHz	HT40/1	25	-1.0	Note2
3780.110	-53.2	RF Port	-	-	PK	5670MHz	HT40/1	25	-1.0	Note2
3780.180	-59.1	RF Port	-	-	PK	5670MHz	HT40/0	25	-1.0	Note2
5164.830	-49.6	RF Port	-55.0	5.4	PK	5670MHz	HT40/0	25	-1.0	Note3

Note 1	Un-restricted signal
Note 2	Restricted band signal. Refer to the radiated spurious emissions results.
Note 3	Final measurements performed using 100sweep sample detector method. See below for final results.

5670MHz HT40

Eval 5164MHz using 100Sweep tech

	Power	Band edge Level		Antenna	EIRP		Total EIRP	Limit	Result	
	Setting	dBm/MHz	mW/MHz	Gain (dBi)	mW/MHz	dBm/MHz	dBm/MHz	Bm/MHz dBm/MHz		
Chain 1		-62.1	0.00000	25.0	0.0001968	-37.1	-35.7	-27	PASS	
Chain 2	_	-66.4	0.00000	25.0	7.311E-05	-41.4	-33.1	-21	FASS	

	All DEED Company		
Client:	Ubiquiti Networks	Job Number:	J85880
Madal	NanaBridge ME	T-Log Number:	T85882
woder.	NanoBridge M5	Account Manager:	Susan Pelzl
Contact:	Jennifer Sanchez		
Standard:	FCC 15.407, RSS-210 Issue 8	Class:	N/A

RSS 210 and FCC 15.407 (UNII) Radiated Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. All remote support equipment was located outside the chamber.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions: Temperature: 15-17 °C

Rel. Humidity: 40-60 %

Summary of Results

Run #	Mode	Channel	Power Setting	Measured Power	Test Performed	Limit	Result / Margin
Run # 1	5MHz	5340MHz	_	_	Restricted Band Edge	15.209	53.1dBµV/m @
TXUIT# T	Chain 0+1	3340WII 12			at 5350 MHz	10.200	5350.3MHz (-0.9dB)
Run # 1	5MHz	5475MHz			Restricted Band Edge	15.209	53.5dBµV/m @
IXuII# I	Chain 0+1	J47 JIVII IZ		_	at 5460 MHz	10.203	5459.9MHz (-0.5dB)
Run # 2	20MHz	5320MHz			Restricted Band Edge	15.209	50.2dBµV/m @
Rull#2	Chain 0+1	SSZUWITZ	-	-	at 5350 MHz	13.209	5350.9MHz (-3.8dB)
Run # 2	20MHz	5500MHz			Restricted Band Edge	15.209	53.9dBµV/m @
Rull# Z	Chain 0+1	3300WII 12	•	-	at 5460 MHz	13.203	5456.0MHz (-0.1dB)
Run # 3	40MHz	5310MHz			Restricted Band Edge	15.209	53.6dBµV/m @
Rull#3	Chain 0+1	33 TOWN 12	•	-	at 5350 MHz	13.203	5350.0MHz (-0.4dB)
Run # 3	40MHz	5510MHz			Restricted Band Edge	15.209	53.5dBµV/m @
Rull#3	Chain 0+1	33 TOWN 12	•	-	at 5460 MHz	10.209	5456.2MHz (-0.5dB)
Run # 4	Various	Various			Restricted Band Edge	15.209	53.4dBµV/m @
Null#4	various	various	-	_	at 4500~5150 MHz	13.203	5104.3MHz (-0.6dB)

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

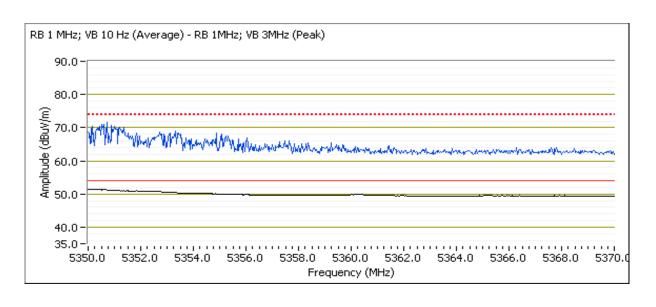
No deviations were made from the requirements of the standard.

	All DEED Company		
Client:	Ubiquiti Networks	Job Number:	J85880
Madal	NanaBridge ME	T-Log Number:	T85882
woder.	NanoBridge M5	Account Manager:	Susan Pelzl
Contact:	Jennifer Sanchez		
Standard:	FCC 15.407, RSS-210 Issue 8	Class:	N/A

Test Procedure Comments:

Unless otherwise noted, average measurements above 1GHz were performed as documented in FCC KDB 789033 G) 6) d) Method VR

Antenna: 25dBi dish


Run # 1: Band Edge Field Strength - 5MHz, Chain 0+1

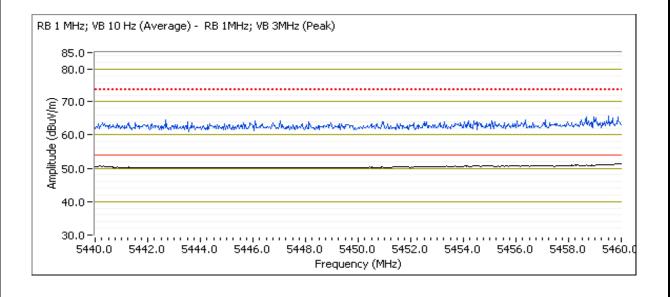
Run # 1b, EUT on Channel 5340MHz - 5MHz, Chain 0+1

Date of Test: 1/20/2012 Test Location: FT Chamber #7
Test Engineer: M. Birgani Config Change: 25dBi Dish Antenna

5350 MHz Band Edge Signal Radiated Field Strength

0000 2	soos iiii 2 2ana 2ays oigina naanatoa i isia on siigin										
Frequency	Level	Pol	FCC '	15.209	Detector	Azimuth	Height	Comments			
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters				
5350.300	53.1	Н	54.0	-0.9	AVG	2	1.1				
5350.870	52.7	V	54.0	-1.3	AVG	0	1.2				
5350.870	68.6	V	74.0	-5.4	PK	0	1.2				
5358.370	64.1	Н	74.0	-9.9	PK	2	1.1				

This company							
Client:	Ubiquiti Networks	Job Number:	J85880				
Madal	NanoPridgo M6	T-Log Number:	T85882				
woder.	NanoBridge M5	Account Manager:	Susan Pelzl				
Contact:	Jennifer Sanchez						
Standard:	FCC 15.407, RSS-210 Issue 8	Class:	N/A				


Run # 1c, EUT on Channel 5475MHz - 5MHz, Chain 0+1

Date of Test: 1/20/2012 Test Location: FT Chamber #7
Test Engineer: M. Birgani Config Change: 25dBi Dish Antenna

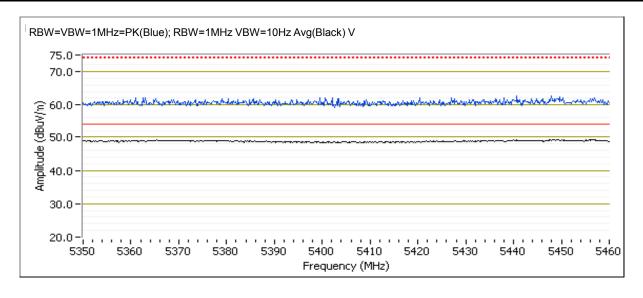
5460 MHz Band Edge Radiated Field Strength

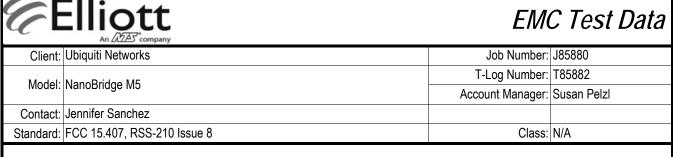
O TOO MITTE	o too III IE Bana Eago Radiatod I Tola Ottorigati									
Frequency	Level	Pol	15.	209	Detector	Azimuth	Height	Comments		
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
5459.930	53.5	Н	54.0	-0.5	AVG	360	1.1			
5459.930	51.0	V	54.0	-3.0	AVG	360	1.1			
5454.270	64.2	Н	74.0	-9.8	PK	1	1.1			
5440.770	62.6	V	74.0	-11.4	PK	1	1.1			

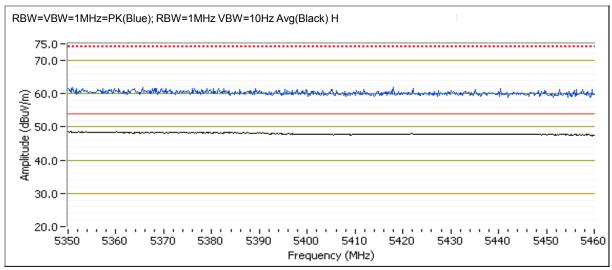
For emissions in the restricted band immediately below 5460MHz the 15.209/RSS GEN limits apply.

This company							
Client:	Ubiquiti Networks	Job Number:	J85880				
Madal	NanoPridgo M6	T-Log Number:	T85882				
woder.	NanoBridge M5	Account Manager:	Susan Pelzl				
Contact:	Jennifer Sanchez						
Standard:	FCC 15.407, RSS-210 Issue 8	Class:	N/A				

Run # 2, Band Edge Field Strength - 20MHz, Chain 0+1


Run # 2b, EUT on Channel 5320MHz - 20MHz, Chain 0+1

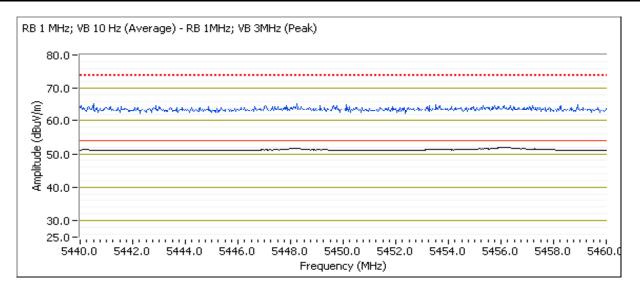

Date of Test: 1/12/2012 Test Location: FT7


Test Engineer: Jack Liu Config Change: 25dBi Dish Antenna

5350 MHz Band Edge Signal Radiated Field Strength

beet inite bund buge dignar hadiated riold etterigar									
Frequency	Level	Pol	FCC 1	15.209	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
5368.430	50.0	V	54.0	-4.0	AVG	0	1.4		
5368.530	61.8	V	74.0	-12.2	PK	0	1.4		
5350.870	50.2	Н	54.0	-3.8	AVG	0	1.4		
5350.300	62.2	Н	74.0	-11.8	PK	0	1.4		

	rangers company		
Client:	Ubiquiti Networks	Job Number:	J85880
Model:	NanoBridge M5	T-Log Number:	T85882
wodei.	Inaliobilitye ino	Account Manager:	Susan Pelzl
Contact:	Jennifer Sanchez		
Standard:	FCC 15.407, RSS-210 Issue 8	Class:	N/A


Run # 2c, EUT on Channel 5500MHz - 20MHz, Chain 0+1

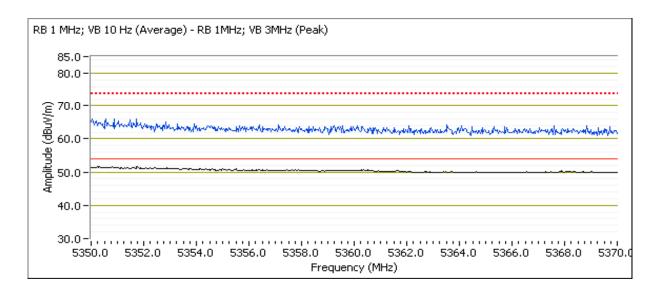
Date of Test: 1/20/2012 Test Location: FT Chamber #7
Test Engineer: M. Birgani Config Change: 25dBi Dish Antenna

5460 MHz Band Edge Radiated Field Strength

Frequency	Level	Pol	15.	209	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5455.970	53.9	Н	54.0	-0.1	AVG	0	1.1	
5456.070	51.0	V	54.0	-3.0	AVG	358	1.2	
5455.370	65.6	Н	74.0	-8.4	PK	0	1.1	
5453.070	62.7	V	74.0	-11.3	PK	358	1.2	

For emissions in the restricted band immediately below 5460MHz the 15.209/RSS GEN limits apply.

