

FCC Test Report

Equipment	:	Access Point
Brand Name	:	UBIQUITI
Model No.	:	NBE-M5AC-500
FCC ID	:	SWX-NBEM5AC
Standard	:	47 CFR FCC Part 15.247
Operating Band	:	5725 MHz – 5850 MHz
Equipment Class	:	DTS
Applicant Manufacturer	:	Ubiquiti Networks,Inc. 12F, No. 105, Song Ren Rd., Sin Yi District,
		Taipei 110, Taiwan

The product sample received on Nov. 05, 2013 and completely tested on Feb. 07, 2014. We, SPORTON, would like to declare that the tested sample has been evaluated in accordance with the procedures given in ANSI C63.10-2009 and shown compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

Reviewed by:

Manager Assistant

TESTING Laboratory 1190

Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information	5
1.2	Accessories	7
1.3	Testing Applied Standards	7
1.4	Testing Location Information	7
1.5	Measurement Uncertainty	8
2	TEST CONFIGURATION OF EUT	9
2.1	The Worst Case Modulation Configuration	9
2.2	The Worst Case Power Setting Parameter	9
2.3	The Worst Case Measurement Configuration	10
2.4	Test Setup Diagram	11
3	TRANSMITTER TEST RESULT	13
3.1	AC Power-line Conducted Emissions	13
3.2	6dB Bandwidth	16
3.3	RF Output Power	18
3.4	Power Spectral Density	22
3.5	Transmitter Bandedge Emissions	24
3.6	Transmitter Unwanted Emissions	28
4	TEST EQUIPMENT AND CALIBRATION DATA	61

APPENDIX A. TEST PHOTOS

APPENDIX B. PHOTOGRAPHS OF EUT

Summary of Test Result

	Conformance Test Specifications							
Report Clause	Ref. Std. Clause	Description	Measured	Limit	Result			
1.1.2	15.203	Antenna Requirement	Antenna connector mechanism complied	FCC 15.203	Complied			
3.1	15.207	AC Power-line Conducted Emissions	[dBuV]: 0.1834550MHz 25.14 (Margin 29.19dB) - AV 41.20 (Margin 23.13dB) - QP	FCC 15.207	Complied			
3.2	15.247(a)	Bandwidth	6dB Bandwidth [MHz] a / n(HT20):16.41 n(HT40):35.64 ac(VHT20):17.58 ac(VHT40):35.64 ac(VHT80): 75.04	≥500kHz	Complied			
3.3	15.247(b)	RF Output Power (Maximum Peak Conducted Output Power)	Power [dBm]:27.95	Power [dBm]:30	Complied			
3.4	15.247(d)	Power Spectral Density	PSD [dBm/100kHz]:-9.39	PSD [dBm/MHz]:17 replace 8dBm/3kHz	Complied			
3.5	15.247(c)	Transmitter Bandedge Emissions	Non-Restricted Bands: 5724.990MHz: 29.44dB	Non-Restricted Bands: > 20 dBc Restricted Bands: FCC 15.209	Complied			
3.6	15.247(c)	Transmitter Radiated Unwanted Emissions	Restricted Bands [dBuV/m at 1m]:11550MHz 82.53 (Margin 1.01dB) - PK 61.05 (Margin 2.49dB) - AV	Non-Restricted Bands: > 20 dBc Restricted Bands: FCC 15.209	Complied			

Revision History

Version	Description	Issued Date
Rev. 01	Initial issue of report	Feb. 12, 2014

1 General Description

1.1 Information

1.1.1 RF General Information

RF General Information							
IEEE Std. 802.11	Ch. Freq. (MHz)	Channel Number	Transmit Chains (N _{TX})	RF Output Power (dBm)			
а	5745-5825	149-165 [5]	1	22.65			
n(HT20)	5745-5825	149-165 [5]	2	24.25			
n(HT40)	5755-5795	151-159 [2]	2	27.21			
ac(VHT20)	5745-5825	149-165 [5]	2	25.46			
ac(VHT40)	5755-5795	151-159 [2]	2	25.74			
ac(VHT80)	5775	155 [1]	2	27.95			
	802.11 a n(HT20) n(HT40) ac(VHT20) ac(VHT40)	IEEE Std. 802.11Ch. Freq. (MHz)a5745-5825n(HT20)5745-5825n(HT40)5755-5795ac(VHT20)5745-5825ac(VHT40)5755-5795	IEEE Std. 802.11Ch. Freq. (MHz)Channel Numbera5745-5825149-165 [5]n(HT20)5745-5825149-165 [5]n(HT40)5755-5795151-159 [2]ac(VHT20)5745-5825149-165 [5]ac(VHT40)5755-5795151-159 [2]	IEEE Std. 802.11Ch. Freq. (MHz)Channel NumberTransmit Chains (NTX)a5745-5825149-165 [5]1n(HT20)5745-5825149-165 [5]2n(HT40)5755-5795151-159 [2]2ac(VHT20)5745-5825149-165 [5]2ac(VHT40)5755-5795151-159 [2]2			

Note 1: RF output power specifies that Maximum Peak Conducted Output Power.

Note 2: 802.11a/n uses a combination of OFDM-BPSK, QPSK, 16QAM, 64QAM modulation.

Note 3: 802.11ac uses a combination of OFDM-BPSK, QPSK, 16QAM, 64QAM, 256QAM modulation.

Note 4: Co-location, Co-location is generally defined as simultaneously transmitting (co-transmitting) antennas within 20 cm of each other. (i.e., EUT has simultaneously co-transmitting that operating 2.4GHz and 5GHz.)

1.1.2 Antenna Information

	Antenna Category						
\square	Integral antenna (antenna permanently attached)						
	Temporary RF connector provided						
	No temporary RF connector provided Transmit chains bypass antenna and soldered temporary RF connector provided for connected measurement. In case of conducted measurements the transmitter shall be connected to the measuring equipment via a suitable attenuator and correct for all losses in the RF path.						

	Antenna General Information					
No.	No. Ant. Cat. Ant. Type Gain (dBi)					
1	Integral	Dish	20.00			

Reminder: The EUT was pre-tested Antenna Port 1 and Antenna Port 2 for single chain, the worst case was Antenna Port 1. Therefore only the test data recorded in this report.

1.1.3 Type of EUT

	Identify EUT				
EUT Serial Number N/A					
Pres	sentation of Equipment	Production ; Pre-Production ; Prototype			
	Type of EUT				
\boxtimes	Stand-alone				
	Combined (EUT where the radio part is fully integrated within another device)				
	Combined Equipment - Brand Name / Model No.:				
	Plug-in radio (EUT intended for a variety of host systems)				
	Host System - Brand Name / Model No.:				
	Other:				

1.1.4 Test Signal Duty Cycle

Operated Mode for Worst Duty Cycle					
Operated normally mode for worst duty c	ycle				
Operated test mode for worst duty cycle					
Test Signal Duty Cycle (x)NTXPower Duty Factor [dB] - (10 log 1/x)					
⊠ 98.61% - IEEE 802.11a	1	0.06			
⊠ 98.52% - IEEE 802.11n (HT20)	2	0.06			
🛛 94.73% - IEEE 802.11n (HT40)	2	0.23			
🛛 98.52% - IEEE 802.11ac (VHT20)	2	0.06			
🛛 98.53% - IEEE 802.11ac (VHT40)	2	0.06			
88.23% - IEEE 802.11ac (VHT80)	2	0.54			

Note 1: RF Output Power Plots w/o Duty Factor

1.1.5 EUT Operational Condition

Supply Voltage	AC mains	DC DC	System
Type of DC Source	Internal DC supply	From Host System (PoE)	Battery

1.2 Accessories

Accessories Information					
PoE	Brand Name	UBIQUITI	Model Name	GP-A240-050G	
	Power Rating	I/P: 100-240V ~ 5	50/60Hz 0.3A; O/F	24V 0.5A	

Reminder: Regarding to more detail and other information, please refer to user manual.

1.3 Testing Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR FCC Part 15
- ANSI C63.10-2009
- FCC KDB 558074
- FCC KDB 789033
- FCC KDB 644545 D01
- FCC KDB 644545 D02
- FCC KDB 662911

1.4 Testing Location Information

	Testing Location						
\square	HWA YA ADD : No. 52, Hwa Ya 1 st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.						
		TEL :	886-3-327-3456 FAX	K : 886-3-327-0973			
	Test Condition Test Site No. Test Engineer Test Environment						
	AC Condu	ction	CO04-HY	Zeus	24°C / 51%		
RF Conducted TH01-HY Cain 24.2°C /				24.2°C / 63%			
Radiated Emission (Below 1GHz)			03CH03-HY	Leo	22.1°C / 42%		
I	Radiated En (Above 10		03CH03-HY	Allen	21.6°C / 41%		

1.5 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

N	leasurement Uncertainty	
Test Item		Uncertainty
AC power-line conducted emissions	±2.26 dB	
Emission bandwidth, 6dB bandwidth	±1.42 %	
RF output power, conducted		±0.63 dB
Power density, conducted		±0.81 dB
Unwanted emissions, conducted	9 – 150 kHz	±0.38 dB
	0.15 – 30 MHz	±0.42 dB
	30 – 1000 MHz	±0.51 dB
	1 – 18 GHz	±0.67 dB
	18 – 40 GHz	±0.83 dB
	40 – 200 GHz	N/A
All emissions, radiated	9 – 150 kHz	±2.49 dB
	0.15 – 30 MHz	±2.28 dB
	30 – 1000 MHz	±2.56 dB
	1 – 18 GHz	±3.59 dB
	18 – 40 GHz	±3.82 dB
	40 – 200 GHz	N/A
Temperature		±0.8 °C
Humidity		±3 %
DC and low frequency voltages		±3 %
Time		±1.42 %
Duty Cycle		±1.42 %

2 Test Configuration of EUT

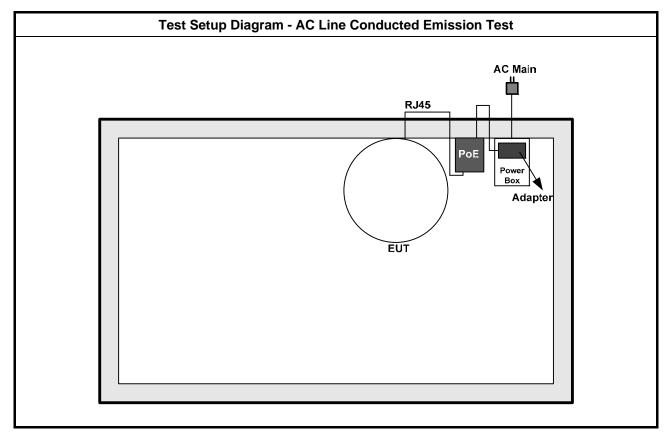
2.1 The Worst Case Modulation Configuration

Worst Modulation Used for Conformance Testing							
Modulation Mode Transmit Chains (N _{TX}) Data Rate / MCS Worst Data Rate / MCS							
11a,6-54Mbps	1	6-54Mbps	6 Mbps				
HT20,M8-15	2	M8-15	MCS 8				
HT40,M8-15	2	M8-15	MCS 8				
VHT20,M0-8	2	M0-8	MCS 0				
VHT40,M0-9	2	M0-9	MCS 0				
VHT80,M0-9	2	M0-9	MCS 0				

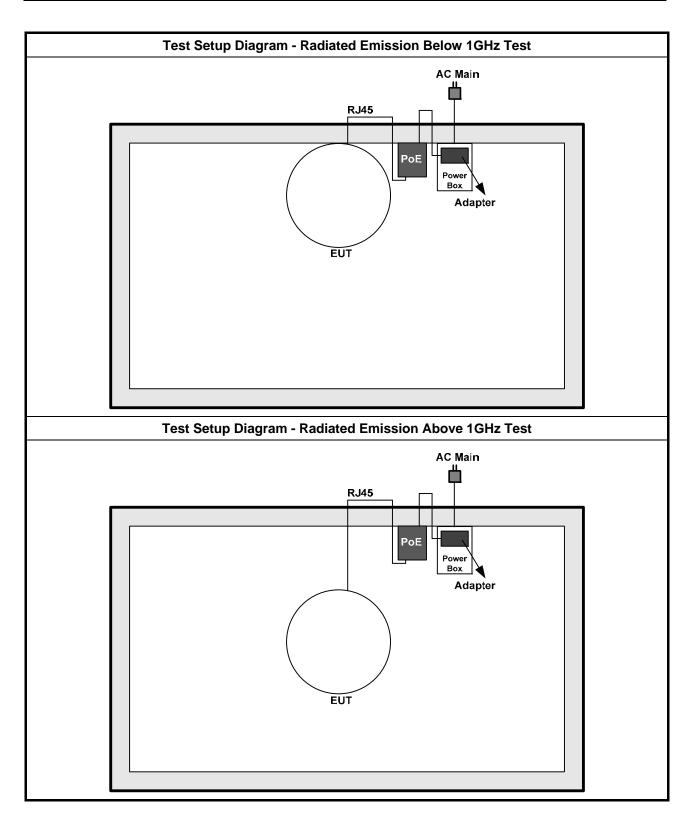
2.2 The Worst Case Power Setting Parameter

The Worst Case Power Setting Parameter (5725-5850MHz band)								
Test Software Version	Atheros Radio Test 2 (ART2-GUI)_ 2.3							
				Test Fred	quency (MH	z)		
Modulation Mode	N _{TX}		NCB: 20MH	łz	NCB:	40MHz	NCB: 80MHz	
		5745	5785	5825	5755	5795	5775	
11a,6-54Mbps	1	15	13.5	13	-	-	-	
HT20,M8-15	2	13.5	13.5	12.5	-	-	-	
HT40,M8-15	2	-	-	-	17	15.5	-	
VHT20,M0-8	2	15	13.5	12.5	-	-	-	
VHT40,M0-9	2	-	-	-	15.5	15.5	-	
VHT80,M0-9	2	-	-	-	-	-	18	

2.3 The Worst Case Measurement Configuration


The Worst Case Mode for Following Conformance Tests					
Tests Item	AC power-line conducted emissions				
Condition	AC power-line conducted measurement for line and neutral Test Voltage: 120Vac / 60Hz				
Operating Mode	Operating Mode Description				
1	PoE Power & Radio link (WLAN)				

The Worst Case Mode for Following Conformance Tests						
Tests Item	Tests Item RF Output Power, Power Spectral Density, 6 dB Bandwidth					
Test Condition	Test Condition Conducted measurement at transmit chains					
Modulation Mode	11a, HT20, HT40, VHT20, VHT40, VHT80					


