Test Report

Model: NBE-M5-19
Description: NanoBeam M5-19
FCC ID: SWX-NBE5M19
Serial Number: N/A
To
FCC Part 1.1310
Date of Issue: August 19, 2015

On the behalf of the applicant:

Attention of:

Ubiquiti Networks, Inc
91 E. Tasman Drive
San Jose, CA 95134
Michael Taylor, Compliance Manager
Ph: (408) 942-3085
E-mail: compliance@ubnt.com

Prepared By
Compliance Testing, LLC
1724 S. Nevada Way
Mesa, AZ 85204
(480) 926-3100 phone / (480) 926-3598 fax
www.compliancetesting.com Project No: p14a0029

Alex Macon
Project Test Engineer

This report may not be reproduced, except in full, without written permission from Compliance Testing All results contained herein relate only to the sample tested

Test Report Revision History

Revision	Date	Revised By	Reason for Revision
1.0	June 15,2015	Alex Macon	Original Document

ILAC / A2LA
Compliance Testing, LLC, has been accredited in accordance with the recognized International Standard ISO/IEC 17025:2005. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer joint ISO-ILAC-IAF Communiqué dated January 2009)

The tests results contained within this test report all fall within our scope of accreditation, unless below Please refer to http://www.compliancetesting.com/labscope.html for current scope of accreditation.

Testing Certificate Number: 2152.01

FCC Site Reg. \#349717
IC Site Reg. \#2044A-2

Non-accredited tests contained in this report:

N/A

EUT Description

Model: NBE-M5-19
Description: NanoBeam M5-19
Firmware: N/A
Software: N/A
Serial Number: N/A
Additional Information: The EUT is a 2×2 MIMO 802.11 n radio

MPE Limit Calculations

Exposure Limit $1 \mathrm{~mW} / \mathrm{cm}^{2}$
Source Based Time Averaged Power Calculation
Average Power Calculations
Average Power = Peak Power * duty-cycle\%
UNII-2A

Tuned Frequency (MHz)	Conducted Peak Output Power $(\mathbf{m W})$	Duty Cycle $\%$	Average Power $(\mathbf{m W})$
5300	11.7	100	11.7

MPE Evaluation

This is a fixed/mobile device used in uncontrolled/general population exposure environment.

Limits Uncontrolled Exposure	$0.3-1.234 \mathrm{MHz}$	Limit $\left[\mathrm{mW} / \mathrm{cm}^{2}\right]=100$
47 CFR 1.1310	$1.34-30 \mathrm{MHz}$	Limit $\left[\mathrm{mW} / \mathrm{cm}^{2}\right]=\left(180 / \mathrm{f}^{2}\right)$
Table 1, (B)	$30-300 \mathrm{MHz}$	Limit $\left[\mathrm{mW} / \mathrm{cm}^{2}\right]=0.2$
	$300-1500 \mathrm{MHz}$	Limit $\left[\mathrm{mW} / \mathrm{cm}^{2}\right]=\mathrm{f} / 1500$
	$1500-100,000 \mathrm{MHz}$	Limit $\left[\mathrm{mW} / \mathrm{cm}^{2}\right]=1.0$

Test Data

Test Frequency, MHz	5300
Power, Conducted, mW (P)	11.7
Antenna Gain Isotropic	19 dBi
Antenna Gain Numeric (G)	79.43
Antenna Type	dish
Distance (R)	20

$S=\frac{P * G}{4 \pi r^{2}}$					
Power Density (S) mw/cm	Power mW (P)	Numeric Gain (G)	Distance (r$\left.{ }^{2}\right) \mathrm{cm}$		
	0.1848899809	11.7	79.43		

Power Density $(S)=$	0.18
Limit $=($ from above table $)=$	1.0

MPE Limit Calculations

Exposure Limit $1 \mathrm{~mW} / \mathrm{cm}^{2}$
Source Based Time Averaged Power Calculation
Average Power Calculations
Average Power = Peak Power * duty-cycle\%
UNII-2C

Tuned Frequency $(\mathbf{M H z})$	Conducted Peak Output Power $(\mathbf{m W})$	Duty Cycle $(\%)$	Average Power $(\mathbf{m W})$
5600	12.3	100	12.3

MPE Evaluation

This is a fixed/mobile device used in uncontrolled/general population exposure environment.

Limits Uncontrolled Exposure	$0.3-1.234 \mathrm{MHz}$	Limit $\left[\mathrm{mW} / \mathrm{cm}^{2}\right]=100$
47 CFR 1.1310	$1.34-30 \mathrm{MHz}$	Limit $\left[\mathrm{mW} / \mathrm{cm}^{2}\right]=\left(180 / /^{2}\right)$
Table 1, (B)	$30-300 \mathrm{MHz}$	Limit $\left[\mathrm{mW} / \mathrm{cm}^{2}\right]=0.2$
	$300-1500 \mathrm{MHz}$	Limit $\left[\mathrm{MW} / \mathrm{cm}^{2}\right]=\mathrm{f} / 1500$
	$1500-100,000 \mathrm{MHz}$	Limit $\left[\mathrm{mW} / \mathrm{cm}^{2}\right]=1.0$

Test Data

Test Frequency, MHz	5600
Power, Conducted, $\mathrm{mW}(\mathrm{P})$	12.3
Antenna Gain Isotropic	19 dBi
Antenna Gain Numeric (G)	79.43
Antenna Type	dish
Distance (R)	20

Power Density $(\mathrm{S})=$	0.19
Limit $=($ from above table $)=$	1.0