Client:	Ubiquiti Networks	Job Number:	J85880
Model:	NanaPridge ME	T-Log Number:	T85882
woder.	NanoBridge M5	Account Manager:	Susan Pelzl
Contact:	Jennifer Sanchez		
Standard:	FCC 15.407, RSS-210 Issue 8	Class:	N/A


Run # 3, Band Edge Field Strength - 40MHz, Chain 0+1

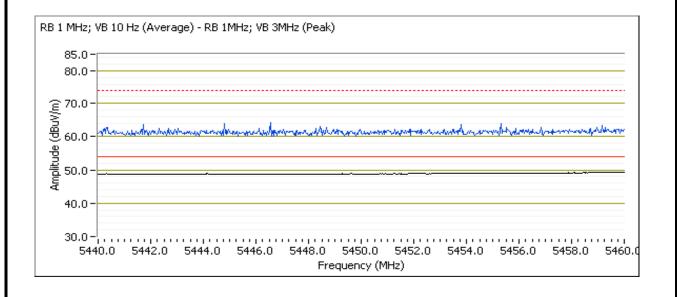
Run # 3b, EUT on Channel 5310MHz - 40MHz, Chain 0+1

Date of Test: 1/20/2012 Test Engineer: M. Birgani Test Location: FT Chamber #7 Config Change: 25dBi Dish Antenna

5350 MHz Band Edge Signal Radiated Field Strength

bood Hills Buria Eago Olgriai Radiatod Flora Citorigar									
Frequency	Level	Pol	FCC 1	15.209	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
5350.030	53.6	V	54.0	-0.4	AVG	0	1.3		
5350.070	53.3	Н	54.0	-0.7	AVG	0	1.1		
5351.500	64.7	Н	74.0	-9.3	PK	0	1.1		
5351.200	64.3	V	74.0	-9.7	PK	0	1.3		

	All DEED Company		
Client:	Ubiquiti Networks	Job Number:	J85880
Model	NanaBridge ME	T-Log Number:	T85882
woder.	NanoBridge M5	Account Manager:	Susan Pelzl
Contact:	Jennifer Sanchez		
Standard:	FCC 15.407, RSS-210 Issue 8	Class:	N/A

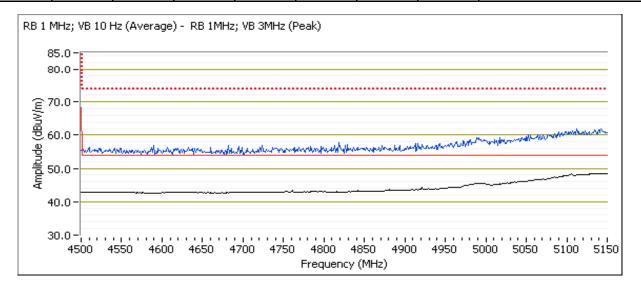

Run # 3c, EUT on Channel 5510MHz - 40MHz, Chain 0+1

Date of Test: 1/20/2012 Test Location: FT Chamber #7
Test Engineer: M. Birgani Config Change: 25dBi Dish Antenna

5460 MHz Band Edge Radiated Field Strength

	J							
Frequency	Level	Pol	15.	209	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5456.170	53.5	Н	54.0	-0.5	AVG	2	1.1	
5455.230	51.5	V	54.0	-2.5	AVG	360	1.3	
5459.500	64.4	Н	74.0	-9.6	PK	2	1.1	
5450.070	62.4	V	74.0	-11.6	PK	360	1.3	

For emissions in the restricted band immediately below 5460MHz the 15.209/RSS GEN limits apply.


	741 Dell's Company		
Client:	Ubiquiti Networks	Job Number:	J85880
Model	NanoPridgo M6	T-Log Number:	T85882
woder.	NanoBridge M5	Account Manager:	Susan Pelzl
Contact:	Jennifer Sanchez		
Standard:	FCC 15.407, RSS-210 Issue 8	Class:	N/A

Run # 4, 4500~5150 Band Edge Eval, Chain 0+1

Date of Test: 1/20/2012 Test Location: FT Chamber #7
Test Engineer: M. Birgani Config Change: 25dBi Dish Antenna

Note: EUT configured to transmit the following: HT5 - 5475 MHz, 5595 MHz, 5715 MHz; HT20 - 5265 MHz, 5300 MHz, 5320 MHz, 5700 MHz; HT40 - 5275 MHz. Emission level maximized for each and worse case plot shown below. Showing that the emissions near the operating band in the spurious emissions plots were artificially high due to the correction factor for the band reject filters used.

Frequency	Level	Pol	15.	209	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5104.330	53.4	V	54.0	-0.6	AVG	0	1.1	RB 1 MHz;VB 10 Hz;Pk
5104.170	51.4	Н	54.0	-2.6	AVG	358	1.1	RB 1 MHz;VB 10 Hz;Pk
5123.920	64.9	V	74.0	-9.1	PK	0	1.1	RB 1 MHz;VB 3 MHz;Pk
5149.170	62.3	Н	74.0	-11.7	PK	358	1.1	RB 1 MHz;VB 3 MHz;Pk

	iott
--	------

	All DEED Company		
Client:	Ubiquiti Networks	Job Number:	J85880
Model	NanaBridge ME	T-Log Number:	T85882
woder.	NanoBridge M5	Account Manager:	Susan Pelzl
Contact:	Jennifer Sanchez		
Standard:	FCC 15.407, RSS-210 Issue 8	Class:	N/A

RSS 210 and FCC 15.407 (UNII) Radiated Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

The EUT was mounted on a tripod on the turntable for radiated spurious emissions testing. The bottom of the EUT dish antenna was 1.2m above the ground plane. All remote support equipment was located outside the chamber, with the I/O connection running under the groundplane.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions:

Temperature: 22.1 °C Rel. Humidity: 35 %

Summary of Results

Run#	Mode	Channel	Power Setting	Measured Power	Test Performed	Limit	Result / Margin
		5255MHz	-	-			49.7dBµV/m @
	5MHz				Dadiated Emissions		1170.1MHz (-4.3dB)
Run #1	Chain 0+1	5300MHz	-	-	Radiated Emissions, 1 - 40 GHz	FCC 15.209 / 15 E	50.0dBµV/m @
	Chain 0+1				1 - 40 GHZ		1170.0MHz (-4.0dB)
		5340MHz	-	-			42.0 dBµV/m @ 5427.6
							MHz (-12.0 dB)
		5475MHz	_	_			52.5dBµV/m @
		347 SIVII 12	047 GWII 12			1170.0MHz (-1.5dB)	
D #1	5MHz	EEOEMI I-			Radiated Emissions,	FOO 45 000 / 45 F	52.4dBµV/m @
Run #1	Chain 0+1	5595MHz	-	-	1 - 40 GHz	FCC 15.209 / 15 E	1170.1MHz (-1.6dB)
		5715MHz					52.5dBµV/m @
		37 ISIVIEZ	-	-			1170.1MHz (-1.5dB)
		5265MHz					45.1 dBµV/m @ 1560.1
		JZUJIVII IZ	_	_			MHz (-8.9 dB)
Run # 2	20MHz	5300MHz			Radiated Emissions,	FCC 15 200 / 15 F	46.9dBµV/m @
Rull # Z	Chain 0+1	SSUUIVITZ	-	-	1 - 40 GHz	FCC 15.209 / 15 E	10601.1MHz (-7.1dB)
		E220MU=					50.9dBµV/m @
		5320MHz	-	-			1170.2MHz (-3.1dB)
		<u> </u>	<u> </u>		_	_	

Client:	Ubiquiti Net	works				Job Number:	J85880
						T-Log Number:	
Model:	NanoBridge	M5				Account Manager:	
Contact:	Jennifer Sar	nchez					
Standard:	FCC 15.407	, RSS-210 Is	sue 8			Class:	N/A
Run#	Mode	Channel	Power Setting	Measured Power	Test Performed	Limit	Result / Margin
		5500MHz	-	-			52.4dBµV/m @ 1170.1MHz (-1.6dB)
Run # 2	20MHz Chain 0+1	5580MHz	-	-	Radiated Emissions, 1 - 40 GHz	FCC 15.209 / 15 E	52.6dBµV/m @ 1170.1MHz (-1.4dB
		5700MHz	-	-			49.8dBµV/m @ 1170.1MHz (-4.2dB
		5275MHz	-	-			53.3 dBµV/m @ 5449 MHz (-0.7 dB)
Run # 3	40MHz Chain 0+1	-	ı	-	Radiated Emissions, 1 - 40 GHz	FCC 15.209 / 15 E	-
		5310MHz	-	-			50.7dBµV/m @ 1170.1MHz (-3.3dB)
		5510MHz	-	-			52.9dBµV/m @ 1170.1MHz (-1.1dB
Run # 3	n # 3 40MHz Chain 0+1	5550MHz	-	-	Radiated Emissions, 1 - 40 GHz	FCC 15.209 / 15 E	51.7dBµV/m @ 1170.1MHz (-2.3dB)
		5670MHz	-	-			52.8dBµV/m @ 1170.1MHz (-1.2dB
D #4	DV Mada	5300MHz	-	-	Radiated Emissions,	DOC OEN	52.9 dBµV/m @ 3120 MHz (-1.1 dB)
Run #4	RX Mode	5580MHz	_		1 - 18 GHz	RSS-GEN	53.3 dBµV/m @ 3120

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

5580MHz

Test Procedure Comments:

Unless otherwise noted, average measurements above 1GHz were performed as documented in FCC KDB 789033 G) 6) d) Method VΒ

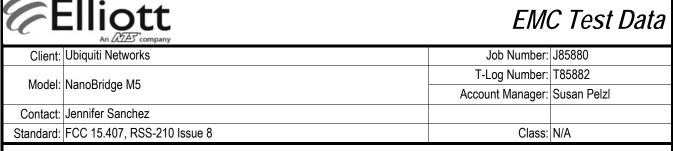
Antenna: 25dBi Dish Duty Cycle: N/A

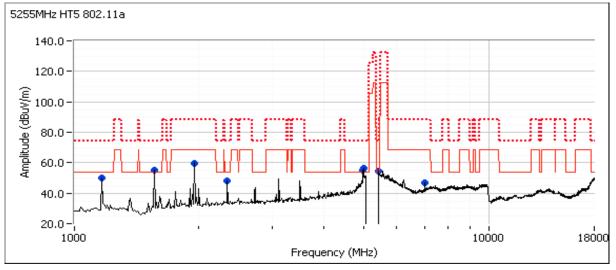
MHz (-0.7 dB)

	All Della Company		
Client:	Ubiquiti Networks	Job Number:	J85880
Model	NanaBridge ME	T-Log Number:	T85882
woder.	NanoBridge M5	Account Manager:	Susan Pelzl
Contact:	Jennifer Sanchez		
Standard:	FCC 15.407, RSS-210 Issue 8	Class:	N/A

Run #1, Radiated Spurious Emissions, 1-40GHz, 5MHz, Chain 0+1

Date of Test: 12/29/2011 Test Location: FT Chamber #3

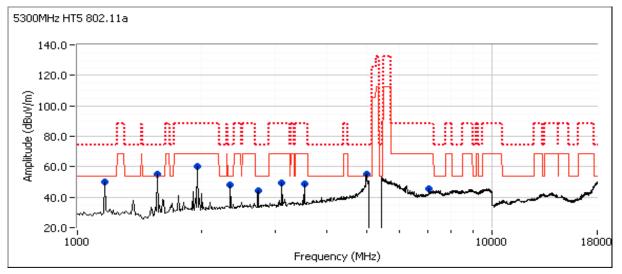

Test Engineer: Joseph Cadigal Config Change: none


For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit is -27dBm eirp (68.3dBuV/m @3m).