Th	e Worst Case Mode for Following Conformance Tests					
Tests Item	Transmitter Radiated Unwanted Emissions Transmitter Radiated Bandedge Emissions					
Test Condition	Radiated measurement					
	\boxtimes EUT will be placed in fixed position. The worst planes is Y.					
User Position	EUT will be placed in mobile position and operating multiple positions. EUT shall be performed two orthogonal planes.					
	EUT will be a hand-held or body-worn battery-powered devices and operating multiple positions. EUT shall be performed two or three orthogonal planes.					
Operating Mode	☑ 1. Transmitter Mode					
Modulation Mode	11a, HT20, HT40, VHT20, VHT40, VHT80					
	Y Plane					
Orthogonal Planes of EUT						

2.4 Test Setup Diagram

Transmitter Test Result 3

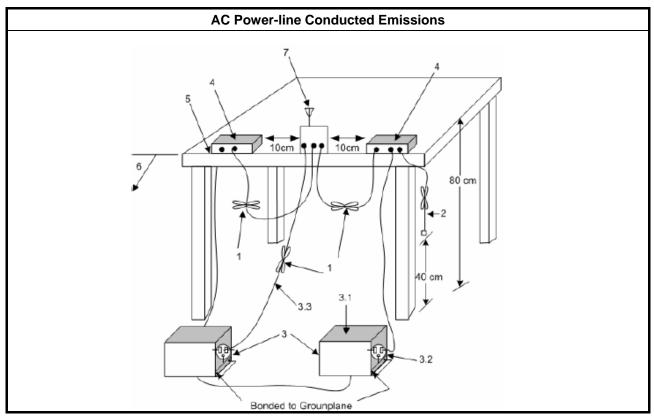
3.1 **AC Power-line Conducted Emissions**

3.1.1 **AC Power-line Conducted Emissions Limit**

AC Power-line Conducted Emissions Limit							
Frequency Emission (MHz) Quasi-Peak Average							
0.15-0.5	66 - 56 *	56 - 46 *					
0.5-5	56	46					
5-30	50						
Note 1: * Decreases with the logarithn	n of the frequency.						

creases with the logarithm of the frequency

3.1.2 Measuring Instruments

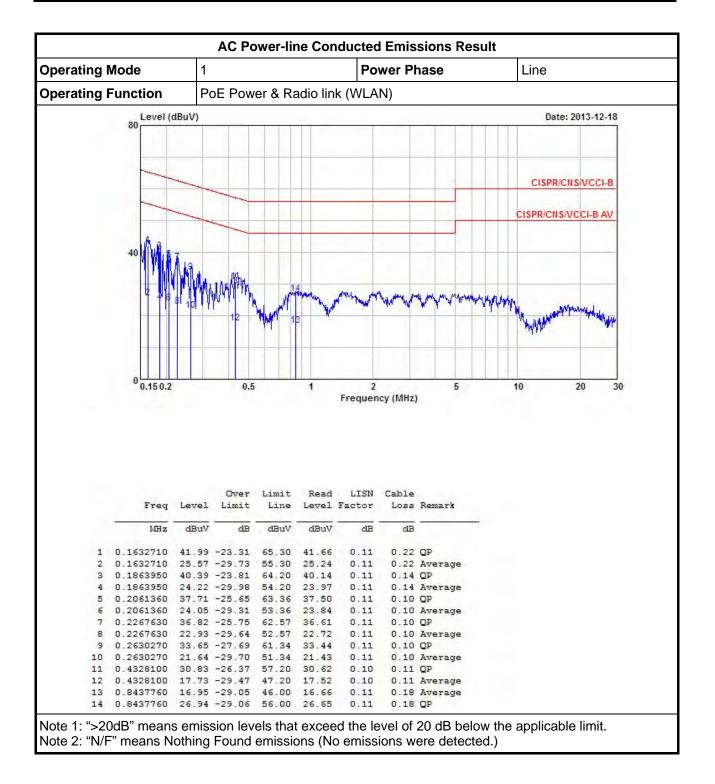

Refer a test equipment and calibration data table in this test report.

3.1.3 Test Procedures

Test Method

Refer as ANSI C63.10-2009, clause 6.2 for AC power-line conducted emissions.

3.1.4 Test Setup



Operating Mo	de	1				Po	wer Pl	hase		Neu	utral	
Operating Fur	nction	Po	E Powe	er & Ra	adio lin	k (WLA	N)					
	Level (0	dBuV)	BuV) Date: 2013-12-1								12-18	
	00											
											-	
	-	-								CIS	PR/CNS/VC	CI-B
	-											
			_							CISPR	CNS/VCCI-	BAV
	1 3											
	40 11 5	7										
		9										
		AN DR	L. WW		2							_
			MALL W	8	MAMA .	ATT AL ATT	m Att A	4 Minusky W	MILANIA	A.M.		
	44114	1.0.0	10	Jaway 1	W	M	Ma. 144	da de e	W	ANY I	- wind the lands	4
			12	odit J	4					MANA	and the second	THEY
						_						_
	0 0.15 0.2		0.5	1-1-1								
			0.5		1	2		5		10	20	30
			0.5		1	2 Frequen	cy (MHz			10	20	30
			0.5		,		icy (MHz			10	20	30
			0.5		1		icy (MHz			10	20	30
			0.5		,		icy (MHz			10	20	30
			0.0		,		icy (MHz			10	20	30
			0.5		,		cy (MHz)			10	20	30
						Frequer)		10	20	30
	From	Lorral	Over	Limit	Read	Frequer	Cable)		10	20	3(
	Freq	Level			Read	Frequer	Cable)		10	20	31
	Freq	Level	Over	Limit	Read	Frequer LISN Factor	Cable) Remark		10	20	30
-		dBuV	Over Limit dB	Limit Line dBuV	Read Level dBuV	LISN Factor dB	Cable Loss dB) Remark	_	10	20	34
2 0).1632710).1632710	dBuV 41.97 25.77	Over Limit dB -23.33 -29.53	Limit Line dBuV 65.30 55.30	Read Level dBuV 41.51 25.31	LISN Factor dB 0.24 0.24	Cable Loss dB 0.22 0.22	Remark OP Average		10	20	34
2 0).1632710).1632710).1834550	dBuV 41.97 25.77 41.20	Over Limit dB -23.33 -29.53 -23.13	Limit Line dBuV 65.30 55.30 64.33	Read Level dBuV 41.51 25.31 40.82	LISN Factor dB 0.24 0.23	Cable Loss dB 0.22 0.22 0.15	Remark OP Average OP	-	10	20	34
2 0 3 0 4 0).1632710).1632710).1834550).1834550	dBuV 41.97 25.77 41.20 25.14	Over Limit dB -23.33 -29.53 -23.13 -29.19	Limit Line dBuV 65.30 55.30 64.33 54.33	Read Level dBuV 41.51 25.31 40.82 24.76	LISN Factor dB 0.24 0.23 0.23	Cable Loss dB 0.22 0.22 0.15 0.15	Remark OP Average OP Average		10	20	31
2 0 3 0 4 0 5 0).1632710).1632710).1834550).1834550).2007470	dBuV 41.97 25.77 41.20 25.14 38.87	Over Limit dB -23.33 -29.53 -23.13 -29.19 -24.71	Limit Line dBuV 65.30 55.30 64.33 54.33 63.58	Read Level dBuV 41.51 25.31 40.82 24.76 38.54	LISN Factor dB 0.24 0.23 0.23 0.23	Cable Loss dB 0.22 0.22 0.15 0.15 0.10	Remark OP Average OP Average OP		10	20	31
2 0 3 0 4 0 5 0 6 0).1632710).1632710).1834550).1834550	dBuV 41.97 25.77 41.20 25.14 38.87 23.81	Over Limit dB -23.33 -29.53 -23.13 -29.19 -24.71 -29.77	Limit Line dBuV 65.30 55.30 64.33 54.33 63.58 53.58	Read Level dBuV 41.51 25.31 40.82 24.76 38.54	LISN Factor dB 0.24 0.23 0.23 0.23 0.23	Cable Loss dB 0.22 0.22 0.15 0.15 0.10	Remark OP Average OP Average OP Average		10	20	31
2 0 3 0 4 0 5 0 6 0 7 0).1632710).1632710).1834550).1834550).2007470).2007470	dBuV 41.97 25.77 41.20 25.14 38.87 23.81 36.58	Over Limit dB -23.33 -29.53 -23.13 -29.19 -24.71 -29.77 -25.99	Limit Line dBuV 65.30 55.30 64.33 54.33 63.58 63.58 63.58	Read Level dBuV 41.51 25.31 40.82 24.76 38.54 23.48 36.25	Frequer LISN Factor dB 0.24 0.23 0.23 0.23 0.23 0.23	Cable Loss dB 0.22 0.22 0.15 0.15 0.10 0.10 0.10	Remark OP Average OP Average OP Average		10	20	36
2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0	0.1632710 0.1632710 0.1834550 0.2007470 0.2007470 0.2007470 0.2267630 0.2267630 0.2468240	dBuV 41.97 25.77 41.20 25.14 38.87 23.81 36.58 22.80 34.02	Over Limit -23.33 -29.53 -29.19 -24.71 -29.77 -25.99 -29.77 -27.84	Limit Line dBuV 65.30 55.30 64.33 54.33 63.58 53.58 62.57 52.57 61.86	Read Level dBuV 41.51 25.31 40.82 24.76 38.54 23.48 36.25 22.47 33.69	LISN Factor dB 0.24 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23	Cable Loss dB 0.22 0.15 0.15 0.10 0.10 0.10 0.10 0.10	Remark OP Average OP Average OP Average OP		10	20	30
2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 10 0	0.1632710 0.1632710 0.1834550 0.2007470 0.2007470 0.2267630 0.2267630 0.2468240 0.2468240	dBuV 41.97 25.77 41.20 25.14 38.87 23.81 36.58 22.80 34.02 22.46	Over Limit dB -23.33 -29.53 -23.13 -29.19 -24.71 -29.77 -25.99 -29.77 -27.84 -29.40	Limit Line dBuV 65.30 55.30 64.33 54.33 63.58 53.58 62.57 52.57 52.57 61.86 51.86	Read Level dBuV 41.51 25.31 40.82 24.76 38.54 23.48 36.25 22.47 33.69 22.13	LISN Factor dB 0.24 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23	Cable Loss dB 0.22 0.15 0.15 0.10 0.10 0.10 0.10 0.10 0.10	Remark OP Average OP Average OP Average OP Average OP		10	20	36
2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 10 0 11 0	0.1632710 0.1632710 0.1834550 0.1834550 0.2007470 0.2207470 0.2267630 0.2267630 0.2266240 0.2468240 0.2468240 0.4711010	dBuV 41.97 25.77 41.20 25.14 38.87 23.81 36.58 22.80 34.02 22.46 30.64	Over Limit dB -23.33 -29.53 -23.13 -29.19 -24.71 -29.77 -25.99 -29.77 -27.84 -29.40 -25.85	Limit Line dBuV 65.30 55.30 64.33 63.58 53.58 62.57 52.57 61.86 51.86 51.86	Read Level dBuV 41.51 25.31 40.82 24.76 38.54 23.48 36.25 22.47 33.69 22.13 30.30	LISN Factor dB 0.24 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23	Cable Loss dB 0.22 0.15 0.15 0.10 0.10 0.10 0.10 0.10 0.10	Remark OP Average OP Average OP Average OP Average OP Average OP		10	20	30
2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 10 0 11 0 12 0	0.1632710 .1632710 .1834550 .2007470 0.2007470 0.2267630 .2468240 .2468240 .4711010	dBuV 41.97 25.77 41.20 25.14 38.87 23.81 36.58 22.80 34.02 22.46 30.64 17.39	Over Limit dB -23.33 -29.53 -29.19 -29.77 -25.99 -29.77 -27.84 -29.40 -25.85 -29.10	Limit Line dBuV 65.30 55.30 64.33 54.33 63.58 63.58 62.57 52.57 61.86 51.86 51.86 56.49 46.49	Read Level dBuV 41.51 25.31 40.82 24.76 38.54 23.48 36.25 22.47 33.69 22.13 30.30 17.05	LISN Factor dB 0.24 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23	Cable Loss dB 0.22 0.15 0.15 0.10 0.10 0.10 0.10 0.10 0.12 0.12	Remark OP Average OP Average OP Average OP Average OP Average OP Average		10	20	30
2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 10 0 11 0 12 0 13 0	0.1632710 0.1632710 0.1834550 0.1834550 0.2007470 0.2207470 0.2267630 0.2267630 0.2266240 0.2468240 0.2468240 0.4711010	dBuV 41.97 25.77 41.20 25.14 38.87 23.81 36.58 22.80 34.02 22.46 30.64 17.39 26.04	Over Limit dB -23.33 -29.53 -23.13 -29.19 -24.71 -29.77 -25.99 -29.77 -27.84 -29.40 -25.85 -29.10 -29.96	Limit Line dBuV 65.30 55.30 64.33 54.33 63.58 62.57 52.57 61.86 51.86 56.49 56.49 56.00	Read Level dBuV 41.51 25.31 40.82 24.76 38.54 23.48 36.25 22.47 33.69 22.13 30.30 17.05 25.63	Frequer LISN Factor dB 0.24 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23	Cable Loss dB 0.22 0.15 0.15 0.10 0.10 0.10 0.10 0.10 0.12 0.12 0.12	Remark OP Average OP Average OP Average OP Average OP Average OP Average		10	20	30

3.1.5 Test Result of AC Power-line Conducted Emissions

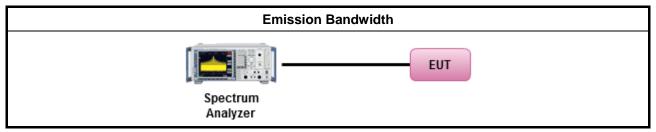
3.2 6dB Bandwidth

3.2.1 6dB Bandwidth Limit

6dB Bandwidth Limit

Systems using digital modulation techniques:

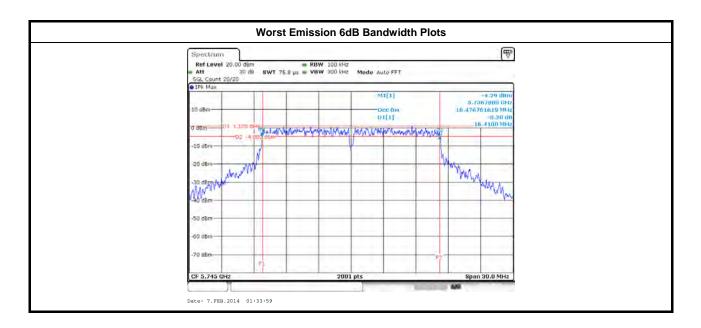
 \boxtimes 6 dB bandwidth ≥ 500 kHz.