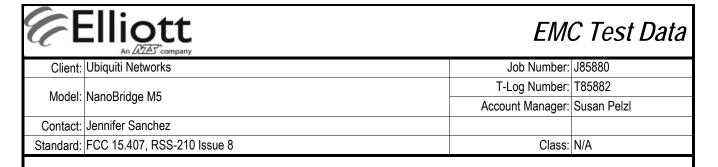
Run #1a: EUT on Channel 5255MHz - 5MHz, Chain 0+1

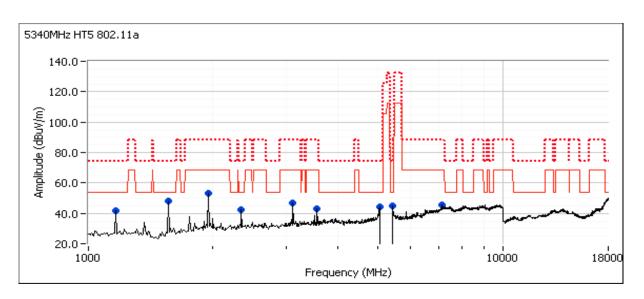
Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
1170.050	49.7	Н	54.0	-4.3	AVG	27	1.6	
5428.700	49.1	V	54.0	-4.9	AVG	9	1.3	Note 3
2340.080	46.9	Н	54.0	-7.1	AVG	9	1.3	
4980.260	43.8	Н	54.0	-10.2	AVG	5	1.0	Note 3
4992.620	42.1	Н	54.0	-11.9	AVG	360	1.6	Note 3
5426.910	60.1	V	74.0	-13.9	PK	9	1.3	Note 3
4978.940	59.2	Н	74.0	-14.8	PK	5	1.0	Note 3
4991.220	58.4	Н	74.0	-15.6	PK	360	1.6	Note 3
1170.100	50.8	Н	74.0	-23.2	PK	27	1.6	
2340.040	49.2	Н	74.0	-24.8	PK	9	1.3	
1950.070	59.3	V	-	-	AVG	18	1.0	Note 2
7006.930	41.8	Н	-	-	AVG	5	1.3	Note 2
1950.080	59.9	V	-	-	PK	18	1.0	Note 2
7006.790	49.3	Н	-	-	PK	5	1.3	Note 2
1560.060	54.8	V	-	-	AVG	356	1.9	Note 4
1560.010	55.5	V	-	-	PK	356	1.9	Note 4

Note 1:	For emissions in restricted bands, the limit of 15.209 was used which requires average and peak measurements.
Note 2:	For emissions outside of the restricted bands the limit is -27dBm/MHz eirp (68.3dBuV/m). Refer to RF port measurements
NOLE Z.	for any significant emissions.
Note 3:	For any emissions exceeding the restricted band limits in 4500MHz~5150MHz and 5350~5460MHz range please refer to
NOLE 3.	band Edge testing result.
Note 4:	Digital signal. 1:Radio off the siganl still on. 2: Radio on and Change the channel. The signal didn't change or move



NanoBridge M5	Model:		OIRO		Ubiquiti Networks Job Number: J85880										
NanoBridge M5	Contact:	NanoBridge N													
Contact: Jennifer Sanchez Standard: FCC 15.407, RSS-210 Issue 8 Class: N/A			M5												
Standard: FCC 15.407, RSS-210 Issue 8 Class: N/A					ACCO	unt Manager:	Susan Pelzi								
Run #1b: EUT on Channel 5300MHz - 5MHz, Chain 0+1 Spurious Radiated Emissions: Frequency Level Pol 15.209 / 15E Detector Azimuth Height Comments MHz dBµV/m V/h Limit Margin Pk/QP/Avg degrees meters 1170.040 50.0 H 54.0 -4.0 AVG 32 1.6 1170.060 49.9 H 54.0 -7.5 AVG 12 1.3 4998.710 44.5 H 54.0 -9.5 AVG 12 1.3 Note 3 2730.100 44.0 H 54.0 -10.0 AVG 167 1.3 4998.980 60.1 H 74.0 -13.9 PK 12 1.3 Note 3 1170.040 50.9 H 74.0 -23.1 PK 32 1.6 1169.980 50.9 H 74.0 -23.1 PK 32 1.6 2340.240 49.1 H 74.0 -24.9 PK 12 1.3 7066.980 42.8 V - AVG 340 1.6 Note 2 7066.980 42.8 V - AVG 340 1.6 Note 2 3533.450 48.5 V - AVG 4 1.3 Note 2 3120.120 49.3 H - AVG 1 1.3 Note 2 1950.120 60.0 H PK 40 1.3 Note 2	Standard:														
Spurious Radiated Emissions: Frequency Level Pol 15.209 / 15E Detector Azimuth Height Comments MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 1170.040 50.0 H 54.0 -4.0 AVG 32 1.6 1170.060 49.9 H 54.0 -4.1 AVG 32 1.6 2340.080 46.5 H 54.0 -7.5 AVG 12 1.3 4998.710 44.5 H 54.0 -9.5 AVG 12 1.3 Note 3 2730.100 44.0 H 54.0 -10.0 AVG 167 1.3 4998.980 60.1 H 74.0 -13.9 PK 12 1.3 Note 3 1170.040 50.9 H 74.0 -23.1 PK 32 1.6 12340.240 49.1 H 74.0 -24.9 PK 12 <td< td=""><td></td><td>FCC 15.407,</td><td>RSS-210 Is</td><td>ssue 8</td><td></td><td></td><td></td><td></td><td>Class:</td><td>N/A</td></td<>		FCC 15.407,	RSS-210 Is	ssue 8					Class:	N/A					
MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 1170.040 50.0 H 54.0 -4.0 AVG 32 1.6 1170.060 49.9 H 54.0 -4.1 AVG 32 1.6 2340.080 46.5 H 54.0 -7.5 AVG 12 1.3 4998.710 44.5 H 54.0 -9.5 AVG 12 1.3 Note 3 2730.100 44.0 H 54.0 -10.0 AVG 167 1.3 4998.980 60.1 H 74.0 -13.9 PK 12 1.3 Note 3 1169.980 50.9 H 74.0 -23.1 PK 32 1.6 2340.240 49.1 H 74.0 -23.1 PK 12 1.3 2729.980 47.1 H 74.0 -24.9 PK 167 1.3 7066.980 42.8	Spurious R	Padiated Emis	ssions:	·		Detector	Azimuth	Height	Comments						
1170.040 50.0 H 54.0 -4.0 AVG 32 1.6 1170.060 49.9 H 54.0 -4.1 AVG 32 1.6 2340.080 46.5 H 54.0 -7.5 AVG 12 1.3 4998.710 44.5 H 54.0 -9.5 AVG 12 1.3 Note 3 2730.100 44.0 H 54.0 -10.0 AVG 167 1.3 4998.980 60.1 H 74.0 -13.9 PK 12 1.3 Note 3 1170.040 50.9 H 74.0 -23.1 PK 32 1.6 1169.980 50.9 H 74.0 -23.1 PK 32 1.6 2340.240 49.1 H 74.0 -24.9 PK 12 1.3 2729.980 47.1 H 74.0 -26.9 PK 167 1.3 7066.930 50.5 V <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td>Commonto</td> <td></td>					1				Commonto						
1170.060 49.9 H 54.0 -4.1 AVG 32 1.6 2340.080 46.5 H 54.0 -7.5 AVG 12 1.3 Note 3 4998.710 44.5 H 54.0 -9.5 AVG 12 1.3 Note 3 2730.100 44.0 H 54.0 -10.0 AVG 167 1.3 4998.980 60.1 H 74.0 -13.9 PK 12 1.3 Note 3 1170.040 50.9 H 74.0 -23.1 PK 32 1.6 1169.980 50.9 H 74.0 -23.1 PK 32 1.6 2340.240 49.1 H 74.0 -24.9 PK 12 1.3 2729.980 47.1 H 74.0 -24.9 PK 167 1.3 7066.930 50.5 V - - AVG 340 1.6 Note 2 3533.450<					 										
2340.080 46.5 H 54.0 -7.5 AVG 12 1.3 Note 3 4998.710 44.5 H 54.0 -9.5 AVG 12 1.3 Note 3 2730.100 44.0 H 54.0 -10.0 AVG 167 1.3 4998.980 60.1 H 74.0 -13.9 PK 12 1.3 Note 3 1170.040 50.9 H 74.0 -23.1 PK 32 1.6 1169.980 50.9 H 74.0 -23.1 PK 32 1.6 2340.240 49.1 H 74.0 -24.9 PK 12 1.3 2729.980 47.1 H 74.0 -24.9 PK 167 1.3 7066.980 42.8 V - - AVG 340 1.6 Note 2 3533.450 48.5 V - - PK 4 1.3 Note 2					-4.1		32	1.6							
2730.100 44.0 H 54.0 -10.0 AVG 167 1.3 4998.980 60.1 H 74.0 -13.9 PK 12 1.3 Note 3 1170.040 50.9 H 74.0 -23.1 PK 32 1.6 1169.980 50.9 H 74.0 -23.1 PK 32 1.6 2340.240 49.1 H 74.0 -23.1 PK 12 1.3 2729.980 47.1 H 74.0 -24.9 PK 167 1.3 27066.980 42.8 V - - AVG 340 1.6 Note 2 7066.930 50.5 V - - PK 340 1.6 Note 2 3533.450 48.5 V - - AVG 4 1.3 Note 2 3120.190 51.9 H - - PK 1 1.3 Note 2 3120.120 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>															
4998.980 60.1 H 74.0 -13.9 PK 12 1.3 Note 3 1170.040 50.9 H 74.0 -23.1 PK 32 1.6 1169.980 50.9 H 74.0 -23.1 PK 32 1.6 2340.240 49.1 H 74.0 -24.9 PK 12 1.3 2729.980 47.1 H 74.0 -26.9 PK 167 1.3 7066.980 42.8 V - - AVG 340 1.6 Note 2 7066.930 50.5 V - - PK 340 1.6 Note 2 3533.450 48.5 V - - AVG 4 1.3 Note 2 3120.190 51.9 H - - PK 1 1.3 Note 2 3120.120 49.3 H - - AVG 1 1.3 Note 2	4998.710	44.5	Н	54.0	-9.5	AVG	12	1.3	Note 3						
1170.040 50.9 H 74.0 -23.1 PK 32 1.6 1169.980 50.9 H 74.0 -23.1 PK 32 1.6 2340.240 49.1 H 74.0 -24.9 PK 12 1.3 2729.980 47.1 H 74.0 -26.9 PK 167 1.3 7066.980 42.8 V - - AVG 340 1.6 Note 2 7066.930 50.5 V - - PK 340 1.6 Note 2 3533.450 48.5 V - - AVG 4 1.3 Note 2 3120.190 51.9 H - - PK 1 1.3 Note 2 3120.120 49.3 H - - AVG 1 1.3 Note 2 1950.120 60.0 H - - PK 40 1.3 Note 2		44.0	Н	54.0	-10.0	AVG	167	1.3							
1169.980 50.9 H 74.0 -23.1 PK 32 1.6 2340.240 49.1 H 74.0 -24.9 PK 12 1.3 2729.980 47.1 H 74.0 -26.9 PK 167 1.3 7066.980 42.8 V - - AVG 340 1.6 Note 2 7066.930 50.5 V - - PK 340 1.6 Note 2 3533.450 48.5 V - - AVG 4 1.3 Note 2 3120.190 51.9 H - - PK 1 1.3 Note 2 3120.120 49.3 H - - AVG 1 1.3 Note 2 1950.120 60.0 H - - PK 40 1.3 Note 2									Note 3						
2340.240 49.1 H 74.0 -24.9 PK 12 1.3 2729.980 47.1 H 74.0 -26.9 PK 167 1.3 7066.980 42.8 V - - AVG 340 1.6 Note 2 7066.930 50.5 V - - PK 340 1.6 Note 2 3533.450 48.5 V - - AVG 4 1.3 Note 2 3533.420 50.9 V - - PK 4 1.3 Note 2 3120.190 51.9 H - - PK 1 1.3 Note 2 3120.120 49.3 H - - AVG 1 1.3 Note 2 1950.120 60.0 H - - PK 40 1.3 Note 2				1											
2729.980 47.1 H 74.0 -26.9 PK 167 1.3 7066.980 42.8 V - - AVG 340 1.6 Note 2 7066.930 50.5 V - - PK 340 1.6 Note 2 3533.450 48.5 V - - AVG 4 1.3 Note 2 3533.420 50.9 V - - PK 4 1.3 Note 2 3120.190 51.9 H - - PK 1 1.3 Note 2 3120.120 49.3 H - - AVG 1 1.3 Note 2 1950.120 60.0 H - - PK 40 1.3 Note 2															
7066.980 42.8 V - - AVG 340 1.6 Note 2 7066.930 50.5 V - - PK 340 1.6 Note 2 3533.450 48.5 V - - AVG 4 1.3 Note 2 3533.420 50.9 V - - PK 4 1.3 Note 2 3120.190 51.9 H - - PK 1 1.3 Note 2 3120.120 49.3 H - - AVG 1 1.3 Note 2 1950.120 60.0 H - - PK 40 1.3 Note 2															
7066.930 50.5 V - - PK 340 1.6 Note 2 3533.450 48.5 V - - AVG 4 1.3 Note 2 3533.420 50.9 V - - PK 4 1.3 Note 2 3120.190 51.9 H - - PK 1 1.3 Note 2 3120.120 49.3 H - - AVG 1 1.3 Note 2 1950.120 60.0 H - - PK 40 1.3 Note 2				74.0	-26.9		-								
3533.450				-	-										
3533.420 50.9 V PK 4 1.3 Note 2 3120.190 51.9 H PK 1 1.3 Note 2 3120.120 49.3 H AVG 1 1.3 Note 2 1950.120 60.0 H - PK 40 1.3 Note 2				-	-										
3120.190 51.9 H PK 1 1.3 Note 2 3120.120 49.3 H AVG 1 1.3 Note 2 1950.120 60.0 H - PK 40 1.3 Note 2				-	-										
3120.120 49.3 H - - AVG 1 1.3 Note 2 1950.120 60.0 H - - PK 40 1.3 Note 2			<u>-</u>	-	1										
1950.120 60.0 H PK 40 1.3 Note 2				-											
				-			-								
1900.090 I 09.4 I 🖂 I - I - I AVG I 40 I 1.3 INOTE Z				-											
	1900.090	39.4	П	_		AVG	40	1.3	NOIE Z						
, , , , , , , , , , , , , , , , , , ,	Note 1:	For emissions outside of the restricted bands the limit is -27dBm/MHz eirp (68.3dBuV/m). Refer to RF port measuren													


Note 1:	For emissions in restricted bands, the limit of 15.209 was used which requires average and peak measurements.
Note 2:	For emissions outside of the restricted bands the limit is -27dBm/MHz eirp (68.3dBuV/m). Refer to RF port measurements
	for any significant emissions.
	For any emissions exceeding the restricted band limits in 4500MHz~5150MHz and 5350~5460MHz range please refer to
NOIE 3.	band Edge testing result.
Note 4:	Digital signal. 1:Radio off the siganl still on. 2: Radio on and Change the channel. The signal didn't change or move
NI. C. F	Scans made between 18 - 40GHz with the measurement antenna moved around the card and its antennas 20-50cm from the
Note 5:	device indicated there were no signifcant emissions in this frequency range


	liott An 公子 company	EMC Test Data			
Client:	Ubiquiti Networks	Job Number:	J85880		
Madalı	NanaDridge ME	T-Log Number:	T85882		
Model:	NanoBridge M5	Account Manager:	Susan Pelzl		
Contact:	Jennifer Sanchez				
Standard:	FCC 15.407, RSS-210 Issue 8	Class:	N/A		

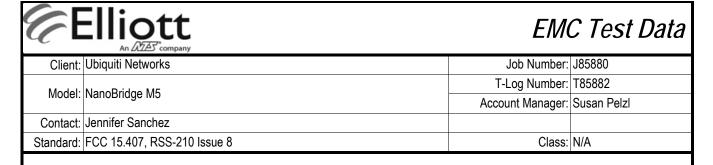
Elliott EMC Test Data Client: Ubiquiti Networks Job Number: J85880 T-Log Number: T85882 Model: NanoBridge M5 Account Manager: Susan Pelzl Contact: Jennifer Sanchez Standard: FCC 15.407, RSS-210 Issue 8 Class: N/A Run #1c: EUT on Channel 5340MHz - 5MHz, Chain 0+1 Spurious Radiated Emissions: 15.209 / 15E Frequency Level Pol Detector Azimuth Height Comments MHz Margin Pk/QP/Avg dBμV/m v/h Limit meters degrees 5427.590 42.0 Н 54.0 -12.0 **AVG** 341 1.0 Note 3 5044.780 41.1 Η 54.0 -12.9 AVG 310 1.0 Note 3 1170.030 35.3 Н 54.0 -18.7 **AVG** 310 1.0 2339.980 Н 54.0 -19.9 310 1.0 34.1 AVG 5429.080 52.8 Η 74.0 -21.2 PΚ 341 1.0 Note 3 PΚ 310 5046.610 74.0 -21.6 1.0 52.4 Η Note 3 PK 2340.230 41.5 Η 74.0 -32.5 310 1.0 1170.120 40.3 Н 74.0 -33.7 PK 310 1.0 7126.920 ٧ AVG 310 2.2 41.1 Note 2 7126.920 50.1 ٧ PK 310 2.2 Note 2 -_ 3563.470 43.5 Η **AVG** 341 1.0 Note 2 3563.460 47.2 Н PK 341 1.0 Note 2 3120.180 49.1 Н PK 341 1.0 Note 2 --3120.110 46.1 Н AVG 341 1.0 Note 2 1950.120 51.5 Н PΚ 341 1.0 Note 2 341 1950.070 50.1 Н AVG 1.0 Note 2 --1560.060 44.4 Н AVG 310 1.0 Note 4 1559.980 46.2 Η PK 310 1.0 Note 4

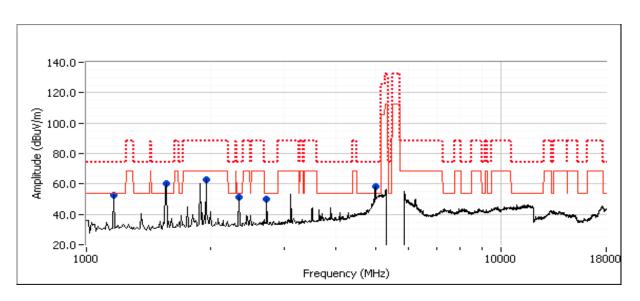
Note 1:	For emissions in restricted bands, the limit of 15.209 was used which requires average and peak measurements.
Note 2:	For emissions outside of the restricted bands the limit is -27dBm/MHz eirp (68.3dBuV/m). Refer to RF port measurements
NOLE Z.	for any significant emissions.
INOTE 5	For any emissions exceeding the restricted band limits in 4500MHz~5150MHz and 5350~5460MHz range please refer to
	band Edge testing result.
Note 4:	Digital signal. 1:Radio off the siganl still on. 2: Radio on and Change the channel. The signal didn't change or move

Client: Ubiquiti Networks

EMC Test Data

	An ZAZES company		
Client:	Ubiquiti Networks	Job Number:	J85880
Model:	NanaPridge ME	T-Log Number:	T85882
	NanoBridge M5	Account Manager:	Susan Pelzl
Contact:	Jennifer Sanchez		
Standard:	FCC 15.407, RSS-210 Issue 8	Class:	N/A


Run #1d: EUT on Channel 5475MHz - 5MHz, Chain 0+1


Date of Test: 1/9/2012 Test Location: FT Chamber #4

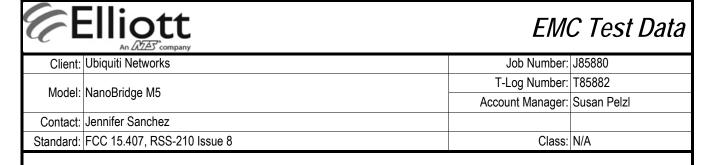
Test Engineer: Rafael Varelas Config Change: none

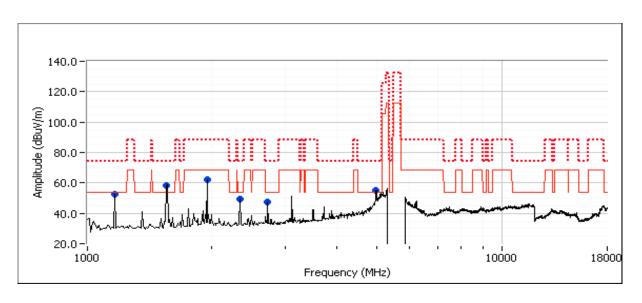
Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
1170.040	52.5	Н	54.0	-1.5	AVG	34	1.0	
1169.940	53.8	Н	74.0	-20.2	PK	34	1.0	
2340.140	46.9	V	54.0	-7.1	AVG	1	1.1	
2340.090	49.5	V	74.0	-24.5	PK	1	1.1	
1560.110	60.1	Н	54.0	6.1	AVG	36	1.5	Note 4
1560.060	60.7	Н	74.0	-13.3	PK	36	1.5	Note 4
1950.120	61.3	V	-	-	AVG	5	1.1	Note 4
1950.150	62.1	V	-	-	PK	5	1.1	Note 4
2730.140	47.0	V	54.0	-7.0	AVG	154	1.4	
2729.870	49.9	V	74.0	-24.1	PK	154	1.4	
4997.200	58.4	V	-	-	Peak	360	1.6	Note 3
			·	·	·		·	·

Note 1: For	or emissions in restricted bands, the limit of 15.209 was used which requires average and peak measurements.
Note 2:	or emissions outside of the restricted bands the limit is -27dBm/MHz eirp (68.3dBuV/m). Refer to RF port measurements
for a	r any significant emissions.
Note 3:	or any emissions exceeding the restricted band limits in 4500MHz~5150MHz and 5350~5460MHz range please refer to
ban	and Edge testing result.
Note 4: Digi	gital signal. 1:Radio off the siganl still on. 2: Radio on and Change the channel. The signal didn't change or move

Elliott EMC Test Data Client: Ubiquiti Networks Job Number: J85880 T-Log Number: T85882 Model: NanoBridge M5 Account Manager: Susan Pelzl Contact: Jennifer Sanchez Standard: FCC 15.407, RSS-210 Issue 8 Class: N/A Run #1e: EUT on Channel 5595MHz - 5MHz, Chain 0+1 Spurious Radiated Emissions: 15.209 / 15E Frequency Level Pol Detector Azimuth Height Comments MHz Pk/QP/Avg dBμV/m v/h Limit Margin degrees meters 1170.100 52.4 Н 54.0 -1.6 AVG 30 1.0 -20.2 1170.110 53.8 Н 74.0 PK 30 1.0 2340.140 50.3 Н 54.0 -3.7 **AVG** 355 1.3 2339.790 52.2 Н 74.0 -21.8 PΚ 355 1.3 2730.150 47.2 Н 54.0 -6.8 **AVG** 161 1.0 2730.330 50.0 74.0 -24.0 PΚ 161 1.0 Η 1950.100 62.5 Η AVG 28 1.3 Note 4 1950.170 63.2 Н PΚ 28 1.3 Note 4 AVG 31 1.5 1560.090 59.7 Н Note 4 60.4 Н PK 31 Note 4 1560.210 1.5 _ 4997.640 55.2 Н Peak 1.0 Note 3 Note 1: For emissions in restricted bands, the limit of 15.209 was used which requires average and peak measurements. For emissions outside of the restricted bands the limit is -27dBm/MHz eirp (68.3dBuV/m). Refer to RF port measurements Note 2: for any significant emissions. For any emissions exceeding the restricted band limits in 4500MHz~5150MHz and 5350~5460MHz range please refer to Note 3:

Digital signal. 1:Radio off the siganl still on. 2: Radio on and Change the channel. The signal didn't change or move


device indicated there were no significant emissions in this frequency range

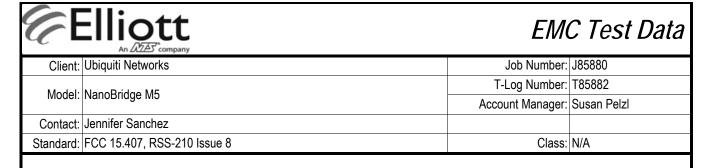

Scans made between 18 - 40GHz with the measurement antenna moved around the card and its antennas 20-50cm from the

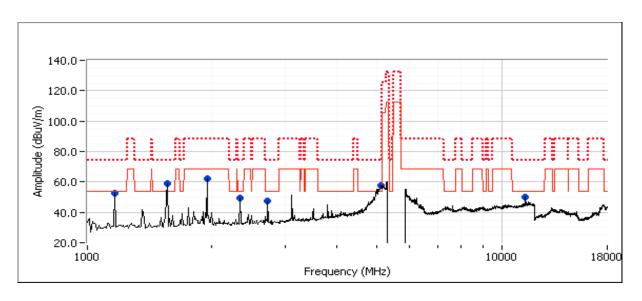
Note 4:

Note 5:

band Edge testing result.