3.2.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.2.3 Test Procedures

	Test Method								
\square	For the emission bandwidth shall be measured using one of the options below:								
	\square	Refe	er as FCC KDB 558074, clause 8.1 Option 1 for 6 dB bandwidth measurement.						
		Refe	er as FCC KDB 558074, clause 8.2 Option 2 for 6 dB bandwidth measurement.						
		Refe	er as ANSI C63.10, clause 6.9.1 for occupied bandwidth testing.						
\boxtimes	For	cond	ucted measurement.						
		The	EUT supports single transmit chain and measurements performed on this transmit chain.						
	\square	The	EUT supports diversity transmitting and the results on transmit chain port 1 is the worst case.						
	\square	The	EUT supports multiple transmit chains using options given below:						
			Option 1: Multiple transmit chains measurements need to be performed on one of the active transmit chains (antenna outputs). All measurement had be performed on transmit chains 1.						
			Option 2: Multiple transmit chains measurements need to be performed on each transmit chains individually (antenna outputs). All measurement had be performed on all transmit chains.						


3.2.4 Test Setup

3.2.5 Test Result of Emission Bandwidth

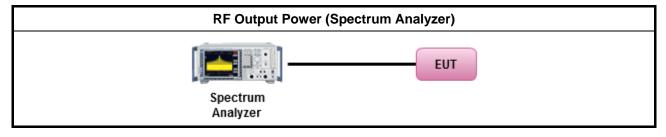
Condit	ion		Emission Bandwidth (MHz)						
		Freq.	99% Ba	6dB Bandwidth					
Modulation Mode	Ντχ	(MHz)	Chain Port 1	Chain Port 2	Chain Port 1	Chain Port 2			
11a	1	5745	16.47	-	16.41	-			
11a	1	5785	16.53	-	16.50	-			
11a	1	5825	16.55	-	16.50	-			
HT20,M8-15	2	5745	17.67	17.67	17.71	17.71			
HT20,M8-15	2	5785	17.72	17.75	17.73	17.77			
HT20,M8-15	2	5825	17.76	17.67	17.77	17.65			
HT40,M8-15	2	5755	36.26	36.22	35.64	35.72			
HT40,M8-15	2	5795	36.26	36.22	35.68	35.96			
VHT20,M0-8	2	5745	17.72	17.69	17.71	17.71			
VHT20,M0-8	2	5785	17.73	17.69	17.76	17.64			
VHT20,M0-8	2	5825	17.70	17.66	17.71	17.58			
VHT40,M0-9	2	5755	36.26	36.26	35.76	35.68			
VHT40,M0-9	2	5795	36.26	36.26	35.64	36.08			
VHT80,M0-9	2	5775	75.48	75.48	75.04	75.68			
Limi	t		N	/A	≥500	kHz			
Resu	lt			Com	plied				

3.3 RF Output Power

3.3.1 RF Output Power Limit

	RF Output Power Limit							
Maximum Peak Conducted Output Power or Maximum Conducted Output Power Limit								
\boxtimes	5725-5850 MHz Band:							
	If $G_{TX} \le 6 \text{ dBi}$, then $P_{Out} \le 30 \text{ dBm} (1 \text{ W})$							
	Point-to-multipoint systems (P2M): If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)$ dBm							
	Point-to-point systems (P2P): If $G_{TX} > 6$ dBi, then $P_{Out} = 30$ dBm							
e.i.r	.p. Power Limit:							
\boxtimes	5725-5850 MHz Band							
	Point-to-multipoint systems (P2M): $P_{eirp} \le 36 \text{ dBm} (4 \text{ W})$							
	Point-to-point systems (P2P): N/A							
G _{τx}	= maximum peak conducted output power or maximum conducted output power in dBm, = the maximum transmitting antenna directional gain in dBi. , = e.i.r.p. Power in dBm.							

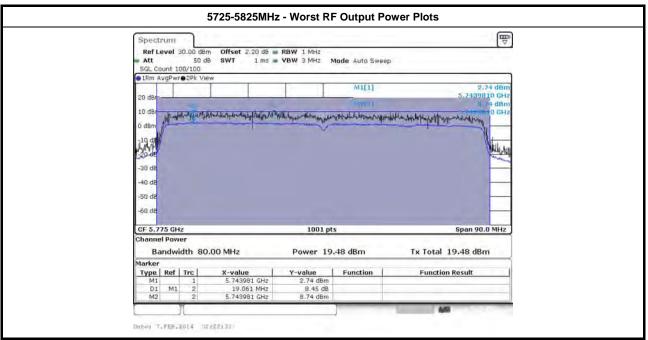
3.3.2 Measuring Instruments


Refer a test equipment and calibration data table in this test report.

3.3.3 Test Procedures

		Test Method
\square	Max	imum Peak Conducted Output Power
		Refer as FCC KDB 558074, clause 9.1.1 Option 1 (RBW \ge EBW method).
	\boxtimes	Refer as FCC KDB 558074, clause 9.1.2 Option 2 (integrated band power method).
		Refer as FCC KDB 558074, clause 9.1.3 Option 2 (peak power meter for VBW ≥ DTS BW)
\square	Мах	imum Conducted Output Power
	[dut	y cycle ≥ 98% or external video / power trigger]
	\boxtimes	Refer as FCC KDB 558074, clause 9.2.2.2 Method AVGSA-1 (spectral trace averaging).
		Refer as FCC KDB 558074, clause 9.2.2.3 Method AVGSA-1 Alt. (slow sweep speed)
	duty	cycle < 98% and average over on/off periods with duty factor
		Refer as FCC KDB 558074, clause 9.2.2.4 Method AVGSA-2 (spectral trace averaging).
		Refer as FCC KDB 558074, clause 9.2.2.5 Method AVGSA-2 Alt. (slow sweep speed)
	RF	power meter and average over on/off periods with duty factor or gated trigger
		Refer as FCC KDB 558074, clause 9.2.3 Method AVGPM (using an RF average power meter).
\square	For	conducted measurement.
		The EUT supports single transmit chain and measurements performed on this transmit chain.
	\boxtimes	The EUT supports diversity transmitting and the results on transmit chain port 1 is the worst case.
	\boxtimes	The EUT supports multiple transmit chains using options given below: Refer as FCC KDB 662911, In-band power measurements. Using the measure-and-sum approach, measured all transmit ports individually. Sum the power (in linear power units e.g., mW) of all ports for each individual sample and save them.
	\boxtimes	If multiple transmit chains, EIRP calculation could be following as methods: $P_{total} = P_1 + P_2 + + P_n$ (calculated in linear unit [mW] and transfer to log unit [dBm]) $EIRP_{total} = P_{total} + DG$

3.3.4 Test Setup


		Ma	aximum Peak (Conducted Out	tput Power Re	sult		
Condit	ion				RF Output F	ower (dBm)		
Modulation Mode	NTX	Freq. (MHz)	Chain Port 1	Chain Port 2	Sum Chain	Power Limit	DG (dBi)	EIRP Power
11a	1	5745	22.65	-	22.65	30.00	20.00	42.65
11a	1	5785	21.33	-	21.33	30.00	20.00	41.33
11a	1	5825	20.77	-	20.77	30.00	20.00	40.77
HT20,M8-15	2	5745	20.78	21.21	24.01	30.00	20.00	44.01
HT20,M8-15	2	5785	21.02	21.45	24.25	30.00	20.00	44.25
HT20,M8-15	2	5825	20.18	20.60	23.41	30.00	20.00	43.41
HT40,M8-15	2	5755	24.10	24.29	27.21	30.00	20.00	47.21
HT40,M8-15	2	5795	22.76	22.85	25.82	30.00	20.00	45.82
VHT20,M0-8	2	5745	22.29	22.61	25.46	30.00	20.00	45.46
VHT20,M0-8	2	5785	21.31	21.46	24.40	30.00	20.00	44.40
VHT20,M0-8	2	5825	20.03	20.63	23.35	30.00	20.00	43.35
VHT40,M0-9	2	5755	22.52	22.71	25.63	30.00	20.00	45.63
VHT40,M0-9	2	5795	22.58	22.88	25.74	30.00	20.00	45.74
VHT80,M0-9	2	5775	25.03	24.84	27.95	30.00	20.00	47.95
Resu	llt			•				•

3.3.5 Test Result of Maximum Peak Conducted Output Power

			Maximum Cor	nducted Outpu	t Power Resu	lt		
Condit	ion				RF Output F	ower (dBm)		
Modulation Mode	NTX	Freq. (MHz)	Chain Port 1	Chain Port 2	Sum Chain	Power Limit	DG (dBi)	EIRP Power
11a	1	5745	17.67	-	17.67	30.00	20.00	37.67
11a	1	5785	16.43	-	16.43	30.00	20.00	36.43
11a	1	5825	15.86	-	15.86	30.00	20.00	35.86
HT20,M8-15	2	5745	15.77	16.22	19.02	30.00	20.00	39.02
HT20,M8-15	2	5785	16.18	16.40	19.31	30.00	20.00	39.31
HT20,M8-15	2	5825	15.21	15.55	18.40	30.00	20.00	38.40
HT40,M8-15	2	5755	18.92	19.07	22.01	30.00	20.00	42.01
HT40,M8-15	2	5795	17.63	17.77	20.72	30.00	20.00	40.72
VHT20,M0-8	2	5745	17.45	17.70	20.59	30.00	20.00	40.59
VHT20,M0-8	2	5785	16.36	16.45	19.42	30.00	20.00	39.42
VHT20,M0-8	2	5825	15.21	15.59	18.42	30.00	20.00	38.42
VHT40,M0-9	2	5755	17.44	17.57	20.52	30.00	20.00	40.52
VHT40,M0-9	2	5795	17.52	17.85	20.70	30.00	20.00	40.70
VHT80,M0-9	2	5775	20.02	19.84	22.95	30.00	20.00	42.95
Resu	lt							

3.3.6 Test Result of Maximum Conducted Output Power

Power Spectral Density 3.4

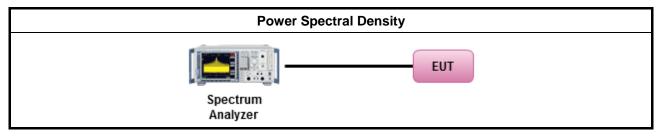
3.4.1 **Power Spectral Density Limit**

Power Spectral Density Limit

 \boxtimes Power Spectral Density (PSD) ≤ 8 dBm/3kHz

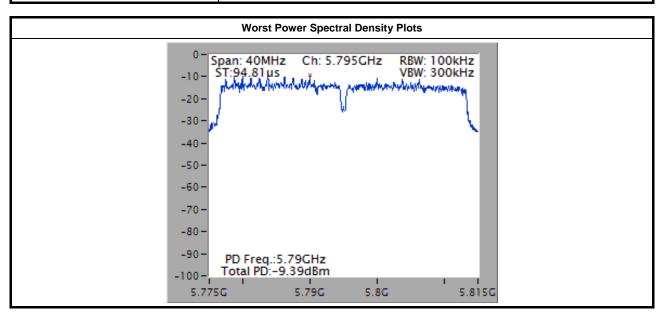
3.4.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.


3.4.3 Test Procedures

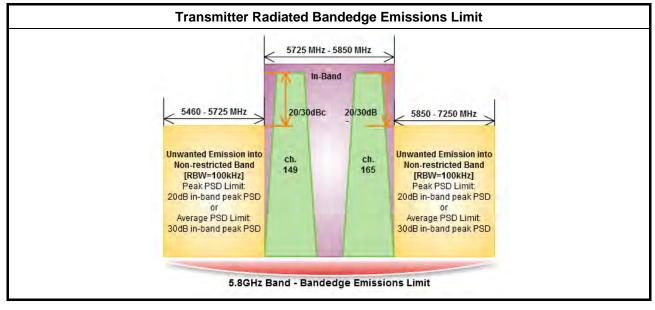
Г

		Test Method
\boxtimes	outp the c conc of th	k power spectral density procedures that the same method as used to determine the conducted but power. If maximum peak conducted output power was measured to demonstrate compliance to putput power limit, then the peak PSD procedure below (Method PKPSD) shall be used. If maximum ducted output power was measured to demonstrate compliance to the output power limit, then one he average PSD procedures shall be used, as applicable based on the following criteria (the peak 0 procedure is also an acceptable option).
	\square	Refer as FCC KDB 558074, clause 10.2 Method PKPSD (RBW=3-100kHz;detector=peak)
	[duty	y cycle ≥ 98% or external video / power trigger]
	\boxtimes	Refer as FCC KDB 558074, clause 10.3 Method AVGPSD-1 (spectral trace averaging).
		Refer as FCC KDB 558074, clause 10.4 Method AVGPSD-1 Alt. (slow sweep speed)
	duty	cycle < 98% and average over on/off periods with duty factor
		Refer as FCC KDB 558074, clause 10.5 Method AVGPSD-2 (spectral trace averaging).
		Refer as FCC KDB 558074, clause 10.6 Method AVGPSD-2 Alt. (slow sweep speed)
\square	For	conducted measurement.
		The EUT supports single transmit chain and measurements performed on this transmit chain.
	\square	The EUT supports diversity transmitting and the results on transmit chain port 1 is the worst case.
	\square	The EUT supports multiple transmit chains using options given below:
		☑ Option 1: Measure and sum the spectra across the outputs. Refer as FCC KDB 662911, In-band power spectral density (PSD). Sample all transmit ports simultaneously using a spectrum analyzer for each transmit port. Where the trace bin-by-bin of each transmit port summing can be performed. (i.e., in the first spectral bin of output 1 is summed with that in the first spectral bin of output 2 and that from the first spectral bin of output 3, and so on up to the N _{TX} output to obtain the value for the first frequency bin of the summed spectrum.). Add up the amplitude (power) values for the different transmit chains and use this as the new data trace.
		Option 2: Measure and add 10 log(N) dB, where N is the number of transmit chains. Refer as FCC KDB 662911, In-band power spectral density (PSD). Performed at each transmit chains and each transmit chains shall be compared with the limit have been reduced with 10 log(N). Or each transmit chains shall be add 10 log(N) to compared with the limit.