Elliott


EMC Test Data


	An DOZ Company		
Client:	Ubiquiti Networks	Job Number:	J85880
Model:	NanaPridge ME	T-Log Number:	T85882
	NanoBridge M5	Account Manager:	Susan Pelzl
Contact:	Jennifer Sanchez		
Standard:	FCC 15.407, RSS-210 Issue 8	Class:	N/A

Run #1f: EUT on Channel 5715MHz - 5MHz, Chain 0+1

Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments
dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
52.5	Н	54.0	-1.5	AVG	41	1.0	
54.5	Н	74.0	-19.5	PK	41	1.0	
46.8	Н	54.0	-7.2	AVG	11	1.3	
58.3	Н	74.0	-15.7	PK	11	1.3	
47.2	Н	54.0	-6.8	AVG	154	1.0	
50.0	Н	74.0	-24.0	PK	154	1.0	
49.8	Н	54.0	-4.2	AVG	358	1.3	
51.9	Н	74.0	-22.1	PK	358	1.3	
59.8	Н	-	-	AVG	32	1.5	Note 4
60.3	Н	-	-	PK	32	1.5	Note 4
62.5	Н	-	-	AVG	27	1.4	Note 4
63.1	Н	-	-	PK	27	1.4	Note 4
57.5	V	-	-	Peak	3	1.6	Note 3
	dBμV/m 52.5 54.5 46.8 58.3 47.2 50.0 49.8 51.9 59.8 60.3 62.5 63.1	dBμV/m v/h 52.5 H 54.5 H 46.8 H 58.3 H 47.2 H 50.0 H 49.8 H 51.9 H 59.8 H 60.3 H 62.5 H	dBμV/m v/h Limit 52.5 H 54.0 54.5 H 74.0 46.8 H 54.0 58.3 H 74.0 47.2 H 54.0 50.0 H 74.0 49.8 H 54.0 51.9 H 74.0 59.8 H - 60.3 H - 62.5 H - 63.1 H -	dBμV/m v/h Limit Margin 52.5 H 54.0 -1.5 54.5 H 74.0 -19.5 46.8 H 54.0 -7.2 58.3 H 74.0 -15.7 47.2 H 54.0 -6.8 50.0 H 74.0 -24.0 49.8 H 54.0 -4.2 51.9 H 74.0 -22.1 59.8 H - - 60.3 H - - 62.5 H - - 63.1 H - -	dBμV/m v/h Limit Margin Pk/QP/Avg 52.5 H 54.0 -1.5 AVG 54.5 H 74.0 -19.5 PK 46.8 H 54.0 -7.2 AVG 58.3 H 74.0 -15.7 PK 47.2 H 54.0 -6.8 AVG 50.0 H 74.0 -24.0 PK 49.8 H 54.0 -4.2 AVG 51.9 H 74.0 -22.1 PK 59.8 H - - AVG 60.3 H - - PK 62.5 H - - AVG 63.1 H - - PK	dBμV/m v/h Limit Margin Pk/QP/Avg degrees 52.5 H 54.0 -1.5 AVG 41 54.5 H 74.0 -19.5 PK 41 46.8 H 54.0 -7.2 AVG 11 58.3 H 74.0 -15.7 PK 11 47.2 H 54.0 -6.8 AVG 154 50.0 H 74.0 -24.0 PK 154 49.8 H 54.0 -4.2 AVG 358 51.9 H 74.0 -22.1 PK 358 59.8 H - - AVG 32 60.3 H - - PK 32 62.5 H - - AVG 27 63.1 H - - PK 27	dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 52.5 H 54.0 -1.5 AVG 41 1.0 54.5 H 74.0 -19.5 PK 41 1.0 46.8 H 54.0 -7.2 AVG 11 1.3 58.3 H 74.0 -15.7 PK 11 1.3 58.3 H 74.0 -15.7 PK 11 1.3 58.3 H 74.0 -24.0 PK 154 1.0 50.0 H 74.0 -24.0 PK 154 1.0 49.8 H 54.0 -4.2 AVG 358 1.3 51.9 H 74.0 -22.1 PK 358 1.3 59.8 H - - AVG 32 1.5 60.3 H - - PK 32 1.5 62.5

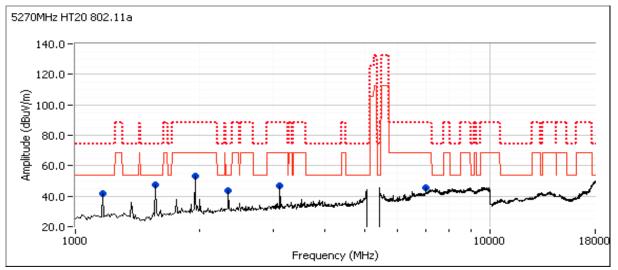
For emissions in restricted bands, the limit of 15.209 was used which requires average and peak measurements.
For emissions outside of the restricted bands the limit is -27dBm/MHz eirp (68.3dBuV/m). Refer to RF port measurements
for any significant emissions.
For any emissions exceeding the restricted band limits in 4500MHz~5150MHz and 5350~5460MHz range please refer to
band Edge testing result.
Digital signal. 1:Radio off the siganl still on. 2: Radio on and Change the channel. The signal didn't change or move

	All Dates Company		
Client:	Ubiquiti Networks	Job Number:	J85880
Model:	NanaBridge ME	T-Log Number:	T85882
	NanoBridge M5	Account Manager:	Susan Pelzl
Contact:	Jennifer Sanchez		
Standard:	FCC 15.407, RSS-210 Issue 8	Class:	N/A

Run # 2, Radiated Spurious Emissions, 1-40GHz, 20MHz, Chain 0+1

Date of Test: 12/29/2011 Test Location: FT Chamber #3

Test Engineer: Joseph Cadigal Config Change: none

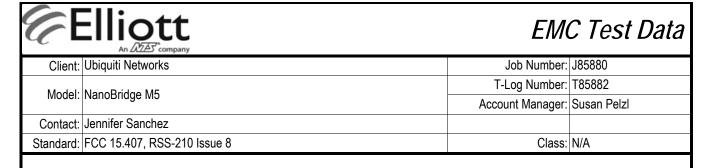

For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit is -27dBm eirp (68.3dBuV/m @3m).

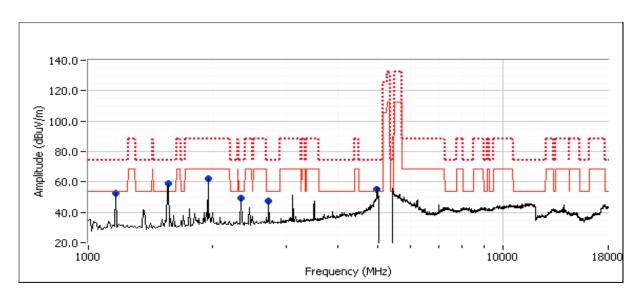
Run # 2a: EUT on Channel 5265MHz - 20MHz, Chain 0+1

Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
1560.050	45.1	Н	54.0	-8.9	AVG	310	1.0	
2340.090	42.6	Н	54.0	-11.4	AVG	339	1.0	
1170.040	37.5	Н	54.0	-16.5	AVG	310	1.0	
1560.230	47.0	Н	74.0	-27.0	PK	310	1.0	
2340.020	46.4	Н	74.0	-27.6	PK	339	1.0	
1170.070	41.4	Н	74.0	-32.6	PK	310	1.0	
7027.100	49.5	Н	-	-	PK	3	1.3	Note 2
7026.940	40.7	Н	-	-	AVG	3	1.3	Note 2
3120.300	48.3	Н	-	-	PK	339	1.0	Note 2
3120.120	45.0	Н	-	-	AVG	339	1.0	Note 2
1950.100	48.7	Н	-	-	AVG	339	1.0	Note 2
1950.080	50.5	Н	-	-	PK	339	1.0	Note 2

Note 1:	For emissions in restricted bands, the limit of 15.209 was used which requires average and peak measurements.
Note 2:	For emissions outside of the restricted bands the limit is -27dBm/MHz eirp (68.3dBuV/m). Refer to RF port measurements
NOLE Z.	for any significant emissions.
INote 3	For any emissions exceeding the restricted band limits in 4500MHz~5150MHz and 5350~5460MHz range please refer to
	band Edge testing result.
Note 4:	Digital signal, 1:Radio off the signal still on, 2: Radio on and Change the change. The signal didn't change or move

	Elliott An ATAS company	EMC Test Data			
Client:	Ubiquiti Networks	Job Number:	J85880		
Madalı	Nana Prida a ME	T-Log Number:	T85882		
wodei.	NanoBridge M5	Account Manager:	Susan Pelzl		
Contact:	Jennifer Sanchez				
Standard:	FCC 15.407, RSS-210 Issue 8	Class:	N/A		




Client:	Ubiquiti Netv	vorks						Job Number:	J85880
	Non-Didu-M5						T-	Log Number:	T85882
Model:	NanoBridge	IVI5					Acco	unt Manager:	Susan Pelzl
Contact:	Jennifer San	chez							
Standard:	FCC 15.407	, RSS-210 Is	sue 8					Class:	N/A
	UT on Chan			Chain 0+1					l
	Date of Test:				Te	est Location:	FT Chambe	er #4	
Te	st Engineer:	Rafael Vare	as		Con	fig Change:	none		
	adiated Emi								
requency	Level	Pol	15.20	9 / 15E	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
1170.090	52.4	Н	54.0	-1.6	AVG	32	1.0		
1170.120	54.1	Н	74.0	-19.9	PK	32	1.0		
2340.120	49.9	Н	54.0	-4.1	AVG	352	1.3		
2339.990	51.7	Н	74.0	-22.3	PK	352	1.3		
2730.120	46.7	Н	54.0	-7.3	AVG	155	1.0		
2730.250	49.8	Н	74.0	-24.2	PK	155	1.0		
1560.110	59.3	Н	-	-	AVG	25	1.5	Note 4	
1560.080	59.9	Н	-	-	PK	25	1.5	Note 4	
1950.100	62.8	Н	-	-	AVG	29	1.3	Note 4	
1950.050	63.4	Н	-	-	PK	29	1.3	Note 4	
1978.790	55.2	Н	-	-	Peak	360	1.0	Note 3	
ote 1:	For order	o in restricts	المحاملة الم	limit of 4F (000 wasss -l	which	00.000000	and neal at	001100000001-
ULE 1.					209 was used			•	
ote 2:	for any signi			u pands the	limit is -27dBr	n/ivimz eirp (oo.3aBuV/N	n). Refer to R	r poπ measι

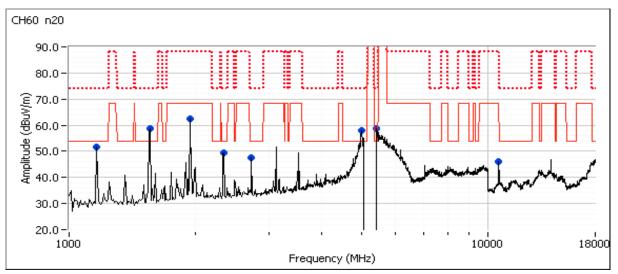
Digital signal. 1:Radio off the signal still on. 2: Radio on and change the channel. The signal didn't change or move.

Note 4:

band Edge testing result.

An Daza Company							
Client:	Ubiquiti Networks	Job Number:	J85880				
Model:	NanaPridge ME	T-Log Number:	T85882				
	NanoBridge M5	Account Manager:	Susan Pelzl				
Contact:	Jennifer Sanchez						
Standard:	FCC 15.407, RSS-210 Issue 8	Class:	N/A				

Run # 2c: EUT on Channel 5300MHz - 20MHz, Chain 0+1


Date of Test: 1/11/2012 Test Engineer: John Caizzi Test Location: FT Chamber #7

Config Change: none

Sparious K	Spunous Radiated Emissions:							
Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
10601.070	46.9	V	54.0	-7.1	AVG	336	1.37	
10602.040	58.1	V	74.0	-15.9	PK	336	1.37	
5448.320	57.3	V	-	-	AVG	354	1.40	Note 4
5437.700	68.0	V	-	-	PK	354	1.40	Note 4
4982.580	54.7	Н	-	-	AVG	355	1.30	Note 4
4975.440	68.8	Н	-	-	PK	355	1.30	Note 4
2730.260	49.4	Н	-	-	PK	106	1.00	Note 5
2730.230	46.7	Н	-	-	AVG	106	1.00	Note 5
2340.170	50.1	Н	-	-	AVG	324	1.02	Note 5
2340.020	52.1	Н	-	-	PK	324	1.02	Note 5
1950.140	63.4	Н	1	-	PK	24	1.05	Note 5
1950.120	62.9	Н	1	-	AVG	24	1.05	Note 5
1559.170	58.8	Н	-	-	Peak	47	1.3	Note 5
1170.380	54.0	Н	-	-	PK	24	1.53	Note 5
1170.150	52.4	Н	-	-	AVG	24	1.53	Note 5

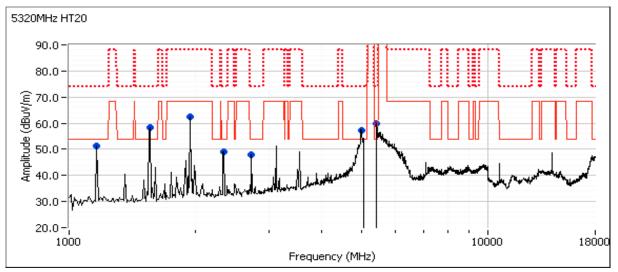
Note 1:	For emissions in restricted bands the limit of 15.209 was used, which requires average and peak measurements.
Note 2:	For emissions outside of the restricted bands the limit is -27dBm/MHz eirp (68.3dBuV/m). Refer to RF port measurements
NOLE Z.	for any significant emissions.
Note 3:	Scans made between 18 - 40GHz with the measurement antenna moved around the card and its antennas 20-50cm from the
Note 3.	device indicated there were no signifcant emissions in this frequency range
Note 4:	For any emissions exceeding the restricted band limits in 4500MHz~5150MHz and 5350~5460MHz range please refer to
NOLE 4.	band Edge testing result.
Note 5:	Non-radio signal. 1:With the carrier off, the signal is still on. 2: With the radio on, changing the channel doesn't change the
Note 5:	signal frequency or amplitude.