3.4.4 Test Setup

3.4.5 Test Result of Power Spectral Density

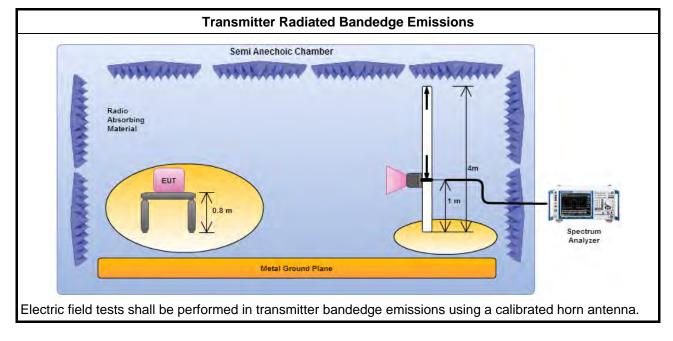

			Power Spectral Density Result	
Condi	tion		Power Spect	ral Density
Modulation Mode	Ντχ	Freq. (MHz)	Power Spectral Density (dBm/100kHz)	Power Limit (dBm/3kHz)
11a	1	5745	-12.17	8.00
11a	1	5785	-12.58	8.00
11a	1	5825	-13.23	8.00
HT20,M8-15	2	5745	-11.43	8.00
HT20,M8-15	2	5785	-10.82	8.00
HT20,M8-15	2	5825	-11.85	8.00
HT40,M8-15	2	5755	-9.60	8.00
HT40,M8-15	2	5795	-9.39	8.00
VHT20,M0-8	2	5745	-9.42	8.00
VHT20,M0-8	2	5785	-10.39	8.00
VHT20,M0-8	2	5825	-10.67	8.00
VHT40,M0-9	2	5755	-10.67	8.00
VHT40,M0-9	2	5795	-10.92	8.00
VHT80,M0-9	2	5775	-10.64	8.00
Resu	ult	•	Comp	lied

3.5 Transmitter Bandedge Emissions

3.5.1 Transmitter Radiated Bandedge Emissions Limit

3.5.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.



3.5.3 Test Procedures

	Test Method
\boxtimes	The average emission levels shall be measured in [duty cycle \geq 98 or duty factor].
	Refer as ANSI C63.10, clause 6.9.2.2 bandedge testing shall be performed at the lowest frequency channel and highest frequency channel within the allowed operating band.
\boxtimes	For the transmitter unwanted emissions shall be measured using following options below:
	Refer as FCC KDB 558074, clause 11 for unwanted emissions into non-restricted bands.
	Refer as FCC KDB 558074, clause 12 for unwanted emissions into restricted bands.
	☐ Refer as FCC KDB 558074, clause 12.2.5.1 Option 1 (trace averaging for duty cycle ≥98%)
	Refer as FCC KDB 558074, clause 12.2.5.2 Option 2 (trace averaging + duty factor).
	□ Refer as FCC KDB 558074, clause 12.2.5.3 Option 3 (Reduced VBW≥1/T).
	Refer as ANSI C63.10, clause 4.2.3.2.3 (Reduced VBW). VBW \geq 1/T, where T is pulse time.
	Refer as ANSI C63.10, clause 4.2.3.2.4 average value of pulsed emissions.
	Refer as FCC KDB 558074, clause 11.3 and 12.2.4 measurement procedure peak limit.
\square	For the transmitter bandedge emissions shall be measured using following options below:
	Refer as FCC KDB 558074, clause 13.3 for narrower resolution bandwidth (100kHz) using the band power and summing the spectral levels (i.e., 1 MHz).
	Refer as ANSI C63.10, clause 6.9.2 for band-edge testing.
	Refer as ANSI C63.10, clause 6.9.3 for marker-delta method for band-edge measurements.
\square	For radiated measurement, refer as FCC KDB 558074, clause 12.2.7 and ANSI C63.10, clause 6.6. Test distance is 1m.
	Measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements). Measurements in the bandedge are typically made at a closer distance 1m, because the instrumentation noise floor is typically close to the radiated emission limit.

3.5.4 Test Setup

3.5.5	Transmitter Radiated Bandedge Emissions
-------	---

		ę	5725-5850MHz T	ransmitter Rad	iated Bandedge	Emissions		
Modulation	Ντχ	Test Freq. (MHz)	In-band PSD [i] (dBuV/100kHz)	Freq. (MHz)	Out-band PSD [o] (dBuV/100kHz)	[i] – [o] (dB)	Limit (dB)	Pol.
11a	1	5720	134.47	5724.060	87.60	46.87	20	V
11a	1	5825	132.26	5852.070	82.17	50.09	20	V
HT20,M8-15	2	5720	133.81	5723.780	85.19	48.62	20	V
HT20,M8-15	2	5825	132.86	5854.270	82.33	50.53	20	V
HT40,M8-15	2	5710	133.88	5725.000	98.69	35.19	20	V
HT40,M8-15	2	5795	131.70	5867.800	82.29	49.41	20	V
VHT20,M0-8	2	5720	135.25	5725.000	87.80	47.45	20	V
VHT20,M0-8	2	5825	132.80	5862.410	82.68	50.12	20	V
VHT40,M0-9	2	5710	131.14	5725.000	94.99	36.15	20	V
VHT40,M0-9	2	5795	131.08	5869.900	82.01	49.07	20	V
VHT80,M0-9	2	5775	131.78	5724.990	102.34	29.44	20	V

3.6 Transmitter Unwanted Emissions

3.6.1 Transmitter Radiated Unwanted Emissions Limit

	Restricted Band	Emissions Limit	
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300
0.490~1.705	24000/F(kHz)	33.8 - 23	30
1.705~30.0	30	29	30
30~88	100	40	3
88~216	150	43.5	3
216~960	200	46	3
Above 960	500	54	3

Note 1: Test distance for frequencies at or above 30 MHz, measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).

Note 2: Test distance for frequencies at below 30 MHz, measurements may be performed at a distance closer than the EUT limit distance; however, an attempt should be made to avoid making measurements in the near field. When performing measurements below 30 MHz at a closer distance than the limit distance, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two or more distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). The test report shall specify the extrapolation method used to determine compliance of the EUT.

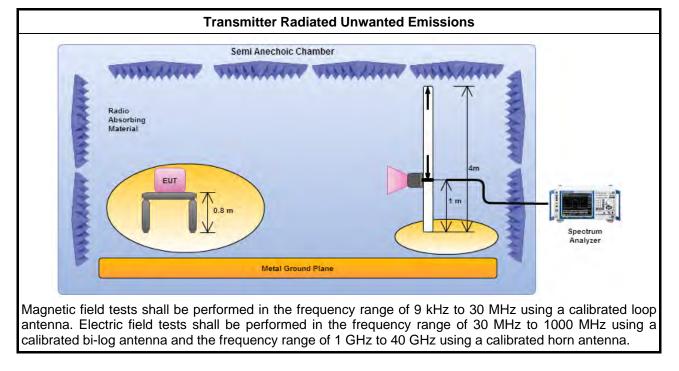
Un-restricted Bar	nd Emissions Limit
RF output power procedure	Limit (dB)
Peak output power procedure	20
Average output power procedure	30
	measure the fundamental emission power to n the peak conducted output power measured within

any 100 kHz outside the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum measured in-band peak PSD level.

Note 2: If the average output power procedure is used to measure the fundamental emission power to demonstrate compliance to requirements, then the power in any 100 kHz outside of the authorized frequency band shall be attenuated by at least 30 dB relative to the maximum measured in-band average PSD level.

3.6.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.



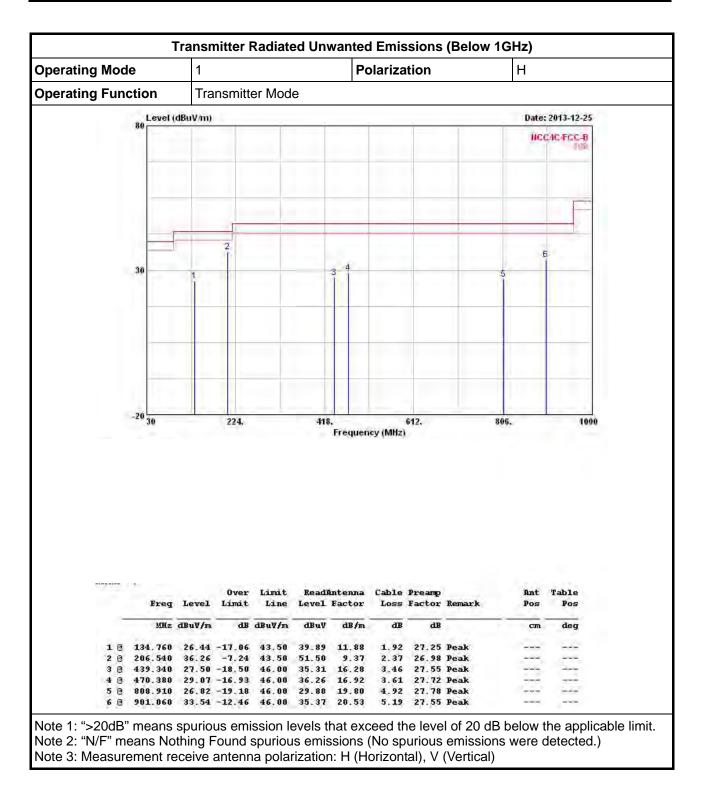
3.6.3 Test Procedures

	Test Method
	Measurements may be performed at a distance other than the limit distance provided they are no performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).
\square	The average emission levels shall be measured in [duty cycle \geq 98 or duty factor].
\square	For the transmitter unwanted emissions shall be measured using following options below:
	\boxtimes Refer as FCC KDB 558074, clause 11 for unwanted emissions into non-restricted bands.
	\boxtimes Refer as FCC KDB 558074, clause 12 for unwanted emissions into restricted bands.
	☐ Refer as FCC KDB 558074, clause 12.2.5.1 Option 1 (trace averaging for duty cycle ≥98%)
	Refer as FCC KDB 558074, clause 12.2.5.2 Option 2 (trace averaging + duty factor).
	□ Refer as FCC KDB 558074, clause 12.2.5.3 Option 3 (Reduced VBW≥1/T).
	Refer as ANSI C63.10, clause 4.2.3.2.3 (Reduced VBW). VBW \geq 1/T, where T is pulse time.
	Refer as ANSI C63.10, clause 4.2.3.2.4 average value of pulsed emissions.
	Refer as FCC KDB 558074, clause 11.3 and 12.2.4 measurement procedure peak limit.
	Refer as FCC KDB 558074, clause 12.2.3 measurement procedure Quasi-Peak limit.
\boxtimes	For radiated measurement, refer as FCC KDB 558074, clause 12.2.7.
	Refer as ANSI C63.10, clause 6.4 for radiated emissions below 30 MHz and test distance is 3m.
	Refer as ANSI C63.10, clause 6.5 for radiated emissions 30 MHz to 1 GHz and test distance is 3m
	Refer as ANSI C63.10, clause 6.6 for radiated emissions above 1GHz. For 1 GHz to 5 GHz, test distance is 3m; For 5 GHz to 40 GHz, test distance is 1m.
\square	The any unwanted emissions level shall not exceed the fundamental emission level.
\boxtimes	All amplitude of spurious emissions that are attenuated by more than 20 dB below the permissible value has no need to be reported.

3.6.4 Test Setup

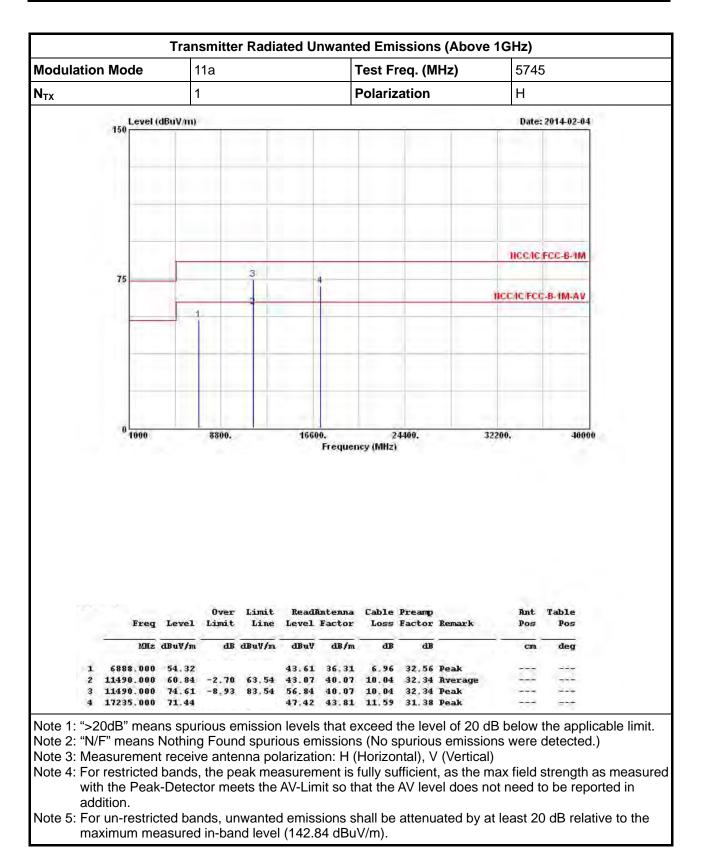
3.6.5 Transmitter Radiated Unwanted Emissions (Below 30MHz)

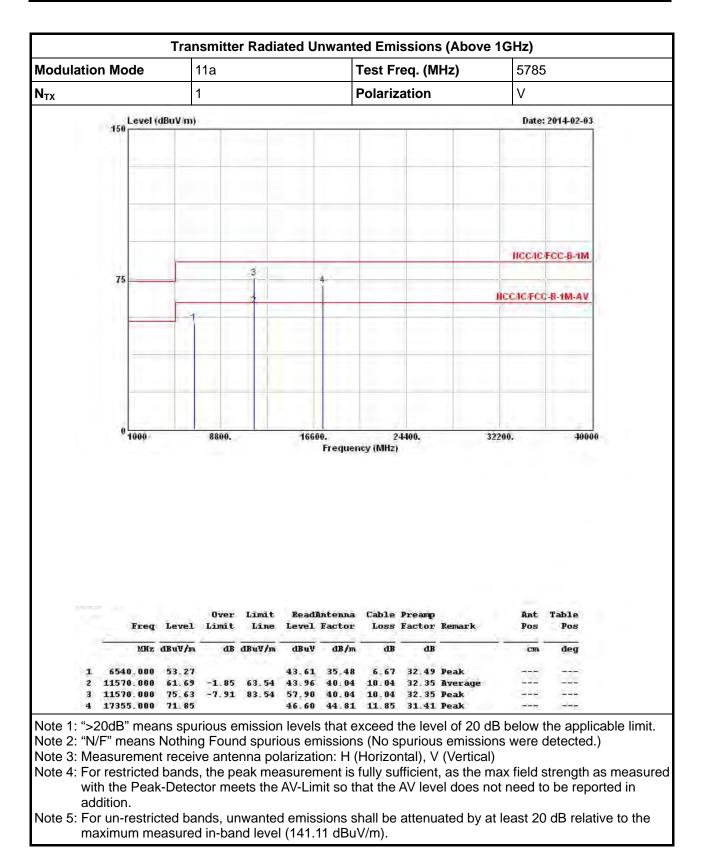
All amplitude of spurious emissions that are attenuated by more than 20 dB below the permissible value has no need to be reported.



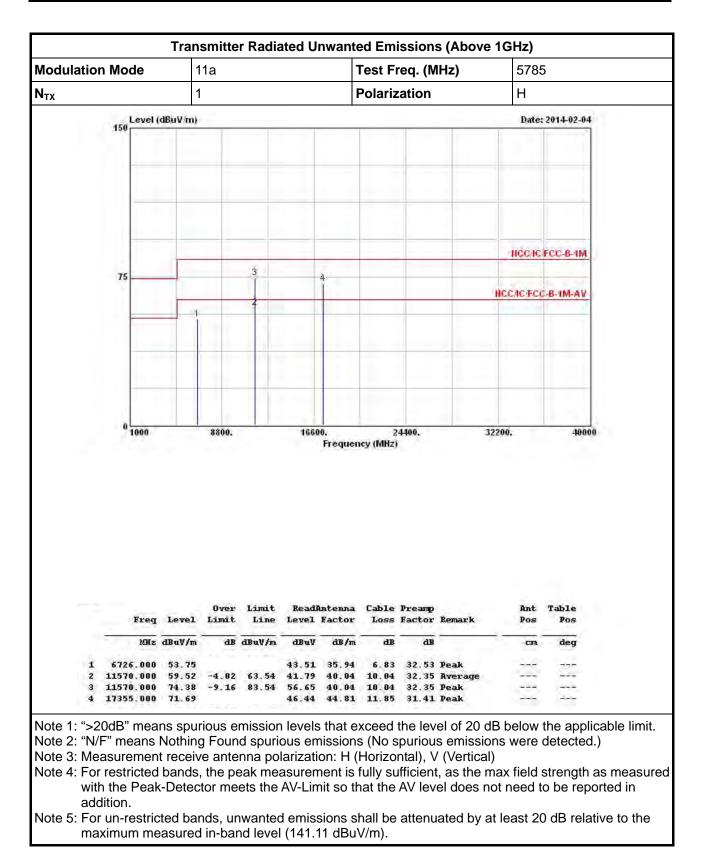
perating Mod	е	1				Po	lariza	tion		V	
perating Fun	ction	Tra	nsmitte	er Mod	е						
		dBuV/m)	6 m							Date:	2013-12-2
	80			-						NCO	CIC/FCC-B
	-					_					-410
				_	_			-	-	-	
			_							_	
					-	_	-	-	-		
	_	2	3					5			
	.30		-			4		1			6
	1										
							_		_	_	
	-20										
	-20 30		224.		418	Frequen	cy (MHz	612.		806.	10
201000	30	Level		Limit		Frequen	Cable		Remark	BOG. Ant Pos	10 Table Pos
Jacobs	30 Freq	Level dBuV/m	Over Limit		ReadA	Frequen	Cable	Preamp Factor	Remark	Ant	Table
10	30 Freq MHz 32.910	dBuV/m 35.38	Over Limit dB -4.62	Line dBuV/m 40.00	ReadM Level dBuV 44.87	ntenna Factor dB/m 17.22	Cable Loss dB 0.90	Preamp Factor dB 27.61	Peak	Ant Pos 	Table Pos deg
2 3	30 Freq MRz 32.910 117.300	dBuV/m 35.38 32.30	Over Limit dB -4.62 -11.20	Line dBuV/m 40.00 43.50	ReadM Level dBuV 44.87	Frequen Intenna Factor dB/m 17.22 12.26	Cable Loss dB 0.90 1.76	Preamp Factor dB 27.61 27.32	Peak Peak	Ant Pos cm	Table Pos deg
	30 Freq MHz 32.910	dBuV/m 35.38 32.30 33.00 25.13	Over Limit dB -11.20 -10.50 -20.87	Line dBuV/m 40.00 43.50 43.50 46.00	ReadA Level dBu¥ 44.87 45.60 48.62 32.32	ntenna Factor dB/m 17.22	Cable Loss dB 0.90 1.76 2,28	Preamp Factor dB 27.61 27.32 27.03 27.03	<u>Peak</u> Peak Peak Peak	Ant Pos ———————————————————————————————————	Table Pos deg

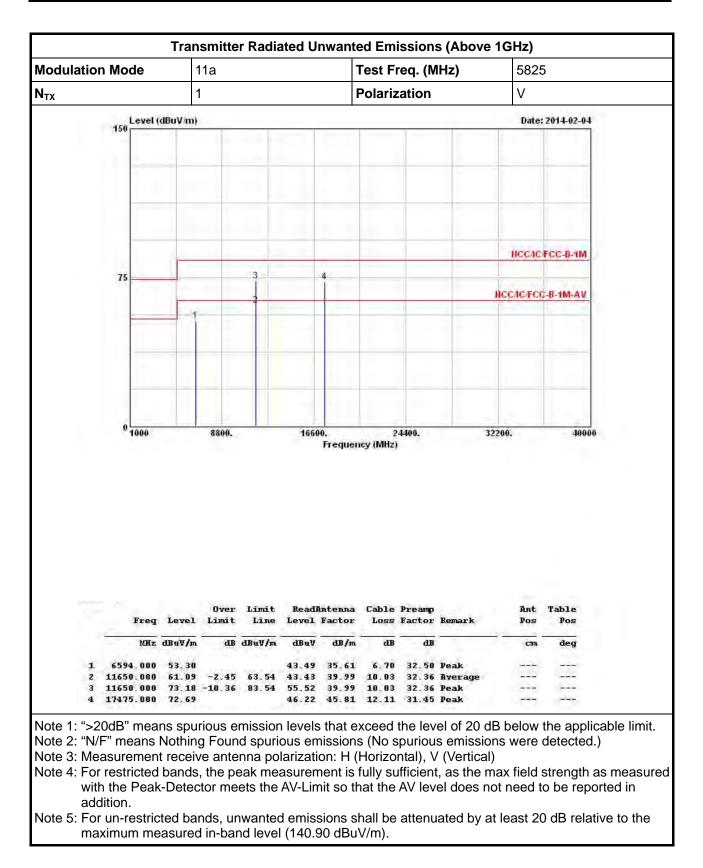
3.6.6 Transmitter Radiated Unwanted Emissions (Below 1GHz)

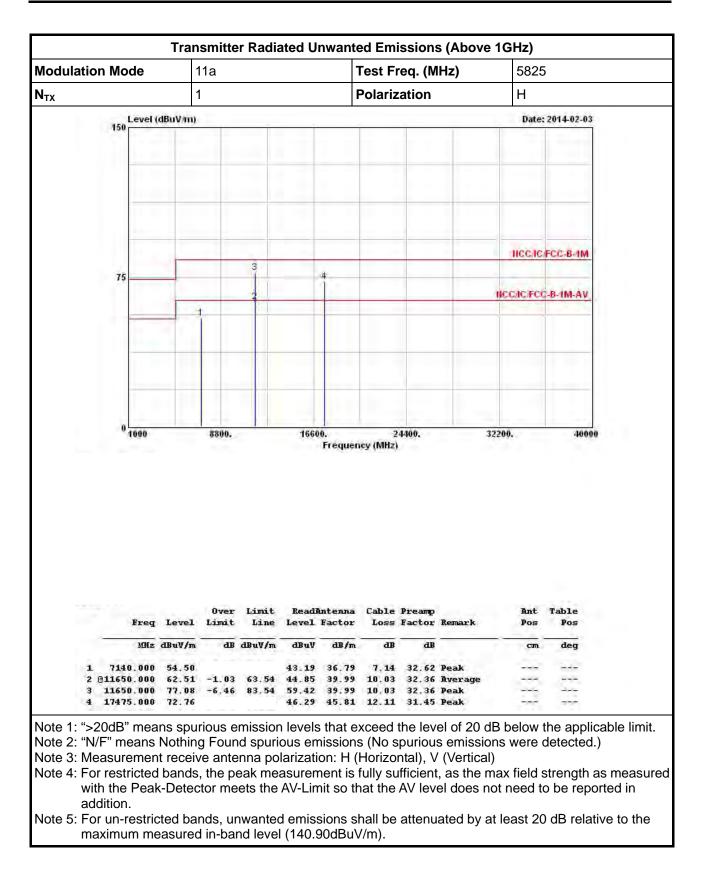


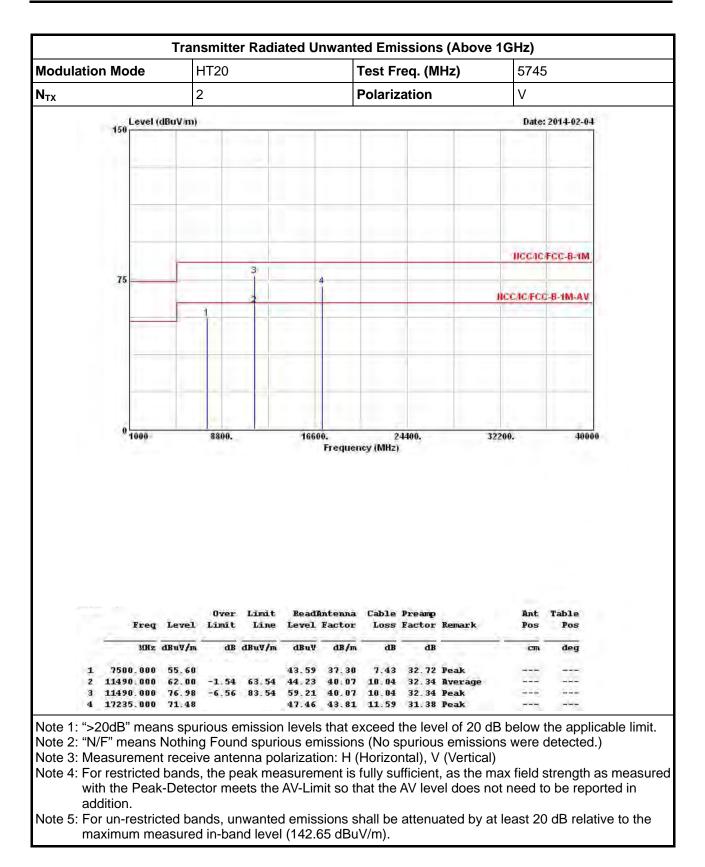

	on Mode	1	1a			-	Test Fi	req. (M	Hz)	5745	5
N _{TX}		1					Polariz	ation		V	
	150	dBuV/m)					-			Date	; 2014-02-03
	150									-	
					_				_		
					_				-	-	
	75										
									1	HCCIC	FCC-B-1M
	76			3					11		
	1.9					4				ICC/IC/FC	C-B-IM-AV
			*								
	1.1										
	_		_						-	-	
								1			
	0 1000		8800.		1660		2 ncy (MHz)	4400.	3	2200.	4000
		Level	Over	Limit Line		Frequer	cable				4000 Table Pos
	Freq	Level	0ver Limit		ReadJ	Frequer	Cable Loss	Preamp		Ant	Table
	Freq Miz	dBuV/m	0ver Limit	Line	Readi Level	Frequer Antenna Factor	Cable Loss dB	Preamp Factor dB	Remark	Ant Pos	Table Pos
1	Freq MHz	dBuV/m 56.64 61.71	Over Limit dB -1.83	Line dBuV/m 63.54	ReadJ Level dBuV 43.35 43.94	Antenna Factor dB/m 38.34 40.07	Cable Loss dB 7.86	Preamp Factor dB 32.91 32.34	Remark Peak Average	Ant Pos ———————————————————————————————————	Table Pos deg

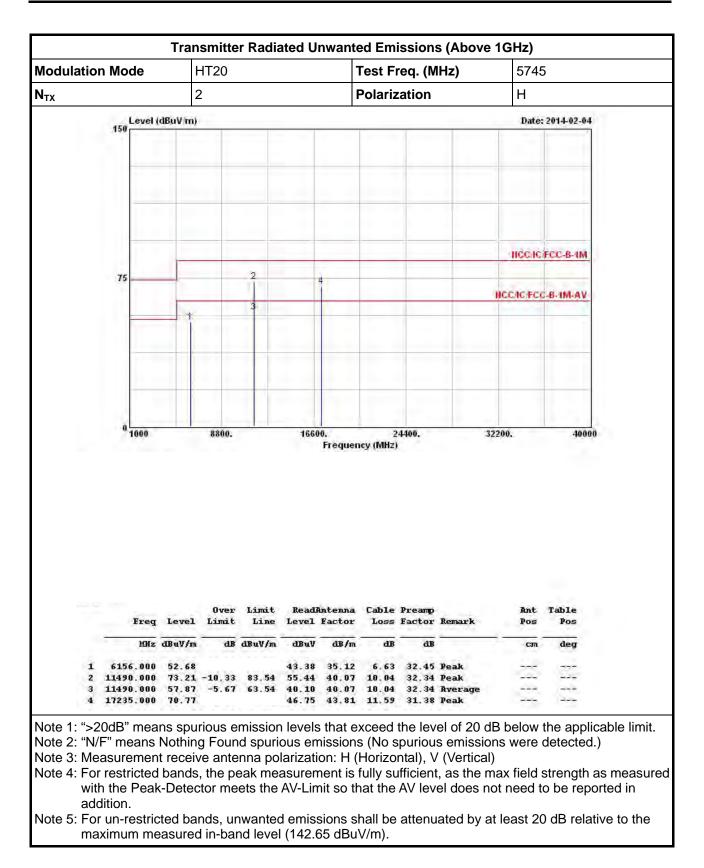
3.6.7 Transmitter Radiated Unwanted Emissions (Above 1GHz)