Client: Ubiquiti Networks Model: NanoBridge M5 Contact: Jennifer Sanchez Standard: FCC 15.407, RSS-210 Issue 8 EMC Test Data Job Number: J85880 T-Log Number: T85882 Account Manager: Susan Pelzl Class: N/A

Elliott

EMC Test Data

	An ZAZEO company		
Client:	Ubiquiti Networks	Job Number:	J85880
Model:	NanaBridge ME	T-Log Number:	T85882
	NanoBridge M5	Account Manager:	Susan Pelzl
Contact:	Jennifer Sanchez		
Standard:	FCC 15.407, RSS-210 Issue 8	Class:	N/A


Run # 2d: EUT on Channel 5320MHz - 20MHz, Chain 0+1

Date of Test: 1/11/2012 Test Location: FT7
Test Engineer: John Caizzi/Jack Liu Config Change: none

opunous Radiated Ennesiener								
Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
1170.200	50.9	Н	54.0	-3.1	AVG	18	1.6	
1170.130	51.7	Н	74.0	-22.3	PK	18	1.6	
2730.180	47.4	Н	54.0	-6.6	AVG	158	1.3	
2730.260	50.0	Н	74.0	-24.0	PK	158	1.3	
2340.130	49.1	Н	54.0	-4.9	AVG	354	1.3	
2340.230	51.6	Н	74.0	-22.4	PK	354	1.3	
4981.600	50.3	Н	54.0	-3.7	AVG	360	1.0	Note 3
4980.530	64.0	Н	74.0	-10.0	PK	360	1.0	Note 3
1950.140	62.7	V	-	-	AVG	0	1.0	
1950.250	63.4	V	-	-	PK	0	1.0	
1560.100	58.9	Н	-	-	AVG	40	1.3	Note 4
1560.150	59.6	Н	-	-	PK	40	1.3	Note 4
5433.060	59.1	V	-	-	AVG	354	1.6	Note 3
5431.400	69.9	V	-	-	PK	354	1.6	Note 3

Note 1:	For emissions in restricted bands, the limit of 15.209 was used which requires average and peak measurements.
Note 2:	For emissions outside of the restricted bands the limit is -27dBm/MHz eirp (68.3dBuV/m). Refer to RF port measurements
NOLE Z.	for any significant emissions.
Note 3:	For any emissions exceeding the restricted band limits in 4500MHz~5150MHz and 5350~5460MHz range please refer to
Note 3.	band Edge testing result.
Note 4:	Digital signal. 1:Radio off the signal still on. 2: Radio on and change the channel. The signal didn't change or move.

Client: Ubiquiti Networks Model: NanoBridge M5 Contact: Jennifer Sanchez Standard: FCC 15.407, RSS-210 Issue 8 EMC Test Data Job Number: J85880 T-Log Number: R85882 Account Manager: Susan Pelzl Class: N/A

Client: Ubiquiti Networks Model: NanoBridge M5

EMC Test Data

An ZAZES company						
Client:	Ubiquiti Networks	Job Number:	J85880			
Model:	NanoBridge M5	T-Log Number:	T85882			
	Natiobilitye wo	Account Manager:	Susan Pelzl			
Contact:	Jennifer Sanchez					
Standard:	FCC 15.407, RSS-210 Issue 8	Class:	N/A			

Run # 2e: EUT on Channel 5500MHz - 20MHz, Chain 0+1

Date of Test: 12/30/2011 Test Location: FT Chamber #4

Test Engineer: Jack Liu Config Change: none

Frequency	Level	Pol	15.209) / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
1170.120	52.4	Ι	54.0	-1.6	AVG	37	1.6	
2340.130	50.0	Ι	54.0	-4.0	AVG	356	1.0	
2730.210	46.7	Н	54.0	-7.3	AVG	110	1.3	
3666.850	43.9	V	54.0	-10.1	AVG	316	1.3	
1365.100	40.0	Н	54.0	-14.0	AVG	37	1.0	
1170.230	54.2	Н	74.0	-19.8	PK	37	1.6	
2340.350	52.0	Η	74.0	-22.0	PK	356	1.0	
2730.230	49.5	Η	74.0	-24.5	PK	110	1.3	
3666.730	48.7	V	74.0	-25.3	PK	316	1.3	
1365.070	44.0	Η	74.0	-30.0	PK	37	1.0	
5350.420	62.3	V	74.0	-11.7	PK	356	1.3	Note 3
5350.020	51.3	V	54.0	-2.7	AVG	356	1.3	Note 3
5121.020	57.1	V	74.0	-16.9	PK	2	1.3	Note 3
5120.320	45.8	V	54.0	-8.2	AVG	2	1.3	Note 3
4983.980	48.6	Η	54.0	-5.4	AVG	5	1.3	Note 3
4981.300	63.9	Η	74.0	-10.1	PK	5	1.3	Note 3
1950.300	57.8	V	-	•	PK	359	1.0	Note 2
1950.120	56.6	V	-	-	AVG	359	1.0	Note 2
5925.850	53.9	V	-	-	PK	2	1.0	Note 2
5925.630	44.1	V	-	-	AVG	2	1.0	Note 2
1560.120	54.8	Н	-	-	AVG	51	1.6	Note 4
1559.950	55.9	Н	-	-	PK	51	1.6	Note 4

Note 1:	For emissions in restricted bands, the limit of 15.209 was used which requires average and peak measurements.
Note 2:	For emissions outside of the restricted bands the limit is -27dBm/MHz eirp (68.3dBuV/m). Refer to RF port measurements
NOLE Z.	for any significant emissions.
Note 3:	For any emissions exceeding the restricted band limits in 4500MHz~5150MHz and 5350~5460MHz range please refer to
Note 3.	band Edge testing result.
Note 4:	Digital signal. 1:Radio off the siganl still on. 2: Radio on and Change the channel. The signal didn't change or move

EMC Test Data Job Number: J85880 Client: Ubiquiti Networks T-Log Number: T85882 Model: NanoBridge M5 Account Manager: Susan Pelzl Contact: Jennifer Sanchez Standard: FCC 15.407, RSS-210 Issue 8 Class: N/A 5500MHz HT20, pwr setting 0.5 100.0 90.0 80.0 Amplitude (dBuV/m) 70.0 60.0 50.0 40.0 30.0 $20.0 - \frac{1}{1}$ 10000 1000 Frequency (MHz) 5500MHz HT20, pwr setting 0.5 90.0-80.0 Amplitude (dBuV/m) 60.09 40.09 40.09 30.0 20.0 -18000 10000 Frequency (MHz)

An Daza Company							
Client:	Ubiquiti Networks	Job Number:	J85880				
Model:	NanaPridge ME	T-Log Number:	T85882				
	NanoBridge M5	Account Manager:	Susan Pelzl				
Contact:	Jennifer Sanchez						
Standard:	FCC 15.407, RSS-210 Issue 8	Class:	N/A				

Run # 2f: EUT on Channel 5580MHz - 20MHz, Chain 0+1

Date of Test: 12/30/2011 Test Location: FT Chamber #4

Test Engineer: Jack Liu Config Change: none

Frequency	Level	Pol	15.209) / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
1170.120	52.6	Н	54.0	-1.4	AVG	23	1.6	
2340.120	47.7	Н	54.0	-6.3	AVG	347	1.0	
5120.250	45.5	V	54.0	-8.5	AVG	8	1.3	
3720.180	44.2	V	54.0	-9.8	AVG	341	1.0	
2730.210	43.9	Н	54.0	-10.1	AVG	169	1.3	
3900.140	40.3	Н	54.0	-13.7	AVG	359	1.0	
1365.170	39.9	Н	54.0	-14.1	AVG	29	1.0	
5117.430	56.8	V	74.0	-17.2	PK	8	1.3	
1170.070	54.8	Н	74.0	-19.2	PK	23	1.6	
2339.910	50.4	Н	74.0	-23.6	PK	347	1.0	
3720.230	49.0	V	74.0	-25.0	PK	341	1.0	
3900.350	48.0	Н	74.0	-26.0	PK	359	1.0	
2730.400	47.5	Н	74.0	-26.5	PK	169	1.3	
1365.070	43.6	Н	74.0	-30.4	PK	29	1.0	
5351.280	60.9	Н	74.0	-13.1	PK	359	1.0	Note 3
5350.320	50.3	Н	54.0	-3.7	AVG	359	1.0	Note 3
4984.350	48.8	Н	54.0	-5.2	AVG	359	1.0	Note 3
4982.700	63.6	Н	74.0	-10.4	PK	359	1.0	Note 3
6232.440	57.0	Н	-	•	PK	359	1.0	Note 2
6231.170	42.5	Н	-	•	AVG	359	1.0	Note 2
1950.140	56.4	V	-	-	AVG	8	1.3	Note 2
1950.120	57.6	V	-	-	PK	8	1.3	Note 2
1560.130	55.7	V	-	-	AVG	19	1.9	Note 4
1560.070	56.5	V	-	-	PK	19	1.9	Note 4
Note 1:	For emission	ns in restricte	ed bands, the	limit of 15.2	09 was used	which requir	es average	and peak measurements.

Note 1:	For emissions in restricted bands, the limit of 15.209 was used which requires average and peak measurements.
ivote Z:	For emissions outside of the restricted bands the limit is -27dBm/MHz eirp (68.3dBuV/m). Refer to RF port measurements
	for any significant emissions.
INOTE 3	For any emissions exceeding the restricted band limits in 4500MHz~5150MHz and 5350~5460MHz range please refer to
	band Edge testing result.
Note 4:	Digital signal. 1:Radio off the siganl still on. 2: Radio on and Change the channel. The signal didn't change or move
INOTE 5.	Scans made between 18 - 40GHz with the measurement antenna moved around the card and its antennas 20-50cm from the
	device indicated there were no significant emissions in this frequency range

EMC Test Data Job Number: J85880 Client: Ubiquiti Networks T-Log Number: T85882 Model: NanoBridge M5 Account Manager: Susan Pelzl Contact: Jennifer Sanchez Standard: FCC 15.407, RSS-210 Issue 8 Class: N/A 5580MHz HT20, pwr setting 1 100.0 90.0 80.0 Amplitude (dBuV/m) 70.0 60.0 50.0 40.0 30.0 − 🏋 20.0-10000 1000 Frequency (MHz) 5580MHz HT20, pwr setting 1 90.0-80.0 Amplitude (dBuV/m) 60.09 40.09 40.09 30.0 20.0 -18000 10000 Frequency (MHz)

Elliott

EMC Test Data

Client:	Ubiquiti Networks	Job Number:	J85880
Model:	NanaBridge ME	T-Log Number:	T85882
	NanoBridge M5	Account Manager:	Susan Pelzl
Contact:	Jennifer Sanchez		
Standard:	FCC 15.407, RSS-210 Issue 8	Class:	N/A