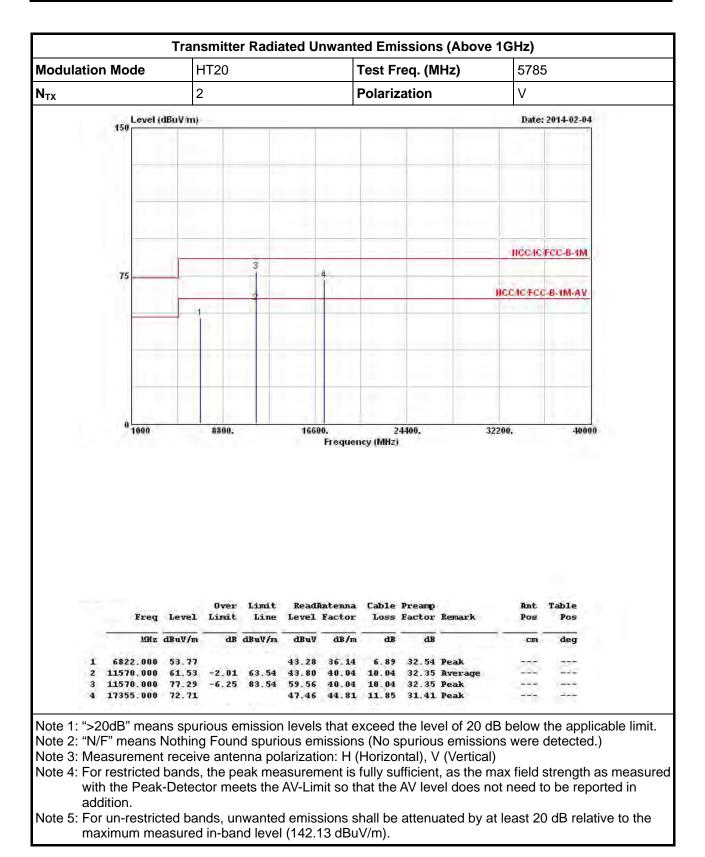


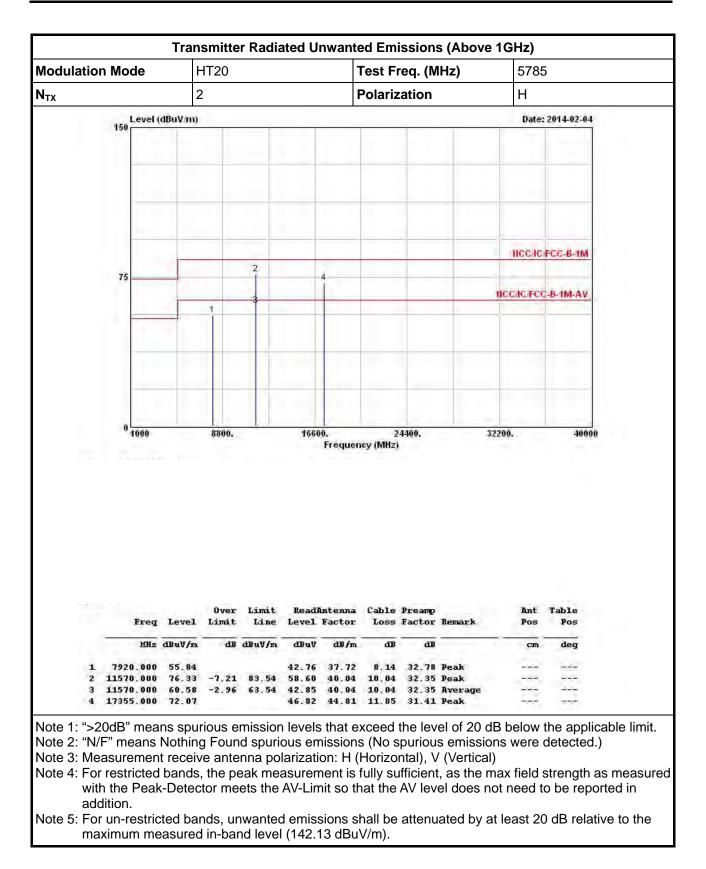


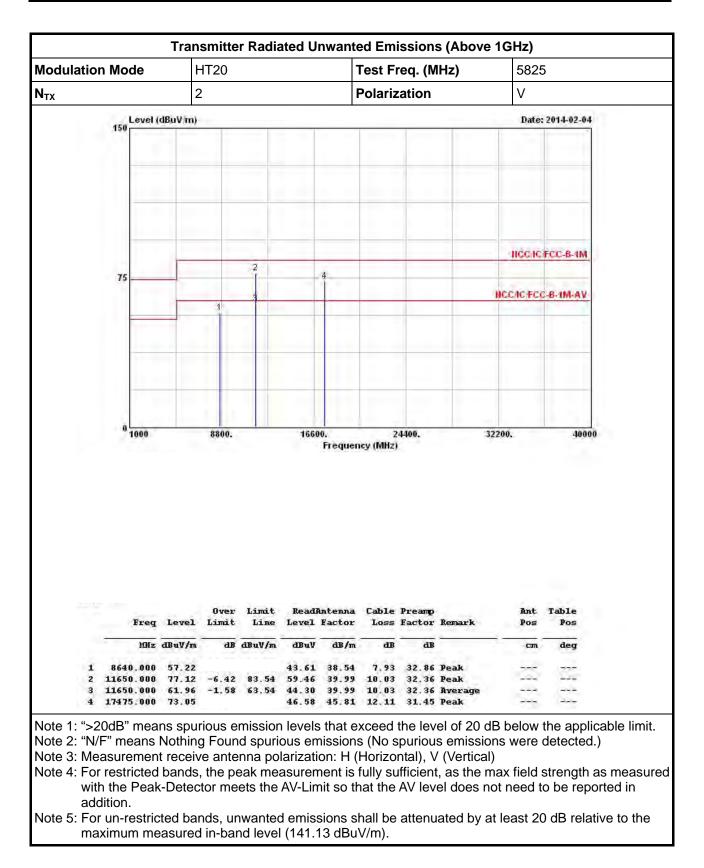


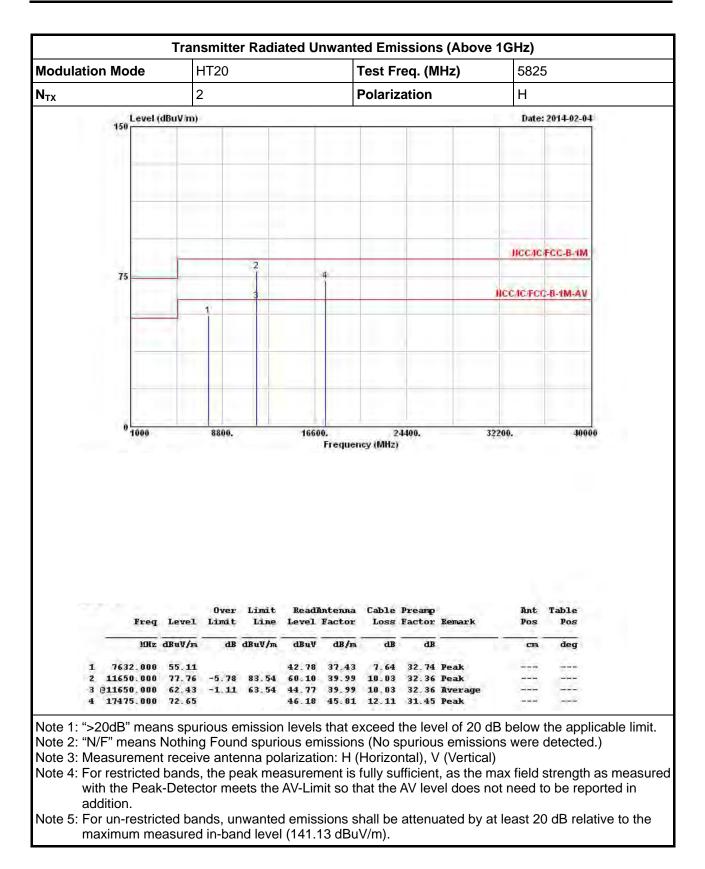


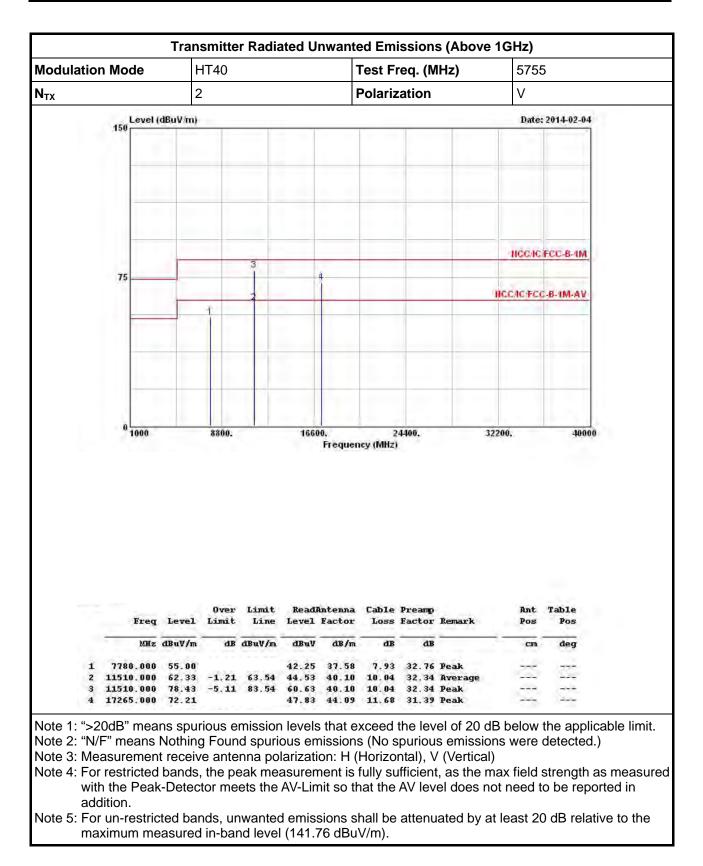


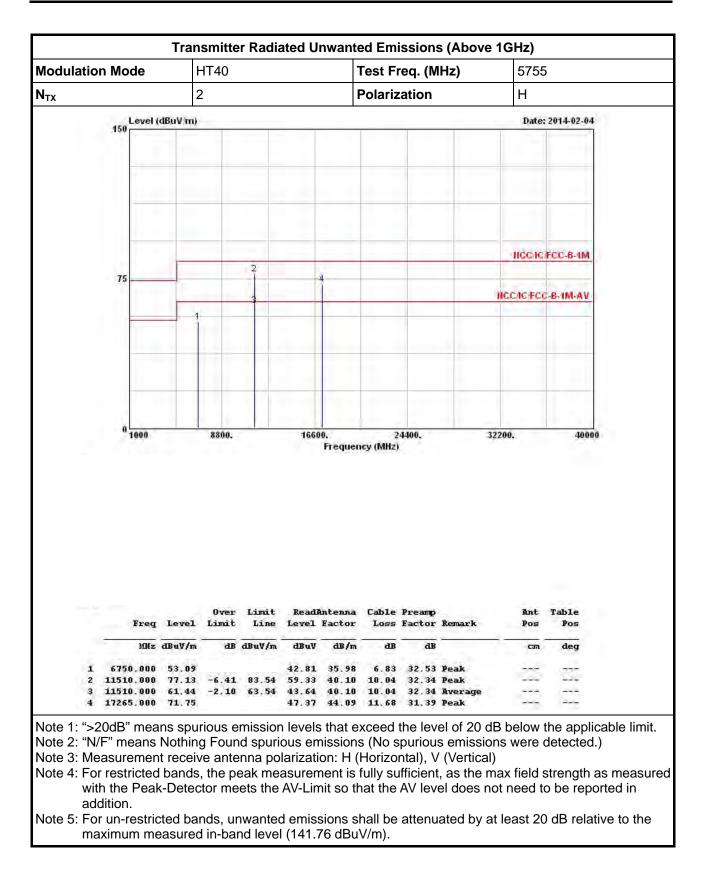


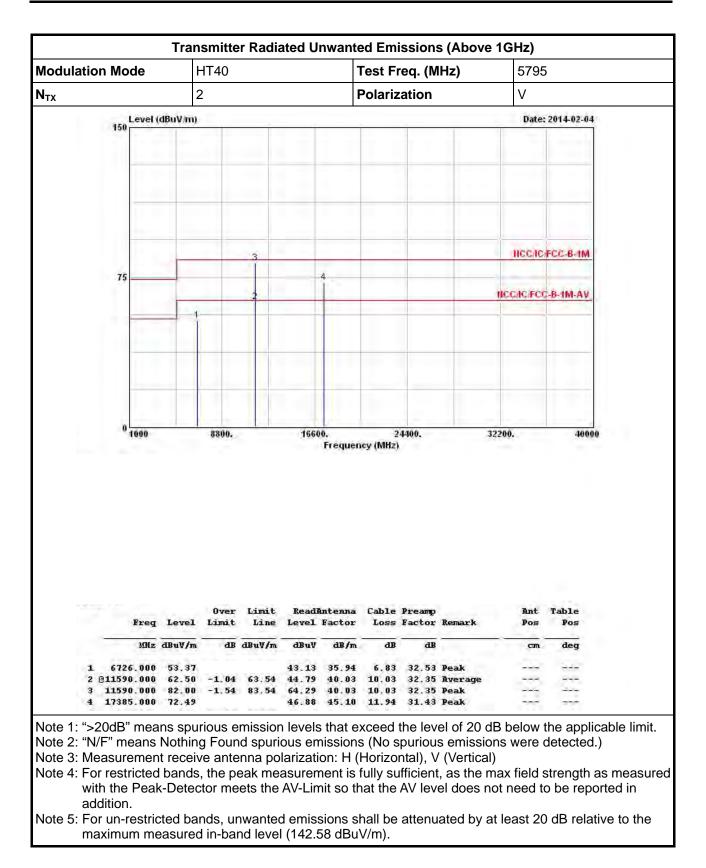


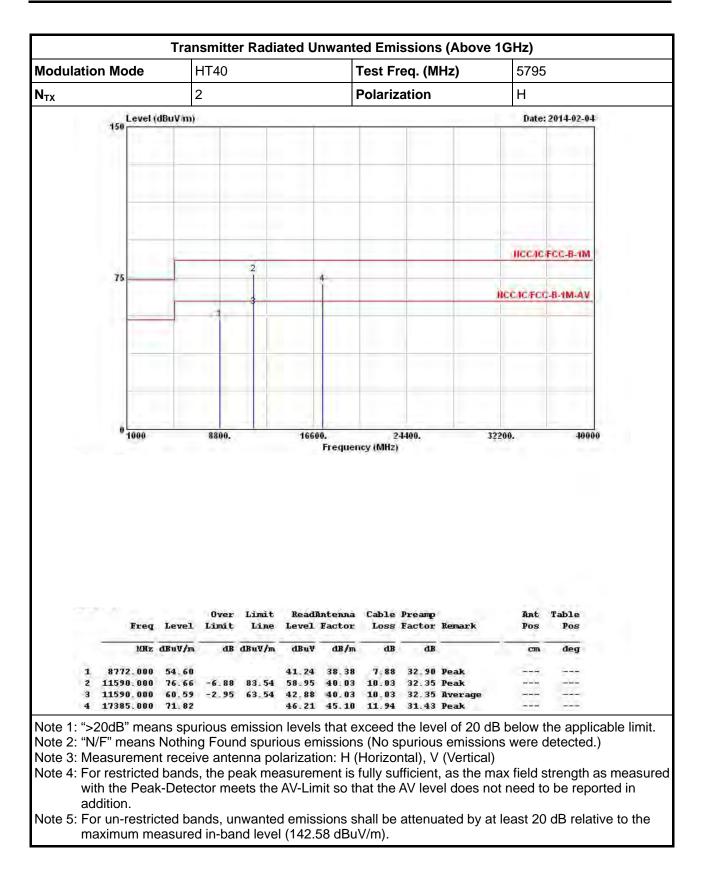


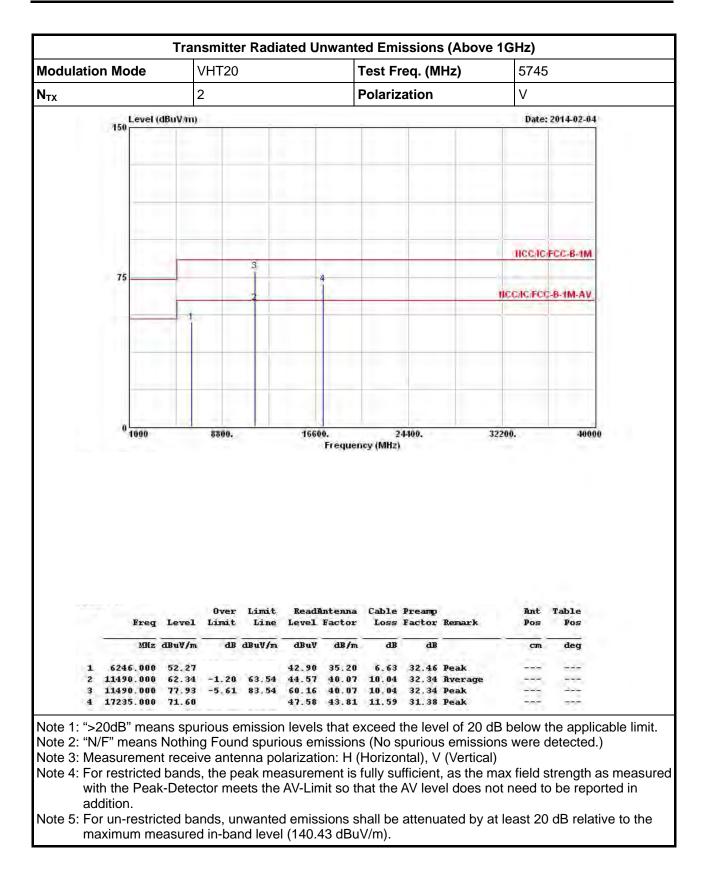


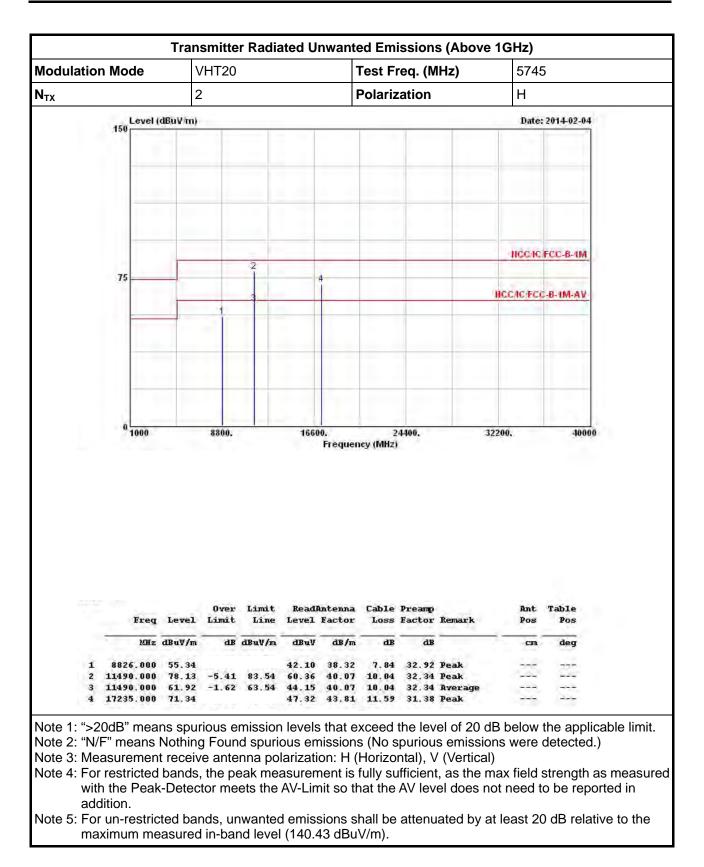


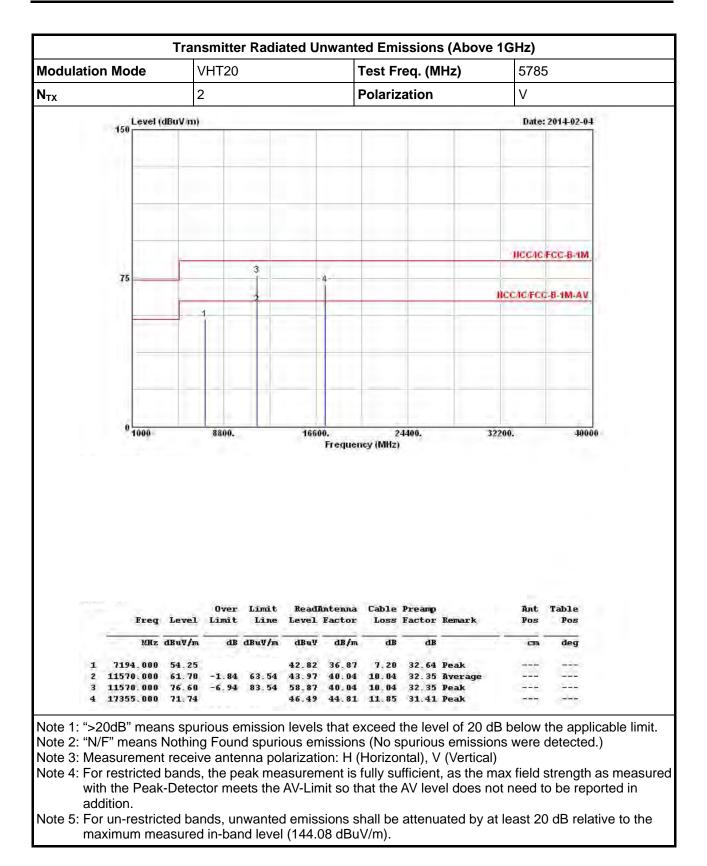


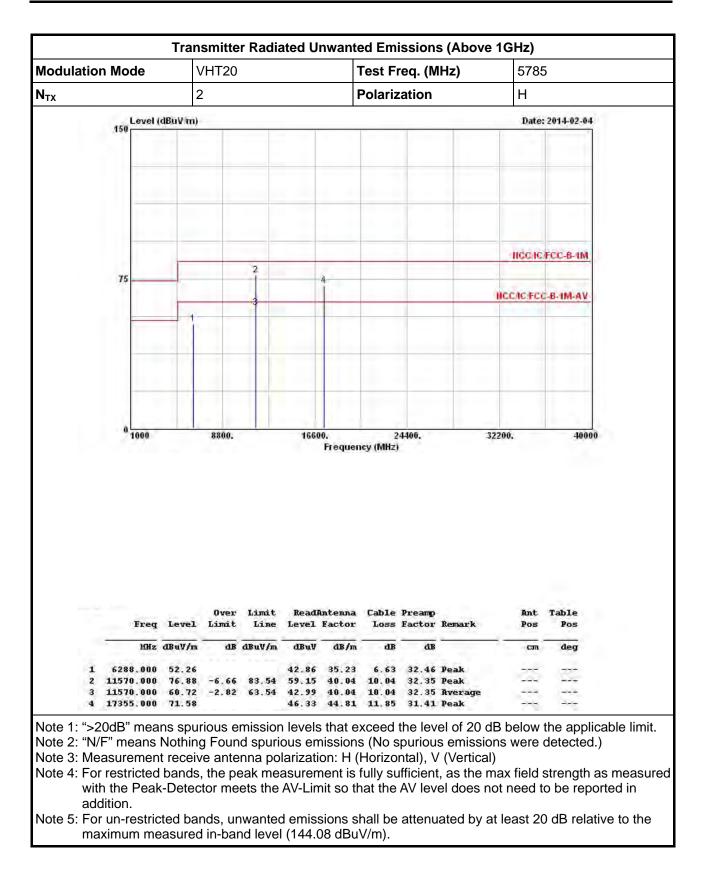


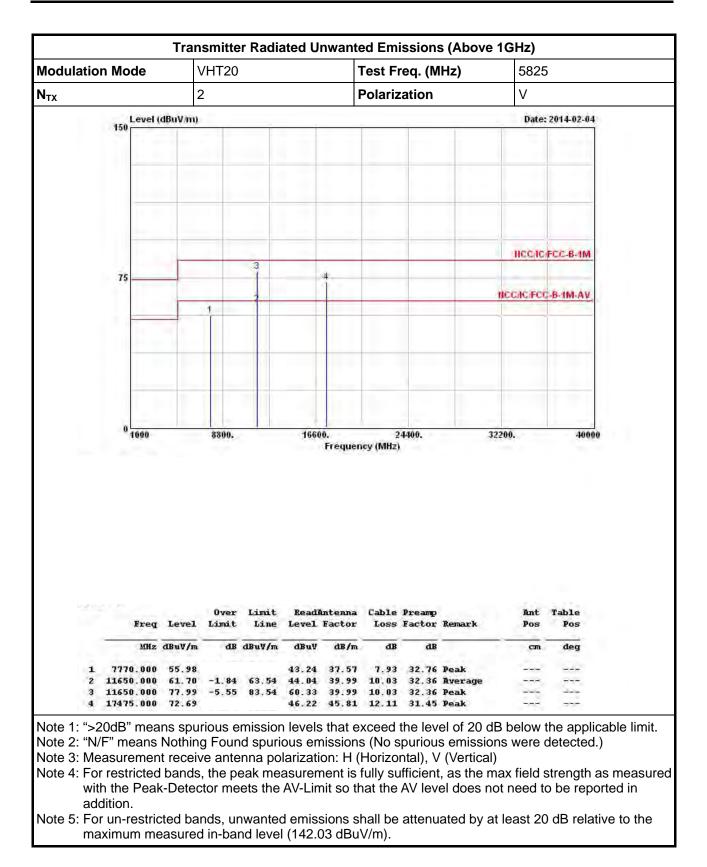


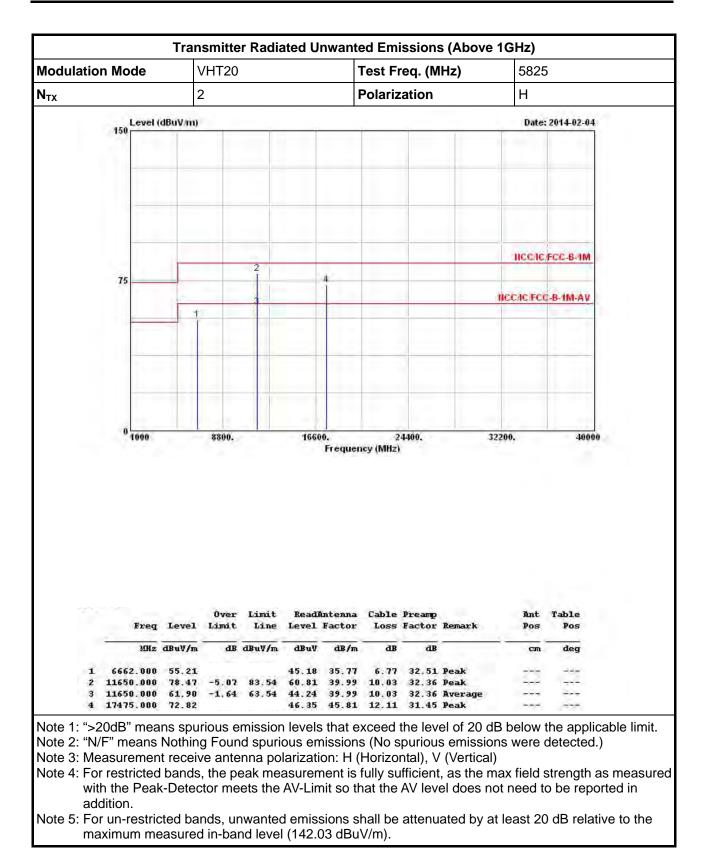


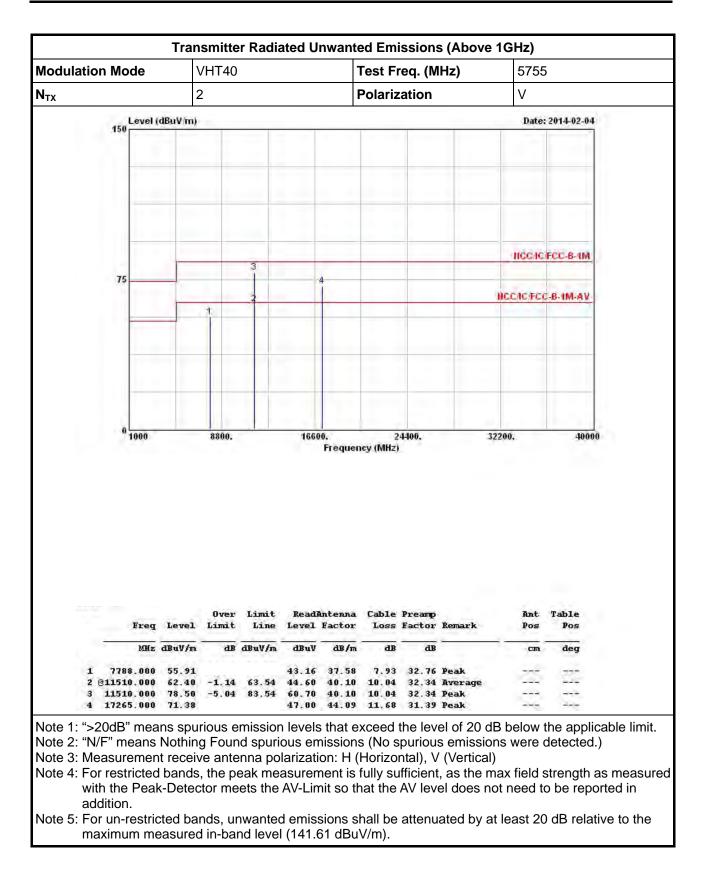


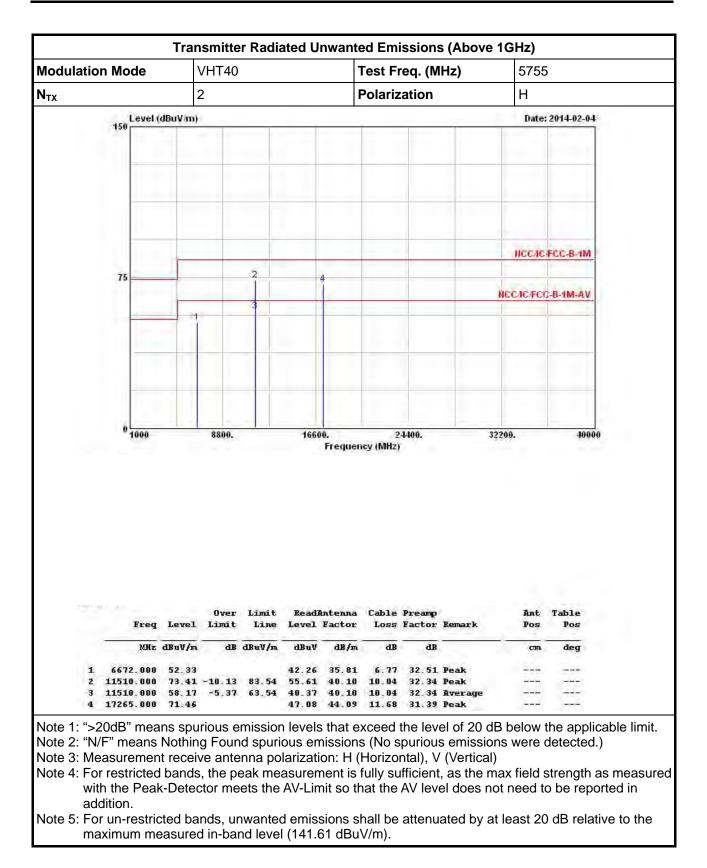


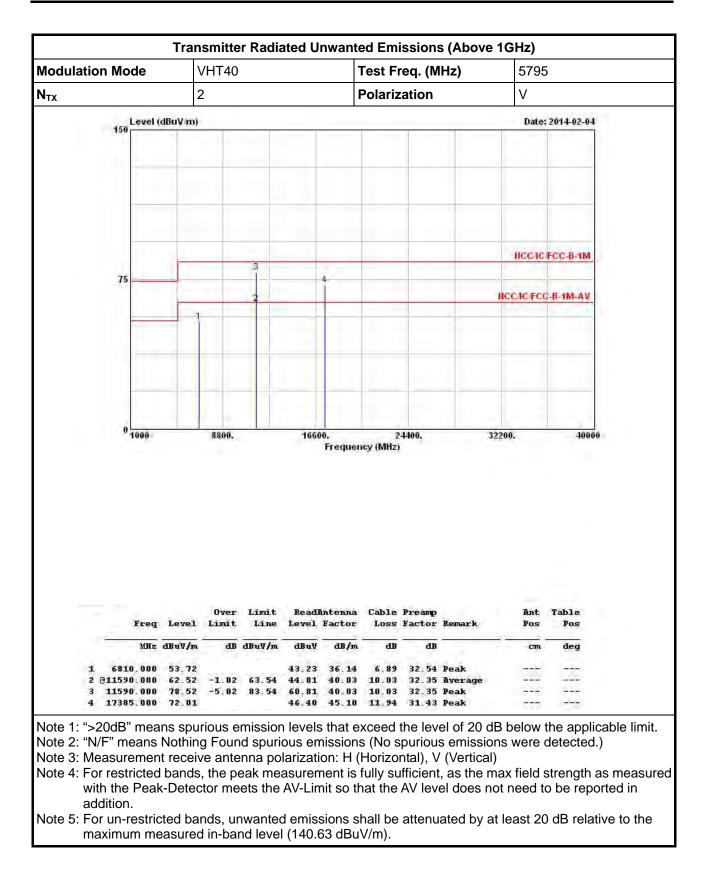


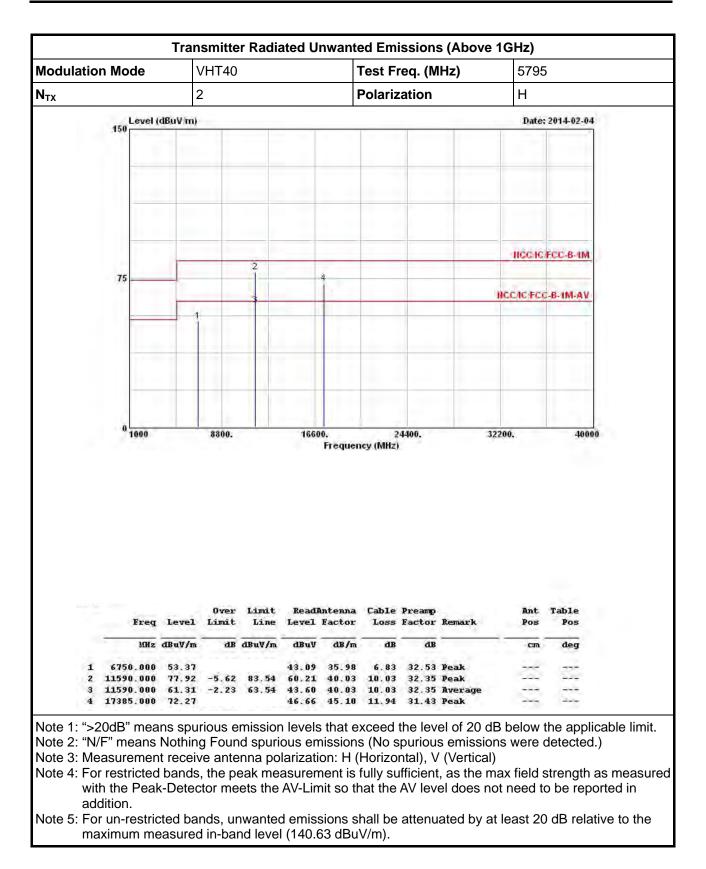


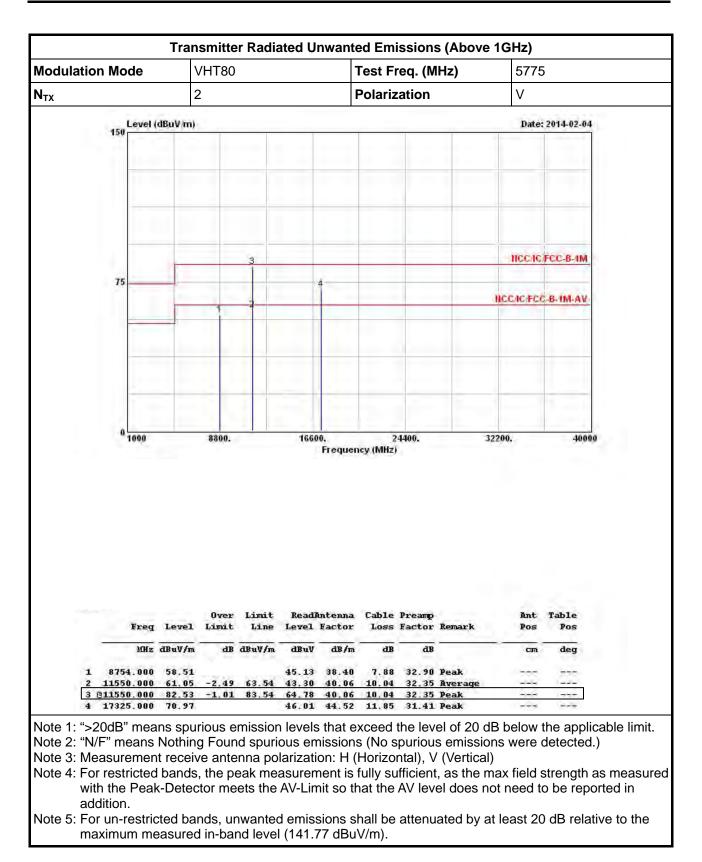


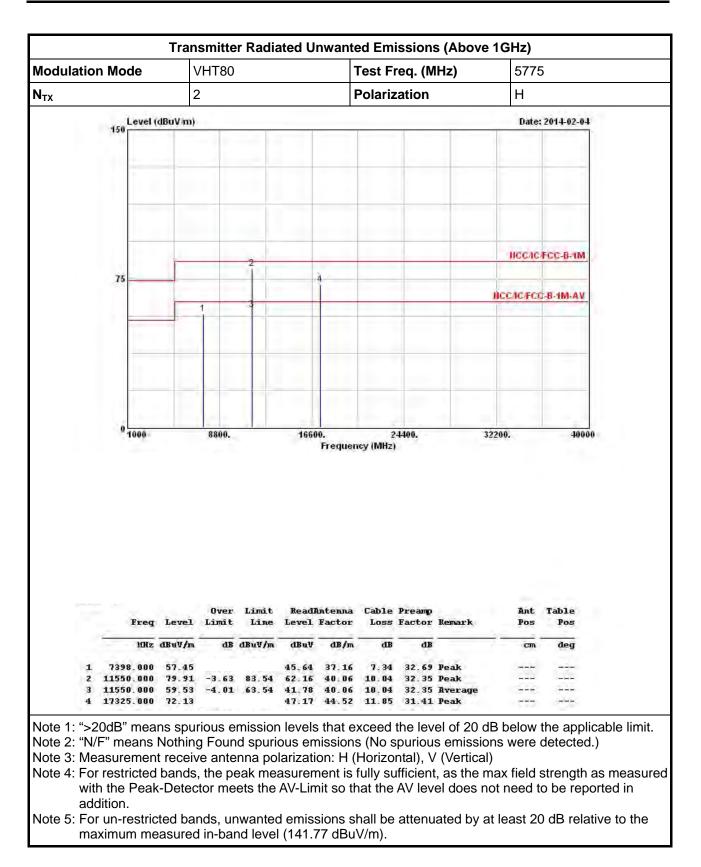












4 Test Equipment and Calibration Data

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
EMC Receiver	R&S	ESCS 30	100174	9kHz ~ 2.75GHz	Mar. 26, 2013	Conduction (CO04-HY)
LISN	SCHWARZBECK MESS-ELEKTRONIK	NSLK 8127	8127-477	9kHz ~ 30MHz	Jan. 21, 2013	Conduction (CO04-HY)
RF Cable-CON	HUBER+SUHNER	RG213/U	7.61183201e+012	9kHz ~ 30MHz	Oct. 30, 2013	Conduction (CO04-HY)
EMI Filter	LINDGREN	LRE-2030	2651	< 450 Hz	N/A	Conduction (CO04-HY)

Note: Calibration Interval of instruments listed above is one year.

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Spectrum Analyzer	R&S	FSV 40	101013	9KHz~40GHz	Jan. 25, 2014	Conducted (TH01-HY)
AC Power Source	G.W	APS-9102	EL920581	AC 0V ~ 300V	Jul. 16, 2013	Conducted (TH01-HY)
Signal Generator	R&S	SMR40	100116	10MHz ~ 40GHz	Jun. 27, 2013	Conducted (TH01-HY)
RF Cable-2m	HUBER+SUHNER	SUCOFLEX_104	SN 345673/4	30MHz ~ 26.5GHz	Dec. 02, 2013	Conducted (TH01-HY)

Note: Calibration Interval of instruments listed above is one year.

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	30MHz ~ 1GHz 3m	Nov. 30, 2013	Radiation (03CH03-HY)
Amplifier	HP	8447D	2944A08033	10kHz ~ 1.3GHz	May. 03, 2013	Radiation (03CH03-HY)
Amplifier	Agilent	8449B	3008A02120	1GHz ~ 26.5GHz	Aug. 20, 2013	Radiation (03CH03-HY)