Run # 2g: EUT on Channel 5700MHz - 20MHz, Chain 0+1 Date of Test: 12/29/2011

Test Location: FT Chamber #3

Test Engineer: Jack Liu Config Change: none

Frequency	Level	Pol	15.209) / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
1170.050	49.8	Н	54.0	-4.2	AVG	34	1.6	
2340.080	45.3	Н	54.0	-8.7	AVG	0	1.6	
2730.130	44.3	Н	54.0	-9.7	AVG	155	1.3	
3800.150	43.0	V	54.0	-11.0	AVG	351	1.0	
1170.100	50.7	Н	74.0	-23.3	PK	34	1.6	
2340.150	48.2	Н	74.0	-25.8	PK	0	1.6	
3800.330	48.2	V	74.0	-25.8	PK	351	1.0	
2730.060	47.2	Н	74.0	-26.8	PK	155	1.3	
4999.520	57.8	Н	74.0	-16.2	PK	13	1.3	Note 3
4997.390	42.7	Н	54.0	-11.3	AVG	13	1.3	Note 3
6368.450	52.8	V	-	-	PK	360	1.0	Note 2
6368.270	46.1	V	-	-	AVG	360	1.0	Note 2
5840.250	47.7	V	-	•	AVG	7	1.3	Note 2
5840.220	58.3	V	-	•	PK	7	1.3	Note 2
5354.480	63.7	V	-	•	PK	360	1.0	Note 3
5350.050	52.1	V	-	•	AVG	360	1.0	Note 3
5108.050	63.5	V	-	•	PK	7	1.3	Note 3
5104.100	53.0	V	-	-	AVG	7	1.3	Note 3
1950.080	59.4	V	-	-	AVG	7	1.0	Note 2
1950.040	60.1	V	-	-	PK	7	1.0	Note 2
1560.080	50.8	V	-	-	AVG	357	2.2	Note 4
1560.060	51.5	V	-	-	PK	357	2.2	Note 4

Note 1:	For emissions in restricted bands, the limit of 15.209 was used which requires average and peak measurements.
INOTE 7.	For emissions outside of the restricted bands the limit is -27dBm/MHz eirp (68.3dBuV/m). Refer to RF port measurements
	for any significant emissions.
NOTA 3	For any emissions exceeding the restricted band limits in 4500MHz~5150MHz and 5350~5460MHz range please refer to
	band Edge testing result.
Note 4:	Digital signal. 1:Radio off the siganl still on. 2: Radio on and Change the channel. The signal didn't change or move

EMC Test Data Job Number: J85880 Client: Ubiquiti Networks T-Log Number: T85882 Model: NanoBridge M5 Account Manager: Susan Pelzl Contact: Jennifer Sanchez Standard: FCC 15.407, RSS-210 Issue 8 Class: N/A 5700MHz HT20, pwr setting -0.5 100.0 90.0 80.0 Amplitude (dBuV/m) 70.0 60.0 50.0 40.0 $20.0 - \frac{1}{1}$ 10000 1000 Frequency (MHz) 5700MHz HT20, pwr setting -0.5 90.0-80.0 Amplitude (dBuV/m) 60.00 50.00 40.00 30.0 20.0 18000 10000 Frequency (MHz)

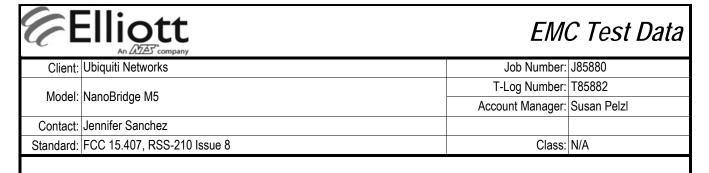
EMC Test Data

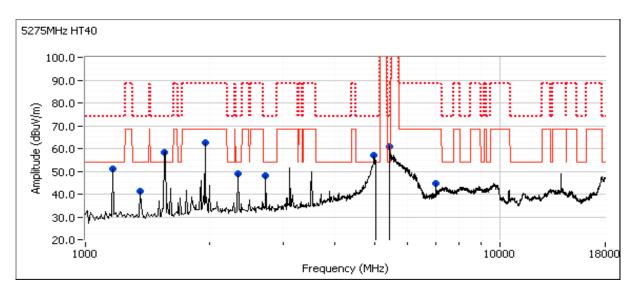
	An DOZES company		
Client:	Ubiquiti Networks	Job Number:	J85880
Model:	NanoBridge M5	T-Log Number:	T85882
	Natiobilitye wo	Account Manager:	Susan Pelzl
Contact:	Jennifer Sanchez		
Standard:	FCC 15.407, RSS-210 Issue 8	Class:	N/A

Run # 3, Radiated Spurious Emissions, 1-40GHz, 40MHz, Chain 0+1

Date of Test: 1/11/2012 Test Location: FT7
Test Engineer: Jack Liu Config Change: none

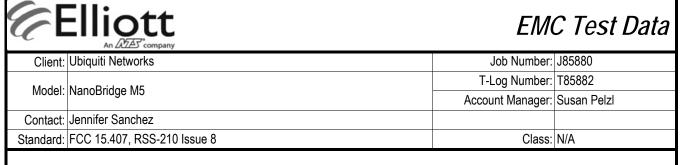
For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit is -27dBm eirp (68.3dBuV/m @3m).

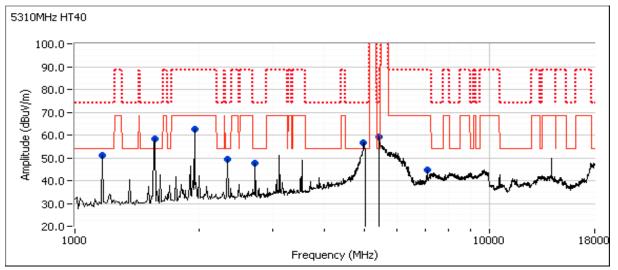

Run # 3a: EUT on Channel 5275MHz - 40MHz, Chain 0+1


Date of Test: 1/11/2012 Test Location: FT7
Test Engineer: Jack Liu Config Change: none

Spurious Radiated Emissions:

Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5449.610	53.3	V	54.0	-0.7	AVG	349	1.3	Note3
5452.450	64.4	V	74.0	-9.6	PK	349	1.3	Note3
1170.100	50.4	Н	54.0	-3.6	AVG	16	1.6	
1170.150	52.2	Н	74.0	-21.8	PK	16	1.6	
1365.130	40.3	Н	54.0	-13.7	AVG	32	1.6	
1365.130	43.8	Н	74.0	-30.2	PK	32	1.6	
2730.260	47.0	Н	54.0	-7.0	AVG	164	1.3	
2730.510	49.8	Н	74.0	-24.2	PK	164	1.3	
2340.200	49.0	Н	54.0	-5.0	AVG	320	1.0	
2340.090	51.1	Н	74.0	-22.9	PK	320	1.0	
1560.130	58.5	Н	-	•	AVG	32	1.6	Note4
1560.270	59.1	Н	-	1	PK	32	1.6	Note4
1950.150	62.5	V	-	1	AVG	0	1.0	Note 2
1950.120	63.1	V	-	1	PK	0	1.0	Note 2
4981.740	54.1	Н	-	1	AVG	354	1.3	Note3
4981.490	68.2	Н	-		PK	354	1.3	Note3
7033.570	43.3	Н	-	ı	AVG	354	1.3	Note 2
7033.590	49.9	Н	-	ı	PK	354	1.3	Note 2


Note 1:	For emissions in restricted bands, the limit of 15.209 was used which requires average and peak measurements.
Note 2:	For emissions outside of the restricted bands the limit is -27dBm/MHz eirp (68.3dBuV/m). Refer to RF port measurements
NOIE Z.	for any significant emissions.
Note 3:	For any emissions exceeding the restricted band limits in 4500MHz~5150MHz and 5350~5460MHz range please refer to
	band Edge testing result.
Note 4:	Digital signal. 1:Radio off the siganl still on. 2: Radio on and Change the channel. The signal didn't change or move
Note 5:	Scans made between 18 - 40GHz with the measurement antenna moved around the card and its antennas 20-50cm from the
Note 5.	device indicated there were no signifcant emissions in this frequency range



C)tt						EM	C Test D
Client:	Ubiquiti Netv							Job Number:	J85880
							T-	Log Number:	T85882
Model:	NanoBridge	M5						unt Manager:	
Contact:	Jennifer Sar	ıchez						· · · · · · · · · · · · · · · · · · ·	
	FCC 15.407		8 AUS					Class:	N/Δ
Stariuaru.	100 10.401	, 1100-21013	Sue 0					Olass.	IN/A
Te	Date of Test: st Engineer: Tadiated Emi	Jack Liu				est Location: ofig Change:			
Frequency	Level	Pol	15.20	9 / 15E	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
1170.120	50.7	Н	54.0	-3.3	AVG	18	1.6		
2340.160	48.7	Н	54.0	-5.3	AVG	358	1.3		
5419.370	47.5	V	54.0	-6.5	AVG	358	1.9	Note4	
2730.230	46.4	Н	54.0	-7.6	AVG	148	1.6		
5419.080	59.2	V	74.0	-14.8	PK	358	1.9	Note4	
1170.250	52.8	Н	74.0	-21.2	PK	18	1.6		
2340.030	51.2	Н	74.0	-22.8	PK	358	1.3		
	49.1	Н	74.0	-24.9	PK	148	1.6		
	62.6	V	-	-	AVG	0	1.0	Note 2	
1950.150			-	-	PK	0	1.0	Note 2	
1950.150 1950.170	63.3	V			41/0			Note 4	
1950.150 1950.170 1560.100	63.3 58.6	Н	-	-	AVG	45	1.3		
1950.150 1950.170 1560.100 1560.040	63.3 58.6 59.3	H H	-	-	PK	45	1.3	Note 4	
1950.150 1950.170 1560.100 1560.040 7080.260	63.3 58.6 59.3 43.2	H H V	- - -	-	PK AVG	45 328	1.3 1.9	Note 4 Note 2	
2730.500 1950.150 1950.170 1560.100 1560.040 7080.260 7080.360 4980.150	63.3 58.6 59.3	H H	-	-	PK	45	1.3	Note 4	

Note 1:	For emissions in restricted bands, the limit of 15.209 was used which requires average and peak measurements.
INOte √.	For emissions outside of the restricted bands the limit is -27dBm/MHz eirp (68.3dBuV/m). Refer to RF port measurements
	for any significant emissions.
Note 3:	For any emissions exceeding the restricted band limits in 4500MHz~5150MHz and 5350~5460MHz range please refer to
	band Edge testing result.
Note 4:	Digital signal. 1:Radio off the siganl still on. 2: Radio on and Change the channel. The signal didn't change or move

Client: Ubiquiti Networks Model: NanoBridge M5 Contact: Jennifer Sanchez Standard: FCC 15.407, RSS-210

EMC Test Data

	An DOZES company		
Client:	Ubiquiti Networks	Job Number:	J85880
Model:	NanoBridge M5	T-Log Number:	T85882
	Natiobilitye wo	Account Manager:	Susan Pelzl
Contact:	Jennifer Sanchez		
Standard:	FCC 15.407, RSS-210 Issue 8	Class:	N/A

Run # 3c: EUT on Channel 5510MHz - 40MHz, Chain 0+1

Spurious Radiated Emissions:

Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
1170.120	52.9	Н	54.0	-1.1	AVG	29	1.6	
2340.170	47.6	Н	54.0	-6.4	AVG	0	1.0	
2730.180	46.4	Н	54.0	-7.6	AVG	164	1.3	
5350.880	61.7	V	74.0	-12.3	PK	3	1.3	
1365.100	39.3	V	54.0	-14.7	AVG	3	2.2	
1170.120	54.8	Н	74.0	-19.2	PK	29	1.6	
2730.260	49.4	Н	74.0	-24.6	PK	164	1.3	
1365.170	43.1	V	74.0	-30.9	PK	3	2.2	
5350.270	50.6	V	54.0	-3.4	AVG	3	1.3	Note 3
5105.020	61.9	V	74.0	-12.1	PK	0	1.2	Note 3
5104.080	50.8	V	54.0	-3.2	AVG	0	1.2	Note 3
4997.190	48.7	Н	54.0	-5.3	AVG	4	1.0	Note 3
4995.940	63.4	Н	74.0	-10.6	PK	4	1.0	Note 3
2340.150	49.8	Н	74.0	-24.2	PK	0	1.0	Note 3
5883.050	46.9	V	-	-	AVG	360	1.0	Note 2
5867.470	58.1	V	-	-	PK	360	1.0	Note 2
1560.100	58.4	V	-	-	PK	3	1.9	Note 4
1560.090	57.7	V	-	-	AVG	3	1.9	Note 4