Spectrum	R&S	FSP40	100004	9kHz ~ 40GHz	Mar. 11, 2013	Radiation (03CH03-HY)
Bilog Antenna	SCHAFFNER	CBL 6112D	22237	30MHz ~ 1GHz	Sep. 21, 2013	Radiation (03CH03-HY)
Horn Antenna	EMCO	3115	6741	1GHz ~ 18GHz	May 31, 2013	Radiation (03CH03-HY)
Horn Antenna	SCHWARZBECK	BBHA9170	BBHA9170154	15GHz ~ 40GHz	Jan. 10, 2014	Radiation (03CH03-HY)
RF Cable-R03m	Jye Bao	RG142	CB021	9kHz ~ 1GHz	Jan. 17, 2013	Radiation (03CH03-HY)
RF Cable-high	SUHNER	SUCOFLEX 106	03CH03-HY	1GHz ~ 40GHz	Dec. 11, 2013	Radiation (03CH03-HY)
Turn Table	EM Electronics	EM Electronics	060615	0 ~ 360 degree	N/A	Radiation (03CH03-HY)
Antenna Mast	MF	MF-7802	MF780208179	1 ~ 4 m	N/A	Radiation (03CH03-HY)

Note: Calibration Interval of instruments listed above is one year.

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Amplifier	EM	EM18G40G	060604	18GHz ~ 40GHz	Oct. 17, 2013	Radiation (03CH03-HY)
Loop Antenna	TESEQ	HLA 6120	31244	9kHz ~ 30MHz	Dec. 02, 2012	Radiation (03CH03-HY)

Note: Calibration Interval of instruments listed above is two year.