Note 1:	For emissions in restricted bands, the limit of 15.209 was used which requires average and peak measurements.
INOTE 2.	For emissions outside of the restricted bands the limit is -27dBm/MHz eirp (68.3dBuV/m). Refer to RF port measurements
	for any significant emissions.
INOTE 3.	For any emissions exceeding the restricted band limits in 4500MHz~5150MHz and 5350~5460MHz range please refer to
	band Edge testing result.
Note 4:	Digital signal. 1:Radio off the siganl still on. 2: Radio on and Change the channel. The signal didn't change or move

EMC Test Data Job Number: J85880 Client: Ubiquiti Networks T-Log Number: T85882 Model: NanoBridge M5 Account Manager: Susan Pelzl Contact: Jennifer Sanchez Standard: FCC 15.407, RSS-210 Issue 8 Class: N/A 5510MHz HT40, pwr setting -0.5 100.0 90.0 80.0 Amplitude (dBuV/m) 70.0 60.0 50.0 40.0 30.0-14 20.0 -10000 1000 Frequency (MHz) 5510MHz HT40, pwr setting -0.5 90.0 -p 80.0 Amplitude (dBuV/m) 60.05 50.06 40.09 30.0 $20.0 - \frac{1}{1}$ 10000 18000 Frequency (MHz)

Elliott EMC Test Data Client: Ubiquiti Networks Job Number: J85880 T-Log Number: T85882 Model: NanoBridge M5 Account Manager: Susan Pelzl Contact: Jennifer Sanchez Standard: FCC 15.407, RSS-210 Issue 8 Class: N/A Run # 3d: EUT on Channel 5550MHz - 40MHz, Chain 0+1 Spurious Radiated Emissions: 15.209 / 15E Frequency Level Pol Detector Azimuth Height Comments MHz Pk/QP/Avg $dB\mu V/m$ v/h Limit Margin degrees meters 1170.100 51.7 Н 54.0 -2.3 **AVG** 41 1.6 2340.220 48.1 Η 54.0 -5.9 AVG 10 1.0 1.3 2730.200 45.5 Н 54.0 -8.5 **AVG** 147 3700.220 43.0 ٧ 54.0 -11.0 338 1.3 AVG 1170.080 54.0 Η 74.0 -20.0 PΚ 41 1.6 -23.7 PK 10 1.0 2340.190 74.0 50.3 Η PK 3700.030 48.5 ٧ 74.0 -25.5 338 1.3 2730.230 48.4 Н 74.0 -25.6 PK 147 1.3 61.7 ٧ 74.0 -12.3 PK 357 1.3 5353.910 Note 3 5350.070 50.2 ٧ 54.0 -3.8 AVG 357 Note 3 1.3 4993.810 61.2 Η 74.0 -12.8 PΚ 8 1.3 Note 3 4991.300 46.3 Н 54.0 -7.7 AVG 8 1.3 Note 3 5866.230 42.3 Н AVG 0 1.0 Note 2 --5863.500 53.3 Н PK 0 1.0 Note 2 1560.170 56.3 ٧ AVG 360 2.2 Note 4 ٧ PΚ 360 2.2 1560.120 56.9 Note 4

Note 1:	For emissions in restricted bands, the limit of 15.209 was used which requires average and peak measurements.
Note 2:	For emissions outside of the restricted bands the limit is -27dBm/MHz eirp (68.3dBuV/m). Refer to RF port measurements
Note 2:	for any significant emissions.
Note 3:	For any emissions exceeding the restricted band limits in 4500MHz~5150MHz and 5350~5460MHz range please refer to
	band Edge testing result.
Note 4:	Digital signal. 1:Radio off the siganl still on. 2: Radio on and Change the channel. The signal didn't change or move
Note 5:	Scans made between 18 - 40GHz with the measurement antenna moved around the card and its antennas 20-50cm from the
Note 5:	device indicated there were no significant emissions in this frequency range

EMC Test Data Job Number: J85880 Client: Ubiquiti Networks T-Log Number: T85882 Model: NanoBridge M5 Account Manager: Susan Pelzl Contact: Jennifer Sanchez Standard: FCC 15.407, RSS-210 Issue 8 Class: N/A 5550MHz HT40, pwr setting -0.5 100.0 90.0 80.0 Amplitude (dBuV/m) 70.0 60.0 50.0 40.0 30.0 $20.0 - \frac{1}{1}$ 10000 1000 Frequency (MHz) 5550MHz HT40, pwr setting -0.5 90.0-80.0 Amplitude (dBuV/m) 60.00 40.00 40.00 30.0 20.0 -18000 10000 Frequency (MHz)

Elliott Spurious Radiated Emissions:

EMC Test Data

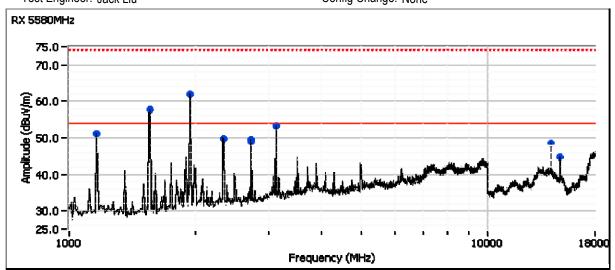
	An DOZES company		
Client:	Ubiquiti Networks	Job Number:	J85880
Model:	NanoBridge M5	T-Log Number:	T85882
	Natiobilitye wo	Account Manager:	Susan Pelzl
Contact:	Jennifer Sanchez		
Standard:	FCC 15.407, RSS-210 Issue 8	Class:	N/A

Run # 3e: EUT on Channel 5670MHz - 40MHz, Chain 0+1

opanious n	adiated Eiiii	00101101						
Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
1170.120	52.8	Н	54.0	-1.2	AVG	31	1.6	
2340.140	50.0	Н	54.0	-4.0	AVG	349	1.0	
2730.200	43.3	Н	54.0	-10.7	AVG	160	1.3	
3780.180	43.0	V	54.0	-11.0	AVG	316	1.9	
1365.130	38.1	Н	54.0	-15.9	AVG	23	1.0	
1169.850	54.7	Н	74.0	-19.3	PK	31	1.6	
2340.220	52.1	Н	74.0	-21.9	PK	349	1.0	
3780.250	49.0	V	74.0	-25.0	PK	316	1.9	
2730.300	47.1	Н	74.0	-26.9	PK	160	1.3	
1364.870	42.5	Н	74.0	-31.5	PK	23	1.0	
5351.420	53.8	V	74.0	-20.2	PK	359	1.6	Note 2
5350.030	41.8	V	54.0	-12.2	AVG	359	1.6	Note 2
5098.640	63.8	V	74.0	-10.2	PK	4	1.0	Note 2
5096.340	52.3	V	54.0	-1.7	AVG	4	1.0	Note 2
4998.130	64.9	Н	74.0	-9.1	PK	4	1.3	Note 2
4997.360	49.2	Н	54.0	-4.8	AVG	4	1.3	Note 2
1560.170	58.0	V	-	-	PK	1	1.9	Note 4
1560.130	57.3	V	-	-	AVG	1	1.9	Note 4

For emissions in restricted bands, the limit of 15.209 was used which requires average and peak measurements.
For emissions outside of the restricted bands the limit is -27dBm/MHz eirp (68.3dBuV/m). Refer to RF port measurements
for any significant emissions.
For any emissions exceeding the restricted band limits in 4500MHz~5150MHz and 5350~5460MHz range please refer to
band Edge testing result.
Digital signal. 1:Radio off the siganl still on. 2: Radio on and Change the channel. The signal didn't change or move

EMC Test Data Job Number: J85880 Client: Ubiquiti Networks T-Log Number: T85882 Model: NanoBridge M5 Account Manager: Susan Pelzl Contact: Jennifer Sanchez Standard: FCC 15.407, RSS-210 Issue 8 Class: N/A 567000MHz HT40, pwr setting -1 100.0 90.0 80.0 Amplitude (dBuV/m) 70.0 60.0 50.0 40.0 30.0 $20.0 - \frac{1}{1}$ 10000 1000 Frequency (MHz) 5670MHz HT40, pwr setting -1 90.0 80.0 Amplitude (dBuV/m) 60.09 50.09 40.09 30.0 20.0 -\ 10000 18000 Frequency (MHz)


EMC Test Data

An ZAZZS company					
Client:	Ubiquiti Networks	Job Number:	J85880		
Model:	NanaBridge ME	T-Log Number:	T85882		
	NanoBridge M5	Account Manager:	Susan Pelzl		
Contact:	Jennifer Sanchez				
Standard:	FCC 15.407, RSS-210 Issue 8	Class:	N/A		

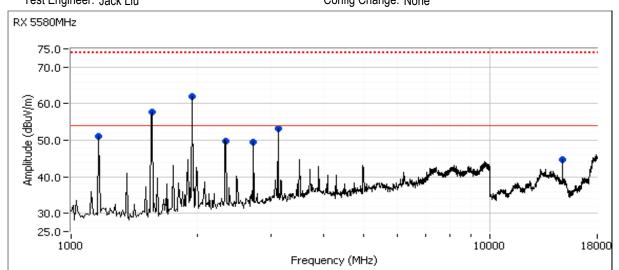
Run # 4, Radiated Spurious Emissions, 1-40GHz, RX, Chain 0+1

Run # 4a: EUT on 5300MHz - RX, Chain 0+1

Date of Test: 1/11/2012 Test Location: FT Chamber #7
Test Engineer: Jack Liu Config Change: None

Frequency	Level	Pol	RSS-	-GEN	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
3120.070	52.9	Н	54.0	-1.1	AVG	346	1.3	
1170.070	50.9	Н	54.0	-3.1	AVG	24	1.6	
2340.130	48.5	Н	54.0	-5.5	AVG	313	1.0	
2730.130	48.2	Н	54.0	-5.8	AVG	159	1.3	
14133.370	45.4	V	54.0	-8.6	AVG	329	1.6	
3120.170	55.2	Н	74.0	-18.8	PK	346	1.3	
1170.120	52.0	Н	74.0	-22.0	PK	24	1.6	
2339.950	50.8	Н	74.0	-23.2	PK	313	1.0	
2729.980	50.6	Н	74.0	-23.4	PK	159	1.3	
14133.260	50.6	٧	74.0	-23.4	PK	329	1.6	
1560.050	57.6	Н	-	-	AVG	46	1.3	Note1
1560.030	58.2	Н	-	-	PK	46	1.3	Note1
1950.070	57.4	٧	-	-	AVG	360	1.3	Note1
1950.070	58.2	٧	-	-	PK	360	1.3	Note1

Note 1: Non-radio signal. 1:With the carrier off, the signal is still on. 2: With the radio on, changing the channel doesn't change the signal frequency or amplitude.



EMC Test Data

This Delication of the Company						
Client:	Ubiquiti Networks	Job Number:	J85880			
Model:	NanaPridgo M5	T-Log Number:	T85882			
	NanoBridge M5	Account Manager:	Susan Pelzl			
Contact:	Jennifer Sanchez					
Standard:	FCC 15.407, RSS-210 Issue 8	Class:	N/A			

Run # 4b: EUT on 5580MHz - RX, Chain 0+1

Date of Test: 1/11/2012 Test Location: FT Chamber #7
Test Engineer: Jack Liu Config Change: None

Frequency	Level	Pol	RSS-	GEN	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
3120.090	53.3	Н	54.0	-0.7	AVG	339	1.3	
1170.100	50.6	Н	54.0	-3.4	AVG	33	1.6	
2340.080	48.9	Н	54.0	-5.1	AVG	337	1.0	
2730.110	48.2	Н	54.0	-5.8	AVG	151	1.3	
14880.050	46.9	٧	54.0	-7.1	AVG	333	1.5	
3119.950	55.3	Н	74.0	-18.7	PK	339	1.3	
14880.180	55.2	V	74.0	-18.8	PK	333	1.5	
1169.970	51.6	Н	74.0	-22.4	PK	33	1.6	
2339.980	51.0	Н	74.0	-23.0	PK	337	1.0	
2730.150	50.6	Н	74.0	-23.4	PK	151	1.3	
1950.100	61.4	Н	-	-	AVG	22	1.3	Note1
1950.090	62.0	Н	-	-	PK	22	1.3	Note1
1560.050	57.9	Н	-	-	AVG	36	1.3	Note1
1560.010	58.4	Н	-	-	PK	36	1.3	Note1

Note 1: Non-radio signal. 1:With the carrier off, the signal is still on. 2: With the radio on, changing the channel doesn't change the signal frequency or amplitude.

End of Report

This page is intentionally blank and marks the last page of this test report.

File: R86194 Page 158